
Assessing the Performance Impact of Service Monitoring

Garth Heward, Ingo Müller, Jun Han, Jean-Guy Schneider

Swinburne University of Technology
Melbourne, Australia

{gheward,jhan,imueller,jschneider}@swin.edu.au

Steven Versteeg

CA Labs
Melbourne, Australia

Steve.Versteeg@ca.com

Abstract—Service monitoring is an essential part of service-
oriented software systems and is required for meeting regula-
tory requirements, verifying compliance to service-level agree-
ments, optimising system performance, and minimising the cost
of hosting Web services. However, service monitoring comes
with a cost, including a performance impact on the monitored
services and systems. Therefore, it is important to deploy the
right level of monitoring at the appropriate time and location in
order to achieve the objectives of monitoring whilst minimising
its impact on services and systems. Although there have been
many efforts to create Web services monitoring techniques and
frameworks, there has been limited work in quantifying the
impact of Web service monitoring. In this paper, we report
on experiments assessing the performance impact of service
monitoring under typical system monitoring settings. The
performance impact of monitoring method, monitor location,
monitor processing capability, and monitoring mode are taken
into consideration. Based on the experimental results, we advise
on the most appropriate ways to deploy service monitoring.

Keywords-Web service monitoring; performance impact; ser-
vice interceptors;

I. INTRODUCTION

Service-Oriented Architecture (SOA) provides for dis-

tributed software with loose coupling, user-level composi-

tion, and a high level of business support through aspects

such as service-level agreements and various management

standards [1]. Web services represent the dominant means

for implementating Service-Oriented Architectures. Since

Web services are usually under the control of third parties,

their properties, such as response time, are important when

considering the overall quality of an application that uses

them and are often used to verify service-level agreements

and optimise service compositions or Web service infras-

tructures [1].
Certain service properties (e.g., response time) can only

be determined at run-time via monitoring [2]. Monitoring

is generally performed by a monitoring agent, a component

in a Web services system that monitors some aspect of that

system. For example, a monitoring agent may be a Web

service proxy-based interceptor that logs all messages that

it sends and receives. Monitoring agents may also perform

actions based on some initial measurement, such as blocking

a message due to a security violation.

A service provider may need to monitor and manage a

number of properties of a Web services system, such as per-

formance (response time, resources consumed, throughput

etc.), security (security model, trust in partners, certificate

quality, key quality etc.), reliability, and availability [3], [4].

Even in simple scenarios with only one or two of these

quality properties being monitored, the cost of monitoring

the entire system all the time may be greater than the benefit

provided by doing so [2]. For example, using a proxy-based

interceptor to intercept and log messages in order to measure

response time of a Web service may increase the response

time of that Web service to an unacceptable level under a

service-level agreement. In this case, the service provider

may choose to monitor the Web service using a different

method, or not monitor the Web service at all.

Unfortunately, there are cases where service monitoring is

mandated by law, contract, or business policy. The specific

method of monitoring may also be mandated, leaving no

choice to the service provider. Even in these situations,

knowing the cost of monitoring is still valuable in order to

assign resources to the system or bill any costs of monitoring

to external parties.

However, there are situations where the designer of a Web

services monitoring system is able to choose how they meet

regulations for monitoring. In these cases, monitoring can

be appropriately optimised. Optimisation of a monitoring

system may involve selecting exactly what aspects are

monitored, at what resolution, at what times, and for what

qualities. To achieve such an optimisation, the cost of Web

services monitoring must be determined.

Existing research into service monitoring techniques and

frameworks has described the impact of monitoring or

management using a variety of approaches (cf. [5]–[9] just

to name a few). We have summarized these techniques

and frameworks in Table II, including their overheads or

impacts as measured by the original authors. Our survey

has uncovered no studies that determine the impact of Web

services monitoring at a fundamental level. For example, we

have discovered no existing studies that answer the question

“is the performance impact of a SOAP proxy greater than the

performance impact of software level eavesdropping?”. As

such, it is difficult to perform a direct comparison between

techniques without implementation and testing. Therefore,

we have conducted a range of experiments to measure

and quantify the performance impact of monitoring a Web

21st Australian Software Engineering Conference

1530-0803/10 $25.00 © 2010 IEEE

DOI 10.1109/ASWEC.2010.28

192

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

services system based on a new classification of monitoring

techniques. This paper reports on these experiments and

the results obtained. For this study, we have focused our

attention on response time. This property was chosen as it

is a common measure of performance, is a requirement in

many service level agreements, and is easily measurable and

quantifiable.

One of our key findings is that it is possible to monitor

Web services with little to no measurable impact on response

time. However, the method of monitoring used to achieve

this does not allow for blocking or ‘firewalling’ actions by

the Web service monitor. When these actions are taken into

account in a web service monitor, we have measured impacts

on response time of a Web service of up to 40%.

The rest of this paper is organised as follows: Section II

introduces the testing methodology used for measuring the

performance impact of monitoring Web service. In Sec-

tion III, we present the main results or our experiments.

Section IV provides a discussion and interpretation of these

results and their respective impact, followed by a review of

related work in Section V. Finally, Section VI presents our

conclusions and discusses future work.

II. METHODOLOGY

In this section, we present the experiments designed to

measure the performance impact of monitoring web services.

After introducing a classification of monitoring techniques,

we discuss the experimental variables, system setup, and

platform details.

