
Constraint Consis tent Genetic Algorithms 
Ryszard Kowalczyk 

CSIRO Mathematical and Information Sciences 
723 Swanston Street, Carlton 3053, Australia 

richard.kowalczyk@cmis.csiro.au 

Abstract- It has commonly been acknowledged 
that solving constrained problems with a variety of 
complex constraints is a challenging task for genetic 
algorithms (GA). Existing methods to handle con- 
straints in GA are often computationally expensive, 
problem dependent or constraint specific. In this 
paper we introduce an idea of constraint consistent 
GA (CCGA) as an attempt to overcome those draw- 
backs. Constraint handling is based on general con- 
straint consistency methods that prune the search 
space and thus reduce the search effort in CCGA. 
Unfeasible solutions are detected and eliminated 
from the search space at each stage of CCGA simu- 
lation process to support genetic operations in pro- 
ducing feasible solutions. A number of well known 
standard genetic operators are adapted to take ad- 
vantage of provided constraint consistency during 
initialization, crossover and mutation. Initial ex- 
periments indicate that in the terms of the solution 
quality and the number of iterations the constraint 
consistency based approach in CCGA can outper- 
form other constraint handling methods in GA for a 
number of selected test problems. 

I. INTRODUCTION 

Genetic algorithms (GA) provide an adaptive method 
of search using principles of evolutionary simulation 
[3]. A basic behavior of GA is based on applying 
evaluation, selection, crossover and mutation on popu- 
lations of chromosomes representing prospective solu- 
tions. After generation of an initial population, GA it- 
eratively applies those four basic steps to generate a 
number of subsequent populations with a hope that they 
contain better solutions. 

GAS have proven to be efficient in solving a number 
of search problems including numerical and combinato- 
rial optimisation [4, 6, 12, 13, 14, 161. However, it has 
commonly been acknowledged that the real challenge 
for GAS (as for most search algorithms) is to solve con- 
strained problems with a variety of complex constraints 
(e.g. non-linear, implicit or disjunctive constraints). 
Constraints usually limit a number of sought solutions 
and thus increase the unfeasible portion of the search 
space, making efficiency of GAS more critical. In addi- 
tion, constraints often cause that the feasible search 
space is not convex and forms disjoint parts, making 
exploration of the search space very difficult. 

Many approaches to handle constraints in GAS have 
been proposed. They are usually based on using penalty 

0-7803-3949-5/97/$10.00 0 1997 IEEE 343 

functions [ I ,  111, repairing infeasible solutions [ l l ,  
121, preserving feasibility of solutions [ 121, emphasiz- 
ing the distinction between feasible and infeasible so- 
lutions [ l l ,  121 or using hybrid methods [12, 141. Al- 
though many proposed methods have been successful in 
handling constraints, they are often computationally 
expensive, problem dependent or constraint specific. 
Applying penalty to the infeasible solutions requires a 
careful selection of control parameters and is often 
computationally expensive in more constrained prob- 
lems. Methods based on repairing infeasible solutions 
are usually good only for handling specific explicit 
constraints and may be inefficient for implicit con- 
straints. Moreover, these methods are often problem 
domain specific. Preserving feasibility of solutions usu- 
ally requires problem specific chromosome representa- 
tion and/or genetic operators. Some more general 
methods are able to preserve feasible solutions only for 
specific types of constraint (e.g. linear constraints). 
Method based on emphasizing the distinction between 
feasible and infeasible solutions may face similar 
problems. Therefore the quest for efficient and general 
methods of handling constraints in GAS still continues. 

It has generally been recognized that pruning the 
search space to its feasible portion is beneficial in most 
search algorithms. This has also been acknowledged in 
GAS and some methods preserving feasibility of solu- 
tions have been based on that principle. For example, a 
genetic algorithm for numerical optimisation for con- 
strained problems Genocop [ 121 has successfully been 
used in solving linearly constrained optimisation prob- 
lems. It has also been used as the main component in 
non-linear optimisation with Genocop I1 and Genocop 
I11 [12]. Genocop assumes only linear constraints that 
guarantee the convex search space [IO]. The main idea 
there is to eliminate the equality constraints and to use 
special genetic operators to maintain feasibility of the 
solutions. The inequality constraints are used to gener- 
ate bounds for all variables dynamically during the 
search process, This specific technique is very similar 
to a general concept of constraint consistency com- 
monly used in constraint satisfaction problems [7, 81 
and also successfully tried in GAS (e.g. in repairing 
infeasible solutions 1151). 

