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Executive Summary 

Aim 

The aim of this collaborative research program between Swinburne University of 

Technology and the Defence Science and Technology Organisation is to identify the 

critical skills and necessary human performance requirements (both cognitive and 

physiological) for the future warfighter working as part of a complex human-machine 

environment. 

Background 

Human-machine boundaries are shifting, such that concepts of identity, autonomy, 

responsibility and trust need to be re-examined within a cognitive framework that can 

accommodate sensory and physical augmentation, complex information management 

and cognitive processes distributed across humans, machines and human-machine 

interfaces. This report focuses on measurement and modelling of human capabilities 

and performance, particularly in the cognitive domain. 

Measures of mental workload and performance 

We begin with an overview of the long history and wide range of measures of mental 

workload and performance. Many of these have been shown to have good reliability 

and predictive validity, such that many of them work well to measure and predict 

capability and performance within specified domains. There is less confidence in the 

criterion validity and construct validity of measures of mental workload and 

associated psychological variables, and only limited consensus on the relationship 

among physiological measures and their putative cognitive correlates. A major concern 

with measuring cognitive parameters is whether they actually reflect an underlying 

quantitative structure to be measured. While the information-processing models of 

human cognition that are commonly used in human factors research have provided 

useful frameworks for guiding the development of human-machine interfaces and for 

solving problems in specific task environments, they may not be sufficiently robust to 

support consideration of future human-machine environments and unknown task 

scenarios. Different philosophical approaches to cognition, such as the notion of 

embodied cognition, phenomenological approaches that emphasise sense-making 

through the nature of interactions with agents and environments, and approaches 

supporting the distributed nature of cognition, need to be explored. 
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Dominant models of human cognition 

Applied cognitive psychologists and human factors specialists operate somewhere 

along the scientist/practitioner spectrum. Those who identify most strongly with the 

scientist end of the spectrum tend to develop cognitive models to generate testable 

hypotheses regarding theoretical constructs. However many scientists and 

practitioners consider that their models serve primarily to provide a framework for 

what needs to be explained and to generate useful methods for specific analyses or 

evaluations of task environments. Models as frameworks can facilitate communication 

within cross-disciplinary research teams but it is important to be aware of the 

discipline-specific assumptions within such models that may not be understood by 

those from other disciplines. We present the common multi-level information-

processing models of individual human cognition underlying measures of human 

capability and performance. It has been clearly articulated in the literature that system-

level models of interactions and transactions between agents within systems are 

needed, as are better theoretical modelling of perception-action coupling and multi-

sensory integration. We reiterate this call and emphasise that more comprehensive and 

theoretically-sound models are particularly critical for the future human-machine 

environment, where sensory and physical augmentation and human-machine 

teamwork will challenge the individual, human perspective on cognition. 

Experimental program  

This Swinburne-DSTO research program includes experimental work being 

undertaken by a Masters student in applied psychology.  

This experimental program explores the strategies used by individuals to process 

information in a dynamic task environment, and to resume that dynamic task after 

interruption of input, but while the task remains ongoing. In the first study, we 

interrupt the ongoing, dynamic task using visual occlusion, whereas in the second 

study, we investigate information gathering strategies from a second dynamic task. In 

the third study, we will investigate cognitive strategies and performance implications 

undertaking the second dynamic task while simultaneously engaged in the primary 

ongoing, dynamic task. 

The first study of this program aims to identify potential cognitive, physiological, and 

performance correlates of visual attention during a visual-occlusion paradigm in an 

ecologically-valid dynamic task (a driving simulation game). We aim to identify the 

length of time that vision can be occluded without compromising performance along 
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with the strategies for dealing with occlusion in both predictable and unpredictable 

occlusion scenarios. The degree to which different cognitive, physiological and 

observational data are predictive of performance will be evaluated. The second study 

aims to identify the amount of time required to acquire different forms of information 

from a small screen presented in different locations and the degree to which 

information can be acquired sequentially through multiple brief presentations versus 

one longer presentation. The effect of different types of cues for the location of the 

screen (central versus peripheral, valid versus invalid, visual versus auditory) will be 

evaluated, and we will also investigate whether the speed of information retrieval can 

be improved with training. The third study will evaluate performance in a dual task 

condition to investigate switch costs and task-switching strategies using these two 

dynamic tasks and the conditions under which the information retrieval task captures 

attention beyond a planned look-away time from the primary task. 

Conclusions 

1. Measures of human cognitive capability and performance require more 

conceptual clarity and greater construct validity to be useful in understanding 

future human-machine scenarios. Understanding and quantifying dynamic 

aspects of human teamwork (cognitive, affective, physical) may provide 

guidance for future human-machine interfaces. 

2. A better conceptual framework for understanding the perception-action cycle is 

required for understanding how best to provide sensory and physical 

augmentation and to share information between humans and machines. 

3. There is a need for a sound philosophical framework for understanding the 

evolving distributed nature of human cognition and performance as “virtual 

environments” and new technologies become an accepted component of the 

“real world” with which we interact. 

4. A philosophical framework is also required for understanding the notion of 

trust, autonomy and accountability in the context in which machines are 

capable of acting as autonomous agents without direct human oversight. 

Within this context, it is important to explore the degree to which human 

capabilities and performance are limited by the constraints of the natural 

environment in which they evolved (pre-technology, pre-civilisation earth). 
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Overview and Context 

Background 

This collaborative research program between Swinburne University of Technology and 

the Defence Science and Technology Organisation seeks to understand the human 

performance requirements of future warfighters operating within the technological 

environment expected to be available into the year 2050. Future human performance 

requirements centre on the information management strategies, attentional 

mechanisms, and performance indicators (both cognitive and physiological) that 

underpin effective future human-machine interface technologies. As technology 

advances, the integration between humans and the technology they use is becoming 

increasingly seamless. It is anticipated that by 2050 partially autonomous systems that 

require human interaction from a remote location will be the norm. In this 

environment, it will become increasingly important to understand the necessary 

resource allocation, information management, and decision-making skills required to 

support the effective monitoring and control of multiple assets within these complex 

socio-technical systems. The design of technology interfaces and the allocation of tasks 

between human and machine must take into account the implicit and explicit 

information-processing strategies supporting skilled human performance and the 

human interaction with semi-autonomous and fully autonomous systems. This will be 

critical to determine the modifications to recruitment and training strategies necessary 

in order to meet human performance requirements in this new warfighter 

environment. 

Aim 

This collaborative research program aims to identify the critical skills and necessary 

human performance requirements (both cognitive and physiological) for working as 

part of a complex machine environment. The research program also has the potential 

to develop criteria for technology interfaces that will allow ADF personnel to work 

effectively within this environment while meeting concurrent social, ethical and 

political considerations with minimal performance cost. 
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Method 

The method of study employed on this project has been: 

1) To develop laboratory tasks suitable for testing implicit attention and skilled 

performance used in different human-machine interactions (for example, tasks 

simulating the monitoring and control of multiple UAV assets in complex 

environments); 

2) To develop a methodology for determining physiological load in humans to 

predict human performance decrements; 

3) To use these tasks to increase an understanding of the information-

management and attentional skills required to achieve complex operations 

with: 

a) Single machines with differing levels of autonomy; 

b) Multiple machines with differing levels of autonomy; 

c) Multiple machines and multiple operators with differing levels of 

autonomy; 

4) To monitor and review the future technology landscape to understand the 

types of technologies likely to be in operational use into the future; 

5) To review the literature on information management strategies, skilled 

performance and autonomous systems to be able to provide on-going advice as 

to changes in the nature of skilled performance requirements to operate in a 

future technology landscape. 

Organisation of this Report 

The first section of the report will be in the form of a literature review of measurement 

of human capabilities and performance in the context of the dominant information-

processing models of human cognition. It will then outline proposed future directions 

for cognitive models and frameworks that may be more applicable to the complex 

socio-technical environments of the near future.  

The second section of the report will outline a series of laboratory tasks being 

undertaken that seek to understand the attentional strategies, information 

management and performance costs associated with predictable and unpredictable 

task switching in a dynamic task environment.  
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Measures of Mental Workload and Performance 

Methodological considerations 

Scientist-practitioner model 

The human factors domain is focused on ensuring that the design of technology meets 

the needs of the users of that technology (Stanton et al., 2013). Like the discipline of 

psychology, the human factors discipline follow the scientist-practitioner model, in 

which the practice within the discipline is grounded in, and informed by, scientific 

research. Stanton et al. note that human factors specialists differ in the position they 

place themselves along the scientist-practitioner scale, depending on the type of work 

they undertake. Annett (2002a; 2002b) draws a distinction between human factors 

specialist as systems analyst, aiming to understand the nature of interactions between 

human and machine, and the human factors specialist adopting evaluative methods to 

test the design of specific human-machine interfaces. While analysts must be 

concerned with the construct validity of the methods they employ in their research, 

evaluative methods rely more on predictive validity and reliability.  