A. Classification

The classification given in Figure 1 is a generic moni-

toring classification that holds for all OSI/technology stack

levels. For example, a generic proxy type monitor may be

realised using a hardware proxy such as a network router or

a routing server. Proxies include all methods of monitoring

that involve implicit or explicit redirection of traffic between

the source and the intended recipient. This includes wrappers

for virtual machines or runspaces, since traffic must pass

through them, even at a software level, and they are able to

modify or redirect that traffic.

Probes include all methods of monitoring that generate

their own messages or other traffic intended for the target

system. This may include simulated consumer messages and

invocations of test procedures. This also includes software

that requests data from remote logs.

Eavesdroppers include all methods of monitoring that

passively intercept communications between the consumer

and provider. This may include methods such as network

level interception using logs on routers, software level in-

terception using modifications of the operating system or

network interface drivers, or modification of existing SOAP

proxies. This also includes systems that receive messages

from a heartbeat or broadcast.

Figure 1: Classification of monitoring techniques.

B. Experiment Variables

It is expected that the cost of monitoring will vary with the

method and level (amount) of monitoring. Our experiments

are specifically designed to measure the relative cost of dif-

ferent monitoring methods and levels under our monitoring

classification scheme (cf. Figure 1). The monitoring methods

selected were monitoring using a software-based communi-

cations eavesdropper (Wireshark) [10], which represents the

eavesdropper type monitor in Figure 1; and monitoring using

a Web service based intercepting proxy, which represents

the proxy type monitor in Figure 1. These methods of

monitoring were selected because they are commonly used

by others [5], [8] and are easily repeatable.

The impact of probe-based monitoring is not included in

this paper, as the impact of probe-based monitoring is not

expected to be consistent across systems, due to the many

possible types of probes that may have impacts ranging from

negligible to extreme. For example, a probe may request the

current CPU usage, or it may stress test a server.

Other methods of monitoring are available, such as in-

strumentation of Web service or client code, and instrumen-

tation of virtual machines or runtimes. The performance

of instrumentation-based methods is not measured here,

since these methods require access to source code or virtual

machines, respectively, which may not always be available.

These instrumentation based methods are also restricted

in that instrumentation-based monitors can only be placed

where a virtual machine or application exists, whereas net-

work level proxies may be placed anywhere along communi-

cation paths. Some of the results of proxy-based monitoring

testing that are presented here may however be applied

to instrumentation-based monitoring. For example, a major

cause of delay for a blocking proxy is the action that is taken

by the proxy, rather than the overhead of hosting the proxy

itself. In this case, an instrumentation-based proxy will yield

a similar performance impact to other types of proxies such

as those used in our tests.

Three variants of the proxy-based monitor were created.

First, a basic, “empty” proxy was used as a baseline for

the cost of this method of monitoring. Second, a variant

wherein the proxy has a constant delay was created in order

to establish the cost of a delay in the proxy. Third, a variant

wherein the proxy performed processing that was equivalent

193

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

to the processing performed by the Web service was created

in order to establish the cost of a proxy-based monitor

that is performing some heavy processing. This variant has

‘blocking’ and ‘non-blocking’ forms. The blocking version

receives a message, performs the required processing, and

then forwards the message. Conversely, the non-blocking

version receives a message, forwards the message, and then

performs the required processing.

In general, to achieve the experiment objectives, we

consider the following variables for the monitoring system:

(1) The use of a Web service proxy-based interceptor

(hereafter referred to as proxy);

(a) The type of action(s) that the Web service proxy

takes;

(b) The location of the Web service proxy-based

monitoring agent;

(c) Whether the proxy is blocking or non-blocking;

and

(2) The use of an eavesdropping, software-based web

service monitoring system.

The first monitoring method (1) was used to determine the

performance impact of using a proxy, compared to directly

invoking a Web service. Once this impact was established,

any processing that was performed at the proxy could be

compared with this baseline response time. Variable (1.a)

was used to determine the performance impact of different

actions that a proxy takes, such as logging, or performing

some CPU/RAM intensive task, which may be likened to

XML serialisation/de-serialisation or encryption/decryption.

Variable (1.b) was used to determine the impact of the

proxy’s location. The location was either on the server

hosting a Web service, or on a dedicated node. Variable (1.c)

was used to determine the difference between a blocking and

non-blocking proxy. Each of these methods was measured

using 10, 20, 30 and 40 simultaneous clients in order to

determine the impacts of the level as well as method of

monitoring. The second monitoring method (2) was used

to determine the impact of monitoring a Web services

system without directly modifying that system. In this case,

monitoring was via software instrumentation of all TCP/IP

communications.

We expect that any monitoring taking place at the con-

sumer side will not have an impact on the provider’s

system (unless of course the consumer and provider are co-

located). Therefore, the system setups have been designed

to measure performance impact of monitoring on a Web

services system, when monitored from the service provider’s

side only.

In order to measure the impact of the variables listed

above, a Web service monitoring system was created. This

system had the following configurations:

(1) Location of Proxy

(a) Nowhere - direct invocation (Figure 2, Type 1)

Figure 2: Web service monitoring scenarios.

(b) Local (Figure 2, Type 2)

(c) On a dedicated node (Figure 2, Type 3)

(2) Actions of Proxy

(a) None (Empty)

(b) Static delay

(c) Relative load

(i) Blocking

(ii) Non-Blocking

(3) Use of eavesdropping

Configuration (1) was used to test variable (1.b), configu-

ration (2) was used to test variables (1.a) and (1.c), and con-

figuration (3) was used to test software-based eavesdropping

(variable (2)), respectively.