Constraint consistency is a principle used in model- 
ing and solving a broad class of constrained problems 
represented as a constraint satisfaction problem (CSP) 
[7, 81. CSP is defined in the terms of variables with the 
associated domains and constraints acting between the 
variables. Constraint consistency methods are often 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 06:03:33 EDT from IEEE Xplore.  Restrictions apply. 



used in CSP to ensure that assignments to the problem 
variables satisfy all constraints posted on the variables. 
The idea of constraint consistency is to prune the 
search by preventing variable instantiation that are not 
consistent with the constraints of the problem. Many 
methods have been proposed to provide constraint con- 
sistency at different levels (e.g. arc-consistency, path- 
consistency, k-consistency) [7, 81. Most popular are 
constraint propagation based methods which have been 
proven to be an efficient and flexible approach to sup- 
port solving many real-world constrained problems. 
Constraint propagation eliminates infeasible solutions 
from the search space, i.e. the values that cannot satisfy 
the constraints at the required level of constraint con- 
sistency are removed from the domains of the variables. 
It seems that constraint consistency methods can also 
be used to handle constraints in GAS to advantage. 

In this paper we present an idea of constraint consis- 
tent GA (CCGA) where the constraint consistency 
methods are used to handle constraints. CSP based rep- 
resentation and constraint consistency in CCGA are 
briefly presented in section 2. A number of constrained 
genetic operators are discussed in section 3. Some ex- 
periments with CCGA used for numerical optimisation 
are described in section 4. Finally, in section 5 con- 
cluding remarks are presented. 

11. CSP BASED REPRESENTATION AND CONSTRAINT 
CONSISTENCY IN CCGA 

Binary strings have traditionally been used to repre- 
sent chromosomes in GAS [3]. However more recently 
other chromosome represent ations have emerged that 
enhance the range of possible chromosome components 
(e.g. character, floating point) and its structure (e.g. 
matrix, list, tree) [2, 121. It allows one to reflect the 
structure of the problem considered and to represent the 
problem variables in the chromosome directly without 
the need for coding them in the binary form. For exam- 
ple, a common representation in numerical optimisation 
is a floating point vector consisting of the variables of 
the problem considered. Such a direct representation 
has been shown to provide many benefits to GA in 
solving a number of optimisation problems [2, 121. 

Extension of direct representation to constrained 
variables leads to CSP based representation which is 
used in CCGA. Each chromosome in CCGA represent- 
ing a vector of constrained variables can be interpreted 
as an instance of the same CSP defined in the following 
form: 

a set of variables x = x.  , i = 1 ,..., n , represented as a 
( 1 1  

vector i = ( x I ) ,  i = 1 ,.... n in a chromosome, 
a set of domains D = {Oi l ,  i = 1, ..., n associated with 
the corresponding variables, where each domain con- 
sists of values that each variable can assume, i.e. 
3 E Di, i = 1 ,..., n . The domains can be finite or infinite 
(presented CCGA uses domains consisting of floating 
point values), 

a set of constraints C = {Ck(x)} between the variables. 
A solution of CSP is an assignment that all con- 

straints are satisfied at the same time. Constraint con- 
sistency may be used in CSP to ensure that an instan- 
tiation of the problem variables satisfies all constraints 
posted on the variables. 

CSP can be interpreted as a constraint network which 
consists of nodes containing the variables with the as- 
sociated domains and arcs between nodes representing 
constraints acting between these variables. A constraint 
network represents a feasible search space consisting 
only of valid solutions of the problem if it is k- 
consistent. A constraint network is k-consistent if for 
any instantiation of any k-1 variables satisfying all con- 
straints among those variables, it is possible to instanti- 
ate any kth variable such that the assignment satisfies 
all constraints among the k variables. A concept of k- 
consistency is generalization of constraint consistency 
[7, 81. Specific cases of constraint consistency are 
node-consistency and arc-consistency that correspond 
to k-consistency for k=l and k=2, respectively. Al- 
though in general, node and arc consistency do not al- 
ways ensure that a solution of a given CSP exists, those 
levels of constraint consistency are most practical in 
simplifying the original problem. They provide a good 
balance between the benefits gained from reducing the 
search space and the computational effort needed to 
provide constraint consistency at the required level. 
Therefore constraint arc-consistency is also used to 
support constraint handling in GAS presented in the 
paper. For some examples and more discussion on arc- 
consistency refer to literature (e.g. [7, 81). 

