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Abstract

Electroencephalogram (EEG) is an electrical activity of the human brain that can be

recorded graphically. The analysis of EEG recordings is important for extracting

the relevant information from the human brain activities. In addition, this analysis

is significant for detection of unwanted transient events in order to diagnose brain

diseases. The visual screening of long term EEG recordings is a time consuming

and difficult task, and it is insufficient for capturing reliable information from brain

activities. Therefore an automatic screening of EEG recordings is required to diagnose

brain diseases. In particular, EEG recordings are important in the identification of

sleep stages and in the diagnosis of epilepsy. Furthermore, the classification of EEG

signals in presence of transient events such as K-complexes and seizures is essential

to diagnose people who suffer from sleep disorder and epilepsy respectively. K-

complex is a special type of EEG waveform that is used in the sleep stage scoring.

An automated detection of K-complexes is a desirable component of the sleep stage

monitoring. This automation is difficult due to the ambiguity of the scoring rules,

stochastic nature of brain signals, presence of noise, complexity and extreme size of

data. Many research efforts have been focused on the K-complex detection via several

methods such as neural networks, wavelet transform and non-smooth optimization.

However, drawbacks include false classification of a severe noise or a sleep spindle

as a K-complex and the long computational time. While some attempts were made

to develop algorithms to detect K-complexes, the reported success rates are subject

to change from person to person and no standard algorithm has been accepted by the

medical community. An epileptic seizure is a transient event of abnormal excessive
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neuronal discharge in the brain. This unwanted event can be obstructed by detection

of electrical changes in the brain signal that happen before the seizure takes place.

The automatic detection of seizures is necessary since the visual screening of EEG

recordings is a time consuming task and requires experts to improve the diagnosis

of epilepsy. There have been various attempts for automatic detection of epilepsy

based on artificial neural networks, genetic programmings and wavelet transforms.

However, more research should be conducted for automatic detection of seizures since

it is a challenging task due to inconsistency of signals in patients. Moreover, none of

the previous methods was investigated the consistency in performances. To address

these issues, four convex optimization models are developed to extract key features

of EEG signals. The first two models are linear least squares problems while the

last two models are uniform approximation problems. These models are based on

the approximation of original signals by sine functions. The signal amplitude is

approximated by a piecewise polynomial and a polynomial functions. Thereafter,

the parameters of the corresponding approximations (rather than raw data) are used

to detect K-complexes and seizures. The proposed approach significantly reduces

the dimension of the classification problem (by extracting essential features) and

the computational time while the classification accuracy is improved. The linear

least squares problems have been investigated in order to analyze the singularity of

their system matrices. If the system matrix is non-singular, then, the corresponding

problem can be solved inexpensively and efficiently, while for singular cases, slower

(but more robust) methods have to be used. To choose a better suited method for

solving the corresponding linear least squares problems, the singularity verification

rules have been developed. This thesis develops necessary and sufficient conditions

for non-singularity of first model, and sufficient conditions for non-singularity and

singularity of second model. Therefore the algorithm efficiency can be improved

by choosing a suitable method for solving the corresponding linear least squares

problems. In addition, the uniform approximation problems have been reformulated as

linear programming problems. Numerical results show that four convex optimization

models involving piecewise polynomials are efficient for detecting K-complexes. The

first model involving a piecewise polynomial and a polynomial as amplitudes is a

promising feature extraction method for detecting epileptic seizures.
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Chapter 1
Introduction

1.1 Introduction

The structure of the human brain is complex and its functions are diverse. The

brain is the center of the nervous system and it controls all physical and mental

functions including muscle movements, breathing, walking, memory, thinking,

learning, emotion, attention and so on. To control body actions, such as watching

television, the brain generates electrical signals through neurons that exploit chemical

reactions. There exist scientific techniques to monitor these electrical signals, for

instance, electroencephalography (EEG) and magnetic resonance imaging (MRI).

Any intrusion into the human brain, such as surgery to monitor its functions, can

damage it. Therefore a non invasive technique is necessary in order to capture

its electrical activity. EEG has become a widely used technique to record the

electrical activity of the human brain because of its excellent properties including non-

invasiveness, millisecond-range temporal resolution and low cost. EEG is an important

technique to diagnose brain diseases and abnormalities such as sleep disorders and

epilepsy that cause electrical changes in the brain.

Classification of EEG signals through partitioning EEG segments is necessary to

decide whether volunteers are healthy or not. EEG generates complex and large

scale data and visual screening of long term EEG recordings is a time consuming

and difficult task and it is insufficient for capturing reliable information. Therefore

development of automatic methods for detection of unwanted transient events in EEGs
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and extraction of information from a large amount of data is vital. This thesis considers

two important medical applications that are based on the classification of EEG signals:

epileptic seizure detection and sleep stage identification. Four methods have been

developed to automate detection of transient events, which helps the practitioners

identify sleep stages and diagnose seizures. Twelve classification algorithms have been

employed to classify EEG signals in the presence of a transient event.

The proposed methods extract the essential features of EEG signals that describe the

characteristics of the original signal with sufficient accuracy. Consequently, they

reduce the dimensionality of complex data obtained from EEG recordings. The

proposed methods may be useful for sleep disorder specialists and neurologists to

identify some brain diseases efficiently using the typical patterns of EEG signals. The

outcomes of this research can facilitate better care services for patients with sleep

disorders and seizures while saving time and reducing costs.

Optimization methods are important tools in the fields of signal processing and data

fitting. Medical practitioners, for example, want to reduce the time required for

diagnosis and maximize the accuracy of diagnosis. Because the time required and the

accuracy achieved in any practical situation can be modeled as a function of decision

variables, optimization can be used efficiently to detect transient events in EEG signals

within a time limit.

Most real world problems have many decision variables; therefore they have a large

number of local minima and maxima that might not be the global solutions. Although

finding the local optimum is simple using local optimization methods, finding the

global optimum is a difficult task. One of the main drawbacks of any local optimization

method is that it does not search the whole domain of the objective function to reach

the global optimum.

Formulating a real life problem as a non-convex optimization problem is

straightforward, but solving it using local optimization methods is difficult. Although

formulating and recognizing a practical problem as convex optimization is a

challenging task, there exist many reliable algorithms to solve them. One of the main

properties of convex optimization problems is that any locally optimal solution is also
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globally optimal. Taken together, the art in a non-convex optimization problem is

in solving it whereas the art in a convex optimization problem is in formulating it.

Therefore this research is based on mathematical modeling of EEG signals captured

from human brains through convex optimization for automatic detection of transient

EEG waveforms. This study can be considered an application of convex optimization

techniques in biomedical signal processing.

1.2 Background of the Problem

An EEG is a graphical recording of electrical activity of the human brain. These signals

provide significant contributions in biomedical signal processing. The assessment of

EEG signals is essential for extracting the relevant information from EEG recordings

in order to diagnose brain diseases and abnormalities. Two important applications of

EEG signals are sleep stage identification and epileptic seizure detection.

K-complex is a special type of transient EEG waveform that is used in sleep stage

identification. In manual identification, medical doctors look for specific patterns

(sleep events) based on specially developed scoring rules [41]. Then, one of the sleep

stages (awake, sleep stage 1, 2, 3 or REM) is assigned to each signal segment of an

EEG (called an epoch, normally lasting 30 seconds). This is a time consuming task.

Therefore an accurate method for automation of manual identification is desirable.

This automation is difficult, due to the stochastic nature of brain signals, the presence

of noise, complexity and extreme size of data. While a few studies have been carried

out to automate detection of K-complexes, no standard algorithm has been accepted by

the medical community. Consequently, this study focuses on an automatic detection

of K-complexes that are essential waveforms for distinguishing between sleep stage 1

and sleep stage 2 of an EEG signal.

An epileptic seizure is a transient event of abnormal excessive neuronal discharge in

the brain. This unwanted event can be obstructed by detection of electrical changes in

the brain that happen before the seizure takes place. Hence, the automatic detection of

seizures is necessary since the visual screening of EEG recordings is a time consuming

task and requires experts to improve the diagnosis. Although there have been studies in
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automatic detection of epileptic seizure, more research is required, due to inconsistency

of signals in relation to patients’ sex, age and so on.

To address these, this study has developed methods for automatic detection of transient

EEG waveforms called K-complex and epileptic seizure in order to extract the key

features of EEG signals and improve the performance of classification algorithms.

1.3 Statement of the Problem

This research is aimed at investigating the efficiency and effectiveness of optimization

methods and developing optimization models for automatic detection of K-complexes

and epileptic seizures for sleep staging of an EEG and seizures diagnosis respectively.

One of the main characteristics of K-complexes and epileptic seizures is a sudden and

excessive increase in signal amplitude. Continuous piecewise polynomials that are

known as splines are flexible candidates to model abrupt changes in amplitude. In

addition, it seems that simpler modeling functions such as polynomials work well.

Therefore these facts motivate us to model the brain signal (EEG) as sinusoidal waves

with the signal amplitude approximated by a spline and a polynomial (which is simpler

than a spline) [63]. These enable one to

• develop an accurate model for the wave shapes and

• extract key features of the waves that are crucial for detecting K-complexes and

seizures.

These features are extracted through minimizing

• the sum of the squares of the deviation between the original signal and the

modeling functions;

• the maximum of the absolute deviation between the original signal and the

approximated wave.

The first approach necessitates solving a sequence of linear least squares problems

that is a subclass of convex optimization problems. The second approach necessitates

solving a convex optimization problem based on uniform (Chebyshev) approximation.
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After extracting the features, classification algorithms (classifiers) are applied over the

set of extracted features to evaluate the classification accuracy of an EEG signal in the

presence of K-complexes and seizures.

1.4 Aims and Objectives of the Study

The major goals of this study are to:

• investigate the possibility of using optimization methods in EEG signal

processing;

• analyze how the existing methods can be improved for more accurate and

efficient classification of EEG signals.

The objectives of this study are to:

• develop convex optimization-based procedures for extracting a set of signal

characteristics that is essential for K-complex and seizure detection;

• formulate the feature extraction procedure as an optimization problem;

• identify relevant optimization methods to solve the problem;

• identify efficient classification algorithms based on the classification accuracy

and computational time;

• improve the current procedure of EEG signal classification in presence of K-

complex and seizure;

• run the numerical tests and carry out simulations using the developed procedures.

1.5 Contributions

New convex optimization-based models were developed for automatic detection of K-

complexes and seizures. The procedure consists of two major steps.

1. We extracted key features of an EEG signal and reduced the dimensions of the

data. This procedure was based on convex optimization.
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2. We applied classification algorithms to evaluate the classification accuracy of an

EEG signal in the presence of K-complexes and seizures.

There are two main contributions of this work:

1. The development of optimization models that are

• categorized under convex optimization problems;

• simple and computationally inexpensive to solve;

• accurate enough to achieve a high level of classification accuracy with less

execution time.

2. The implementation and comparison of the proposed models, in particular, their

classification accuracy and the corresponding computational time.

1.6 Organization of the Thesis

This thesis is presented into seven chapters. The content of each chapter is organized

as follows.

Chapter 1 gives the introduction of this study. This chapter discussed the introduction

of the research area, background of the problem, statement of the problem, aims and

objectives of the study, and contributions of the study.

Chapter 2 reviews the optimization area, biomedical signal processing, classification

and feature extraction of EEG signals, and solution methods containing linear

programming, linear least squares and convex optimization methods.

Chapter 3 introduces novel methods based on the sequence of linear least squares

and uniform approximation problems. These are developed to extract the essential

features of EEG signals in order to detect K-complexes and seizures automatically and

to enhance the performance of classification algorithms.

Chapter 4 provides an extensive mathematical analysis of linear least squares and

uniform approximation models. Singularity verification rules are developed for linear

least squares models in order to choose a better suited method for solving them.

It is demonstrated that uniform approximation models can be formulated as linear
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programming problems. This formulation can be used to verify that the solutions are

optimal.

Chapter 5 illustrates the efficiency and robustness of developed models in automatic

detection of K-complexes. It reports the numerical results obtained from proposed

methods when an EEG signal is formulated as a sine wave and its amplitude is

approximated as a spline and polynomial. Further, different classification algorithms

are applied to evaluate the performance of developed methods in order to enhance the

classification accuracy. This chapter discusses three issues as follows.

• Which optimization-based model is more robust and efficient in the extraction

of key features of an EEG signal in presence of K-complexes?

• Which amplitude approximation (spline or polynomial) is the best for this

particular dataset?

• Which combination of optimization-based models and classification algorithms

is best in terms of classification accuracy?