C. System Setup

The system setup involved the use of a single Web service,

a Web service client load generator, and a Web service

proxy-based intercepting monitor. Both blocking and non-

blocking proxies were developed.

The web service has a positive natural number as input

parameter, and returns π to that number of decimal places, as

a string. For example, executing pi_service(3) returns

“3.142.” The computation of π is based on the Gauss-

Legendre algorithm. Through this computation, this service

stresses the RAM and CPU of the hosting server, and allows

for varying degrees of load based on the input parameter.

Apart from this flexibility, this method of load-generation

was chosen because it is easily repeatable, and can provide

consistent results. This method of load generation gener-

ates a relatively high level of server-side processing per

client request, which is useful since the server’s processing

capacity can be stressed without stressing other elements

in the test bed, such as the client system or network.

Since Web services are designed as interfaces to existing

systems, stressing these aspects of the system are realistic

(e.g., stressing of disk I/O would more likely represent the

behaviour of an application that a web service is the interface

for). The Web service was created in Java/J2EE and hosted

on an Apache/Tomcat server.

The Web service proxy-based interceptor is a simple

redirection service. The proxy was modified to perform

194

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

various tasks such as sleeping (artificial static delay), and

computing π locally (artificial relative load). The static delay

allows for the measurement of change in response time due

to a known and static delay. This would answer the question

“what is the response time cost of a 5 second delay in a Web

services proxy-based monitor?”. The artificial relative load

allows a load to be put on the monitor that is equivalent

to the load on the server. This allows for a simple baseline

measurement of the impact of monitoring with a level of

processing equivalent to that of the Web service itself. The

Web service proxy was created in Java/J2EE and also hosted

on an Apache/Tomcat server.

The Web service client load generator invokes the

pi_service method on the Web service and measures

the total time taken (response time) from when the service is

invoked by the client until the result is returned to the client.

Apart from the number of places for which to compute π, the

client application takes as input num_threads, the number

of threads (simultaneous clients) to execute. Modifying the

number of simultaneous clients allows for the simulation of

varying loads on the servers hosting the Web service and

proxies, respectively. The client simultaneously executes the

Web service num_threads times and returns the average

of the response times for all threads.

For eavesdropping, Wireshark was used to monitor the

IP traffic for each node’s network interface. Response times

were measured with Wireshark running on one, two, or three

of the nodes in order to determine if there was any impact.

Figure 2 shows the test setups that were used to exercise

the required test scenarios. Rectangles with rounded corners

represent node boundaries. Rectangles represent services or

processes, whereas arrows represent communication links.

Type 1 in Figure 2 shows the baseline system, with direct

invocation of a Web service (no proxy). Type 2 shows a

proxy co-located with the Web service, and Type 3 shows

the proxy on a separate server to the Web service.

Each test result presented is the average of at least 15

test runs (more tests were run to increase confidence, where

required) at 10, 20, 30, and 40 threads and 10,000 digits of

π. Each average has vertical error bars showing the standard

error at 95% confidence for that value. These error bars

demonstrate the separation of the average response times.

D. Platform Details

Table I presents the platform details of the test setup. Each

node involved in the test was running Microsoft Windows

XP SP3. The tests were run on a dedicated LAN with no

other traffic. All addressing was via IP (no DNS lookups).

Apache/Tomcat was used for hosting the Web services.

The network was never under more than 5% load during

tests. This eliminates the chance that the network was a

‘bottleneck’ in the system. None of the systems involved in

the test required the use of swap space during any test.

Table I: Node Specifications

Node 1 (server) Node 2 (proxy
server)

Node 3 (client)

CPU Intel E8500 @
3.16GHz

Intel T7700 @
2.4GHz

T5600 @
1.8GHz

RAM 4GB 3GB 1GB

The systems selected for this benchmark cannot be repre-

sentative of every possible combination of client, server, and

proxy that is used. However, the comparative results from

these tests will scale to any systems of similar architecture.

That is, we expect that running the same tests on a group

of high performance servers would yield faster response

times, but the difference between response times for different

monitoring methods would remain.

III. RESULTS

Using the experimental method discussed in the previous

section, we have conducted a wide range of performance

tests with the various monitoring system configurations.

The following sections present the results of the experiment

under the most representative scenarios.

A. Location of Proxy

Figure 3 shows the results from testing the system using

no proxy, an empty proxy on the same server as the Web

service, and an empty proxy on a separate node (Node 2).

These results show the minimum impact from using a Web

service proxy for monitoring, as well as the comparative

impact of the proxy based on its location.

The results in Figure 3 show that moving an (empty)

proxy from being co-located with the service to another node

increases the response time by approximately 8%. These

results also show that direct invocation of the Web service

was 8% slower than invoking the Web service through a

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 10 20 30 40

A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

(m
s)

Number of Clients

No Proxy
Empty Proxy on Node2
Empty Proxy on Server

Figure 3: Effect of proxy-based interceptor on response time.

195

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 10 20 30 40

A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

(m
s)

Number of Clients

Proxy on Node2 Sleep(5000)
Empty Proxy on Node2

Proxy on Server Sleep(5000)
Empty Proxy on Server

Figure 4: 5000ms blocking delay at proxy-based interceptor.

proxy on the server. This counter intuitive result may be

explained by the fact that having an extra proxy on the

server doubles the buffers available on the serving side,

reducing the number of rejected connections. Similar results

have been reported in [11].