For the most part, human factors specialists work on the design and evaluation phases 

of technology projects to ensure that human-machine interfaces meet the needs of the 

users. Stanton et al. (2013) catalogue and evaluate over 100 human factors methods that 

can be applied to different problem spaces, ranging from qualitative and observational 

methods (e.g., interviews, checklists, probes, video analysis) through to quantitative 

measures (e.g., reaction times, error, mental workload, physiological and biofeedback 

measures) and analytic methods (e.g., task analysis, flow charting, network analysis). 

Human factors specialists, especially those working in complex, high stakes task 

environments (aviation, medicine, military) need to be relatively pragmatic about the 

methods they adopt, given the likely constraints on access to the technology, the 

human operators, and the operational theatre. In the end, much of the human factors 

research undertaken in these domains is relatively agnostic with respect to the theory 

underlying the methods adopted. If the methods provide usable data and the 

frameworks and models from which they derive serve as effective inter-disciplinary 

communication tools, the work is deemed to be of high value. 
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However, the context of this report is consideration of the human-machine 

environment in future technology landscapes looking at least twenty years into the 

future. This landscape is free of the constraints of any current specific task 

environment. Norman and Verganti (2014) note that most human-centred design 

methods operate successfully in the context of incremental innovation (improving 

innovative technology once it has been adopted in a task environment) but not so well 

in the context of radical innovation, where the constraints on context of use are 

unknown. For radical innovation, predictions about the constraints of human 

capability and performance must be theoretically sound in a scientific sense, rather 

than the more pragmatic sense that can be applied in known situations. Applied 

psychology / human factors specialists bringing their discipline expertise to open-

ended future-oriented predictions must operate firmly at the scientist end of the 

scientist-practitioner model. In making broad claims about human-machine 

interactions into the future, there is no real-life system to measure, and no specific 

work domain to design, so the only basis for considering the role of the human in the 

human-machine environment is to begin with a scientifically-defensible model of 

human capability and performance.  

Human performance measures 

There are many measures of human performance, both in the form of physical and 

cognitive aspects of performance (e.g, see Anastasi & Urbina, 1977; Stanton et al., 2013; 

Weinberg & Gould, 2015). These measures can be roughly characterised as measures of 

human capacities, reflecting the cognitive, physical and affective capacities of humans 

in general or of individual human operators, and measures of task performance, 

reflecting the actual performance of human operators on specified tasks or in specified 

situations. Types of performance measures may be in the form of speed of responding 

or errors in terms of relevant task parameters, or in terms of physiological or 

behavioural indicators of cognitive or physical factors. Measures of cognitive or 

physical workload are used to estimate the workloads imposed by specific tasks, and 

to measure the capacity of individual operators to meet these workload requirements. 

Workload measures can also be used to track the degradation of performance over 

time (e.g., due to vigilance decrements or fatigue).  

One of the main advantages of machines over humans is the fact that a machine does 

not suffer from the perceived human frailties, like becoming bored or fatigued by 

repetitive tasks, or becoming emotional and erratic in performance under mentally or 
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physically stressful conditions. In fact, machines tend to excel at tasks that tire or bore 

humans. But in stark contrast to this, machines often have great difficulty with tasks 

that humans find easy (Minsky, 1988), machines do not deal well with even low levels 

of uncertainty and complexity, and are difficult to endow with the notion of “common 

sense”.  Although it is beyond the scope of this report to discuss in detail, human 

moods, emotions, personality factors and adaptable arousal levels may prove to be an 

intrinsic component of the most positive aspects of human capability within future 

human-machine environments (Damasio, 2008; LeDoux, 1992; Minsky, 2007; Norman, 

2005). 

As the nature of the human-machine environment becomes more complex, it is 

imperative that we begin to understand the technical specifications of the humans in 

the human-machine system, just as we understand the technical specifications of the 

machine components. Although we have a range of potential measures of human 

“technical specifications” in the form of standard psychological and physiological 

parameters (personality measures, measures of aptitude, intelligence, emotional 

intelligence, physical performance measures used in sport), the construct validity of 

these measures often contested, particularly when employed outside of their original 

context of development and usage. For example, many psychological tests were 

originally developed in the context of clinical populations for differential diagnosis, 

but are now widely used in normal populations to measure individual differences on 

putative psychological factors defined by reference to performance on these 

instruments (Frances, 2013).  

Reliability and validity 

Psychological constructs such as cognitive capacity, attentional effort and mental 

workload are not directly observable, and can only be measured through inferential 

methods. The concepts of reliability and validity are thus fundamental to psychological 

measurement (Anastasi & Urbina, 1977). Reliability refers to the attribute of 

consistency in measurement and is best described as a continuum from inconsistent to 

completely reproducible under specified conditions. The different types of reliability 

include temporal stability (e.g., test-retest reliability), internal consistency (e.g., split-

half, coefficient alpha), and inter-rater reliability, which confirms that tests 

administered by independent assessors produce similar results. In contrast, a measure 

is deemed valid to the extent that it measures what it was intended to measure, and to 

the extent that inferences made from the measure are appropriate, meaningful, and 
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useful. Approaches for collecting evidence that demonstrate the validity of a measure 

can be classified into content, construct, and criterion validity. Content validity and 

construct validity measure the degree to which the content of the measure relates to 

the construct being measured, and the overall degree to which the construct makes 

sense conceptually. Criterion validity and predictive validity are related to future 

behaviour or performance. Face validity refers to the degree to which a measure is 

accepted by stakeholders as valid. Face validity is often linked to the surface 

similarities between the measure and the layperson’s view of the construct being 

measured and is rarely considered in psychological testing. However, face validity can 

be surprisingly important in applied settings where practical outcomes are the main 

focus and people examining business cases must be convinced of the utility of each 

approach (Anastasi & Urbina, 1997). 

With regards to the human machine environment, construct validity or evidence that a 

measure actually captures the underlying theoretically-derived conceptual construct it 

is intended to, and predictive validity, are especially important. Although the concepts 

of reliability and validity are widely used in the context of psychological measurement, 

there has typically been less emphasis on the psychometric properties of human factors 

methods. There is less focus in the human factors domain on the ‘scientist’ aspect of the 

scientist-practitioner model (developing hypotheses, using rigorous data collection and 

analysis techniques and disseminating research findings that test theoretical models), 

and more emphasis on the ‘practitioner’ end of the spectrum. The practitioner focuses 

on applying models and methods to real world problems, addressing the constraints 

inherent within these environments, and developing and evaluating cost-effective 

solutions to identified problems. In the human factors domain, theoretical models 

serve primarily as frameworks for analysis, evaluation and communication rather than 

the fundamental principles of their domain. 

Psychological Measures 

Psychological assessment is mostly directed toward personality traits and cognitive 

abilities. This section will focus on the measurement of cognitive abilities and 

performance rather than on personality measures, and these are generally measured 

using intelligence and aptitude tests. Intelligence tests produce an overall score based 

on results from a heterogeneous sample of items, whilst aptitude tests measure more 

clearly defined and relatively homogenous segments of ability. These tests are often 
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used to provide an indication of cognitive functioning and to predict performance in 

other domains, including educational and workplace setting. 

Intelligence tests 

Currently, the most widely used intelligence test is the Wechsler Adult Intelligence 

Scale (WAIS; Wechsler, 2008) which comprises fifteen subtests that produce a global IQ 

score and four index scores relating to verbal comprehension (including verbal 

reasoning, verbal expression, acquired cultural knowledge), perceptual reasoning 

(including spatial reasoning, inductive reasoning, problem solving), working memory 

(including attention, mental control, concentration), and processing speed (including 

visual perception, visual motor coordination). The WAIS not only provides a measure 

of general intellectual functioning, but allows for the examination of intra-individual 

strengths and weaknesses across different index and subtest scores. However, the 

overall global IQ score may be misleading when there is significant variation in subtest 

scores that generate the index scores contributing to the global IQ score. The same 

global score may reflect substantially different patterns of subtest and index scores, 

and these patterns of scoring may provide a more meaningful and nuanced 

representation of overall cognitive ability. A major disadvantage of the WAIS is that it 

is time-consuming to administer, score, and interpret, and it must be administered by a 

registered psychologist. For this reason, despite its well-known psychometric 

properties (Lichtenberger & Kaufman, 2009), it is not often used as a measure of 

intelligence in applied settings.  

An alternative to the WAIS is the Kaufman Brief Intelligence Test (KBIT; Kaufman & 

Kaufman, 2004), a brief intelligence screening test that provides an overall general 

intelligence score and two scale scores, a verbal score, also referred to as crystallised 

knowledge and a non-verbal score, also referred to as fluid intelligence. Verbal or 

crystallised intelligence is made up of items that assess verbal comprehension, 

reasoning and vocabulary knowledge, whereas non-verbal or fluid intelligence is made 

up of a matrices test that assesses the ability to identify relationships among 

meaningful and abstract visual stimuli. Both the WAIS and KBIT demonstrate good 

psychometric properties: reliability in terms of test-retest and internal consistency; 

construct validity as evidenced by significant correlations with related measures; and 

predictive validity in terms of predicting academic performance (Kaufman & 

Kaufman, 2004).  