Chapter 6 reports numerical results obtained from employing linear least squares-

based methods over an EEG epileptic dataset. This EEG signal is modeled as a sine

wave where its amplitude is approximated as a spline and polynomial. Different

classification algorithms are applied in order to investigate the improvements in

classification accuracy that is achieved through employing linear least squares-based

methods. This chapter discusses three issues as follows.

• Which method is more robust and efficient in the extraction of essential features

of an EEG signal in presence of seizures?

• Which amplitude modulation is the best for an EEG epileptic dataset?

• Which combination of linear least squares-based methods and classification

algorithms is the best in terms of classification accuracy?

Chapter 7 provides a summary and conclusions of this research. In addition, this

chapter includes suggestions for further studies.



Chapter 2
A review on Optimization and Its
Applications in EEG Signal
Classification

2.1 Introduction

This chapter contains an overview of optimization with particular focus on convex

optimization, biomedical signal processing, feature extraction and classification of

different categories of EEG signals including their concepts and structures. The goal

of this thesis is to develop convex optimization-based methods to extract the essential

features of an EEG signal in order to approximate the EEG signal accurately, enhance

the performance of classification algorithms and reduce the dimensionality of EEG

datasets.

2.2 Optimization

Optimization is the science of identifying the best solutions to certain mathematical

problems that model real life situations. It may be defined traditionally as an aid

to human decision making. In our daily lives, we make many technological and

managerial decisions. It is widely applied in engineering design, science, management,

economics and business. For example, an engineer is in the decision loop, continually

reviewing the proposed designs and changing parameters in the problem specification

if needed.
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In most situations, the concept of a best decision depends on a problem considered

and is not easy to define mathematically. The most common way of doing this is to

represent the decision as a set of parameters called decision variables. Most practical

situations can be modeled as an objective function of decision variables subject to

constraints. Then, optimization can be defined as finding the best solution within a

given time limit, which is concerned with finding the maximum or minimum value of

this objective function depending on decision variables.

One of the difficulties in the optimization is to find an effective method to estimate an

optimizer for a real valued function with n variables, especially if n is large. Once

the model is formulated mathematically, an optimization algorithm is used to solve

it. Generally, optimization problem requires a computer to complete this process

since the algorithms and models are complicated and time consuming [61]. The basic

components of optimization problems are:

• a set of decision variables,

• an objective function to be minimized (cost function) or maximized (profit

function) and

• a set of constraints that specify feasible values of the decision variables.

Optimization problems involve finding the values of the decision variables that

optimize the objective function while satisfying the constraints. In optimization

problems, decision variables can admit continuous, discrete or symbolic values.

A problem is continuous if the decision variables take on continuous real values,

otherwise, it is a discrete problem. The decision variables of a discrete problem usually

admit integer values. The constraints can also have linear or non-linear forms and

be defined implicitly or explicitly or may not even exist. They can be equalities or

inequalities. Optimization problems may be constrained or unconstrained depending

on the existence of conditions imposed on the decision variables.

A general constrained minimization problem can be formulated as follows:

minimize (f0(x)) subject to

 fi(x) ≤ 0 , i = 1, . . . ,m ,

hk(x) = 0 , k = 1, . . . , p ,
(2.1)
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where x ∈ Rn is the decision variable (optimization variable), function f0 : Rn → R

is the objective function, and functions fi, hk : Rn → R are inequality and equality

constraint functions respectively. Maximization problems are transformed into

minimization problems such that in (2.1)

max (f0(x)) = −min (−f0(x)) .

Optimization problems can be divided into several classes.

1. Classification of optimization problems based on the existence of constraints.

• Constrained Optimization Problems: problems that are subject to one or

more constraints.

• Unconstrained Optimization Problems: if m = p = 0 in problem (2.1)

then, it is called unconstrained optimization problem.

2. Classification of optimization problems based on the type of objective function

and constraints.

• Linear Optimization Problems: the objective function and the constraints

are linear.

• Non-linear Optimization Problems: if either of objective and constraint

functions, or both, are non-linear.

• Convex Optimization Problems: the objective and the inequality constraint

functions in (2.1) are convex and the equality constraint functions are

affine. A function f : Rn → Rm is affine if it has the form f(x) = Ax+ b,

where A ∈ Rm×n and b ∈ Rm.

• Non-convex Optimization Problems: the objective function and some or

all the constraints may be non-convex functions.

3. Classification of optimization problems based on the type of solution obtained.

• Local Optimization Problems: a vector x∗ ∈ Ω is said to be

a local minimum of f : Ω→ R if there exists a neighborhood

δ(x∗) : f(x∗) ≤ f(x) ∀x ∈ δ(x∗). A major drawback of any local opti-

mization algorithm is that it does not search the whole domain which is
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evidently necessary in global optimization.

• Global Optimization Problems: a vector x∗ ∈ Ω is said to be a global

minimum if f(x∗) ≤ f(x) ∀x ∈ Ω. The aim of global optimization is

to find the solution, for which the objective function achieves its optimal

value in the complex region of interest.

There exist various type of optimization problems, so, there is no specific method

for solving them since each problem has special requirements to obtain its optimal

solutions.

2.3 Solution Methods

An algorithm that calculates a solution of the optimization problem with a required

accuracy is a solution method for a class of optimization problems. A significant

effort has been made since Dantzig’s development of simplex method [23] for

linear programming problems (LPPs) to design algorithms for different classes

of optimization problems (non-linear), analyze their properties and develop robust

software implementations. The efficiency of these algorithms depends on factors

such as particular forms of objective and constraint functions, the number of decision

variables and constraints, and special problem structure such as sparsity. A problem is

sparse if each constraint function depends on only a small number of variables [61].

As mentioned earlier, a significant difficulty in optimization is that it is not possible

to solve all problems efficiently using the same method. There are two approaches to

address this fundamental issue.

1. If the problem is non-convex then, in most cases, a special optimization method

has to be developed to solve this problem efficiently. Good differentiable

large scale optimizers now exist in KNITRO that is a solver for non-linear

optimization problems [104].

2. An approximation of the original model that is accurate enough for serving

the purposes of the application needs to be obtained. It can be solved

efficiently using the existing optimization methods. Generally, linear and
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convex optimization problems can be solved efficiently by a variety of modern

optimization techniques [12].

Most problems cannot be accurately formulated as linear or convex problems.

Moreover, it is not always straightforward to find a suitable convex approximation

to a given optimization problem.

2.3.1 Linear Optimization Problems

Linear programming problems (LPPs) form an important class of optimization

problems. In LPPs, the objective function of decision variables x1, x2, . . . , xn is

linear and can be minimized or maximized subject to linear equality or inequality

constraints on xi, i = 1 , . . . , n. It is worthwhile noting that LPPs are, of course,

convex optimization problems that can usually be stated in a standard form:

minimize (cTx) subject to Ax = b , x ≥ 0 , (2.2)

where c = (c1, c2, . . . , cn) ∈ Rn, x = (x1, x2, . . . , xn) ∈ Rn, A is an m × n matrix

and b = (b1, b2, . . . , bm) ∈ Rm. Basic terminology used in formulating LPPs includes

the following definitions:

• Feasible Solution: if x satisfies Ax = b, x ≥ 0 then, x is feasible.

• Feasibility of an LPP: if there exists a feasible solution then, (2.2) is feasible,

otherwise it is infeasible.

• Optimal Solution: x∗ is said to be an optimal solution to (2.2) if it is a feasible

solution of (2.2) such that cTx∗ = min{cTx : Ax = b ,x ≥ 0}.

• Unbounded Problem: if ∀λ ∈ R ∃ a feasible x∗ : cTx∗ ≤ λ then, (2.2) is an

unbounded problem.

Note that for LPPs the local optimality implies global optimality. If an LPP has a local

solution then, it must have an optimal solution that corresponds to an extreme point.

There may be multiple optimal solutions but only one optimal solution value. The

value of the objective function for the optimal solution is said to be the value of the
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linear program. This may occur when the objective function hyperplane is parallel to

a binding constraint facet.

There is no simple closed form solution for an LPP but there are a variety of effective

methods for solving it, including Dantzig’s simplex method [23] and the more recent

interior point methods [12].

Theorem 2.3.1 (Fundamental Theorem of Linear Programming). For an LPP with a

feasible domain D containing at least one extreme point, the optimal objective value

is either unbounded or is achievable at one extreme point of D [21].

The set of linear constraints defines a polyhedron that constitutes the feasible region.

A polytope is a geometric object with flat sides, which exists in any general number

of dimensions. A polygon is a polytope in two dimensions, a polyhedron in three

dimensions and so on in higher dimensions such as a polychoron in four dimensions.

Based on Theorem 2.3.1, we can restrict ourselves to the vertices of this polyhedron.

The fact that the number of vertices is finite guarantees the termination of any

algorithm that explores all vertices.

2.3.1.1 Simplex Method

The simplex method (SM) is one of the most significant algorithmic developments of

the 20th century that was introduced in 1947 by George Dantzig [23] as an efficient

algorithmic tool for practical decision making. The SM is based on the Fundamental

Theorem of Linear Programming (Theorem 2.3.1), which states that the optimal

solution, if it exists, is at one of the vertices of the feasible polytope. Thus, it reaches

a solution by visiting a sequence of vertices of the polyhedron, moving from each

subsequent vertex to an adjacent one characterized by a better objective function value.

Since the number of vertices is finite, termination of the procedure is guaranteed.

Degeneracy occurs when a vertex in Rm is defined by p > m constraints, and a step

of length zero may be produced. In this case, the SM does not actually move away

from the current vertex and thus, no improvement in the objective function value can

be achieved. Moreover, given the monotonic method of choosing the next vertex, the

set of possible vertices decreases after each iteration in the non-degenerate case.
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In terms of practical efficiency, the SM was considered for an extended time as the

undisputed method for solving linear programming problems. Klee and Minty [51]

were the first to provide an example of pathological behavior of the SM. Their example

shows that the SM did not have polynomial complexity of O(nk). Therefore in some

practical examples, it may be necessary to examine most if not all of the vertices. This

can be inefficient given that the number of vertices grows exponentially. Thus, the SM

has exponential complexity. Researchers have long tried to develop solution algorithms

whose computational complexity times are polynomial functions of the problem size.

2.3.1.2 Interior Point Methods

Interior point methods (IPMs) were developed in the 1960s and the beginning of

the 1970s as methods to solve non-linear programming problems with inequality

constraints. However, they came out of favor and received less and less attention

because of their inefficiency and the presence of strong competitors such as the

sequential quadratic programming [97]. In the view of solving LPPs they could not

compete with the SM. They were only regarded as theoretical alternatives, not practical

substitutes, for the SM.

In 1979 Khachiyan [49] discovered first polynomial alternative to the SM called an

ellipsoid algorithm. However, in most practical examples this method was less efficient

than the SM. A new polynomial time algorithm based on IPMs for solving LPPs was

presented by Karmarkar in 1984 [48]. This method was claimed to be up to 100 times

faster than the SM.

The big difference between an IPM and the SM lies in the nature of trial solutions. The

SM finds the optimal solution among corner points (vertices) of the feasible region

while an IPM converges towards the interior of an optimal facet. The computational

complexity is another important difference between these two methods: the SM has

exponential time complexity while an IPM has polynomial time complexity [24].

There are classes of problems that are best solved with the SM, and others for which

an IPM is preferred. Size, structure and sparsity play the major role in the choice

of an algorithm for computations. As a rule of thumb, if the problem size is small,

the SM is superior in most cases while for larger problems IPMs are the methods of
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choice [21]. IPMs can be applied to a wide range of problems. In particular, they have

been successfully applied to complementarity problems, quadratic programming and

convex non-linear programming [21].

2.3.2 Least Squares Problems

The least squares method has been a standard procedure for the analysis of data from

the beginning of 1800s. It was first suggested by Adrien-Marie Legendre [5]. It was

used when Gauss predicted the orbit of the asteroid Ceres in 1801 [10]. Nowadays

this method is used in various computational applications such as signal and image

processing [99]. Another important applications of a least squares problem (LSP) is

data fitting.

A linear least squares problem (LLSP) is an optimization problem with no constraints

and an objective function that is a sum of squares of terms of the form aTi x− bi, where

aTi are the rows of M , b = (b1, b2, . . . , bm) ∈ Rm and bi are the components of b. The

aim is for given M ∈ Rm×n(with m ≥ n) and b ∈ Rm to find the vector x ∈ Rn such

that it minimizes

f0(x) = ||Mx− b||22 =
m∑
i=1

(aTi x− bi)2. (2.3)

In (2.3), r = Mx− b is called the residual or error. The least squares method leads to

the normal equation

(MTM)x = MTb. (2.4)

Its analytical solution is

x = (MTM)−1MTb , (2.5)

where M is a full-rank matrix. There are reliable and efficient algorithms for solving

LSPs with high accuracy. This kind of problems can be typically solved in the

complexity time of order (n2m). Moreover, by exploiting some special structures such

as sparsity of the coefficient matrix M , a large LSP can be solved much faster [12].