B. Static delay at proxy

Figure 4 shows the results from testing with empty

proxies, and with proxies with an inbuilt, blocking 5-second

delay, on both the server and a dedicated node, respectively.

This figure allows for a comparison of the impacts of a

blocking proxy on a server and a dedicated node, as well as

a comparison of the impacts of blocking proxies and empty

proxies.

Proxies on the server and Node 2 with a blocking 5-

second delay averaged about 14 seconds slower than an

empty proxy. This shows that the impact of a delay is not a

simple arithmetic function. For example, the response time

of an empty proxy minus the response time of a proxy which

sleeps for 5 seconds before returning the result is 14 seconds,

not 5 seconds.

C. Processing on proxy located at server

Figure 5 shows the results from testing a proxy that per-

forms a processing-intensive task on the server. The results

are for blocking and non-blocking proxies, respectively. This

figure allows for a comparison of the impacts of blocking

and non-blocking proxies located on the server.

As expected, the blocking proxy caused approximately

40% greater response times than the non-blocking proxy.

This difference in the impact on response time increased as

load, due to the number of simultaneous clients, increased.

The results also show that the impact of a non-blocking

proxy on response time in this scenario was approximately

30%. Once again, this impact increased as the load on the

service increased. The relative impact between the blocking

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 10 20 30 40

A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

(m
s)

Number of Clients

Proxy on Server Running Pi and Blocking
Proxy on Server Running Pi and Not Blocking

Empty Proxy on Server

Figure 5: CPU/RAM intensive processing at proxy on server.

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 10 20 30 40

A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

(m
s)

Number of Clients

Proxy on Node2 Running Pi and Blocking
Proxy on Node2 Running Pi and Not Blocking

Empty Proxy on Node2

Figure 6: Blocking and non-blocking CPU/RAM intensive

processing at proxy on dedicated node.

and non-blocking proxy has reduced and almost stabilised

at around 20 threads. This is to be expected, since once the

local resources are saturated due to high load, the effect of

non-blocking processing at the proxy is diminished.

D. Processing on proxy located at Node 2

Figure 6 shows the results from testing a proxy that is

performing a processing-intensive task on a second, dedi-

cated node (Node 2). Similar to the previous section, the

results are for configurations of the proxy as blocking and

non-blocking, respectively.

The blocking proxy caused approximately 40% greater

response times compared to the non-blocking proxy. Once

again, this difference in the impact on response time in-

creased as the load (number of simultaneous threads) in-

creased. The results in Figure 6 also show that the impact

of a non-blocking proxy on response time in this scenario

196

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

was approximately 5%.

Figure 6 also shows the impact of a blocking proxy on a

second, dedicated node rising sharply away from the impact

of a non-blocking proxy. In this case, the difference is

exaggerated at 40 clients due to the CPUs on the proxy host

becoming saturated, however the trend is detectable from 10

to 30 clients already.

E. Eavesdropping

Figure 7 shows the results from testing the effect of

an eavesdropping, software-level monitoring on the system,

configured with and without a dedicated proxy server. The

results are for each scenario run with 10 threads.

As can be seen in Figure 7, eavesdropping on the system

has no measurable negative effect on response time. As such,

these results show that it is possible to eavesdrop on a Web

service without negatively impacting the response time of

that Web service.

IV. DISCUSSION

By analysing the results from monitoring using eaves-

dropping, it can be seen that it is possible to eavesdrop on

a Web service without significantly affecting the response

time of that Web service. Conversely, by analysing the

results for monitoring using a proxy, it can be seen that

monitoring using a proxy Web service which performs some

computation, can have a measurable negative impact on

response times.

However, this eavesdropping method of monitoring is lim-

ited. Firstly, the eavesdropper may not understand captured

traffic if that traffic is encrypted. Secondly, users must have

access to the systems hosting the proxies and Web service,

respectively, in order to take measurements. For example, the

user must be able to install and administer the application

to be tested. Otherwise, our results show that proxy-based

intercepting monitors should often only be used when they

are required to perform a blocking function.

The results for testing the effect of a CPU and RAM inten-

sive proxy show that the impact from a proxy performing

work (in this case computing π) may be reduced by over

20% by moving the proxy from the server hosting the Web

service to another node.

Typical usage for a proxy would be for logging mes-

sages or duplicating/redirecting messages based on content.

The proxies in our scenario had a heavier processing load

than would be expected of proxies performing simple log-

ging/trafficking actions, since they were computing π. The

proxies were designed this way so that their processing was

roughly equivalent to that performed by the Web service.

This equivalent processing load is realistic in many sce-

narios, where the Web service is simply performing some

database operation or executing a remote process.

Apart from the cost of a proxy-based monitor compared

to an eavesdropping monitor, the cost of a blocking monitor

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 10 20 30 40

A
v

er
ag

e
R

es
p

o
n

se
 T

im
e

(m
s)

Number of Clients

Eavesdropping
No Eavesdropping

Figure 7: Eavesdropping vs. No Eavesdropping

varied significantly, compared to the cost of a non-blocking

monitor. The results show that performing a blocking func-

tion at a proxy-based monitor was approximately 40%

slower than performing a non-blocking function. This is

a significant result, and demonstrates that a small design

choice in a Web service monitor can have a large impact on

performance. This impact of 40% on response time occurred

for a proxy on both the server hosting the Web service and a

dedicated proxy server, respectively. This demonstrates that

the impact cannot be reduced by simply relocating the proxy

to a dedicated server.