Wise, Skues; FHAD, Swinburne 

Page 14 of 65  

Despite evidence demonstrating the reliability and validity of these individual 

intelligence tests, the nature of the underlying construct of intelligence is still deeply 

contested (Neisser et al., 1996). As can be seen from the WAIS and the KBIT, each test 

generates a different overall intelligence score generated by different scale scores based 

on different subtests and items, suggesting two different conceptualisations of how 

general intelligence is constructed. Moreover, the evidence for the predictive validity 

of intelligence tests also needs to be re-examined in terms of whether the items on 

intelligence test (supposedly measuring an aptitude that will predict future 

performance) are actually different from those on the performance outcome measure.  

Emotional Intelligence 

More recently, there has been a shift in focus from general intelligence to emotional 

intelligence (e.g., Mayer et al., 1999; 2001; Pérez et al, 2005). Put simply, emotional 

intelligence can be described as the ability to perceive and interpret other people’s 

emotions, as well as the ability to understand and regulate one’s own emotional 

responses. Given the interest in emotional intelligence over the past two decades, there 

have been several notable attempts to operationalize emotional intelligence including 

the Mayer-Salovey-Caruso Emotional Intelligence Test V.2 (MSCEIT V.2; Mayer, 

Salovey, Caruso, & Sitarenios, 2003), the Emotional Competence Inventory (ECI; 

Boyatzis, Goleman, & Rhee, 2000), Schuttle et al.’s (1998) 33-item emotional intelligence 

scale and Bar-On’s (1997) 133-item Emotional Intelligence Quotient Inventory (EQ-I; 

Bar-On, 1997).  With the exception of the MSCEIT (Mayer et al., 2003), most emotional 

intelligence tests are typically self-report surveys that assume one is insightful enough 

to be able to report accurately and honestly about his or her own understanding and 

use of emotions, and his or her ability to perceive emotions in others.  Although there 

is support for the reliability of emotional intelligence measures, there is limited 

evidence for the validity of such measures. In fact, similar to general intelligence and in 

the absence of a strong theoretical basis, emotional intelligence measures have 

produced different factor structures ranging from one to five-factor models, with 

scores on these measures being more strongly associated with personality trait 

variables than general ability measures (e.g., Bastian et al., 2005). This raises further 

questions about the construct validity of emotional intelligence and whether it is based 

on a defensible theoretical model. The predictive validity of emotional intelligence 

measures is limited and appears to explain less variance in performance outcomes 

compared to general ability measures, despite claims that it contributes more to overall 
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performance. While it is indisputable that some form of “emotional intelligence” will 

be critical to human-machine interactions in future sociotechnical environments, 

current models of emotional intelligence require significant research and development. 

Human Factors Methods 

Human factors methods are used to address problems that impact negatively on the 

overall performance of a human machine system (see Vicente, 2004). Most of these 

problems are related to unexpected interactions at the human machine boundary. 

Stanton et al. (2013) describe 107 different humans factors methods that can be 

collapsed into task analysis methods, cognitive task analysis methods, process chart 

methods, human error identification and accident analysis methods, situational 

awareness methods, mental workload assessments, team assessment methods, 

interface analysis methods, design methods and performance time prediction methods. 

This report will focus on mental workload assessments as not only is it common 

practice to assess mental workload in the human machine environment, but rather this 

is particularly important for future warfighters who will be working in complex 

human machine systems.  

Mental workload 

Mental workload as a theoretical construct is concerned with measuring the cognitive 

resources available (individual perspective) or required (task perspective) to undertake 

a specific task in a specific context. While scientists aim to understand the nature of the 

cognitive resources in terms of their structural and functional components, 

practitioners take a more pragmatic view. For practitioners, mental workload is 

conceptualised as a multidimensional construct where stressors such as task demands, 

task difficulty, and constraints of the task environment as well as other environmental 

stressors negatively affect an operator, which in turn affects their performance 

(Megaw, 2005). It can be inferred through multiple methods including performance 

measures for primary and secondary tasks in dual task scenarios, psychophysiological 

recordings, and subjective ratings. Psychophysiological measures of mental workload 

involve objective physiological responses such as heart rate, heart rate variability, eye 

movements and brain activity that are assumed to be affected by, or indicative of, 

increased workload. These physiological recordings can often be collected during the 

primary task without having to interrupt performance whereas subjective rating 
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involve participants reporting on the perceived mental workload associated with task 

performance either during or following the completion of the task.  

The most widely used subjective measure of mental workload is the NASA Task Load 

Index (NASOA-TLXL Hart, 2006; Stanton et al., 2013). This scale is a multidimensional 

subjective rating tool based on a weighted average of six workload sub-scales, 

including mental demand, physical demand, temporal demand, effort, performance 

and frustration level. Since the operationalisation of mental workload in this measure 

comprises performance, physiological and subjective ratings, multiple methods of data 

collection are required. This multiple methods approach theoretically provides an 

advantage of triangulating data and supplementing objective measurement with 

subjective measures. However, Matthews et al. (2015) found that different sources of 

data did not always converge and that convergence should be empirically 

demonstrated prior to interpretations of any findings using this measure. While the 

sensitivity and internal consistency of these measures can be evaluated in specific task 

environments, their utility in predicting cognitive capacities and performance in future 

and more complex environments is contestable without a firmer understanding of the 

underlying constructs of interest and their relationship with the various sub-scales. 

Methodological issues reprised 

As noted earlier, both the construct validity and predictive validity of psychological 

tests of intelligence and emotional intelligence have been strongly contested, and 

suggests such tests are problematic in considering cognitive capabilities in future 

technology environments. There are also such concerns surrounding the measurement 

of mental workload in the human factors domain.  According to Annett (2002a), 

subjective methods of measuring mental workload are fundamentally flawed for 

several reasons, including the level of disagreement between objective and subjective 

measures, sources of error such as poor inter-rater reliability and systematic effects 

such as timing, presentation order and contextual effects on subjective judgments. The 

reliance of subjective measures on introspection is limited by the amount and type of 

information available to conscious report. The amount of attention that can be directed 

toward the relevant stimulus can be comprised by the acts of introspecting and 

reporting. More importantly, sensory information that is not consciously attended to is 

therefore not available for conscious report even though it might be highly relevant to 

workload and performance. It should also be noted that the quality of subjective 

responses differs for novices versus experts such that experts are able to provide more 
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in-depth and detailed subjective responses compared to novices. However it is not 

clear whether experts are reporting more detailed task knowledge (a conscious 

understanding of the task requirements at the point of introspection) or whether they 

are actually reporting on the cognitive activity they are engaging in. 

More generally, however, a major concern relating to the use of tools to measure 

cognitive ability is the degree to which these measures violate the fundamental 

requirements for scientific measurement (Annett, 2002a; 2002b).  That is, attributes 

such as intelligence and mental workload lack true quantitative structure that allow 

proper measurement. For example, we assign scores to intelligence, but there is no 

identifiable unit of measurement for the scores. At most, these scores are ordinal data. 

Although we can establish patterns in the data that have structure (i.e., factor analysis), 

this is not sufficient for establishing the theoretical validity of a construct that allows it 

to be confidently applied in a different context. It could be argued that within the 

psychology domain, intelligence can be viewed as a social construction, and it is what 

is being measured (the patterns of responses on tests of intelligence define the 

construct). Similarly, within the human factors domain, subjective ratings can be cross-

validated with objective physiological and performance measures to provide 

confidence in the use of the measures in specific contexts. 

We highlight the lack of theoretical models to inform the measurement of certain 

constructs, the underlying quantitative structure and true existence of these constructs, 

and the criteria for making sense of different sources of data so that interpretations are 

useful and meaningful. Given our focus on human capability and performance for the 

future warfighter operating within complex socio-technical scenarios, it is critical that 

the methods and measures offered by scientists to inform analysis be based on 

conceptually-sound and defensible theoretical models that can be scientifically 

validated. 

We also note that there are many methods in human factors research for measuring 

putative cognitive resources required within complex task environments that we have 

not reviewed here. For example, there are many excellent resources outline methods 

for cognitive task analyses (e.g., Crandall et al., 2006; Hoffman & Militello, 2009; 

Stanton et al., 2013), cognitive work analysis (e.g., Naikar et al., 2006; Naikar, 2013; 

Rassmussen et al., 1994; Vicente, 1999) and frameworks for evaluating distributed 

situation awareness (e.g., Salmon et al., 2009). These approaches seek to understand 

workload demands from a task environment or system perspective with a view to 
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understanding how to design better systems that manage workload more effectively. 