CSP based representation and constraint consistency 
methods do not make any assumption regarding the 
considered problem domain and search strategies used 
during optimization. Therefore they can also be used to 
support constraint handling in GAS. They can handle 
constraints independently checking and providing a 
required constraint consistency for each generated 
chromosome simultaneously with the GA simulation 
process. As opposed to other techniques to handle con- 
straints in GA the variable domains do not need to be 
intervals defined by their bounds. The domains can 
contain a number of disjoint segments resulting in non- 
convex search spaces. In addition, there is no assump- 
tion made on a type of constraints considered, e.g. ex- 
plicit and implicit, linear and non-linear, relational and 
arithmetic constraints may be used. 

111. CONSTRAINED GENETIC OPERATORS 

Constraint consistency can be used during all stages 
of the generation process in GAS to advantage. It can 
efficiently be provided at the level of arc-consistency 
with the use of constraint propagation techniques. Con- 
straint propagation reduces the search space by remov- 
ing infeasible values from the domain of any variable 
according to the constraint consistency definition. The 
initial reduction of the search space is performed when 
all constraints are activated (posted). The reduction is 

344 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 06:03:33 EDT from IEEE Xplore.  Restrictions apply. 



continued when the domain of any variable changes or 
is instantiated in a particular case. A number of con- 
strained genetic operators taking advantage of con- 
straint consistency (in particular arc-consistency as 
used in CCGA) can be defined as extensions of well 
known standard genetic operators as follows: 

A. Constrained Initialization 

Constraint consistency can support initialization of 
the domains for the constrained variables and genera- 
tion of an initial population. After posting the con- 
straints on the problem variables their domains are ini- 
tialized in such a way that they are arc-consistent with 
all constraints posted on the variables, i.e. they do not 
consist of values that cannot be a part of any feasible 
solution. Thanks to constraint consistency checking the 
variable domains are dynamically updated to consist of 
values that are considered by genetic operators as pos- 
sible instantiations of problem variables during the GA 
simulation process. 

Once the domains of the variables are initialized they 
are used in generation of the initial population of chro- 
mosomes representing feasible solutions. All variables 
i n  each chromosome are instantiated with random val- 
ues from their domains: 

Z0 = (XI ,x2 ,... , X , ) ,  xi E Dj. 
A number of instantiation strategies can be used to 

generate feasible chromosomes. The variables can be 
instantiated in a random order or heuristics may be used 
to minimize the effort required to find feasible solu- 
tions (e.g. more constrained variables or variables with 
smaller domains may be instantiated first). However, 
when using heuristics one should ensure that the ini- 
tialization process provides sufficient diversity of the 
initial population. Constraint propagation ensures that 
the domains of all variables consist only of values satis- 
fying constraints according to the arc-consistency defi- 
nition. It is possible that during the variable instantia- 
tion process some domains may become empty. In such 
cases a limited backtracking can be performed to try 
other random values. If it requires a significant com- 
putational effort the currently generated chromosome 
can be abandoned or included in the population as a 
partially feasible solution. 

U .  Constrained Crossover 

Constrained uniform crossover 
Standard uniform crossover works by selecting two 

parent individuals 2 = (xl ,..., x,) , 7 = (yl, .... y n )  from 
the population and randomly exchanging elements be- 
tween both individuals to form two new offspring as 
follows: 

Crossover is the main reproduction mechanism cre- 
ating new chromosomes from the existing ones with a 
hope that they represent better solutions. A number of 
well-known crossover operators can take advantage of 
provided constraint arc-consistency. 