There are two classes of LSPs: linear least squares problems (LLSPs) and non-linear

least squares problems (NLSPs). The core calculations in both classes of problems

are similar. Identifying an optimization problem as an LLSP is straightforward by
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verifying that the objective function is a quadratic function and testing whether the

associated quadratic form is semidefinite [12]. Mathematically speaking, an LLSP is

the problem of approximately solving an overdetermined system of linear equations

and is convex. A system is overdetermined if there are more equations than unknowns.

The NLSP is an LSP which is used to fit a set of m observations with a model that is

non-linear in n unknown parameters (m > n). Such problems are usually solved by

iterative methods so that at each iteration the system is approximated by a linear one.

There are various standard techniques to improve the applicability of LSPs.

• Weighted least squares (WLS): in this technique, f0(x) =
∑m

i=1wi(a
T
i x− bi)2

is minimized. The positive weights w1, . . . , wm are chosen to reflect differing

levels of concern about the sizes of the terms (aTi x− bi).

• Regularization: in this technique, a positive multiple of the sum of squares of

the variables is added to the cost function (2.3) so that

f0(x) =
m∑
i=1

(aTi x− bi)2 + ρ
n∑
i=1

x2i ,

and the parameter ρ ≥ 0 is chosen to ensure the desired trade-off between

minimizing the original objective function (2.3) and keeping
∑n

i=1 x
2
i reasonably

small [12]. The LSPs introduced here will be studied in later chapters with more

technical detail.

• Least Absolute Shrinkage and Selection Operator (LASSO): this technique

results in a solution with few nonzero entries in x.

min
1

2
||Mx− b||22 + ζ||x||1 ,

where ζ is a slack variable and ||x||1 =
∑n

i=1 |xi|. A slack variable is added to

an inequality constraint in order to convert it to an equality one. Moreover, it is a

trade off between fitting the data perfectly and employing a sparse solution. This

technique is also known as sparse problems.
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2.3.3 Convex Optimization Problems

Convex optimization can be defined as a combination of convex analysis and numerical

computation. Convex optimization provides additional tools that extend our ability to

solve problems such as LSPs and LPPs. It has many applications in signal processing,

networks, control, computer science, operation research, statistics, economics, data

analysis, modeling and information theory. It has also found a wide range of

applications in global optimization and combinatorial optimization where it is used to

find bounds on the optimal value as well as approximate solutions. A fundamental

property of convex optimization problems is that any locally optimal point is also

globally optimal [12]. Elementary definitions used in convex optimization problems

are as follows:

• The set Ω ⊆ Rn is convex if, for all x,y ∈ Ω and for λ ∈ [0, 1], the vector

λx + (1− λ)y ∈ Ω.

• The intersection of any number of convex sets is convex.

• The intersection of all the convex subsets of Rn containing C (C ⊆ Rn) is called

the convex hull of C.

• If (x̄1, x̄2, . . . , x̄k) ∈ Rn, then, a convex combination of a set of vectors is a

vector of the form

k∑
i=1

λix̄
i , where

k∑
i=1

λi = 1 , λi ≥ 0.

• Convex combinations of a set of vectors belonging to a convex set of C also

belong to C.

• Let f : Ω ⊆ Rn → R be a function. Then, f is said to be a convex function if for

0 ≤ λ ≤ 1, f [λx̄ + (1− λ)ȳ] ≤ λf(x̄) + (1− λ)f(ȳ).

In a convex optimization problem, the objective and inequality constraint functions

in (2.1) are convex so that functions f0, . . . , fm satisfy the inequality

fi(αx + βy) ≤ αfi(x) + βfi(y), (2.6)
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for all x,y ∈ Rn and α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0, and the equality

constraint functions should be affine. Two special classes of the general convex

optimization problem are an LPP (2.2) and LLSP (2.3). Although there are reliable

and efficient methods for solving convex optimization problems, there are no closed

form solutions. This is in contrast to an LLSP whose solution is given analytically

by (2.5) assuming M is a full-rank matrix.

2.3.4 Non-linear Optimization Problems

If the objective or any of the constraint functions are non-linear and not known to be

convex then, the problem (2.1) is a general non-linear optimization problem. It may

have many local minima that might not be the global ones. There are no efficient

methods for solving such problems in general. A large number of optimization

methods have been developed to solve such problems. Traditional methods to solve

them include both local and global optimization methods. Furthermore, the feasible

regions of non-linear constraints are difficult to find. Therefore non-linear optimization

problems are difficult to solve [77].

Some local optimization methods require differentiability of the objective and

constraint functions to solve the problem. These methods need an initial guess for

the optimization variables x ∈ Rn. Their choice is critical since it can greatly affect

the objective value of the local solution. The local optimization algorithms are also

sensitive to various algorithm parameter values that provide information about how far

from a global solution the local solution is.

Finding a good initial guess, selecting an appropriate algorithm and adjusting

algorithm parameters are all issues for local optimization methods therefore solving

a non-convex problem by a local optimization method is not as straightforward as

solving an LSP, an LPP or a convex optimization problem. Formulating a practical

problem as a non-linear optimization problem is relatively straightforward because the

differentiability of the objective and constraint functions is the only requirement for

most of local optimization methods. Many of these problems are modeled as non-

convex and have multiple optima. While local optima can be found using traditional

local optimization methods, for instance, the gradient descent method, the conjugate
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gradient method or the Newton’s search, attempts to use these methods for global

optimization typically fail. To address this issue, global optimization methods have

been developed that are able to escape local optima. However, these methods generally

do not perform well on a large scale problem.

Generally, the findings of this investigation demonstrate that

• a problem can be formulated easily as a non-convex problem but attempts to

solve it through local optimization methods are challenging tasks;

• the problem formulation in convex optimization is a challenging task but there

exist many reliable and polynomial time algorithms to globally solve it [12].

Therefore these facts motivate us to pursue further studies in convex optimization.

It can also be employed in problems that are not convex to provide suboptimal

solutions [12]. Furthermore, many interesting and important problems in biomedical

signal processing can be posed as convex optimization problems.

2.4 Biomedical Signal Processing

The use of optimization methods is ubiquitous in signal processing that is an area of

applied mathematics dealing with signals in either discrete or continuous form. In

signal processing, an algorithm is used to extract some desired signal or information

from a received noisy signal. Signal processing design and analysis frequently begin

with the statement of a criterion of optimality followed by an optimization procedure.

The application of optimization methods in signal processing has expanded greatly

in recent years and therefore we will not try to cover the field completely but only

focus on biomedical signal processing. Biomedical signals are used by physicians

for monitoring health of patients. They originate from various biological systems

that include the digestive, circulatory, respiratory, musculoskeletal and nervous

systems [62]. These signals are recorded for various physical measurements e.g.

temperature, pressure or electric potential [19].

Bioelectrical signals are specific types of biomedical signals and are obtained by

electrodes that record the variation in electrical potential generated by a physiological
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system. Electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram

(ECG), electrogastrogram (EGG) and electromyogram (EMG) are a few bioelectric

signals which are used regularly by medical practitioners. EEG is used to monitor

neural activity, EOG to record eye movement, ECG to assess heart functioning, EGG

to measure stomach wall nerve activity and EMG to measure muscular activity.

A goal of biomedical signal processing is to develop the procedure for automatic

detection and classification of pathological events taking the advantage of digital signal

processing and modern powerful digital computers.

Electrical signals created by brain depict not only the brain function but also the status

of whole body. This belief provides the motivation to apply convex optimization as

signal processing methods to EEG signals measured from the brain of a human subject.

In the following section, background information of EEG is provided in detail.

2.5 Electroencephalogram (EEG)

The human brain controls all functions of the body such as thinking, learning,

remembering, speaking and decision making. It consists of about 100 billion nerve

cells called neurons. Neurons create very small electrical signals that form patterns

called brain waves. They transfer information to and from the brain and transmit

electrical potentials to other cells along axons. Then, the human brain structure and

functions are indeed complex.

EEG is an electrical activity of the human brain that can be recorded graphically and

is used as an important tool for studying neural activities. The electrical activity is

generated by firing of neurones of the human brain due to internal or external stimuli to

control different bodily actions. EEG is widely used by physicians to study and analyze

neural activities recorded with electrodes placed on scalp, directly on the cortex. It

enables clinician and physicians to diagnose neurological disorders such as epilepsy,

sleep disorder, brain tumor, head injury, and so on.

In 1924, Hans Berger, a German neurologist, first introduced an EEG machine to the

world. It employed to amplify the electrical activity measured on human scalp [20].
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He announced that the brain currents changed according to the functional status of the

brain for instance in sleep, epilepsy, lack of oxygen and anesthesia.

To record brain activities a number of electrodes are placed to different locations on the

surface of the scalp such that per pair of electrodes is connected to an amplifier and an

EEG machine. So, the electrodes detect brain waves and the EEG machine amplifies

the signals and records them in a wave pattern on a graph paper or a computer screen.

A channel is made by a pair of electrodes. It creates a signal during an EEG recording.

Brain patterns that form wave shapes are usually sinusoidal. The amplitude of an EEG

signal normally range from 1 to 100µV in a normal adult [78]. There are five brain

waves that are identified by the frequency and the amplitude.

• Delta wave is within the range of 0.5 − 4 Hz. It has a large amplitude recorded

by scalp electrodes and emerges during deep sleep. This wave indicates serious

brain disorders or cerebral damage [74, 78].

• Theta wave is within the range of 4 − 7.5 Hz. It happens during somnolence.

Although it occurs during sleep, it is recorded for some purposes from

individuals who are awake. For instance, there are cases when theta wave

appears during emotional responses to frustrating situations [74, 78].

• Alpha wave is those frequencies within the range of 8− 13 Hz. It appears in the

posterior half of the head when an adult is awake but relaxed with eyes closed.

It is usually arisen from stress and tension [74, 78].

• Beta wave lies within 14 − 26 HZ and tends to have a low amplitude. It is

generated when the brain is engaged in mental activities such as remembering or

retrieving memories. Therefore it appears when the cortex is aroused to a higher

state of alertness [74, 78].

• Gamma wave or fast beta wave consists the frequencies above 30 Hz (mainly up

to 45 Hz) and has a very low amplitude. Despite the fact that it happens rarely,

its detection can be used for testimony of certain brain diseases. It is associated

with the state of active information processing of the cortex [35, 74, 78].

Artifacts are electrical signals in an EEG that are not originated from the cerebral

origin. They arise from many sources such as the heart, eye movement, and muscles
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and may affect the outcome of the EEG recordings. The problem of distinguishing

between the genuine EEG activity and artifacts are arisen during the analysis of EEGs.

Their identification and elimination from EEG signals are difficult tasks and need EEG

experts [35, 78].

The literature has emphasized the significance of the EEG signal analysis in order to

diagnose neurological disorders such as epilepsy, sleep disorder, comma, brain tumor

and head injury. In this thesis, we will not try to cover the field completely but only

focus on sleep disorder and epilepsy as applications of EEG signals. More details are

provided in the following subsections.

2.5.1 K-complex Detection for Sleep Staging of EEG

Currently, there is an alarming number of people in the world suffering from sleep

disorders. The diagnosis of such disorders is performed in a test called polysomnogram

(PSG). PSG studies a series of biomedical signals such as brain activity (EEG), muscle

movements (EMG), heart beat (ECG) and eye movement (EOG) for diagnosis of

sleep disorders. The analysis of an EEG, in particular, the sleep stages identification

(scoring), is an active research area in the biomedical signal processing [100, 101].

The usual method for sleep stage identification is visual (manual) inspection of an

EEG signal by a medical doctor. The sleep stage scoring is based on the standardized

scoring Rechtschafen and Kales (R&K) rules [45]. One of the major deficiencies of

these rules is arbitrarily defined thresholds for sleep stage identification. This can lead

to unreliable results and poor agreement between scorers.

Recently, the American Academy of Sleep Medicine (AASM) [41] developed an

updated set of rules to identify sleep stages. There are two main purposes for these

changes. First of all, the new rules are simpler and easier to apply; and therefore a

higher level of agreement between different manual scorers can be achieved. Second,

the updated rules are more straightforward to automate.

Human (adult) sleep consists of two main parts: Rapid Eye Movement (REM) sleep

and Non-REM (NREM) sleep. Typically, patients begin the sleep cycle with a period
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of NREM sleep followed by a very short period of REM sleep. The AASM divides

NREM into three further stages [41].

• NREM stage 1 is the transition from waking to sleep.

• NREM stage 2 is signaled by K-complexes in the EEG.