They are mostly designed to assist multidisciplinary teams undertake complex 

multidisciplinary analyses involving high level input from project sponsors, subject 

matter experts, technical designers, interface designers and system end-users, rather 

than to understand the basic underpinnings of human cognitive architecture. 
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Information Processing Model of Human Cognition 

Multistore Model 

Overview 

The basic information processing model of cognition originally proposed by Atkinson 

and Shiffrin (1968) is illustrated in Figure 1. This model combines the processes of 

sensation and perception with a standard model of memory to describe how 

individuals gather, organise, interpret, process, and store information from the 

environment.  

 

Figure 1. Multistore model of memory (adapted from Atkinson and Shiffrin, 1968) 

 

Sensation 

At the time this model was first proposed, sensation and perception were conceived of 

in terms of passive registration (sensation) and organization (perception) of 

information from the environment from which an internal representation of the 

external world could be generated (cognition). Sensory buffers were conceptualized as 

modality specific and include visual (iconic) and auditory (echoic) storage. Buffers for 

other sensory systems were rarely considered in models of cognition, although it is 

well known that odours can serve as potent cues for memory and emotion (Herz & 
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Engen, 1996) and other sensory systems are likely to play an important role in future 

simulated and augmented technology environments. The different time course 

associated with stimulation of different sensory systems is also rarely considered but 

has significant implications for sense-making. For example, many odour cues exist 

over a long time frame (minutes, hours, days), whereas acoustic information is 

transient and the auditory system is exquisitely sensitive to fine temporal distinctions 

(in the millisecond and microsecond range). Touch, pressure and pain can be fleeting 

or long term, but the somatosensory (body sense) system includes active touch (haptic 

information derived from exploration of the environment by, for example, the hands 

and feet), proprioception (knowledge of joint angles and positions), kinaesthesia 

(movement of the body) and vestibular information (information about balance 

derived from the semicircular canals and otolith organs of the inner ear).  

Visual stimulation is the only form of stimulation that we cannot self-generate: it arises 

from disturbances in the light medium in which we exist, but we do not emit or 

generate light ourselves. Without a light source, we are unable to see. Perhaps given 

the reliance of this sensory system on exogenous stimulation, vision is not only our 

primary sensory system for interpreting the external world, but perhaps also our most 

malleable. The possibility that its exquisite capacity for pattern recognition imbues 

vision with its sense of primacy may have intriguing consequences for perception and 

perception-action coupling in future technology environments. 

Perception 

Perception refers to the process by which the brain selects, organises and interprets 

sensory information. Most cognitive psychology or human factors textbook versions of 

perception focus on visual perception, with much less detailed analysis of other 

sensory systems if they are mentioned at all. This signals the pervading view that 

humans are visually dominant, such that for humans “seeing is believing”. However, 

to understand the impact of future technologies environments on human performance, 

it is important to have a much deeper understanding of sensory processing and 

perception than the common textbook approach. The 2.5D Sketch of Marr (Marr & 

Poggio, 1979; Marr, 1982/2010) proposes three levels of analysis for vision: the 

computational level; the representational level; and the physical implementation level. 

Each of these domains is deep and complex. The computational level is largely the 

domain of physiologists, mathematicians or engineers. The representational level is 

largely the domain of psychologists and philosophers. The physical implementation 
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level is the domain of neuroscientists and computer programmers/engineers. 

Computational vision seeks to understand the computational foundations of vision for 

image processing applications and to help design machines vision systems for a variety 

of context including science, entertainment, manufacturing and defence and is agnostic 

in terms of physical implementation. However while successful models in terms of 

computational vision are proof-of-concept that a particular form of analysis can 

produce functional outcomes, they do not necessarily speak to the neurobiological 

implementation of the human visual system. The degree to which perceptual systems 

(both human and machine) are modular and accessible to conscious scrutiny (see 

Fodor, 1983, for a specification of modularity in this context) is rarely considered in the 

applied domain. However the transparency of information processing and its products 

is a critical consideration for assessing the impact automation, control and autonomy in 

future technology environments (e.g., Parasuraman & Riley, 1997). Understanding the 

differences in underlying processing mechanisms and internal system representations 

is crucial for human-machine interoperation.  

While a detailed discussion of the extensive literature on human perception and 

computational vision (e.g., Lauwereyns, 2012; Nixon et al., 2012; Stone, 2010; Stone, 

2012; Werner & Chalupa, 2013) is beyond the scope of this report, the psychological 

notion of perceptual constancy is important to highlight. Perceptual constancy refers to 

the fact objects and environments are perceived as a relatively stable in terms of 

features such as size, colour and shape despite the fact that the physical stimulus 

energy giving rise to such percepts can change dramatically. The concept of perceptual 

constancy is important in context of future technology environments. Unlike machine 

sensors, human sensory systems do not record direct stimulus energy at the receptors, 

but rather, transduce stimulus energy into neural energy to support human behaviour. 

For an example in terms of stimulus encoding, the auditory system does not measure 

sound intensity in terms of decibels but rather, registers sound intensity in terms of the 

psychological construct of perceived loudness (e.g., Moore, 1989), which is interpreted 

against the background sound environment (ambient noise level). For a further 

example, but this time in terms of action outcomes or behaviour, imagine a soccer ball 

being thrown to you from a distant shaded area of the garden to the sunny area in 

which you are standing. The ball does not appear to become larger, change colour, or 

change shape or change in terms of its perceived affordances (to kick it or catch it at an 

appropriate point on its trajectory) despite the fact that the projection of the ball on the 
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retina is constantly changing, and the ambient visual environment of the ball is also 

changing.  

Perceptual constancy (Day & McKenzie, 1973; Ittellson, 1951) highlights that 

perception is not only driven by bottom-up, data-driven processing that emphasises 

the role of sensory information in shaping perception, but is also influenced by top-

down schema-driven processing where prior experience and expectations are imposed 

on raw stimuli to influence perception. Most importantly for future technology 

environments, it must be recognized that we do not have conscious access to how data-

driven and schema-driven processing interacts to produce a given percept, and we do 

not know how the perceptual range is calibrated relative to ambient energy levels at 

any given time to allow direct comparison of sensory stimulation or perceptual 

processing in different scenarios. As can be demonstrated with perceptual illusions 

such as ambiguous figures (e.g., the Necker cube, see Figure 2 originally reported by 

Necker, 1832), we can only experience one interpretation of a given stimulus 

configuration at a time and the rate of switching between different interpretations of 

ambiguity does not appear to be under voluntary control (e.g., Kornmeier & Bach, 

2003; Korneier, et al., 2009; van Ee et al., 2005). 

 

Figure 2. Ambiguous figure: the Necker cube (left panel of illustration) is an illusion of 

depth whereby the "wire image" cube can be interpreted with the grey side being closer to 

the viewer (unambiguous version in top right panel), or further away from the viewer 

(unambiguous version in bottom right panel).  
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Short Term Memory  

In the Atkinson and Shiffrin model depicted in Figure 1, short term memory only holds 

a small amount of information in consciousness for a short period of time (i.e., 20-30 

seconds) unless effort is invested to retain it for longer. It is widely reported that this 

limited capacity of short tem memory is approximately seven pieces of information, 

with a normal range of five to nine items (e.g., Miller, 1956; Baddeley, 1994). According 

to the model, individuals exert some degree of voluntary control over what 

information is stored and how long it is stored for through the rehearsal process (see 

Figure 1) which can be used not only to reestablish an item in short term storage, but 

also to strengthen its encoding in long term memory. Individuals can also chunk 

information together by organising it into meaningful units, which serves the purpose 

of reducing the number of pieces of information to retain in short term memory. What 

constitutes a meaningful unit is difficult to articulate clearly, although common 

examples would be symbolic codes like phone numbers, postal codes and established 

acronyms, or the slightly more nebulous information stored in schemas. 

Working memory 

Inspection of Figure 1 suggests that consciousness to some extent derives from paying 

attention to sensory information, or from recalling stored information so that it is “re-

activated” in the short term store. The active role of short term memory in processing 

new information as well as recalling relevant information from long term memory, 

prompted Baddeley and Hitch (1974) to reframe short term memory as working 

memory. Working memory was conceived of as a place for temporary storage and 

information processing including the evaluation and manipulation of information. The 

notion of working memory has continued to evolve over time. According to Baddeley 

(2000), working memory comprises four components, including 1) a central executive; 

2), a phonological loop; 3) a visuo-spatial sketchpad; and 4) and an episodic buffer (see 

Figure 3). 