Processing load is an important factor for designers of

Web services systems to consider when designing systems

for meeting service-level agreements. Designers must trade

off between the response times provided and the number of

servers required.

For each of the sets of results provided in Section III, the

response time is given as an average over all numbers of

simultaneous clients. For example, the response time for 10

simultaneous clients is directly comparable to the response

time for 20 simultaneous clients, since each of these times is

an average over all client invocations. Knowing this, it can be

clearly seen that as the number of simultaneous clients goes

up, so does the average response time. This effect occurred

in all test scenarios that were executed.

The results presented were based on tests that stressed the

processors of each node in the system. It is important to note

that other benchmarks may stress other aspects of a system,

such as the network, which may yield different results.

V. RELATED WORK

Table II presents a summary of a survey of distributed

software monitoring techniques. For each technique, we have

classified the types of monitors used into our monitoring

taxonomy (Figure 1). We have identified those systems

that used proxy-based monitoring when eavesdropper-based

197

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

monitoring would have sufficed (“bad proxy”). We have

also identified those papers that mention the performance

impact of their monitoring solution (“overhead”). Only two

of the 37 papers provided a quantified impact; of “up to

40%” due to probing, and “1–7%” due to eavesdropping.

Three papers stated the impact as “negligible” due to use

of eavesdropping or existing proxies. These results show

that, in general, designers of distributed monitoring systems

have placed little importance on performance impacts. We

have provided more detailed analysis of some of the papers

presented in Table II. These papers present work explicitly

designed for monitoring of Web services.

Panahi et al. [7] presented a middleware for management

and monitoring of Web services. This is the only work that

presents a framework for monitoring that includes a detailed

measurement of the performance overhead. The authors have

identified the need for the management system to be efficient

enough to manage and monitor large numbers of services

without affecting the execution of the underlying business

process. The system has been prototyped as a Mule ESB

extension. This prototype has been used to compare the

performance impact of monitoring. The performance impact

determined was between 1–7% for local agents (a type of

proxy), and negligible for the service bus (since it is a

passive listener).

Both da Cruz et al. and Raimondi et al. have presented

methods for monitoring using SOAP intermediaries [5], [8].

They have prototyped their respective proposed frameworks

and claim insignificant or negligible overheads for perfor-

mance. However, details of these measurements were not

described. For example, the impact of monitoring using ex-

isting proxies will be lower than the impact of monitoring by

creating new proxies. The impact will also vary depending

on load and proxy actions. Raimondi et al. [8] presented a

method for the verification of service level agreements at

run-time using timed automata. Monitoring is based on the

interception and analysis of SOAP messages by SOAP in-

termediaries. The performance of the verification algorithm

has been considered, and the authors have prototyped the

system and reported no “significant overheads” [8]. This is

consistent with our results for performing monitoring using

non-blocking proxies. da Cruz et al. [5] presented a method

for measuring Web service usage, based on intercepting

SOAP messages and analyzing these messages by SOAP in-

termediaries. The system performance has been considered,

and a prototype has been tested. The performance overhead

of the prototype was reported to be “negligible”, compared

to the network latency of target systems [5].

Methods or frameworks capable of monitoring Web ser-

vices have been presented that discuss the performance or

overhead of monitoring [2], [12]–[14]. Although each of

these discusses the performance impact of their respective

monitoring and management systems, none provide informa-

tion on the performance overhead of their proposed solution.

Baresi and Guinea [2] discussed the performance impact

of monitoring, and the solution presented allows for the

management of the performance impact of monitoring at

run-time. However, it does not quantify the performance

overhead of the monitoring framework presented.

Ranganathan and Dan [13] and Ludwig et al. [12] pre-

sented solutions aimed at guaranteeing the quality of service

provided for a Web service by allocation of resources to Web

services, and systematically accepting Web service requests

based on the ability to meet service-level agreements, with

consideration for current and expected future load on the

Web services. Once again, neither work provides a measure-

ment of the overhead of their proposed monitoring system.

Keller and Ludwig [14] presented a framework for moni-

toring SLAs in web services-based systems with dynamic

business agreements. The authors considered the impact

of monitoring on the performance of the monitored Web

services, but did not provide a measurement of the overhead

of their proposed system.

Ezenwoye and Sadjadi [15] presented an approach for in-

creasing the fault tolerance of BPEL processes, which relies

on the monitoring of web service interactions. Similarly,

Benbernou et al. [16] presented a method for monitoring

a web service environment at run-time in order to detect

privacy violations, where monitoring is based on analysis

of event logs. However, neither of them discussed the

performance overhead of their proposed frameworks.

In summary, there are various solutions for monitoring

Web services systems. Most of these solutions are targeted

towards minimizing the performance impact of monitoring

and or managing a Web services system. Only two of the

37 papers reviewed for this work provided performance

measures. There is no comparison between techniques in

terms of performance and no in-depth discussion of the

performance impact of monitoring in general. In contrast,

the empirical study we have reported in this paper provides

a basis for the understanding of the performance impact of

different types of Web service monitors.

VI. CONCLUSIONS AND FUTURE WORK

We have identified no work that quantifies the impact of

various types of Web services monitoring systems on the

quality of service provided by those Web services. In order

to fill this gap, we have conducted a series of experiments

in order to quantify and assess the impact of monitoring

on Web services in typical Web services scenarios. These

tests provided three key results: firstly, it is possible to

eavesdrop on a Web service with no measurable negative

impact on response time. Secondly, a blocking monitor may

significantly increase the response time of a Web service.