~ 

345 

X'= ( X ' l  ,..., x t n ) ,  ?'= (yv1 (..., y ' , )  
where 

yi if a random binary digit is 0 
and "' = i xi if a random binary digit is 1 

X'' = { X i  
Yi 

for i =  1, ..., n . 
However, even if crossing two feasible solutions 

there is a possibility that new offspring may be infeasi- 
ble. Constraint consistency can be used to support uni- 
form crossover in generating feasible offspring. Con- 
strained uniform crossover takes into account all con- 
straints and generates offspring that are defined as fol- 
lows: - - - - 

X ' = S . ? + ( l - 6 ) . j ,  + 6 . ? + ( l - S ) . X  

where s = (4 ,.... 4) is a vector of auxiliary constrained 

binary variables 4 E D f  = (0,l). These variables are 
instantiated in a random order taking into account con- 
straint consistency requirements imposed on the off- 
spring. Constraint propagation ensures that the domains 
of not yet instantiated variables do not consist of binary 
values that cannot produce feasible offspring. When 
any domain becomes empty a limited backtracking can 
be performed to try another random values. It should be 
noted that it is possible that the offspring are the same 
as the parents. To prevent this situation additional con- 
straints can be posted on the constrained binary vari- 
ables as follows: 

n 
O < C 4 < n .  

i=l  

When two parents are not able to produce any feasi- 
ble offspring the domains of the binary variables be- 
come empty and such a situation is identified instantly 
by constraint consistency checking. When i t  is difficult 
to generate two feasible offspring (e.g. high computa- 
tional effort or parents are not able to produce feasible 
offspring) one can choose to generate partially feasible 
offspring or generate only one feasible offspring. 

Constrained m-point crossover 
Standard m-point crossover works by selecting two 

parent individuals X = (xl ,_.., x,,) , Y = (yl ,..., y,) from 
the population, choosing m crossover points 
ki E (1 ,..., n -  l}, i = 1 ,.._, m at random, and exchanging the 
segments bounded by the crossover points between 
both individuals to form two new offspring. Constraint 
consistency can support m-point crossover by providing 
sets of valid crossover points that can produce feasible 
offspring in a constrained search space. 

For example let us consider one-point crossover de- 
fined as follows: 

x = x l , . . . , x k , Y k + l . - . . , Y n  7 y '= Y 1 ? . - - 7 y k , x k + l * . . - ?  . -+ ( ) - (  4 
Similarly to constrained uniform crossover the off- 

spring produced by constrained one-point crossover can 
be defined as follows: 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 06:03:33 EDT from IEEE Xplore.  Restrictions apply. 



x”= q,,xl+ (1 - h,, ) y l * .  * - 9  6 n , , ~ ,  + ( 1  - 6jk )Yn 

y’= q , k Y 1  + ( 1 - 6 . k ) x 1 t - . - ~ & , k Y n  +(l-&,k)% 

0 f o r i > k  
6i,k = { 1 orherwise 

and k E Dk = {1 ,..., n-1} is an auxiliary constrained 
variable with the domain reduced to a set of valid 
crossover points for one-point crossover. A crossover 
point is chosen in random from the domain of k. If after 
constraint propagation the domain becomes empty than 
it means that the parents cannot produce feasible off- 
spring. In such a situation new parents can be selected 
or offspring can be generated with any random cross- 
over point and included in the population as partially 
feasible solutions. 

Similarly, constraint consistency can support other 
constrained m-point crossovers such as constrained 
two-point crossover and others. 

Constrained arithmetic crossover 
Arithmetic crossover operators have been introduced 

for GAS with real valued representation applied to con- 
vex search spaces [lo]. Using principles of constraint 
consistency they can also be applied to other search 
spaces. 

The so-called simple arithmetic crossover chooses a 
random crossover point k and crosses the parents after 
kth position applying a contraction coefficient a E [OJ] 
to guarantee that the offspring fall into the feasible 
convex search space as follows [lo]: 

I 
where 

x, ,.. . . X k  ,UYk+l + (1 - U)Xk+1,. . .,ay, + (1 -a).) 