The central executive is conceptualized as a modality-free, limited-capacity component 

of working memory that controls and manipulates information from the other 

components. It is associated with processes such as rehearsal, reasoning, and decision 

making related to completing two simultaneous tasks, and is considered the most 

important component (or resource) of working memory. It also the most problematic in 

conceptual terms in the sense that it inherently invokes the concept of a “homunculus” 



Wise, Skues; FHAD, Swinburne 

Page 24 of 65  

(see Yeung, 2010) – a little man-in-the-head” who controls the action of working 

memory, which itself is supposed to be controlling the action of the person in whose 

head the homunculus resides. Presumably the homunculus also has a form of working 

memory, with its own homunculus, setting up an infinite regress, and no proper 

explanation of the central executive of the original homunculus. 

 

Figure 3: Model of key components of working memory 

The phonological loop is another proposed component of working memory that deals 

with sound-based information including preserving the order of words used in speech. 

According to Baddeley et al. (1990), it has both a passive phonological component 

concerned directly with speech perception, and an articulatory component, concerned 

with speech production. In contrast, the visuo-spatial sketchpad is postulated to store 

and manipulate visual and spatial information about the location and nature of objects 

in the environment. Logie (1995) argues for two sub-components of the visuo-spatial 

sketchpad, a visual cache that stores information about form and colour, and an inner 

scribe that processes spatial and movement information. The episodic buffer is a fourth 

component of working memory that is used to integrate and briefly store information 

from the phonological loop, the visuo-spatial sketchpad and long term memory.  

More elaborate models of working memory have been proposed by Cowan (1995) and 

Ericsson and Kintch (1995), in which they expand the notion of working memory to 

include activated regions of long term memory that are indexed to provide fast access 
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to schemas. Oberauer and others take a different approach (Ecker et al., 2013; Ecker et 

al., 2014; Kessler & Oberauer, 2014; Oberauer & Kliegl, 2006; Oberauer & Bialkova, 

2009; 2011; Oberauer & Hein, 2012; Öztekin & McElree, 2010) in expanding the notion 

of working memory to include both declarative and procedural elements, and their 

approach to understanding working memory will inform our own research program 

and experimental approach.  

Long Term Memory 

Whilst some information stored in short term or working memory may be lost due to 

decay over time or interference from competing additional information, other 

information moves to the long term memory store where it can reside for very long 

periods of time, and where the storage capacity is presumed to be virtually limitless. 

Information assumed to be stored in long term memory includes two primary kinds of 

information, declarative and procedural. Declarative memory refers to the memory of 

facts (semantic memory) and specific events (episodic memory), or information that 

can be stated or declared by an individual (Tulving, 1972; 1987). Procedural memory 

refers to how to do things (e.g., motor skills) and is thought of as an automatic, 

implicit, non-conscious form of processing, however it is also possible to render this 

type of information explicitly, suggesting that the general steps of an action or 

procedure can be made explicit (consciously available).  

The method by which implicit procedural information becomes explicit is not easily 

explained but is pivotal to the understanding the development of skilled performance, 

automaticity and expertise. The epistemological question is whether explicit 

knowledge of procedural information is constructed by reflective analysis of inputs 

and outputs (“I kicked the ball to that player [output], because I saw he was in a better 

position than the other two options [input]”), or by some method of introspection that 

permits conscious access to actual procedural processes involved in sensing, perceiving 

and interpreting visual information, considering in terms of football-oriented schemas, 

and making the decision. Fodor’s extreme version of modularity of mind (Fodor, 1983) 

suggests that perceptual modules are cognitively impenetrable (not available for 

conscious inspection), suggesting that we can only reconstruct what we do ourselves 

using the same cognitive processes or theory of mind (Baron-Cohen, 1995) that we use 

to interpret someone else’s behaviour (Curruthers, 2009), albeit from an egocentric 

rather than an allocentric perspective. 
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The process for recovering information from long term memory is called retrieval, 

which involves bringing information from long term memory back to short term or 

working memory. As can be seen from Figure 1, the mode of forgetting that occurs in 

long term memory is that of interference, suggesting that forgetting is a result of faulty 

encoding or a failure of retrieval rather than the result of decay of storage. In the 

context of the virtually limitless storage capacity offered by current and future 

technologies, it is important to highlight that “forgetting” is an issue of encoding and 

retrieval, not of storage space. The importance of appropriate forgetting (for example, 

updating incorrect information, deleting outdated information, removing information 

that is no longer relevant, reanalyzing all the assumptions based on updated or deleted 

information) cannot be overstated (see for example, Anderson, 2003; Ecker & 

Lewandowsky, 2012; Glanzer et al., 1991; Koriat et al., 2004; Roediger III et al., 2010; 

Wixted, 2004; 2005), and will become a massive issue in the future world of “big data” 

and “the quantified self” (e.g., see Mayer-Schönberger & Cukier, 2013; Nafus & 

Richards & King, 2013; Sherman, 2014; Swan, 2013). 

Models of Attention 

The process of encoding sensory information into short term or working memory is 

represented in Figure 1 in terms of a selective filter model of attention (e.g., Broadbent, 

1958). Broadbent’s selective filter theory of attention drew heavily on the information 

processing capability of the recently invented computer systems of the time, 

comparing limited attentional resources of humans to the limited central processing 

capacity in computers. 

Broadbent’s strict ‘early selection’ theory was not supported by later studies (e.g., 

Moray, 1959; Treisman, 1964; 1969) and Treisman (1964) proposed a threshold 

approach to early filtering whereby contextually important stimuli in unattended 

streams, such as an individual’s name or warnings of impending danger would be 

break through the filter. In contrast, Deutsch and Deutsch (1963) proposed a late 

selection model in which all information is processed in short-term memory where it is 

segregated into different channels, such that only the most important channels will be 

attended.  

Kahneman (1973) notes that attention is not only selective, but also involves intensity 

or effort, which, like information processing resources, is of limited capacity (see 

Figure 4, where the wavy line indicates available attentional capacity within a pool of 
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more generalised arousal). The important elements of this model are the dynamic 

levels of attention and arousal, along with the allocation policy that determines what 

will be attended. Kahneman proposes four factors that influence the allocation policy. 

Enduring dispositions reflect the rules governing involuntary attentional capture by 

peripheral or sudden stimuli. Momentary intentions are the voluntary activities 

engaged in on a moment to moment basis. Evaluation of demands occurs when 

concurrent activities call on more capacity than is available.  The fourth factor is the 

effect of changes in general arousal, which affect the way in which attention is 

allocated, and also how much energy is available in the attentional pool. Kahneman’s 

model was intended to complement rather than replace models of information 

processing such as the information flow model presented in Figure 1, and he notes 

that, in contrast to such models, his model is a control diagram that describes the 

influences and interactions of different components of the system.  

 

MISCELLANEOUS
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FIGURE 1·2
A capacity model for attention.

10 ATTENTION AND EFFORT

to other activities. In addition, of course, an action can fail because the
input of relevant information was insufficient. Thus, we may fail to de-
tect or recognize a signal because we were not paying attention to it.
But there are signals so faint that no amount of attention can make them
plain.

A capacity theory must deal with three central questions: (1) What
makes an activity more or less demanding? (2) What factors control the
total amount of capacity available at any time? (3) What are the rules
of the allocation policy? These questions will be considered in detail in
Chapter 2, and occasionally in subsequent chapters. Figure 1-2 merely
illustrates some of the interactions between elements of the model that
will be used in that analysis.

The key observation that variations of physiological arousal accom-
pany variations of effort shows that the limited capacity and the arQusal
system must be closely related. In Figure 1-2, a wavy line suggests that
capacity and arousal vary together in the low range of arousal levels.
In addition, arousal and capacity both increase or decrease according
to the changing demands of current activities.

 

Figure 4. A control diagram of the capacity model of attention. See text for further 

description. Taken from Kahneman, 1973 p 10) 

The aspect of Kahneman’s model that we highlight is the fact that attentional capacity 

varies both in relative terms (how much available attention can be allocated to a given 

activity) and in an absolute sense (the size of the attentional resource pool changes 
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based on arousal levels. This poses some difficulties in terms of conceptualising the 

quantitative structure of “attention”, and in comparing data from different contexts. 

Young and Stanton (2002a; 2002b; 2007) identify the dynamic aspect of attentional 

effort, which they describe in their malleable attentional resource theory. They note 

that the limits of attentional capacity can change in the relatively short term, 

depending on task circumstance, through malleable attentional resource pools that 

operate as a form of gain control over arousal. Young and Stanton proposed that skill 

and mental workload are inversely related such that, as skill improves on a task, 

attentional resources are released for other tasks, with a consequent decrease in mental 

workload. Young and Stanton found that driving performance is very much resource-

limited for novice drivers (i.e. performance decrements are a consequence of limited 

cognitive resources), but data-limited for expert drivers (i.e., performance decrements 

are associated with insufficient data rather than lack of cognitive resources to process 

the data). While novices receive a benefit from automation, experts do not, due to the 

resource-free nature of their processing. It is important to note that these data speak 

only to immediate task performance, but are often misapplied within training contexts. 