Thirdly, the location of the monitor has an impact on the

response time of the Web service being monitored.

The tests also demonstrated that a Web service monitoring

system can accumulate significant costs in the form of a

198

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

Table II: Survey of Monitoring Techniques.

Source Technique Bad
Proxy?

Overhead Description

[16] Probe No n/a Monitoring event logs for evidence of privacy violations

[13] Probe No n/a QoS Guarantee via resource allocation and monitoring

[17] Probe n/a n/a WS Robustness testing

[18], [19] Probe n/a n/a Automated test case generation and distributed testing of WS

[20] Probe n/a n/a Classification of monitors for runtime testing

[21] Probe n/a n/a Generation of test cases for web service QoS

[22] Probe n/a n/a Distributed performance testing

[23] Probe n/a n/a Automatic conformance testing of WS

[24] Probe n/a n/a Automatic testing of WS compositions

[15] Proxy No n/a QoS of BPEL processes via interaction monitoring and dynamic service replacement

[25] Proxy No n/a Adaptation of WS for QoS of WS and Composition at runtime using AOP

[8] Proxy No negligible Verifying QoS of WS using timed automata

[26] Proxy No n/a Management layer for WS based on AOP

[27] Proxy No n/a Monitoring of run-time interactions of WS

[28] Proxy No n/a Creation and monitoring of policies for WS transactions

[2] Proxy No n/a Dynamic monitoring of BPEL processes using SOAP interception

[29], [30] Proxy No n/a Association and monitoring of assertions on business processes

[31] Proxy Yes n/a Distributed WS SLA monitoring via SOAP Proxies

[5] Proxy Yes negligible SOAP-Proxy based monitoring using logs

[6] Eavesdrop n/a negligible Verification of WS interaction patterns

[32] Eavesdrop n/a n/a Customer-side QoS monitoring

[33], [34] Eavesdrop n/a n/a Monitoring of WS (BPEL) compositions

[35] Eavesdrop n/a n/a Generation and use of monitors for monitoring requirements in WS systems

[36] Eavesdrop n/a n/a Monitoring WS BPEL processes for requirements compliance

[37] Probe, Eavesdrop n/a n/a P2P service recovery framework

[9] Probe, Eavesdrop n/a Up to 40% Method for monitoring distributed systems using queries

[38] Probe, Proxy Yes n/a Use of AOP for measuring WS QoS

[39] Probe, Proxy No n/a QoS-Aware WS selection and monitoring

[7] Eavesdrop, Proxy No 1-7% WS Monitoring Middleware

[40] Eavesdrop,Proxy Yes n/a Method for formal modelling and verification of WS behaviours using DEC

[14] All No n/a Monitoring for dynamic business agreements

[12] All No n/a QoS Guarantee via resource allocation and monitoring

[41] All Yes n/a P2P based grid monitoring for QoS

[42] Generic Framework n/a n/a General system for monitoring electronic services

[43] Generic Framework n/a n/a automatic verification and analysis of asynchronous interaction patterns

[44] Generic Framework n/a n/a Method for predicting and monitoring QoS of a workflow

[45] Generic Framework n/a n/a Adaptive system for optimal web service composition and execution

reduction in quality of service provided by a Web service

depending on the implemented monitoring methods (type

and location).

With these results as the basis, we plan to investigate

strategies to optimise a Web service monitoring system at

run-time. We will consider balancing the cost of monitoring

as discovered in this study against a model for benefits

of monitoring using an optimisation algorithm. A generic

model will be created that will allow for the measurement

of qualities of service other than response time.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for the

valuable comments on the draft manuscript. This work is

supported by the Australian Research Council under grant

LP0775188 in collaboration with CA Labs.

REFERENCES

[1] M. Papazoglou and W. Heuvel, “Service oriented architec-
tures: Approaches, technologies and research issues,” The

199

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

Very Large DataBases Journal (VLDB’07), vol. 16, pp. 389–
415, 2007.

[2] L. Baresi and S. Guinea, “Towards dynamic monitoring of
ws-bpel processes,” in International Conference on Service
Oriented Computing (ICSOC’05). Amsterdam, The Nether-
lands: Springer, December 2005, pp. 269–282.

[3] L. O’Brien, P. Merson, and L. Bass, “Quality attributes
for service-oriented architectures,” in International Workshop
on Systems Development in SOA Environments (SDSOA’07).
Washington, USA: IEEE Computer Society, May 2007, pp.
3–10.

[4] J. O’Sullivan, D. Edmond, and A. ter Hofstede, “Formal
description of non-functional service properties,” Centre
for Information Technology, Queensland University of
Technology, Tech. Rep., 2005, http://tiny.cc/WsuZC (accessed
10 Sept 2009). [Online]. Available: http://tiny.cc/WsuZC

[5] S. da Cruz, M. Campos, P. Pires, and L. Campos, “Mon-
itoring e-business web services usage through a log based
architecture,” in International Conference on Web Services
(ICWS’04). San Diego, USA: IEEE Computer Society, July
2004, pp. 61–69.