• NREM stage 3 is called Slow-Wave-Sleep (SWS), deep sleep or delta sleep.

After NREM stage 3, the patient returns to NREM stage 2 and then, enters REM stage.

The AASM rules [41] defined the K-complex as a “well-delineated negative sharp

wave immediately followed by a positive component standing out from the background

EEG, with total duration ≥ 0.5 second, usually maximal in amplitude when recorded

using frontal derivations”. One of the main characteristics of a K-complex is a sudden

increase in the signal amplitude. Reliable detection of K-complexes in an EEG signal

is essential for sleep stage scoring since they constitute one of the main markers of the

transition from NREM stage 1 to NREM stage 2. Unfortunately, their visual (manual)

identification is very time consuming and rather subjective (there are typically 1 to 3

K-complexes per minute in NREM stage 2 of young adults [52]).

K-complexes consist of an initial small negative, somewhat sharp wave, followed by

a large positive wave. This definition has been established by medical practitioners

in [45]. Informally, this means that the amplitude increases abruptly and then, returns

back to the original value. Since EEG signals are non-linear, non-stationary and not

repeatable, K-complexes have a wide variety of shapes and are difficult to distinguish

from other EEG waves. There have been several attempts to address this issue.

In 1970, Bremer et al. [13] worked on the detection of K-complexes that were related

to the study of arousal during sleep. They were the first to propose an electronic system

using filters, pulsers, threshold detectors, and both analog and digital logic elements.

They obtained a classification accuracy of 68% for considering sleep stage 2.

Jansen [42] tried to perform a direct automatic recognition of K-complexes by using

artificial neural networks (ANNs) where the inputs were the samples of the band-

filtered EEG. However, he achieved poor performance with the detection rate ranging

from 42% to 67%.



24

Da Rosa et al. [73] proposed a detector based on a K-complex model. A true

positive (TP) second was counted when the method output indicated a K-complex

simultaneously with a scored K-complex. The true positive rate (TPR) was the number

of detected K-complex seconds divided by the number of scored K-complex seconds

and the false positive rate (FPR) was the number of false positive findings divided by

the number of all findings by the method. If the method output indicates a K-complex

and there is no K-complex scoring, a false positive (FP) finding is counted. The results

of true positive and false positive rates were respectively 89% and 49%.

Another attempt to identify K-complexes was made by Bankman et al. in 1992 [6].

They extracted 14 features of a signal from the EEG using a visual analysis and then,

fed them into a neural network. They reported 90% true positive and 8% false positive

rates.

Henry et al. [40] studied K-complexes in 1994. They showed that the performance of

wavelet was superior as far as the low missed detection and the low false alarm were

concerned. However, in the K-complex detection in sleep EEG signals, their methods

were unable to distinguish events when the patterns were close.

Tong and Ishii [87] reported a K-complex detection algorithm using discrete wavelet

transform. They obtained 87% true positive and 10% false positive rates. They

assumed that the K-complex is always overridden by a spindle whereas Jansen and

Desai [43] stated that there was no fixed relationship between these two events. Sleep

spindles are high frequency (12− 14 Hz), relatively low amplitude bursts of sinus like

waves with minimum duration of 500 msec that are present in sleep stage 2.

While many studies were carried out to automate sleep staging, no standard algorithm

has been accepted by the medical community. At the same time the visual (manual)

scoring of K-complex is an expensive and time consuming procedure and the reported

agreement between different human expert scorers is poor. According to the literature,

medical doctors still report that the accuracy of identification is not satisfactory as

the process remains subjective [2, 41]. Therefore an accurate method for automatic

detection of K-complexes would be advantageous. This automation would reduce the

number of manual tasks significantly, thereby making the process more reliable and
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cost efficient [101].

A few further algorithms dealing with the detection of K-complexes have been

recently proposed and reported. A non-smooth optimization approach was applied for

automatic detection of K-complexes by Moloney et al. [57] in 2011. A non-smooth

optimization problem refers to the more general problem of minimizing functions

that are typically not differentiable at their minimizers. Their method is based on

minimizing the deviation between the actual EEG curve and the wave shapes (model

patterns). It was used to extract the wave features and thus, enables one to significantly

reduce the dimension of the problem. The classification algorithms implemented in

WEKA [95] were used over the obtained set of features. WEKA is a collection of

machine learning algorithms for data mining tasks [95]. The EEG curve was modeled

as the sum of two sinusoidal curves. The amplitude of each curve was approximated

as a piece-wise linear function. The frequency and the phase shift were modeled as

additional variables and were not constants. Although the numerical experiments of

their work showed the robustness of this procedure, the proposed algorithm was time

consuming [57].

2.5.2 Epileptic Seizure Detection in EEG Signals

Epilepsy is a neurological disorder disease that manifests in about one percentage of

the world’s population [75]. It is characterized by a recurrent seizure that happens

when the neurons generate abnormal electrical discharges from brain cells. A seizure

is experienced in about 5% of individuals in their life [59] and approximately 30% of

patients have disobedient seizure that can lead to the neural tissues disorders [103].

The seizure can be treated by medication in 70% of patients [29].

The seizure can cause physical changes in behavior and movements, loss of

consciousness, muscle spasms, strange emotions and even death. Therefore detection

of epilepsy is still a challenging issue for medical diagnosis of epilepsy. An EEG

is a well known tool for identification of epileptic seizure since it measures the

voltage fluctuations of the brain [27, 86] and provides important information about

epileptic activities. Visual detection of epileptic seizure in an EEG signal is being time

consuming and causing fatigue and requires highly trained practitioners. Different
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steps like preprocessing, features extraction and classification can be involved in an

epileptic seizure detection technique.

There have been various attempts for automatic detection of epilepsy based on

Wavelet Transforms [1, 50, 98], Artificial Neural Networks [16, 80] and Genetic

Programmings [8].

Panda et al., 2010 [68] applied discrete wavelet transform and a classifier called

support vector machine (SVM) to compute various features like energy, entropy and

standard deviation. They obtained the classification accuracy of 91.2%.

The classification accuracy of 96.7% was obtained through the mixed-band wavelet

chaos neural network method by Dastidar et al., 2007 [31]. They used wavelet

transformation to break up the EEG signals into different range of frequencies and

three features, namely standard deviation, correlation dimension and the largest

Lyapunov exponent, were used and different methods employed for the classification.

To decompose the normal and epileptic EEG epochs to various frequency bands

and to find optimal features subsets which maximize the classification performance,

fourth level wavelet packet decomposition method was proposed by Ocak [65]. The

classification accuracy of this method was 98%.

Polat and Gne (2007) [69] applied two stage processes. First one was Fast Fourier

Transform (FFT) as a feature extractor and second one was the decision making

classifier. They got a classification accuracy of 98.72%.

Bhardwaj et al., 2015 [8] applied an automated detection of epileptic seizures in

EEG signals using Empirical Mode Decomposition (EMD) for feature extraction

and proposed a Constructive Genetic Programming (CGP) approach for classifying

the EEG signals. The classification accuracies of 100% and 99.41% (an average

classification accuracy) were obtained from one Genetic Programming (GP) run and

100 GP runs, respectively, through a CGP for 10-fold cross validation scheme.

A new method for classification of ictal and seizure-free EEG signals was presented

by Pachori and Patidar in 2014 [67]. The proposed method was based on the EMD

and Second-order Difference Plot (SODP) of Intrinsic Mode Functions (IMFs). They
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computed the 95% confidence ellipse area parameters for ictal and seizure-free classes

using SODP of IMFs for various window sizes. The best average classification

accuracy of 97.75% was obtained for IMF1 and IMF2 with window size of 1000. The

maximum classification accuracy was 100%.

To the best of our knowledge, the best method in terms of classification accuracy was

developed by Bajaj et al., 2012 [4]. For the classification of seizure and non-seizure

EEG signals they applied least square SVM (LS-SVM) and they got the classification

accuracies of 98% to 99.5% using radial basis function (RBF) kernel and 99.5% to

100% using Morlet kernel.

Multiple researchers have been using the classification accuracy as the main criterion

characterizing their performance. The evidence from this study shows that this

criterion is based on the proportion of correctly and incorrectly classified segments.

It is worthwhile mentioning that the above techniques used the Bonn University

dataset [3]. High classification accuracies may be acquired owing to the existence of

unbalanced datasets where a disproportionately large amount of segments (instances)

belongs to a certain class although the proposed classifier may not necessarily be good.

As an alternative to classification accuracy, the area under the Receiver Operating

Characteristic (ROC) curve can used to assess the classification accuracy where there

exist unbalanced datasets [102]. The ROC curve is produced by plotting the fraction of

true positive rate (TPR) against the fraction of false positive rate (FPR) as the threshold

for discrimination between two classes is varied [102]. The definitions of TPR and FPR

are provided in Section 3.9 of Chapter 3.

More research should be conducted to detect epileptic seizures by analyzing EEG

signals since it is a challenging task due to inconsistency of signals in patient’s sex,

seizure’s type, patient’s age and so on. It should be noted that providing a good trade

off between a high classification accuracy and a low false positive rate (FPR) is a

difficult problem in classification purposes.

To address these issues, we propose a novel method based on convex optimization

approaches and different classifiers from WEKA [94] for automatic detection of K-

complexes and epileptic seizures in EEG signals. This work is aimed at discovering
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the optimal approximation of an EEG signal under a sinusoidal modeling function

and consistency improving the performance of convex optimization methods in

classification problems compared with the original signal.

2.5.3 Feature Extraction and Classification of EEG Signals

In general, EEG signals are recorded with a number of electrodes ranging from 1 to 256

and with a sampling frequency ranging from 100 Hz to 1000 Hz. Therefore recording

a brain activity results in obtaining a very large set of data involving a large number of

variables.

The analysis of complex data obtained from an EEG signal requires a long

computational time and a large amount of memory. Moreover, a classification

algorithm may overfit the training segments and have a poor classification and

predictive performance. Overfitting happens when a model has too many variables

to the number of observations.

Challenging this issue, one needs to reduce the size of complex data containing

features of original signal whereas it is still describing the properties of signal with

sufficient accuracy. This procedure is called “feature extraction”. It contains the related

information from the data and reduces the amount of resources needed to describe a

signal. The features can be frequency, phase shift, amplitude and so on.

If the extracted features from a signal are not accurate enough to describe the original

signal, the classification algorithms will not recognize those features appropriately. So,

in order to enhance the performance of classification algorithms (classifiers), selecting

and extracting good features are essential. According to the literature, picking out

a good feature extraction (preprocessing) method is more important than selecting a

good classification algorithm (classifiers) [55].

To this end, algorithms that can extract the relevant information from an EEG

signal should be designed as feature extraction methods to improve the performance

of classifiers and to facilitate the consequent implementation of the classifiers.

Although there exist many methods to extract the essential features of an EEG signal,
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identification of the most efficient ones is a difficult task because of a shortage of

comparisons.

The classification process takes place into two stages called feature extraction and

classification. In the first stage, the essential features are extracted that are needed to

describe a signal accurately. In the second one, a classifier determines to which class

the segments of an EEG signal belong based on the extracted features obtained from

previous stage.

There exist two categories of classification called supervised and unsupervised

classifications. In the supervised classification, recordings of an EEG signal are

assigned to the class labels while in the unsupervised one, recordings of an EEG signal

(observations) are not assigned to a known class [78].

In the supervised classification, the information regarding to the class label is given

within the recordings of an EEG signal. Each dataset is partitioned into training

and test sets. A classifier is constructed through the training set. To evaluate the

performance of the classifier, the test set is used. The training set in the supervised

classification contains a set of segments that have class labels [14, 28].

To express the above procedure mathematically, let

Tr = {(y1, c1), (y2, c2), . . . , (yN , cN)} ,

be a given training set that contains y1, y2, . . . , yN and c1, c2, . . . , cN as observations

(EEG recordings) and class labels of the observations respectively. For instance, if

the problem is K-complex detection then, yi are EEG recordings and ci is either K-

complex or non-K-complex for i = 1, 2, . . . , N . Assume that the observations (EEG

recordings) and class labels are presented as real values and numbers respectively

then, yi ∈ Y (real valued observations) and ci ∈ C (real numbers). The goal of the

supervised classification is to determine the transformation between the feature space

Y and the class label space C such that f : Y −→ C. If there exist a finite number of

elements in the class space then, there is a classification task problem.

In the binary classification problem, the classes are divided into two categories called
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non-target and target classes. Therefore these classes are represented asC = {−1,+1}

where −1 represents the non-target class. When a classifier is trained over the training

set it is ready to assign class labels to the features on the test set with unknown class

labels. The aim of this learning procedure is to maximize the accuracy on a test set. In

this research, the supervised procedure is used to classify an EEG signal in presence

of transient events.