+ (l- .)yn) Y l ? . .  - t  Yk > ark+l + (l- a)Yk+l ,., . T  

To consider non-convex search spaces constrained 
arithmetic crossover treats the contraction coefficient 
as a variable U E Dn = [ O J ]  constrained to produce fea- 
sible offspring. The offspring are generated with a ran- 
dom value for a chosen from its feasible domain. To 
ensure that the offspring are different from the parents 
the contraction coefficient can also be constrained to be 
grater than 0, i.e. a > 0. Alternatively, the coefficient a 
can be instantiated with the upper bound of its domain 
that gives the largest information exchange between the 
parents. 

Similarly we can define single constrained arithmetic 
crossover that affects only one variable in each parent 
and the whole constrained arithmetic crossover that 
creates offspring as the full linear combinations of two 
parents. 

Constrained heuristic crossover 
Heuristic crossover uses values of the objective 

function in determining the direction of the search and 
produces only one offspring [lo]. The operator gener- 
ates a single offspring from two parents as follows: 

~ 

346 

where r is a random number r E D‘ = [0.1], and the par- 
ent ? is not worse than the parent ?.  In constrained 
heuristic crossover, r is treated as a constrained vari- 
able and constraint consistency ensures that its domain 
consists only of values producing feasible offspring. A 
value for r is chosen randomly from its domain or may 
be equal to the upper bound of the domain enforcing 
greater search gradient. 

C. Constrained Mutation 

Mutation changes individual chromosomes to pro- 
vide additional variability to the reproduction process. 
A number of mutation operators can be adapted to take 
advantage of constraint consistency. 

Constrained uniform mutation 
Uniform mutation selects a parent individual 

E = ( x l , . . - , x n )  from the population, chooses a mutation 
point k E {l ,..., n} at random, and modifies the randomly 
selected element to form new offspring as follows: 

where i k  is a random value. In constrained uniform 

mutation the value for ik is selected randomly from the 

domain of variable xk E D ,  consistent with the re- 
maining instantiated variables according to all con- 
straints posted. After a random selection of the position 
for mutation k (uniform probability distribution), the 
corresponding variable domain is reset so it consists 
only of feasible values for x k .  Then it is instantiated 
randomly in a such way that together with the other 
instantiated variables represent a feasible solution in 
the search space. 

Constrained boundary mutation 
Constrained boundary mutation is a specific case of 

constrained uniform mutation. A randomly selected 
variable x; takes either lower or upper bound of its 
feasible domain at random, i.e. 

m a (  Dk)  if a random binary digit is 0 
’ I k =  {min(Dk) if arandom binary digit is 1 * 

D. Handling Partially Feasible Solutions 

In general the aim of constraint consistency in CCGA 
is to ensure that genetic operators produce feasible so- 
lutions. However one may prefer to consider partially 
feasible chromosomes as a good “genetic” material for 
further reproduction too. It seems that most existing 
methods to handle infeasible solutions in GA may be 
used in CCGA (e.g. penalizing, repairing). Some of 
them can also take advantage of constraint consistency. 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 06:03:33 EDT from IEEE Xplore.  Restrictions apply. 



Fox example simple constrained repairing can use con- 
straint consistency to repair an infeasible solution by 
randomly selecting variables in the chromosome and 
resetting their domains until the domains are not empty 
(i.e. a constraint network is arc-consistency). Then the 
reset variables can be instantiated with random values 
from their domains as described for constrained uni- 
form initialization. Because the main objective of the 
current CCGA is to generate feasible solutions only the 
constrained repairing has not been included in the re- 
ported experiments and therefore it will be not dis- 
cussed further in the paper. 

CCGA 
(0.110.6) 
CCGA 
(0.510.5) 

Iv. EXPERIMENTS 

A number of experiments with selected numerical 
optimisation problems were performed to demonstrate 
CCGA. The problems were simulated with the use of a 
steady state GA with the 25% replacement rate, the real 
valued chromosome representation for constrained 
variables and a number of constrained genetic operators 
discusses in the previous section. It used the roulette 
wheel selection and sigma truncation scaling schemes. 
Constraint consistency was provided at the level of arc- 
consistency through dynamic constraint propagation. 
Ten independent runs for each test problem were per- 
formed. The population size was set to 70, number it- 
erations limited to 2000 and probabilities of cross- 
ovedmutation set to 0.6/0.1 and 030 .5 ,  respectively. 
In implementation of CCGA we used a C++ based GA 
toolkit (GALib) available from MIT [17] and a com- 
mercial constraint programming tool (Ilog Solver) [5] 
which uses propagation to provide constraint arc- 
consistency. 