[6] Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’Farrell,
and J. Waterhouse, “Runtime monitoring of web service
conversations,” in Conference of the Center for Advanced
Studies on Collaborative Research (CASCON’07). New
York, USA: ACM, April 2007, pp. 42–57. [Online].
Available: http://dx.doi.org/10.1145/1321211.1321217

[7] M. Panahi, K. Lin, Y. Zhang, S. Chang, J. Zhang, and
L. Varela, “The llama middleware support for accountable
service-oriented architecture,” in International Conference on
Service Oriented Computing (ICSOC’08). Sydney, Australia:
Springer, December 2008, pp. 180–194.

[8] F. Raimondi, J. Skene, W. Emmerich, and B. Wozna, “A
methodology for online monitoring non-functional specifica-
tion of web-services,” in Workshop on Property Verification
for Software Components and Services (PROVECS’07) in the
conference on Objects, Models, Components and Patterns
(TOOLS’07). Zurich, Switzerland: Springer, June 2007, pp.
170–180.

[9] A. Singh, T. Roscoe, P. Maniatis, and P. Druschel, “Using
queries for distributed monitoring and forensics,” in European
Conference on Computer Systems (EUROSYS’06). Leuven,
Belgium: ACM Press, April 2006, pp. 389 – 402.

[10] U. Lamping, R. Sharpe, and E. Warnicke, Wireshark
Manual, NS Computer Software and Services P/L, 2008,
http://tiny.cc/U4i01 (accessed 10 Sept 2009). [Online].
Available: http://tiny.cc/U4i01

[11] D. Bressler, “Zin and the art of web service
management performance,” Actional, Tech. Rep., 2004,
http://tiny.cc/XPfMG (accessed 10 Sept 2009). [Online].
Available: http://tiny.cc/XPfMG

[12] H. Ludwig, A. Dan, and R. Kearney, “Cremona: An ar-
chitecture and library for creation and monitoring of ws-
agreements,” in International Conference on Service Oriented
Computing (ICSOC’04). New York, USA: Springer, Novem-
ber 2004, pp. 65–74.

[13] K. Ranganathan and A. Dan, “Proactive management of
service instance pools for meeting service level agreements,”
in International Conference on Service Oriented Computing
(ICSOC’05). Orlando, USA: Springer, July 2005, pp. 296–
309.

[14] A. Keller and H. Ludwig, “Defining and monitoring service-
level agreements for dynamic e-business,” in USENIX Con-
ference on System Administration (LISA’02). Philadelphia,
USA: ACM Press, November 2002, pp. 189–204.

[15] O. Ezenwoye and S. Sadjadi, “Enabling robustness in existing
bpel processes,” in International Conference on Enterprise
Information Systems (ICEIS’06). Paphos, Cyprus: Springer,
May 2006, pp. 95–102.

[16] S. Benbernou, H. Meziane, and M. Hacid, “Run-time mon-
itoring for privacy-agreement compliance,” in International
Conference on Service Oriented Computing (ICSOC’07). Vi-
enna, Austria: Springer, September 2007, pp. 353–364.

[17] M. Vieira, N. Laranjeiro, and H. Madeira, “Benchmarking the
robustness of web services,” in International Symposium on
Pacific Rim Dependable Computing (PRDC’07). Melbourne,
Australia: IEEE Computer Society, December 2007, pp. 322–
329.

[18] W.-T. Tsai, Y. Chen, R. Paul, H. Huang, X. Zhou, and X. Wei,
“Adaptive testing, oracle generation, and test case ranking for
web services,” in International Computer Software and Appli-
cations Conference (COMPSAC’05). Edinburgh, Scotland:
IEEE Computer Society, July 2005, pp. 101–106.

[19] W.-T. Tsai, X. Wei, Y. Chen, and R. Paul, “A robust testing
framework for verifying web services by completeness and
consistency analysis,” in International Workshop on Service
Oriented Systems Engineering (SOSE’05). Beijing, China:
IEEE Computer Society, October 2005, pp. 159–166.

[20] D. Brenner, C. Atkinson, O. Hummel, and D. Stoll, “Strate-
gies for the run-time testing of third party web services,” in
International Conference on Service-Oriented Computing and
Applications (SOCA’07). Vienna, Austria: IEEE Computer
Society, September 2007, pp. 114–121.

[21] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and
M. Bruno, “Search-based testing of service level agreements,”
in Conference on Genetic and Evolutionary Computation
(GECCO’07). New York, USA: ACM, July 2007, pp. 1090–
1097.

[22] C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster, “Diperf:
An automated distributed performance testing framework,”
in International Workshop on Grid Computing (GRID’04).
Pittsburgh, USA: IEEE Computer Society, November 2004,
pp. 289–296.

[23] R. Heckel and L. Mariani, “Automatic conformance testing
of web services,” in Conference on Fundamental Approaches
to Software Engineering (FASE’05). Edinburgh, Scotland:
Springer, April 2005, pp. 34–48.

[24] H. Huang, W.-T. Tsai, R. Paul, and Y. Chen, “Automated
model checking and testing for composite web services,”
in International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05). Los Alamitos, USA:
IEEE Computer Society, May 2005, pp. 300–307.

200

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

[25] N. Narendra, K. Ponnalagu, J. Krishnamurthy, and
R. Ramkumar, “Run-time adaptation of non-functional
properties of composite web services using aspect-
oriented programming,” in International Conference on
Service Oriented Computing (ICSOC’07). Vienna, Austria:
Springer, September 2007, pp. 546–557. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74974-5 51

[26] B. Verheecke, M. A. Cibran, and V. Jonckers, “Aop for
dynamic configuration and management of web services,” in
International Conference on Web Services (ICWS’03), L.-J.
Zhang, Ed. Las Vegas, USA: CSREA Press, June 2003, pp.
25–41.