Novices who undertake complex tasks with the aid of automation may not end up 

learning the cognitive skills required to support future expertise, particularly if the 

pathway to improved performance is through learning to allocate attentional resources 

appropriately. 

Selective Visual Attention 

While the early research on attention (e.g., Cherry, 1953; Moray, 1959; Broadbent, 1958) 

was conducted with auditory stimuli generated by cutting and splicing tape-recorded 

acoustic signals, the advent of modern computers in the 1980s allowed for well-

controlled computer-based visual presentation of stimuli. The shift in sensory modality 

from studying auditory attention to studying visual attention was most likely 

motivated by the ease of stimulus generation rather than by any consideration of the 

inherent differences between the two modalities. However, it is important to note that, 

while audition is inherently a time-based sensory system, vision is inherently a spatial 

modality and therefore has different attentional properties and requirements.  

Posner (1980) investigated the processes and mechanisms underlying visual attention. 

He recognised two visual attention processes, overt orienting, where focal vision is 

directed towards objects and locations through head and eye movements and covert 
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orienting using peripheral vision. While covert attention is recognised as being 

important in visual anticipation and target selection in skilled performance, most 

measures of attention are measures are assumed to be of overt attention based on 

direction of gaze. It should be noted that, while direction of gaze indicates the current 

focus of central foveal vision, covert attention is likely to reflect the processing of 

anticipatory cues in peripheral vision, and these anticipatory cues are likely to be 

critical elements in social and tasked-based interactions (e.g., Bertenthal & Scheutz, 

2013; Lauereyns, 2012) and in skilled decision making (Hagemann, et al., 2006; 

Savelbergh et al., 2002; Williams & Ericsson, 2005; Williams et al., 1999). 

Typical Posner tasks (Posner, 1980; 2014) use an experimental design in which 

participants detect a briefly presented stimulus as quickly as possible while fixating on 

a central point. Two types of cues may be presented prior to the stimulus, a central 

spatial cue (e.g., an arrow pointing left or right) or a peripheral spatial cue (e.g., an 

illuminated box in the location of the upcoming target, or a sound signal from the 

appropriate location). Cues can be valid (congruent with the location of the upcoming 

target) or invalid (not congruent with the location of the upcoming target) and the 

percentage of valid to invalid cues can be varied across a block of trials. Typically, 

reaction times to stimuli in trials where cues are valid are faster than uncued trials, 

whereas reaction times to stimuli in trials where cues are invalid are longer, suggesting 

not only a facilitatory effect of valid cues but also an inhibitory effect of invalid cues 

(Awh & Pashler, 2000; Lachter et al., 2004; Posner, 1980; 2015; Posner et al., 1980). 

Furthermore, when invalid cues are more frequent than valid, central cues are often 

ignored but invalid peripheral cues (an illuminated box in a location incongruent with 

the upcoming stimulus) still negatively affect performance.  

The findings from this paradigm led Posner (1980) to propose two different types of 

visual processing, endogenous top-down processing and exogenous, data-driven, 

bottom-up processing. Posner suggested that the endogenous system operates via an 

individual’s expectations and intentions whereas the exogenous system is reflexive in 

nature and responds to salient stimuli that occur in peripheral vision (Posner, 2015 

although see Restic & Kingstone, 2012).  

Summary 

The preceding account of memory and attention articulates the known phenomena that 

require explanation, and seems to progress by adding new components to 
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accommodate new research findings. It does less well at providing further insight on 

how we represent information from the world, if indeed we do. Questions of whether 

short term and long-term memory respectively refer to processing, storage or indeed to 

the type and duration of experimental task, abound in the literature (e.g., see Craik & 

Lockhart, 1972), as do questions regarding the nature of capacity limitations of 

memory and attention, but the models of memory implying hierarchical memory 

stores or levels of processing remain in vogue.  

The main problem with the information processing approach is the degree to which it 

is embedded in the technology metaphors of the time (Gigerenzer & Murray, 1987). 

Visual information is conceptualized in terms of successive static images from a 

camera (snapshots acquired at each visual fixation) rather than in terms of a dynamic 

information stream driven by sense-making requirements at the time. Until very 

recently, computers were very much capacity-limited in terms of the information 

processing that could occur in the central processing unit. However the multiple 

processing streams required not only for different aspects of visual information, but 

also for multisensory information from pertaining to objects and events, give rise to 

massive “correspondence” issues in terms of integrating related information, problems 

that seem relegated to the sensory buffers or the central executive.  

This correspondence problem is also evident in the world of “big data”, which 

provides new metaphors for describing human cognition. For example, there are now 

highly sophisticated algorithms for matching information about a hypothetical John 

Smith from financial records, employment records, social security information, web 

browsing history and the like. However when matching data from multiple sources, 

there can be mismatches in the attributes and properties recorded, the meaning of 

different attributes in different contexts, and there can also be errors or missing data in 

records, some of which are filled with default information, some of which are empty, 

and some of which are plain wrong. It is not always possible to trace the origin of false 

information or to understand the implications of that false information in future 

decision making. Human perception and memory can be said to deal with similar 

issues in terms of the data it uses to construct its understanding of the world.  

While it could be argued that no scientist in the field truly believes in the simple 

information-processing models of cognition found in many textbooks, such models 

continue to dominate cross-disciplinary research and practice due to their ready 

conceptual accessibility and concomitant ease of application to real world scenarios. 
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The modern cognitive science literature, incorporating rapid advances in neurobiology, 

information and communication sciences and technology to our understanding of 

psychology, is really difficult to integrate into a coherent model of human cognitive 

capability. There is much common terminology, but the terminology does not always 

align across different areas, such that the same words refer to different concepts, or 

there are different words for similar constructs.  

Multiple Resource Theory 

Meanwhile, the pragmatic approach to cognition adopted in many human factors 

contexts does not attempt to distinguish between different theoretical constructs such 

as attention and working memory, but instead considers cognitive resources more 

broadly in terms of multiple resources used in information processing (Wickens, 1980; 

1984; 2010). The common theme among multiple resource models is that cognitive 

resources from a limited resource pool can be prioritised and allocated as necessary to 

meet various task demands. Resources will be allocated to a task on the bases of task 

difficulty, the level of performance required, and the priority of the specific task within 

the current task environment. The resources that remain (“spare cognitive capacity”) 

can then be allocated to other tasks.  

The influential multiple resource theory multiple resource model described by 

Wickens (Wickens (1980; 2002; Wickens & Liu, 1988) has four dimensions, each of 

which is claimed to be associated with distinct physiological processes (see Figure 5). 

The first dimension is that of processing stages, which can be at a perceptual level, a 

cognitive level, or a response level. The second dimension is based on the perceptual 

modality of input (illustrated in Figure 5 by visual and auditory modalities. The third 

dimension of the model is that of processing codes, which are purported to 

differentiate between analogue, spatial processes and categorical, symbolic processes 

Wickens (1980; 1992). The fourth dimension of the model distinguishes between focal 

and ambient processing, represented in Figure 5 by the oval (focal) on the shaded side 

of the cube (ambient). The multiple resource theory has been complemented recently 

by a model that governs the allocation of attentional resources in real-world 

environments (Wickens, 2006). This model involves four components: Salience, Effort, 

Expectancy and Value (SEEV model, see top-right panel in Figure 5). Salience and 

effort are associated with data-driven attentional processes, whereas expectancy and 

value are associated with schema-driven top down processes.  
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Figure 5 Multiple Resource Theory (adapted from Wickens, 2002; 2006) 

 

As with information processing models of human cognition, the multiple resource 

model extended by the SEEV model provide a descriptive framework supported by a 

human factors evidence base from specific task environments, as is required by the 

applied world. It does not provide an adequate conceptual framework to guide or 

interpret scientific research, nor does it provide a sufficiently robust platform for 

understanding the implications for human of future technology environments. 

Situation Awareness 

In parallel to the development of multiple resource theory, the three-level construct of 

situation awareness was introduced to the human factors domain by Endsley (1995; 

2015a; 2015b). While the concept was initially met with scepticism (Flach, 1995; 2015), 

there has been an abundance of research using the situation awareness construct over 

the past twenty five years. Wickens (2008) provides overview of the widespread 

application of the construct in human factors measurement, training, error analysis, 

teamwork, automation and workload. Endsley and Jones (2012) provide guidelines for 

design of systems to support situation awareness and for training programs to enhance 
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the cognitive processes and mechanisms that underlie high levels of situation 

awareness. Wickens argues that the popularity of situation awareness as both a 

theoretical construct and applied framework justifies its ongoing viability (Wickens, 

2015) despite serious concerns that it misleading, confusing and has outlived its 

usefulness (Dekker & Hollnagel, 2004; van Winsen & Dekker, 2015). Widespread use of 

a proposed framework does not ensure that the underlying model has theoretical 

validity in the psychometric sense (see section on Reliability and validity, p 11 of this 

report).  