In the experiments we used selected test problems for 
constrained numerical optimisation reported in [12] 
where they were solved with the use of a number of 
different constraint handling techniques such as penalty 
coefficients, dynamic penalties, penalty with constraint 
ordering, death penalty, Genocop and Genocop I1 (for 
more details refer to [12]). In most cases CCGA pro- 
duced better results within the smaller number of itera- 
tions. Due to the hardware differences/results avail- 
ability the time based performance was difficult to 
compare. However it should be noted that the time re- 
quirements of CCGA were sometimes worse than ex- 
pected, It is due partially to additional computations 
required to propagate constraints and partially to the 
current experimental implementation of CCGA which 
aims in easy use rather than the optimal performance. 

Below are two examples of linearly and non-linearly 
constrained problems tested with CCGA. The results 
obtained with CCGA are listed together with the best 
results reported in [12]. 

7102.47559 7282.26123 9588.50195 

7063.95605 7310.10449 7854.61475 

Linearly constrained problem 
Minimize the function 

5 
Fl(x',y) = - 1 0 5 ~ ~  - 75x2 - 35x3 - 25x4 - 15x5 - 1Oy - 05cx: 

where: 
i=l 

O I X i 5 1 ,  i=l, ... 5, O I y ,  
6x1 + 3 ~ 2  + 3 ~ 3  +2x4 + xs I 6 5 ,  10x1 + 10x3 + y I 2 0  

The function has the global minimum 
Fl(x',y) = -213.00 for (2, y) = (0,1,0,1,1,20) . CCGA pro- 
duced the optimum in all runs. The number of iterations 
required to obtain the optimum was usually about 20 
whereas the best performing GA reported in [12] re- 
quired about 1000 iterations. Fig. 1 shows a typical 
performance of CCGA for the function F1. 

190 
185 
180 

Fig. 1. Performance of CCGA (0.5/0.S) for F1 

Non-linearly constrained problem 
Minimize the function 

G 2 k )  = xl + x2 + xj  

1000 2 xi I 10000, 
where: 

100 I XI I10000, i = 2,3, 
lO<xi  -<1000, i = 4  ,_.., 8, 
1 - O.O025(~4 f x6) 2 0, 1 - 0.0025(~5 + X7 - Xq) 2 0, 
1 - O . O ~ ( X ~  - ~ 5 )  2 0, 
XlX6 - 83333252x4 - IOOX, + 83333333 2 0,  
~2x7  - 1250x5 - 9 x 4  + 1250x4 2 0, 
x3xs -1250000-X,s + 2500x5 2 0 

The function has the global optimum 
G2(?)= 7049.330923 for 2 = (579.3167, 1359.943, 
51 10.071, 182.0174, 295.5985, 217.9799, 286.4162, 
295.5979). The best result reached with CCGA was 
G2(2) =7063.95605 for 7 = (538.665649,1313.42822, 
521 1.8623, 178.360245, 291.645691, 221.564026, 
286.506195, 391.590393). The results obtained during 
the experiments are presented in the table below. 

10runs Jbest I median I worst 
[I21 17377.979 18206.151 19652.901 

347 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 06:03:33 EDT from IEEE Xplore.  Restrictions apply. 



In most runs CCGA was able to provide very good 
solutions in the first 200 iterations. Fig. 2 shows a typi- 
cal performance of CCGA for the function G2. 

’a4~~po~o”o”z~”Ez 
O r ”  k Z N ? f  ‘ O t Z L  

+OOO 

.7000 

-8000 

-9000 

-10000 

-11000 

-12000 

.13000 

Fig. 2. Performance of CCGA (0.5/0.5) for G2 

V. CONCLUSION 

In the paper we have presented an idea of constraint 
consistent GA (CCGA) which aims to handle con- 
straints in a general and efficient way. Constraint han- 
dling in CCGA is based on general constraint consis- 
tency methods that prune the search space and thus re- 
duce the search effort in CCGA. A number of well 
known standard genetic operators are adapted to take 
advantage of provided constraint consistency during 
initialization, crossover and mutation. Initial experi- 
ments indicate that in the terms of the solution quality 
and the number of iterations the constraint consistency 
based approach in CCGA can outperform other con- 
straint handling methods in GA for a number of se- 
lected test problems. 