In the unsupervised classification, there is no information about the class labels within

the dataset. In this kind of classification the dataset is grouped into classes according to

the measure of inherent capability such as the distance between instances. The training

set has not been labeled therefore the class labels on the test set can be determined by

finding the inherent properties of the dataset [14, 28].

2.6 Summary

In summary, a major relevant literature of optimization methods in the biomedical

signal processing has been reviewed. A background about EEG signals has been

provided. The feature extraction and classification of EEG signals are also discussed.

Two important problems in this field that are K-complexes and seizures detection

have been considered and studied. The literature from classification of an EEG

signal indicates that there are drawbacks and limitations associated with the existing

methods for instance, long computational time, false classification of a severe noise or

a sleep spindle as a K-complex, the existence of unbalanced datasets and the lack of

investigations in performances consistency of corresponding methods for the seizure

detection. Challenging these issues, development of convex optimization models to

extract the essential features of an EEG signal is required in order to

• detect the transient events (K-complexes and seizures) automatically;

• approximate an EEG signal accurately;

• improve the classification accuracy and reduce the dimensionality of the dataset.

The developed models can help to diagnose of sleep disorders and the epileptic seizures

disease in clinics. In Chapter 3, a novel method based on the sequence of linear least
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squares problems and the uniform (Chebyshev) approximations is introduced to extract

the essential features of an EEG signal in presence of K-complexes and seizures.



Chapter 3
Characterizing an EEG Signal
Using Convex Optimization
Modeling

3.1 Introduction

This section discusses the methodology of the research and presents the direction of

the study. The development of feature extraction methods is essential for the analysis

of EEG signals in order to improve the accuracy in classification problems. These

methods enable one to extract the essential features of an EEG signal that are crucial

for diagnosis and evaluation of brain diseases.

The analysis of complex data captured from EEG recordings requires the long

computational time. Therefore the utilization of developed methods significantly

reduces the dimension of the classification problem and avoids the overfitting of a

classier. The main purposes of the research are to

• find the optimal approximation of an EEG signal under a sinusoidal modeling

function that describes the original signal accurately and

• improve the performance of proposed methods in classification problems

compared with the original signal.
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The EEG signal

Feature extraction
through convex

optimization methods

EEG signal classification by specified
classifiers over the obtained set of
features and the original dataset

Classification results

Figure 3.1: Methodology Framework

First, four convex optimization models are developed to extract the key features of

EEG signals. Second, twelve classification algorithms used in [57] are employed over

the obtained set of features and the original dataset to evaluate the performance of

proposed methods with respect to classification accuracy of an EEG signal. Results

for the research will be collected through performing the proposed methods over two

different types of datasets namely EEG K-complexes and epileptic seizures datasets.

The general steps of the proposed methods for classification of an EEG signal in

presence of transient events (K-complexes and seizures) is depicted in Figure 3.1.

3.2 Motivation

To date, a few techniques have been proposed to extract the essential features of EEG

signals dealing with detection of K-complexes recently.

Sukhorukova et al. [58] in 2010 applied non-smooth optimization techniques as feature

extraction methods to identify sleep stages automatically. Their methods is based on

minimizing the deviation between the original and approximated signals. The EEG

curves were modeled as the sum of two sine curves. The signal amplitude was modeled
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as a piecewise linear function. In the classification stage, they applied an ANN over a

set of extracted features obtained in the feature extraction stage. They used Short-Time

Fourier Transform (STFT) to analyze the frequency domain and refine classification

results for specific stages [58].

Recently, Moloney et al. [57] in 2011 applied non-smooth optimization to extract the

essential features of an EEG signal in order to detect K-complexes. Their method is

based on minimizing the sum of absolute deviations between the original EEG signal

and the approximated one. The approximated signal was modeled as the sum of two

sinusoidal curves and the frequency was approximated through solving a non-smooth

optimization problem. The signal amplitude was approximated by a piecewise linear

function. The specific classification algorithms were applied over the original dataset

and a set of extracted features obtained through non-smooth optimization. The reported

numerical results demonstrated that the non-smooth optimization-based preprocessing

approach performed well. However, this approach was time consuming due to the non-

convexity of problem reformulation and the large number of decision variables to be

optimized. It should be noted that a non-convex modulation of a problem can result in

multiple optimal solutions that might not be the global ones.

The main difference between the proposed methods in the aforementioned attempts is

the frequency modulation. In [58], the STFT was applied to analyze the frequency

domain while in [57], the frequency was considered as an additional variable in

optimization problem and was optimized through solving non-smooth optimization

problems.

A K-complex detection method was applied using a hybrid-synergic machine learning

method by Quan Vu et al. [93] in 2012. A 10 seconds EEG segment containing 41

subsegments were studied to detect K-complexes. In the feature extraction stage, they

divided each subsegment into three intervals. They calculated the difference between

the maximal amplitudes along with the positive and negative directions for each

interval. They defined 29 visual features heuristically. Those features were planned to

capture the visual characteristics of K-complex waveforms. In the classification stage,

they developed a Representation Instance-based Classification (RIC) algorithm. The

proposed method could identify the EEG subsegments that are most likely to contain
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a K-complex. However, it did not consider the variability of the observations where

the time variability was an essential consideration for describing the characteristics of

the original dataset. Although the development of the classification algorithm called

RIC was well studied, their feature extraction method requires more consideration. To

enhance the performance of the extracted features to automate K-complex detection,

the authors suggested to select the features from the designed 29 visual features.

In spite of all the aforementioned advances in the feature extraction stage of

classification problems, the proposed methods have following drawbacks to reach the

intended results.

• Non-smooth optimization modelings have the long computation time, due to the

non-convexity reformulation and the large number of decision variables to be

optimized.

• The frequency modulations in the approximated signals described in [57]

and [58] formed the optimization problems that were complex and non-convex.

• The time variability of observations was not considered in [93]. This issue

significantly affects the efficiency of feature extraction method.

Challenging these issues, a convex optimization-based method as a feature extractor

with consideration of the time variability is developed that performs faster and more

efficient than the proposed methods in [57] and [58]. Because of the time variability of

observations there will be different frequency components at different time. In order to

find the range of possible frequencies, different time-frequency testings will be selected

based on the specifications of an EEG signal. It is worth to note that any locally optimal

solution is also globally optimal in convex optimization problems.

3.3 EEG Signal Modeling

Typically, EEG signals are modeled as a sine wave A(t) sin[ω(t) t+ τ(t)], where A(t)

is the signal amplitude, ω(t) is the frequency and τ(t) is the phase shift that does not

affect the shape of the wave. The choice of these three functions is important. Consider
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min
A,ω,τ

N∑
i=1

{yi − A(ti) sin[ω(ti) t+ τ(ti)]}2 , (3.1)

where yi, i = 1, . . . , N are the EEG recordings at time ti, with N the total number

of recordings. For modeling any kind of signal it is reasonable to consider all A(t),

ω(t) and τ(t) as functions of t; however, the corresponding optimization problems may

become non-convex and have many local minima.

EEG signal specifications indicate that it is a time-varying signal. Therefore there

exist different frequency components at different time and the signal’s frequencies

are time-independent. Because of this uncertainty it is difficult to obtain higher

resolution in both time and frequency domains simultaneously and the incident of

EEG abnormalities is represented with sudden changes in brain waves. Then, visually

frequency identification by screening an EEG signal can not be precise.

The optimization problem (3.1) is generally difficult and time consuming to solve.

Although the estimation of the signal amplitude and frequency of an EEG signal is a

fundamental task in feature extraction modelings, finding accurate approximations of

them are really difficult. To address this issue, one might need to model (approximate)

the frequency ω(t). In this case, the optimization problem (3.1) becomes non-convex.

Therefore the explicit optimization of frequencies is very complex problem that also

known as Mandelshtam’s problem [18, 26]. There have been attempts to approximate

the frequency such as the methods presented in [57]. The authors approximated the

frequency through solving a non-smooth optimization problem. The main drawback of

their problem was long computational time since mathematically, such approximation

of frequencies is difficult to model. As a matter of fact, such precision of frequency

modulations is rarely justifiable in this type of application.

Medical doctors (practitioners) have specific rules to identify the range of frequencies

to detect the feature waves of EEG signals. They do not work with the fractional

frequencies. Since our goal is to mimic doctors’ decisions, it is enough to choose

the most appropriate integer frequency values taken from a carefully specified range.

This range is defined by a particular application. Therefore different time-frequency

testings can be selected based on the specifications of the proposed EEG signal. This
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leads to find the range of possible frequencies for the proposed EEG recordings.

An alternative to the non-convex reformulation is to avoid non-convexity from the

beginning by modeling the signal amplitude A(t). Hence, our goal is to find a suitable

equilibrium, where the corresponding approximations are:

• precise enough to describe the signal and produce high accuracy classification;

• simple enough to be solved accurately and inexpensively on a personal computer

used in a medical lab.

3.4 Signal Amplitude Approximation

Capturing extended amplitude changes is a promising approach to detect some

transient events in EEG signals. To approximate the amplitude of an EEG signal one

possibility is through polynomial functions and another possibility is to use continuous

piecewise polynomial ones (also known as splines). The polynomial functions may not

be as flexible as spline ones to detect abrupt changes in amplitude, but they are simpler

than splines.

Splines require continuity of the function and its derivatives up to a certain order

over the complete range while polynomials are used only within an individual interval

and do not preserve smoothness at the boundaries between the intervals. The main

difference between spline and polynomial approximations is that the former is global

while the latter is local in nature. Therefore splines are also polynomials when the

number of subintervals is one [63]. In the next two sections, polynomial and spline

functions are detailed.

3.4.1 Polynomial Function

Polynomials are a class of functions that are commonly used in calculus and numerical

analysis to approximate more complex functions. They are defined by their coefficients

(parameters). There are many ways to construct polynomials. The most common way



38

is through monomial basis.

P (x , t) = x0 +

m2∑
j=1

xjt
j , (3.2)

where m2 is the degree of a polynomial and x = (x0, x1, . . . , xm2) ∈ Rm2+1 are the

polynomial parameters. Polynomials are useful tools for modeling the amplitude due

to the fact that they

• are simple;

• have reasonable flexibility of shapes;

• can be differentiated and integrated easily.

Due to these properties the construction of polynomial approximations are

computationally inexpensive and accurate.

Theorem 3.4.1. Weierstrass Approximation Theorem [44]. Assume that f is a

continuous function on a closed and bounded interval [a, b]. For any given ε > 0,

there is a polynomial P with sufficiently high degree m2 such that

|f(x)− P (x)| < ε . (3.3)

This theorem states that every continuous real-valued function defined on a closed

and bounded interval [a, b] can be uniformly approximated as closely as desired by

a polynomial function however, the degree m2 may be very high. It is not practical

to increase the degree of polynomials since the number of polynomial parameters to

be estimated will be high that can leads to a highly unstable model. There exist a

number of tools to overcome this difficulty. One of them is through polynomial spline

approximations that are introduced in Section 3.4.2.

3.4.2 Spline Function

Polynomials can be pieced together to form spline curves that can approximate

any function to any desired accuracy. Splines are suitable candidates to describe
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abrupt changes in the amplitude therefore it is very natural to use them in amplitude

approximating [100, 101]. They describe a polynomial-like behavior of a signal

naturally. They are a powerful tool for signal amplitude approximation and have

several advantages to other traditional signal processing techniques, including Fourier

analysis. Most traditional signal processing approaches are based on smooth functions

since optimizing smooth functions is easier than non-smooth ones. Splines are

non-smooth functions and therefore they are more suitable to approximate the

amplitude [101].

There are many ways to construct splines. One possibility is through a truncated power

function [63].

S(x ,θ , t) = x0 +

m1∑
j=1

x1jt
j +

n∑
l=2

m1∑
j=1

xlj(t− θl−1)
j
+ , (3.4)

where m1 is the degree of a spline, n is the number of subintervals in a D seconds

duration of an EEG, N is the number of recordings in a time segment t = [t1, tN ]

when the original signal is recorded, x = (x0, x11, . . . , xm1n) ∈ Rm1n+1 are the spline

parameters, θ = (θ1, . . . , θn−1) are the spline knots and

(t− θl−1)+ = max{0, (t− θl−1)} =

 t− θl−1 , if t > θl−1 ,

0 , if t ≤ θl−1 ,
(3.5)

is the truncated power function. Note that in Equation (3.4), any polynomial spline is

a piecewise polynomial that may be even discontinuous at its knots [63].

The spline knots can be free or fixed. If the knots are free then, they are considered

as additional variables in the optimization problem. Thus, x = (x0, x11, . . . , xm1n,θ)

and the corresponding optimization problem becomes more complex and non-convex.

The splines are more desirable if the locations of their knots are optimized.