Parasuraman, Sheridan and Wickens (2008) catalogue a strong body of empirical 

research using the construct, and the list is, indeed, quite impressive. Situation 

awareness provides a framework for perception, comprehension and projection as the 

three levels of situation awareness (as per the Situation Awareness box of Figure 6). It 

incorporates goals and goal-directed processing in directing attention and interpreting 

the significance of perceived information while also allowing salient information 

capturing the state of the environment to direct attention in a data-driven fashion. The 

interactions and feedback loops within the system model of situation awareness can 

accommodate the importance of alternating goal-driven and data-driven processing 

and the role of expectations and schemas.  

In fact, over and above the inherent linearity of the model in terms of stages, the major 

problem is that the model is so all-encompassing that it provides no useful analytic 

clarity. Few will disagree with the notion that being aware of the demands of the 

situation as it unfolds (situation awareness) is critical to performance in many complex 

and dynamic domains of expertise. However it can also be argued that situation 

awareness plays a critical role in every form of cognitive performance measure and 

evaluation and, as depicted in Figure 6, it appears to mediate the entire cognitive 

processing chain from sensing the environment to decisions and actions. 

Furthermore, by treating situation awareness as the knowledge that leads to decision 

making, and decisions as outcomes of a situation assessment process, ignores the 

problem that decisions themselves rarely encapsulate the information leading up to 

them. So knowing the decision outcome provides “closure” on that iteration of 

situation assessment without necessarily providing any of the system information 

required to understand the reasons for a decision, which may still be relevant to 

making other contingent or contiguous decisions. The transparency of situation 
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assessment leading to decision making is an important consideration in terms of 

automation, and distributed situational awareness within teams and across systems. 

 

 

Figure 6 Model of Situation Awareness in dynamic decision making originally from Endsley, 

(1995) and reproduced from Endsley (2015) 

 

It should be noted that the shift from Endsley’s three-level framework of situation 

awareness to a distributed systems approach as proposed by Stanton, Salmon and 

colleagues (Stanton et al., 2006; Stanton et al, 2015) among others (e.g., Chiappe et al., 

2012a; Chiappe et al., 2012b; Chiappe et al., 2015; Fioratou et al., 2010; Gutman & 

Greenberg, 2001; Hollan et al., 2000; Hutchins, 1995) is a major shift in theoretical 

(philosophical) approach to knowledge representation. Indeed such a shift raises 

fundamental questions at the philosophical level of whether representation is the 

correct frame of understanding human cognition. These theoretical distinctions can be 

treated dismissively by people operating in the applied domain with “real world” 

problems to deal with, however they are of critical importance in guiding future 

directions in an era of new socio-technical complexity and an impending integration of 

human with machine, and particularly in the context of the emergence of potentially 

autonomous systems. We have neither the agreed-on conceptual frameworks within 
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cognitive science nor the ethical frameworks within broader society to deal with 

distributed cognition and autonomous decision-making in mediated social interaction 

with humans (e.g., boyd,  2014; Turkle, 2011; 2012) let alone with “intelligent” 

machines (Minsky, 1988; 2007; Rhodes, 1986; Turkle, 2007). Endsley’s three-level model 

of human-cantered situation awareness provides no further insight into these complex 

problems, but human factors models of distributed cognition and distributed situation 

awareness are similarly grounded in specified task environments and systems. 

 

Information Processing Models and Representation 

Information processing models of human cognition all rest on an empiricist, 

representational view of human cognition. While cognitive constructs from these 

models, such as attention (e.g., Broadbent, 1958; Kahneman, 1973), mental workload 

(e.g., Wickens, 2002; 2010) situation awareness (e.g., Endsley, 1995; 2015) and its 

variants (e.g., Salas et al., 1995; Salmon et al, 2010) have been very useful in refining 

human-machine interactions in existing task environments and have spawned a wealth 

of human factors research, this report argues that they are not sufficiently robust for 

understanding implications of future technology environments. Distributed situational 

awareness (Stanton et al, 2006; Salmon et al., 2009) provides a more flexible framework 

that acknowledges complexity at a systems level, but is still founded on a pragmatic 

adoption of cognitive models such as schemata (e.g., Bartlett, 1932; Neisser, 1967), and 

less cognitively-based notions of perception-action cycles (e.g., Neisser, 1976; Stanton 

et al., 2009) rather than committing to, or offering, a fully-elaborated scientific model of 

cognition across human and machine agents.  

It is important to emphasise that the information-processing view of cognition has 

been strongly contested at a philosophical and conceptual level. For example, recent 

contributions to the literature (see for example, Flach, 2015; Hoffman, 2015; Stanton, 

2015) echo many earlier and ongoing debates in philosophy and psychology (Merleau-

Ponty, 1945/2013; Minsky, 1988; Neiser, 1976; Varela et al, 1992) regarding the essential 

nature of perception and cognition. In contrast to the information-processing, 

representational approach presented in psychology and human factors textbooks, 

proponents of phenomenology (focusing on experience of the world rather than 

representation) and embodied cognition question the need for a representational level 

of cognition at all (e.g., Varela et al., 1974; Varela et al, 1992). The notion of ecological 
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perception (Gibson, E., 1969; Gibson, J 1979) and the perception-action cycle (Neisser, 

1976) is based on a direct interaction with “the world” without need to first represent 

the objects within it.  Phenomenological experience is considered to be direct, such that 

meaning resides not in the representation of the world, but through interaction with it, 

hence the embodiment of cognition through interaction. The phenomenological 

approach is coming back in fashion as researchers try to deal with the complexity of 

human interactions with ecologically-valid real-world environments. With the 

additional complexity introduced by imagined future human-machine environments 

(see Minsky, 1988), the phenomenology of “being a machine” may well become 

important in terms of ethics and decision making in the future development of 

autonomous agents. It is beyond the scope of the report to discuss the different 

philosophical perspectives in detail, but we strongly contend that these philosophical 

and conceptual issues must be adequately addressed when considering the 

implications of a future technology landscape. Autonomy, awareness and 

augmentation all have associated philosophical and ethical issues that bear on future 

scenarios (Dekker, 2013; Grote et al., 2014; Parasuraman & Miller, 2004; van Winsen & 

Dekker, 2015). Indeed, the science fiction industry provides ample creative 

manifestations of these issues in projected futures where the practical constraints of 

current technology and culture have been relaxed, and these future scenarios must be 

investigated more scientifically. 
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Future research directions 

The predominant empiricist view that underpins textbook models of cognition 

describe the role of perception as interpretation of external stimuli to create a model or 

representation of the external world inside our heads from which our cognitive system 

can make meaning. Alternative views, of direct perception (e.g., Gibson, E., 1969; 

Gibson, J., 1979), embodied cognition (Jeannerod, 2006; Johnson-Frey, 2003; Noe, 2006; 

Lauwereyns, 2012; Prinz et al., 2013; Varela et al, 1992) and autopoeisis (Maturana & 

Varela, 1973), describe perception in phenomenological terms (Merleau-Ponty, 

1945/2013) that require no further explanation – we perceive meaning / affordances 

directly through our interactions with the environment.  

There are many footnotes in empiricist descriptions of perceptual and cognitive 

processing that emphasise the role of top-down processing in guiding our interactions 

with the world, and the dynamic nature of situations that have been studied somewhat 

statically. However most such footnotes do not really address the fact that the 

dynamical nature of action and interaction may be its most important quality. If 

meaning derives directly from our dynamic interactions within a dynamic 

environment, one of the most important aspects of generating meaning is to identify 

the coupling points of our perception-action coupling (the affordances for interacting 

with other agents and resources, including human, non-human and machine agents). 

Identifying affordances is a shift in conceptualisation of perception away from object 

recognition and veridical environmental representation towards a focus on 

interpreting patterns of stimulation in terms of future actions and reactions. 

Such a reconceptualisation of perception, cognition and perception-action coupling is 

by no means new in philosophy, psychology and theory, but has not really been 

adopted within human factors. Norman and Verganti (2014) discuss incremental 

versus radical innovation and note that human-centred design (the most focussed on 

affordances and user understanding of systems) is most successful in incremental 

innovation, or improving existing machine interfaces. Moray (2006) notes the 

difference between human factors research aimed at solving specific problems in 

design and research aimed at understanding theories of cognition. These authors 

identify that most successful human factors and cognitive engineering exercises are 

undertaken in the context of a specified existing system or in the context of developing 

a new system to undertake a known task. Action research is undertaken guided loosely 
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by a theoretical framework to provide the evidence for evidence-based practice. The 

theoretical framework provides a shared language through modelled constructs to 

guided multidisciplinary practice and the outcome (new system) is the “proof” of the 

approach.  