The main objective of further research is to analyze 
the overall performance of CCGA considering the ad- 
ditional computational effort introduced by constraint 
propagation. In addition, further work is to improve 
implementation of CCGA, experiment with other ge- 
netic operators and more comprehensive tests with 
other constrained problems. For example, the initial 
experiments with constraining genetic operators to pro- 
duce better solutions during each iteration of GA are 
being performed and give encouraging results so far. 
They will be reported in a separate paper. 

REERENCES 
U71 Carlson S.E. “A general method for handling con- 

straints in genetic algorithms”. Proc. 2& Annual Joint 
Conference on Information Science, 1995, pp. 663- 
666. 
Corcoran A.L. & Sen S. “Using real-valued genetic 
algorithms to evolve rule sets for classification”, 
Proc. IEEE Con5 on Evolutionary Comp, 1994, pp. 

Holland J. Adaptation in Natural and Artificial Sys- 
tems. University of Michigan Press, 1975. 
Homaifar A., Lai S.  & Qi X. “Constrained optimisa- 
tion via genetic algorithms”. Simulation 62 (4), 1994, 

Ilog. ZZog Solver, ver. 3.1. LOG, 1996. 

120- 124 

242-254. 

1 

Khuri S., Back T. & Heitkotter J. “An Evolutionary 
4pproach to Combinatorial Optimization Problems”. 
Proc. CSC’94, 1994. 
Kumar V. “Algorithms for Constraint-Satisfaction 
Problems: A Survey”. AI Magazine, Spring 1992, pp. 
32-44. 
Mackworth A.K. Constraint satisfaction. S.C. 
Shapiro (Ed.) Encyclopedia of Artificial Intelligence, 
John Wiley & Sons, 1990, pp. 205-21 1. 
Michalewicz Z. & Janikow C.Z. “Handling con- 
straints in genetic algorithms”. Proc. 41h International 
Conference on Genetic Algorithms, 199 1, pp. 15 1 - 
157. 
Michalewicz Z., Logan T. & Swaminathan S.. 
“Evolutionary operators for continuous convex pa- 
rameter spaces”. Proc. 3rd Annual Conference on 
Evolutionary Programming, 1994, pp. 84-97. World 
Scientific. 
Michalewicz Z. “A survey of constraint handling 
techniques in evolutionary computation methods”. 
Proc. of the 4th Annual Conference on Evolutionary 
Programming, 1995, pp. 135-155. 
Michalewicz Z. Genetic Algorithms + Data Struc- 
tures = Evolution Programs. Springer-Verlag, 31d 
edition, New York, 1995. 
Michalewicz Z., Dasgupta D., Leriche R. & 
Schoenauer M.. “Evolutionary algorithms for Con- 
strained Engineering Problems”. Computers & In- 
dustrial Engineering Journal, vol30(2), April 1996 
Le Riche R.G., Knopf-Lenoir C. & Haftka R.T. “A 
Segregated Genetic Algorithm for Constramed 
Structural Optimization”. Proc. 6‘h International 
Conference on Genetic Algorithms, Pittsburg, USA, 
Morgan Kaufmann, July 1995. 
Paredis J. “Genetic State-Space Search for Con- 
strained Optimisation Problems”. Proc. 13th Znter- 
national Joint Conference on Artificial Intelligence, 
Cambery, France, 1993, pp, 967-972. 
Schoenauer M. & Xanthakis S. “Constrained GA 
optimization”. Proc. 4” International Conference on 
Genetic Algorithms, Urbana Champaign, Conference 
on Genetic Algorithms, July 1993 
Wall M. GALib: A C++ Library of Genetic Algo- 
rithm Components, ver. 2.4. MIT, 1996. 

348 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 15,2010 at 06:03:33 EDT from IEEE Xplore.  Restrictions apply. 