Challenging this issue, one might need to work with free knots instead of fixed ones. In

this case, the problem becomes non-convex that is complex, computationally expensive

and non-smooth.

An alternative to free knots reformulation of S defined in (3.4) is to approximate
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a signal amplitude as a spline function S with higher dimension fixed knots

(more subintervals n) [100, 101]. There are some strategies for the optimal knots

localization [70, 72] for those who do not like this simplifying [96]. The splines are

detailed in Chapter 4.

3.5 Convex Optimization Models

Feature extraction techniques play an important role in identifying the main

characteristics of a signal (extract information from data), reducing the dimensionality

of data and classification of a signal. In this section, four convex optimization models

as feature extraction methods are developed. The first two models are aimed at

minimizing the sum of the squares of the deviation between the original signal yi and

the approximated one. However, this approach leads to the necessity of solving a

sequence of linear least squares problems that is a subclass of convex optimization

problems. The ultimate goal of the last two ones is to minimize the maximum of

the absolute deviation between the original signal and the approximated wave. This

leads to solve a sequence of uniform approximation problems that are convex and non-

smooth optimization ones.

The signal amplitude is approximated by a polynomial spline S defined in (3.4) whose

knots are fixed (equidistant) and a polynomial P defined in (3.2). Assume that the

frequency ω and the phase shift τ values form a fine grid. In this case, for each

combination of ω and τ values the only function needs to be approximated in (3.1) is

the amplitude A(t). Therefore the brain signal (EEG) is modeled as sinusoidal waves

and its amplitude is approximated as

A(t) =

 S(x ,θ , t) , and

P (x , t) .
(3.6)

These enable one to

• develop an accurate model for the wave shapes,

• evaluate the performance of simple models in compared with complex ones,
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• extract key features of the waves that are crucial for detecting transient events in

an EEG signal.

These features are extracted using the following convex optimization models.

3.5.1 Linear Least Squares Optimization Model 1 (LLSOM1)

The EEG signal is modeled as a sine wave

W1 = A(t) sin(ωt+ τ) , (3.7)

where

A(t) =

 S(x1 ,θ , t) = x0 +
∑m1

j=1 x1jt
j +
∑n

l=2

∑m1

j=1 xlj(t− θl−1)
j
+ ,

P (x1 , t) = x0 +
∑m2

j=1 xjt
j .

(3.8)

Then,

x =

 x1 ∈ Rm1n+1 , if A(t) = S(x1 ,θ , t) ,

x1 ∈ Rm2+1 , if A(t) = P (x1 , t) .
(3.9)

S is the spline function defined in (3.4) whose θ = (θ1, . . . , θn−1) are fixed

(equidistant) and P is the polynomial function defined in (3.2) therefore for each

combination of ω and τ the corresponding optimization problem is

min
x

N∑
i=1

(yi − A(ti) sin(ωti + τ))2. (3.10)

This is a linear least squares problem (LLSP) therefore the solution of the original

optimization problem (3.1) can be reduced to solve a sequence of LLSPs when ω and

τ are constants. We keep the best combination of ω and τ values on a fine grid. This

combination gives the minimal value of the objective function. This means that the

corresponding parameters (frequency and phase shift) are not optimized formally and

a natural question here is whether such kind of approximation is reasonable. To address

this question, we have considered these parameters separately in details as follows.
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• Phase shift is a parameter that does not affect the shape of approximations (only

their locations in time). Therefore even though this parameter is not evaluated

very precisely, its influence on the shape of the wave is minimal.

• Frequency contributes significantly to the shape of the corresponding waves.

Therefore we need to justify why our grid approximation is reasonable. In this

particular application, our goal is to mimic manual rules provided by medical

doctors to identify the range of the frequency. Therefore the value for frequency

is naturally bounded from above and restricted to integer due to human scorers’

perception limitations. Hence, even though we only evaluate frequencies on a

grid (rather than exact computation), this accuracy is reasonable.

Equation (3.10) is rewritten as

min
x

N∑
i=1

(yi − (Mx)i)
2 , or min

x
||Mx− y||22 , (3.11)

where (Mx)i is the i−th component of the vector Mx and yi, i = 1, . . . , N are the

recorded signals at ti, i = 1, . . . , N . If A(ti) = S(x ,θ , ti) , vector x ∈ Rm1n+1

and M ∈ RN×(m1n+1) is a matrix with m1n + 1 columns and N rows of the form

S(θ, ti) sin(ωti + τ). For A(ti) = P (x , ti) , vector x ∈ Rm2+1 and M ∈ RN×(m2+1)

is a matrix with m2 + 1 columns and N rows of the form P (ti) sin(ωti + τ). The

least squares solution can be found by solving the normal equations [9] directly if

M is a full-rank matrix. In this case, matrix MTM is known to be nonsingular

and well conditioned [7] therefore the solution of the normal equations is unique.

There exist various methods for solving the system of normal equations based on the

properties of matrix M for instance, Singular Value Decomposition (SVD) [12] and

QR decomposition [89]. The least squares method leads to the normal equations

(MTM )x = MTy , (3.12)

where y = (y1, . . . , yN)T ∈ RN is a signal segment recorded at N distinct consecutive

time moments and its analytical solution is

x = (MTM)−1MTy . (3.13)
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The singularity study of matrix M is demonstrated in Chapter 4 in order to find the

best method to solve LLSOM1.

3.5.2 Linear Least Squares Optimization Model 2 (LLSOM2)

In this model, we approach the problem differently. We assume that the wave W1

defined in (3.7) is shifted vertically by a spline function when A(t) = S(x1 ,θ , t)

and by a polynomial function when A(t) = P (x1 , t) while in LLSOM1 the wave is

oscillating around “zero”. Therefore

W2 =

 W1 + S(x2 ,θ , ti) if A(ti) = S(x1 ,θ , ti) ,

W1 + P (x2 , ti) if A(ti) = P (x1 , ti) .
(3.14)

S and P are described in (3.8). Then,

x =

 [x1,x2] ∈ R2m1n+2 ,x1,x2 ∈ Rm1n+1 , if A(ti) = S(x1 ,θ , ti) ,

[x1,x2] ∈ R2m2+2 ,x1,x2 ∈ Rm2+1 , if A(ti) = P (x1 , ti) ,
(3.15)

where m1 and m2 are the degrees of S and P respectively. Hence, the corresponding

optimization problem is

min
x

N∑
i=1

(yi −W2)
2 , (3.16)

where yi, i = 1, . . . , N are the signal readings at ti for i = 1, 2, . . . , N and vector

x = [x1; x2] is the spline or the polynomial parameters.

Remark. In our numerical experiments, vertical shift splines S(x2 ,θ , ti) and

amplitudesA(ti) = S(x1 ,θ , ti) have the same degrees and knot locations. In addition,

the amplitudes A(ti) = P (x1 , ti) and vertical shift polynomials P (x2 , ti) have the

same degrees. Based on the particular application, the amplitude and the vertical shift

functions can have different degrees and knot locations. Further, one can apply a spline

as an amplitude and a polynomial as a vertical shift and vice versa.

The dimension of this problem depends on the type of approximation chosen for the

amplitude. If S is selected as the amplitude then, the dimension is 2m1n + 2 (same

degree and knots for the vertical shift and the amplitude) whereas if P is selected,

the dimension is 2m2 + 2 (same degree for the vertical shift and the amplitude). The
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optimization problem (3.16) is reformulated as

min
x

N∑
i=1

(yi − (Bx)i)
2 , or min

x
||Bx− y||22 , (3.17)

where (Bx)i is the i−th component of the vector Bx and yi, i = 1, . . . , N are

the recorded signals at ti, i = 1, . . . , N . If a spline function is approximated as an

amplitude then, vector x = [x1; x2] ∈ R2m1n+2 and B ∈ RN×(2m1n+2) is a matrix

with 2m1n + 2 columns and N rows of the form S(θ, ti) sin(ωti + τ) + S(θ, ti). If

a polynomial function is approximated as an amplitude then, vector x ∈ R2m2+2

and B ∈ RN×(2m2+2) is a matrix with 2m2 + 2 columns and N rows of the form

P (ti) sin(ωti + τ) + P (ti). Optimization problem (3.16) is an LLSP.

The singularity analysis of matrix B from (3.17) is presented in Chapter 4. This

analysis leads to find the best solution method for LLSOM2.

3.5.3 Uniform Optimization Model 1 (UOM1)

The wave is approximated similar to W1 defined in (3.7). In this model, we are

minimizing the maximum of the absolute deviation between the original data yi and

the approximated wave. Therefore the corresponding optimization problem is

min
x

max
i=1,...,N

|yi − A(ti) sin(ωti + τ)| , (3.18)

where yi, i = 1, . . . , N are the signal records at moments ti for i = 1, 2, . . . , N and

A(ti) =

 S(x ,θ , ti) , x ∈ Rm1n+1 ,

P (x , ti) , x ∈ Rm2+1 .
(3.19)

The optimization problem (3.18) has m1n + 1 and m2 + 1 variables with N equality

constraints subject to the approximations of A(ti) defined in (3.19). One can prove the

following proposition.

Proposition 3.5.1. The objective function in UOM1 is a convex function.
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Proof of Proposition 3.5.1. Let fi(x) = yi − A(ti) sin(ωti + τ) for i = 1, . . . , N .

Obviously

|fi(x)| = max{fi(x),−fi(x)} ,

and the maximum of linear functions is a convex function. Therefore the objective

function in UOM1 is a maximum of a finite number of convex functions and hence, it

is convex.

3.5.4 Uniform Optimization Model 2 (UOM2)

Similar to UOM1, UOM2 is based on uniform approximation. In this model the EEG

signal is approximated as W2 in (3.14) therefore the optimization model is

min
x

max
i=1,...,N

|yi −W2| , (3.20)

where yi, i = 1, . . . , N are the signal records and

x =

 [x1,x2] ∈ R2m1n+2 ,x1,x2 ∈ Rm1n+1 , if A(ti) = S(x1 ,θ , ti) ,

[x1,x2] ∈ R2m2+2 ,x1,x2 ∈ Rm2+1 , if A(ti) = P (x1 , ti) .
(3.21)

The dimension of this problem is 2m1n+ 2 and 2m2 + 2 subject to the selection of S

and P respectively as amplitude approximations. The objective functions in (3.20) are

convex similar to those in (3.18). The proof of the convexity of

|fi(x)| = |yi −W2| ,

is similar to Proposition 3.5.1.

3.6 Solution Methods

Although LLSOM1 and LLSOM2 are convex quadratic problems, they are not

necessarily strictly convex as their Hessian matrices may not be positive definite. There

are a variety of methods for solving such problems, but not all methods are equal. Some
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of them are very efficient, but require strict convexity. Others are more robust, but also

less efficient.

Therefore if it is known that the system matrix is non-singular then, the most popular

approach for solving the corresponding problem is based on the direct solving of the

normal equations defined in (3.12). We refer to the direct method of solving the system

of normal equations as the normal equations method. This method is very efficient,

fast and accurate when working with non-singular matrices. If the system matrix

is singular, the system of normal equations (3.12) has infinitely many solutions and

therefore the corresponding optimization problem has more than one solution. There

exist other methods for solving the system of normal equations (3.12) such as QR

decomposition and SVD.

According to the literature [9, 12, 89], an SVD is more robust and reliable than

the normal equations method for rank-deficient or nearly rank-deficient problems.

However, this method is substantially more expensive.

An SVD applies orthogonal transformations to reduce the problem to a diagonal

system. A square matrix U is orthogonal if UTU = I and an m × n matrix

Σ is diagonal if the entries outside the main diagonal are all zero. Singular value

decomposition of an N × (2m1n + 2) matrix B when S is approximated as the

amplitude has form B = UΣV T where U is an N × N orthogonal matrix, V is

an (2m1n+ 2)× (2m1n+ 2) orthogonal matrix and Σ is an N × (2m1n+ 2) diagonal

matrix with

σij =

 0 , for i 6= j ,

σi ≥ 0 , for i = j .
(3.22)

The diagonal entries σi, called singular values ofB, are usually ordered so that

σ1 ≥ σ2 ≥ · · · ≥ σ2m1n+2. (3.23)

Columns ui, i = 1, 2, . . . , N of U and vi, i = 1, 2, . . . , 2m1n + 2 of V are called left

and right singular vectors respectively. The solution corresponds to x = V Σ−1UTy,

where y = [yi]
N
i=1. The preference of the SVD lies in the fact that it always exists

and can be computed stably. The computed SVD will be well conditioned because
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matrices preserve the 2-norm. The flowchart of LLSOM1–2 are presented in Figure 3.2

where LLSOM1 and LLSOM2 are applied as preprocessing approaches to extract the

essential features of an EEG signal.