[27] Z. Li, Y. Jin, and J. Han, “A runtime monitoring and validation
framework for web service interactions,” in Australian Soft-
ware Engineering Conference (ASWEC’06). Los Alamitos,
USA: IEEE Computer Society, April 2006, pp. 70–79.

[28] S. Tai, T. Mikalsen, E. Wohlstadter, N. Desai, and I. Rou-
vellou, “Transaction policies for service-oriented computing,”
Data Knowledge Engineering, vol. 51, pp. 59–79, 2004.

[29] A. Lazovik, M. Aiello, and M. Papazoglou, “Associating
assertions with business processes and monitoring their ex-
ecution,” in International Conference on Service Oriented
Computing (ICSOC’04). New York, USA: Springer, Novem-
ber 2004, pp. 94–104.

[30] A. Lazovik, M. Aiello, and M. Papazoglou, “Planning and
monitoring the execution of web service requests,” Interna-
tional Journal on Digital Libraries (JODL’06), vol. 1, pp.
335–350, 2006.

[31] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casati,
“Automated sla monitoring for web services,” in International
Workshop on Distributed Systems Operation and Management
(DSOM’02). Venice, Italy: Springer-Verlag, October 2002,
pp. 28–41.

[32] R. Hauck and H. Reiser, “Monitoring quality of service across
organizational boundaries,” in Trends in Distributed Systems:
Torwards a Universal Service Market, International IFIP/GI
Working Conference (USM’00), C. Linnhoff-Popien and H.-
G. Hegering, Eds. Munich, Germany: Springer, September
2000, pp. 124–137.

[33] K. Mahbub and G. Spanoudakis, “A framework for require-
ments monitoring of service based systems,” in International
Conference on Service Oriented Computing (ICSOC’04).
New York, USA: Springer, November 2004, pp. 84–93.

[34] K. Mahbub and G. Spanoudakis, “Run-time monitoring of
requirements for systems composed of web-services: Initial
implementation and evaluation experience,” in International
Conference on Web Services (ICWS’05). Orlando, USA:
IEEE Computer Society, July 2005, pp. 257– 265.

[35] W. N. Robinson, “Monitoring web service requirements,”
in International Conference on Requirements Engineering
(RE’03). California, USA: IEEE Computer Society, Septem-
ber 2003, pp. 65–74.

[36] G. Spanoudakis and K. Mahbub, “Non intrusive monitoring of
service based systems,” International Journal of Cooperative
Information Systems (IJCIS’06), vol. 15, pp. 325–358, 2006.

[37] J.-Y. Chen, Y.-J. Wang, and Y. Xiao, “Soa-based service re-
covery framework,” in International Conference on Web-Age
Information Management (WAIM’08). Zhangjiajie Hunan,
China: IEEE Computer Society, July 2008, pp. 629–635.

[38] F. Rosenberg, C. Platzer, and S. Dustdar, “Bootstrapping
performance and dependability attributes of web services,” in
International Conference on Web Services (ICWS’06).
Salt Lake City, USA: IEEE Computer Society,
September 2006, pp. 205–212. [Online]. Available:
http://dx.doi.org/http://dx.doi.org/10.1109/ICWS.2006.39

[39] M. Tian, A. Gramm, H. Ritter, and J. Schiller, “Efficient
selection and monitoring of qos-aware web services with the
ws-qos framework,” in International Joint Conference on Web
Intelligence and Intelligent Agent Technology (WI-IAT’04).
Beijing, China: ACM Press, September 2004, pp. 152 – 158.

[40] M. Rouached and C. Godart, “Analysis of composite
web services using logging facilities,” in International
Conference on Service Oriented Computing (ICSOC’06),
D. Georgakopoulos, N. Ritter, B. Benatallah, C. Zirpins,
G. Feuerlicht, M. Schnherr, and H. R. M. Nezhad,
Eds. Salt Lake City, USA: Springer, September
2006, pp. 74–85. [Online]. Available: http://dblp.uni-
trier.de/db/conf/icsoc/icsoc2006w.html

[41] H.-L. Truong, R. Samborski, and T. Fahringer, “Towards a
framework for monitoring and analyzing qos metrics of grid
services,” in International Conference on e-Science and Grid
Computing (E-SCIENCE’06). Amsterdam, Netherlands:
IEEE Computer Society, December 2006, pp. 65–73.

[42] G. Piccinelli, W. Emmerich, S. L. Williams, and M. Stearns,
“A model-driven architecture for electronic service man-
agement systems,” in International Conference on Service
Oriented Computing (ICSOC’03). Trento, Italy: Springer,
December 2003, pp. 241–255.

[43] T. Bultan, J. Su, and X. Fu, “Analyzing conversations of web
services,” IEEE Internet Computing (IC’06), vol. 10, pp. 18–
25, 2006.

[44] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, “Modeling
quality of service for workflows and web service processes,”
Journal of Web Semantics, vol. 1, pp. 281–308, 2002.

[45] G. Chafle, K. Dasgupta, A. Kumar, S. Mittal, and B. Srivas-
tava, “Adaptation in web service composition and execution,”
in International Conference on Web Services (ICWS’06). Salt
Lake City, USA: IEEE Computer Society, September 2006,
pp. 549–557.

201

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on June 23,2010 at 08:19:51 UTC from IEEE Xplore. Restrictions apply.