There appear to be two notions of applied research: one is that applied research should 

operate within an action research model, undertaking research to solve specific 

problems in the domain of practice, using an analyst model (Stanton et al Human 

Factors methods). The second is to apply scientific theories into domains of practice in 

a way that tests the legitimacy of the scientific theories themselves, as well as 

contributing to the domain of practice. In known task contexts (e.g, Design a new 

interface to control two UAVs), while the specific design requirements are for a future 

task environment, the functional requirements can be specified in terms of known 

parameters of current tasks and environments. However, in considering new interfaces 

in the context of new types of machines, or new types of human machine interaction 

(Avatar, bionic limbs), the parameters and constraints of current task environments 

need to be reconceptualised. In Norman and Verganti’s (2014) terms, radical 

innovation is required.  

The identification of human performance capabilities, both physical and cognitive, 

have until now been conceptualised in terms of a technical specification of tolerances, 

areas of peak performance, and consideration of graceful degradation rather than 

catastrophic failure in both physical and cognitive parameters. In order for measures to 

be validated, we search for accuracy and reliability of objective metrics. However, a 

hugely important design consideration in terms of human sensory systems is the role 

of adaptive gain control, which allows sensory receptors to code a wide range of 

sensory stimuli relative to a background. The output of the sensors in our sensory 

systems does not give an objective measure of the stimulus property being encoded 

(i.e., the absolute pressure of a somatosensory stimulus, or the absolute intensity of a 

sound, or the absolute RGB registrations of light) but rather, gives a relative measure of 

the attended stimulation (a focal view of the stimulus space) calibrated by an ambient 

view of the overall stimulus space. It may also be that the primary goal of the 

perceptual system may not be to identify objects in the environment, as much as to 

identify affordances in the environment for interaction. In this sense, the task 

environment will reprioritise affordances in terms of meaning and desired functional 

outcomes. But the “reality” of the environment may not rest in its physical existence as 



Wise, Skues; FHAD, Swinburne 

Page 39 of 65  

much as in its opportunity for interactivity.  It is important not to confuse dynamic 

environments with interactivity - the important feature may not be the degree to which 

the environment is changing, but more, the degree to which we can interact with an 

environment to effect change (our ability to change the environment). The construct of 

an affordance encapsulates the idea of “an opportunity to interact” being the key 

motive of perception. Visual object identification for the most part, offers opportunities 

for retrieving prior notions of affordance. Schemas offer prior configuration of past 

affordances to maximise certain aspects of interaction. Cognitive affordances may 

signify the opportunity for interaction at a conceptual level – for example, learning a 

new language may involve translating words from one language to another (thereby 

constraining the affordance of the new word by the ties to the old word) or may be 

undertaken through “immersion”. Immersion may create a better environment in 

which to understand new affordances for interacting with other humans which we can 

describe as different nuances or new concepts that cannot be expressed in the other 

language. Maturana (Maturana & Varela, 1973; 1987/1998) created the word 

“autopoeisis” to create a new construct that would be misinterpreted by tying it to the 

conceptual baggage of existing words.  Pylyshyn offers the concept of a proto-object 

(Pylyshyn, 1989), but Fodor and Pylyshyn (2015) both note the problem of trying to 

discuss concepts for which there is no current word. 

The implications of human capabilities and performance for future technology 

environments may require a reconsideration of human capabilities for interaction with 

their environment. The dominant empiricist approach to human cognition and 

technology operates on the basis of an objective “real world” out there that can be 

perceived veridically via human or machine sensor. However the notion of perception-

action coupling and affordances for interaction as the source of “meaning” suggests 

that there may not be as much distinction between the “real world” and the “virtual 

world”. In the same way that we can incorporate tools into our perceptual frame, such 

that we distribute our perception and cognition to integrate the tool within our 

representation of “Self”, if interactions within the virtual world offer social and other 

forms of meaning, their intrinsic meaning patterns will offer affordances whereby we 

can directly interact with those information streams. 

It is already the case that the visual patterns of information on a radar screen, or on the 

monitor during laparoscopic surgery offer affordances and meanings that may not be 

mediated by translating through specific representations of their “real world” 
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referents. For example, an air traffic controller may be more interested in the 

trajectories of aircrafts than anything about the aircraft itself. Indeed an object that 

moves like an aircraft and has the mass of an aircraft will have the same affordance as 

a projectile in terms of maintaining aircraft separation. However, the aircraft 

trajectories in air battle space have different “affordances” and these need to be 

incorporated into the meaning attributed to these objects. While in terms of specific 

task actions, it is important to ID the object associated with the trajectory and 

communicate with its pilot, the perceptual/cognitive interpretations and interactions 

are in terms identifying trajectories and communicating with pilots.  

The “view” in terms of affordances and meanings for the pilot in an aircraft are 

different from those of a drone pilot on the ground. However, in most task analyses, 

the parameters of importance in terms of objective performance measures will be to do 

with mental and physical workload and controlling the aircraft with respect to its flight 

path and mission, without due consideration for the possibility of fundamentally 

different conceptualisations of the environment by all involved due to the different 

perspectives and different affordances for interaction arising from different locations 

and information sources. 

As noted by Norman (Norman & Verganti, 2014), even as one of the founders of 

human-centred design, this approach while well suited to incremental improvements 

in design, is not a good model for radical innovation. Radical innovations in 

technology produce new environments to which humans adapt (which is the hallmark 

of human capability). The way in which they adapt then focuses the human factors 

researchers on how to optimise the human-machine interface. This is not to say that all 

technologies will be adapted to and that designers of technologies should not keep 

human capabilities in mind. Rather, innovative technology and radical changes in 

technology and interactivity will produce adaptations that we may not be able to 

conceive of given that we have not had an opportunity to experience the possibility of 

unimagined affordances. The socio-cultural approach to tool use of Vygotsky (1980) 

notes the fact that new tools will be adapted by human users to fulfil their needs for 

interaction with the environment, and may offer affordances unimagined by the 

inventors of the tools. 

Virtual environments, autonomous agents and automated systems may be better 

conceptualised in terms of the affordances for interaction that they offer. Problems 

with automation may arise through the lack of coupling points for human-machine 



Wise, Skues; FHAD, Swinburne 

Page 41 of 65  

teamwork. Problems with human teamwork may arise when tasks and roles become 

too specific, so that there is no shared view of the system or task as a point of 

coupling/interaction. Attempts to make autonomous agents align with conventions of 

human interaction to promote greater trust of technology may work like artificial 

sweeteners – while superficially, the actions promote trust through a cognitive 

heuristic of similarity (e.g., Gigerenzer & Gaissmaier, 2011), the automatic inferences in 

terms of affordance and interaction promote deeper problems. In the case of artificial 

sweeteners, the internal dialogue (at the physiological level not at the conscious level) 

might be thus: “Sugar is providing me energy? Why do I still feel lethargic? I must 

need more sugar.” and as a result, insulin sensitivity is adjusted in the wrong direction 

and a reduction in calorie intake leads to an increased perceived need for energy.  The 

analogous internal dialogue (again not at the conscious level) in terms of social 

interaction with a machine is “This machine understands me. It knows certain things 

about me, therefore I trust it. I trust it and therefore I expect it to infer (know) other 

things about me. But wait - why didn’t it know the things I expect trusted human 

collaborators to know? How does it know the things that I don’t want trusted 

collaborators to know (or communicate that they know). It is being unkind / stupid / 

hostile”. The chain of inference relating to trust needs to be reconceptualised to 

accommodate human-machine interactions in a more transparent way.  

There is a strong need to improve the cross-disciplinary communication of theories of 

human perception, cognition and social interaction to match current understandings 

that drive the applied world. Scientists need to understand that applied researchers are 

mostly not interested in new or conceptually challenging theory from the academic 

world, especially if their current models “work” in the practical world of their domain 

of interest. The emerging complex socio-technical environments of the near future may 

lead to radical change in what constitutes the “real world”, and may offer many new 

opportunities for interaction with new conceptualisations of “reality”. These radical 

innovations may generate a strong need a rethink and re-imagine the essential 

phenomenological experience entailed by “being human”. 

The need to reconceptualise the sense of human identity is not in any way new (e.g., 

see Minsky, 1988; Varela et al., 1992; Turkle, 2011; Grote et al, 2014) and underpins 

many approaches to developing autonomous systems. However many of the current 

generation of applied researchers and practitioners did not grow up with the same set 

of assumptions and intellectual challenges as their mentors, and many have not 
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thought of, or transmitted the philosophical questions that ruminated in the thoughts 

of their mentors, without necessarily being articulated in their scientific writings. The 

greater questions that more modest research programs aim to investigate do not 

necessarily find their way into the framing of the specific research experiments 

examining specific details of broader models, although we hope that the content of the 

report so far provides insight in the direction of our overall research effort, not just the 

experimental program funded by this research agreement. 

EXPERIMENTAL PROGRAM DESIGN REMOVED FROM THIS VERSION
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