As a consequence, the normal equations method is much faster than an SVD method

and requires the strict convexity to be very efficient, but it is not very robust when

the system matrix is singular. So, the development of a singularity verification rule

is necessary for choosing a better suited approach for solving the system of normal

equations. In the next chapter, we demonstrate how this issue can be addressed for

LLSOM1–2.

Non-smooth convex problems are a large fraction of convex optimization

programs [34]. There exist options to solve them including: transformation to easily

solved form, approximation by a smooth function, development of a specific solver and

utilization of a subgradient-based method [34]. UOM1 and UOM2 are non-smooth

convex problems.

CVX is a MATLAB-based modeling system for solving convex optimization

problems. It turns into an optimization modeling language, allowing constraints and

objectives to be specified using standard MATLAB expression syntax. The description

of the methods can be found on the CVX website [22].

The optimization problems (3.18) and (3.20) can be solved using the CVX

software [22, 33]. CVX employs its default and professional solvers called

SDPT3 [88, 90] and GUROBI [39] respectively to solve UOM1 and UOM2. The

algorithm implemented in SDPT3 is a primal-dual interior point algorithm that uses

the infeasible path-following algorithms [90] for solving semidefinite quadratic linear

programming problems. For improved efficiency, SDPT3 solves a dual problem.

In addition, UOM1 and UOM2 can be formulated as linear programming problems

(LPPs) and solved through LINPROG syntax in MATLAB or other solvers. The

solutions of LPPs for UOM1–2 are optimal. The exact formulations is provided in

Chapter 4. Their detailed experimental results is described in Chapter 5. UOM1–2 can

be solved using Algorithm 3.1.
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Figure 3.2: LLSOM1–2 Flowchart
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Algorithm 3.1 Feature extraction through UOM1–2
1: Specify the initial and final values for the frequency (ω0 and ωf ) and phase shift

(τ0 and τf )
2: for ω = ω0 : ωf and τ = τ0 : τf do
3: Set UOM1–2 with fixed ω and τ .
4: Solve the problem through CVX and LINPROG.
5: Record the optimal values of the objective function, ω, τ and x.
6: end for

3.7 Coding Optimization Models

Upon establishing the algorithm to extract the essential features of an EEG signal, the

aforementioned optimization models are programmed in MATLAB R2012b and run

on a PC with 3.10 GHz CPU and 8 GB of memory. In addition, the CVX professional

package containing GUROBI solver is used.

3.8 Classification Algorithms

During the feature extraction stage, the essential features of an EEG signal are

extracted through LLSOM1–2 and UOM1–2. In this study, the optimization-based

preprocessing approaches (OPAs) are referred to LLSOM1–2 and UOM1–2 that are

defined in (3.10), (3.16) and (3.18), (3.20) respectively. Classification algorithms

or classifiers identify to which class the extracted features belong. Therefore

the efficiency of an OPA to approximate an EEG signal significantly affects the

classification accuracy of that signal. If the approximated signal is not accurate enough

to describe the original one then, the proposed classifier will have trouble to determine

the classes on such extracted features. As a consequence, the development of an OPA

in the feature extraction stage is much more important than the development of a

classifier in classification problems.

The OPAs reduce the size of classification problem and extract the essential features of

an EEG signal. Key features contain the optimal values of objective function, ω, τ and

amplitude parameters x for each segment. To evaluate the performance of an OPA in

terms of the classification accuracy of an EEG signal, the classifiers are employed. To

obtain the classification accuracy of an EEG signal the classifiers from WEKA [94]

are applied on the original dataset and dataset after an OPA. WEKA is an open source
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data analysis software and its web-site [94] provides all the necessary documentation;

therefore a very short description of the classifiers used in this study is provided. The

following 12 classifiers are evaluated.

• LibSVM – an integrated software for support vector machines (SVM)

classification [94];

• Logistic – a generalized linear model used for binomial regression [94];

• RBF – a classifier that implements a normalized Gaussian radial basis function

network, using the K-means clustering algorithm to provide the basis functions

[94];

• SMO – a sequential minimal optimization algorithm for training a support vector

classifier (a special case of LibSVM) [94];

• Lazy IBK – a K-nearest neighbors classifier (uses normalized Euclidean distance

to find the training instance closest to the given test instance, and predicts the

same class as this training instance) [94];

• KStar – an instance-based classifier [94];

• LWL – a locally weighted learning classifier that uses an instance based

algorithm to assign instance weights [94];

• OneR – a classifier that uses the minimum error attribute for prediction,

discretizing numeric attributes [94];

• J48 and J48graft - a classifier based on C4.5 decision tree [94];

• LMT – a logistic model tree based approach, with logistic regression functions

at the leaves [94].

All these classifiers are used with their default sets of parameters, except Lazy IBK,

which is used with K = 1 and 5. Each of the 12 classifiers is trained on the training

set and tested on the test set then, the accuracy on the test set is reported. First, the

classifiers are used over the original data. The next step is to apply all the above

classifiers over the obtained set of features after an OPA.
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3.9 Evaluation Criteria

Doctor’s decisions rely on diagnosis tests. The characteristics of the diagnosis test can

be measured through statistical measurements. The classification accuracy, sensitivity

and specificity are widely used metrics to describe a diagnosis test. They are utilized

to quantify how reliable a test is. The classification accuracy shows how correct a test

detects and excludes a given condition. The sensitivity indicates how good the test

is at detection of healthy volunteers while specificity evaluates how likely unhealthy

volunteers can be detected correctly. Different statistical measurements help one to

interpret the result.

To assess the performance of the OPAs, different statistical measurements such as

the classification accuracy (ACC), sensitivity, specificity, false positive rate (FPR) and

false negative rate (FNR) are used. They can be derived from a confusion matrix that

is detailed below. Therefore the aforementioned metrics are described as follows.

Table 3.1: Description of a confusion matrix.

Actual class Predicted class
non-target target

non-target a b
target c d

1. ACC = (a + d)/(a + b + c + d) corresponds to the percentage of correctly

classified segments against the total number of tested segments.

2. Sensitivity = a/(a + b) corresponds to the proportion of non-target segments

(samples) that have been predicted correctly. This metric is also referred to the

Recall value.

3. Precision = a/(a+ c) corresponds to the proportion of non-target segments that

are truly classified divided by the total number of segments classified as non-

target ones.

4. Specificity = d/(c+ d) measures the rate of target samples predicted correctly.

5. FPR = b/(a + b) belongs to the rate of non-target samples being categorized as

target samples. This measure is also referred to the type-I error.
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6. FNR = c/(c + d) belongs to the rate of target samples being categorized as

non-target samples. This measure is also referred to the type-II error.

The ACC was used as the criterion to assess the performance of the feature extraction

methods in the most of EEG signal analysis applications. According to the numerical

experiments, this metric is biased in terms of the unbalanced dataset and the

proportions of correctly and incorrectly classified samples. In an unbalanced dataset,

a disproportionately large amount of samples belong to a certain class. Therefore the

area under a receiver operating characteristic (ROC) curve can be used to assess an

OPA where there exists an unbalanced dataset. The ROC curve is produced by plotting

the fraction of sensitivity against the fraction of FPR as the threshold for discrimination

between two classes is varied [102]. Hence, the area under ROC curve is an important

value to evaluate the performance of a classifier regardless of the class distribution.

This value lies between 0 and 1. A classifier has an exact discriminative ability if the

area under the curve equals 1. In this case, the confusion matrix defined in Table 3.1

has zero values for b and c. It has no discriminating ability when the area is 0.5. A

classifier should never have an area less than 0.5 [30]. The area under the ROC curve

helps to find the optimal combination of OPAs and classifiers where there exists an

unbalanced dataset. In summary, the area under the ROC curve is used to test the

quality of a classifier over an unbalanced dataset.

3.10 Evaluating/Testing OPA

In order to evaluate the ability of OPAs to extract the essential features of EEG signals,

two types of datasets as numerical experiments will be conducted. The proposed

EEG signals were recorded for detection of K-complexes and epileptic seizures.

These datasets were suggested by previous researchers in the classification issues for

detection of transient events. They will be discussed in the Sections 3.10.1 and 3.10.2.

3.10.1 EEG K-complex Dataset

The K-complex dataset is not publicy available. A qualified doctor should be involed to

do data scoring of K-complexes therefore the collection of such datasets is expensive.

There are several difficulties in the development of efficient methods for K-complex
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detection. One of them is data availability since the scoring of K-complexes is not

normally kept in PSG analysis records. Another difficulty is that the same segment

of data may be scored differently by different scorers [41]. Data scored at Tenon

Hospital in Paris are used in this study. On these data, it is more efficient to divide 30

second epochs into 3 equal parts [57] and inspect the presence of K-complexes in each

subepoch individually.

Each observation contains a 10 second segment of an EEG recording at a

sampling frequency of 100 Hz. Each data segment consists of a sequence of (ti, yi),

i = 1, 2, . . . , 1000, where yi is the EEG voltage recorded at time ti. A dataset with 39

non-K-complexes and 31 K-complexes (70 observations) is used.

As stated in Section 2.5.1 from Chapter 2, K-complexes are specific EEG

waveforms [15] and consist of an initial small negative, somewhat sharp wave,

followed by a large positive wave. A K-complex in an EEG signal is presented in

Figure 3.3 where the amplitude increases sharply and then, returns to the original value.

So, one of the main characteristics of K-complexes is a sudden increase in the signal

amplitude. They have a wide variety of shapes and are difficult to characterize from

other EEG waves due to the fact that EEG signals are non-linear and non-stationary.

Therefore the shape of K-complexes is not clear in PSG. The usual method for K-

complex detection in order to identify sleep stages is visual (manual) inspection of

an EEG signal by a sleep specialist. However, the visual scoring of whole night

EEG recordings is a time consuming task [57]. Subsequently, an accurate method

for automatic detection of K-complexes is needed.

As a training set a dataset with 30 non-K-complexes and 21 K-complexes (51

observations) is used and a dataset with 9 non-K-complexes and 10 K-complexes (19

observations) is used as a test set. Each of the 12 classifiers defined in Section 3.8

is trained on the training set and tested on the test set then, the accuracy on the test

set is reported. It is worthwhile to mention that the EEG K-complex signal contains

an unbalanced dataset then, the area under the ROC curve is used to test the quality

of classifiers in addition to the ACC. First, the classifiers are used over the original

dataset. The next step is to apply all the 12 classifiers over the obtained set of features

after an OPA.
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Figure 3.3: The growth of the amplitude in the presence of K-complexes.

3.10.2 EEG Epileptic Dataset

The EEG epileptic dataset used for this study is collected from the epileptic center at

the University of Bonn, Germany and studied by Andrzejak et al. [3]. This dataset

is publicly available and employed to validate the proposed methods. It contains five

datasets namely A, B, C, D and E each containing 100 signal channel EEG segments

recorded during 23.6 seconds with a sampling frequency of 173.61 Hz using 12-bit

resolution. Band-pass filter settings were 0.53−40 Hz (12 dB/oct) therefore each signal

has 4097 recordings (a length of 4097 samples).

Segments belong to sets A and B are collected from surface EEG recordings of five

healthy volunteers with eyes open and close respectively. Sets C, D and E were

obtained from the presurgical diagnosis of five different epileptic patients. EEG

recordings of sets C and D were collected during seizure free intervals while set E

includes EEG signals during seizure activity. Recordings of A-B,C-D and E datasets

were defined as normal, interictal and ictal signals respectively.

Although many preprocessing approaches were tested on sets A and E and achieved
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high classification accuracy, the effectiveness of different groups of datasets was not

investigated thoroughly. It is more desirable to investigate the ability of proposed

methods to deal with EEG signals containing different combinations of datasets

(A,B,C,D and E). To address this issue, four different binary classification problems

are made from aforementioned datasets. All experiments described below are aimed at

the detection of epileptic seizure.

• Experiment 1: Classification of sets A, B, C, D (combined) against set E.

The EEG recordings classified into two different classes. Sets A to D belong to

a non-seizure class and set E belongs to a seizure class.

• Experiment 2: Classification of sets A, C, D (combined) against set E.

Sets A, C and D belong to a non-seizure class and set E belongs to a seizure

class. The goal of this experiment is to classify samples of seizure and non-

seizure excluding healthy with eyes close.

• Experiment 3: Classification of set B against set E.

Set B is treated as a non-seizure class while set E as a seizure class.

• Experiment 4: Classification of set A against set E.

Set A belongs to a non-seizure class and set E belongs to a seizure class.

Proper balancing of datasets where there exists the equal number of segments for each

class is necessary to avoid inconsistency in EEG signals and improve the performance

of classification algorithms. Therefore the datasets described in [3] are balanced and

used to validate the OPAs in the identification of epileptic seizures. Table 3.2 describes

the datasets belong to the corresponding experiments concisely.

EEG recordings have five datasets (A, B, C, D and E) each containing 100 segments.

They are divided into two classes called non-seizure and seizure for each experiment.

In order to balance the datasets, 100 segments (observations) are assigned to each class.

These 100 segments are selected as follows.

• Experiment 1: Set E belongs to a seizure class and contains 100 segments

therefore the non-seizure class should have 100 segments such that sets A, B,
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Table 3.2: Description of the datasets belongs to the experiments.

Experiment # Classes Segments Total Channels
Non-
seizure

Seizure Non-
seizure

Seizure

1 (ABCD-E) ABCD E 100 100 200
2 (ACD-E) ACD E 100 100 200
3 (B-E) B E 100 100 200
4 (A-E) A E 100 100 200

100 segments

First 25 segments Second 25 segments Third 25 segments Fourth 25 segments

Set A

Set B

Set C

Set D

Set E

Figure 3.4: Segments selection of Experiment 1 for datasets balancing.

C and D have 25 segments each. Then, the first 25 segments are assigned to

set A, the second 25 segments are selected for set B, the third 25 segments

are selected for set C and finally the fourth 25 segments are assigned to set D.

Figure 3.4 shows how these 25 segments are selected. As it can be seen the last

100 segments are selected for the seizure class containing set E.

• Experiment 2: Similar to Experiment 1, the last 100 segments are selected for the

seizure class (set E). Therefore the non-seizure class should have 100 segments

such that sets A, C and D have 33, 33 and 34 segments respectively. Then, the

first 33 segments are selected for set A, the second 33 segments are assigned to

set C and the remaining 34 segments are selected for set D. Figure 3.5 illustrates

the way these segments are selected.

• Experiment 3: The second and the last 100 segments are selected for the non-

seizure (set B) and the seizure (set E) classes respectively.
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100 segments

First 33 segments Second 33 segments 34 segments

Set A

Set C

Set D

Set E

Figure 3.5: Segments selection of Experiment 2 for datasets balancing.

• Experiment 4: The first and the last 100 segments are selected for the non-seizure

(set A) and the seizure (set E) classes respectively.

Each dataset is partitioned into training and test sets. Ninety percent of the dataset

is selected as a training set and the remaining 10% is for test set. Therefore all

experiments, except the first one, that are introduced in Section 3.10.2 have 180 and 20

segments for training and test sets respectively. Further, Experiment 1 has 178 and 22

segments for training and test sets respectively. So, each of 12 classifiers from WEKA

is trained on the training set and tested on the test set and the classification accuracy

on the test set is reported. The classifiers are employed over the original dataset and

the obtained set of features after OPAs.

3.11 Summary

In this chapter, the development of novel feature extraction methods for classification

of two categories of EEG signals in presence of K-complexes and seizures are

presented. Moreover, the steps in conducting this study have been described.

Generally, the methodology commences with an EEG signal modeling followed by

• the signal amplitude approximation,

• convex optimization models as feature extraction methods,

• solution methods,

• coding optimization models,
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• classification algorithms,

• evaluation criteria and

• evaluating/testing OPA.

The developed approach introduces LLSOM1–2 and UOM1–2 for feature extraction

and 12 classifiers described in Section 3.8 for binary classification of two types of

EEG signals. To validate the developed approach two datasets namely K-complex and

epileptic seizure datasets from different types of EEG signals are used. Further analysis

of LLSOM1–2 and UOM1–2 will be presented in Chapter 4.



Chapter 4
Mathematical Study of Feature
Extraction Methods and Numerical
Implementations

4.1 Introduction

In this chapter, an extensive mathematical analysis of linear least squares problems

(LLSPs) is provided. This analysis leads to the development of singularity verification

rules. These rules are used to choose a better suited method for solving LLSPs. Four

optimization problems frequently appearing in approximation and signal processing

are considered. These problems, namely Model 1, Model 2, Model 3 and Model 4, are

used as feature extraction methods to select the key features of EEG signals. Models 1

and 2 are formulated as LLSPs while Models 3 and 4 are formulated as uniform

approximation problems that are non-smooth convex. In addition, linear programming

reformulations of uniform approximation problems are provided to solve such non-

smooth convex optimization problems and verify the optimal solutions.

The signal approximations are constructed as products of two functions: polynomial

spline (piecewise polynomial) and a prototype (also called basis) function defined

by the application. Common examples of prototype functions are sine and cosine

functions. In Models 1 and 3, the wave oscillates around “zero level” while Models 2

and 4 admit a vertical shift (signal biasing). This shift is modeled as another

polynomial spline.
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The choice of polynomial splines is due to the fact that these functions combine the

simplicity of polynomials and the flexibility, which is achieved by switching from one

polynomial to another. Therefore on the one hand, the corresponding optimization

problems can be solved efficiently and, on the other hand, the approximation

inaccuracy is low. The sum of the corresponding deviation squares is referred to the

approximation inaccuracy.

Model 1 and Model 2 are LLSPs. There are a variety of methods to solve such

problems [10, 32, 53]. If it is known that the system matrix is non-singular, then,

the most popular approach for solving the corresponding LLSP is based on the direct

solving of the normal equations (unique solution for non-singular systems). This

method is very efficient (fast and accurate) when working with non-singular matrices.

If the matrix is singular, one needs to apply more robust methods, for example, QR

decomposition or Singular Value Decomposition (SVD). These methods are much

more computationally expensive.

Necessary and sufficient conditions for non-singularity of Model 1, and sufficient

conditions for non-singularity and singularity of Model 2 are developed. In most

applications, the number of columns of the corresponding system matrix is lower than

the number of rows. Therefore for singularity verification one needs to verify that the

number of linearly independent rows is the same as the number of columns.

Truncated power basis functions are used to define polynomial splines. Another

way to construct basis functions is through B-splines. B-splines have several

computational advantages when running numerical experiments (have smallest

possible support) [63]. However, truncated power functions are occasionally more

convenient when theoretical properties of the models are the objectives [63].

4.2 Polynomial Splines

A polynomial spline is a piecewise polynomial of a specified degree. The points

where the polynomial pieces join each other are called spline knots. Polynomial

splines combine the simplicity of polynomials and an additional flexibility property

that enables them to change abruptly at the points of switching from one polynomial
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to another (spline knots). These attributes are essential therefore on one hand the

corresponding optimization problems are relatively inexpensive to solve and, on the

other hand, the obtained approximations are accurate enough for reflecting the essential

characteristics of the original signal (raw data). Therefore polynomial splines are

commonly used in approximation problems [56, 63, 76]. Similar to Equation (3.4)

described in Chapter 3, polynomial splines are constructed through a truncated power

function [63]:

S(x ,θ , t) = x0 +
m∑
j=1

x1jt
j +

n∑
l=2

m∑
j=1

xlj((t− θl−1)+)j , (4.1)

where m is the spline degree, n is the number of subintervals, N is the number

of recordings in a time segment [t1, tN ] when the original signal is recorded,

x = (x0, x11, . . . , xmn) ∈ Rmn+1 are the spline parameters and θ = (θ1, . . . , θn−1) are

the spline knots such that

t1 ≤ θ1 ≤ θ2 ≤ · · · ≤ tN .

In some cases, the border points θ0 = t1 and θn = tN are also considered as

knots. Furthermore, for simplicity, we refer to segments [θ0, θn] as intervals and to

subsegments [θi−1, θi], i = 1, 2, . . . , n as subintervals. The presentation shown in (4.1)

implies that the polynomial splines are continuous. This is achieved by omitting the

constant terms in the polynomial presentations for all the subintervals starting from the

second one. In general, polynomial splines can be discontinuous at their knots [63].

However, we only consider continuous polynomial splines.

The spline knots can be free or fixed. If the knots are free, then, they are considered as

additional variables in the set of decision variables and thus, x = (x0, x11, . . . , xmn,θ).

In this case, the corresponding optimization problem becomes more complex [11, 63,

64, 83, 84]. In particular, it becomes non-convex. Generally, it is much easier to

solve a higher dimension fixed knots problem (with a considerably larger number of

subintervals) than a free knots one.

In most applications, we have been working with the signal that is recorded at the

same sampling frequency (for example, 100 Hz means 100 recordings per second).
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The knots split the original interval into subintervals and a simple equidistant knots

distribution is used. In this case,

θl−1 = t0 + (tN/n)(l − 1), l = 2, . . . , n . (4.2)

Therefore each subinterval contains the same number of signal recordings. However,

in some applications different number of recordings per subinterval can be used. This

flexibility is incorporated in the singularity conditions developed further in this chapter.

4.3 Linear Least Squares-based Models

Two types of models are considered such that first model corresponds to the case when

the wave is oscillating around “zero level” while the second one enables a vertical

shift (signal biasing) in a form of a polynomial spline. Consider a signal segment

y = (y1, . . . , yN) ∈ RN where yi, i = 1, . . . , N are evaluated at time ti, i = 1, . . . , N.

This signal is approximated by a function f(t) from one of the following two models:

Modeling function 1 : f(t) = S(x, t)g(t) , (4.3)

and

Modeling function 2 : f(t) = S1(x1, t)g(t) + S2(x2, t) , (4.4)

where S(x, t), S1(x1, t) and S2(x2, t) are polynomial splines with fixed knots.

x = (x0, x11, . . . , xmn) ∈ Rmn+1, x1 ∈ Rmn+1 and x2 ∈ Rmn+1 where m is the

spline degree and n is the number of subintervals. Vectors of x, x1 and x2 are the

corresponding spline parameters and g(t) is a prototype function (for example, sine,

cosine). Both the spline and prototype functions can be defined in the whole segment

of [t1, tN ]. However, we are only considering discrete time moments ti, i = 1, 2, . . . , N

when the signal was recorded. Therefore a prototype function defined only in the time

moments ti can be used. To summarize, the function product S(x, t)g(t) has to be

defined only at the discrete time moments ti.

In most cases, the choice of the prototype functions is application driven (specified

by application experts, for example, engineers). The properties of S in (4.3) are

described in (4.1). The structures of S1 and S2 in (4.4) are similar to S. In addition,
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we refer to S(x, t) and S1(x1, t) as “main splines” (since they form the shape of the

corresponding approximations); and to S2(x2, t) as “shift spline” (signal biasing). Note

that in Model 1, the corresponding shift spline is zero.

These two approximation models can be formulated as linear least squares problems:

Model 1 : min
x

N∑
i=1

(yi − S(x, ti)g(ti))
2 , (4.5)

and

Model 2 : min
x1,x2

N∑
i=1

(yi − S1(x1, ti)g(ti)− S2(x2, ti))
2 . (4.6)

In the following two sections these models are studied in depth.

4.3.1 Model 1

Assume that the spline degree is m, the number of subintervals is n and the

corresponding knots are

t0 = θ0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn−1 ≤ θn = tN . (4.7)

Model 1 is an LLSP since it can be rewritten as follows:

min
x
‖Mx− y‖22 , (4.8)

where y = (y1, . . . , yN)T ∈ RN , yi, i = 1, . . . , N are the recorded signal values at

ti, i = 1, . . . , N and x ∈ Rmn+1. Matrix M ∈ RN×(mn+1) has N rows of the form

S(τ , ti)g(ti) and mn+ 1 columns where m is the degree of spline and n is the number

of subintervals. It can be expressed asM = DV where V = [V1 V2 · · ·Vn],

V1 =


1 t1 . . . tm1

1 t2 . . . tm2
...

... . . . ...

1 tN . . . tmN

 ∈ RN×(m+1) , (4.9)
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Vj =


β1,j−1 . . . βm1,j−1

β2,j−1 . . . βm2,j−1

... . . . ...

βN,j−1 . . . βmN,j−1

 ∈ RN×m , for j = 2, . . . , n , (4.10)

and

D =


g(t1) 0 . . . 0

0 g(t2) . . . 0
...

... . . . ...

0 0 . . . g(tN)

 ∈ RN×N . (4.11)

In the aforementioned matrices βi,j−1 = max{0, ti − θj−1} are the truncated power

functions, j = 2, . . . , n, i = 1, . . . , N and g(ti) for i = 1, . . . , N are the prototype

functions. Note that matrix M is a lower block triangular matrix since βi,j−1 = 0

when ti ≤ θj−1.

An LLSP’s solution can be found by solving the normal equations directly if

M ∈ RN×(mn+1) is a full-rank matrix. In this case, the least squares solution is

unique. In the rest of this chapter, the direct method for solving the system of normal

equations is referred to the normal equations method. There are other methods for

solving systems of normal equations such as QR decomposition and SVD [9, 12, 89].

The least squares method leads to the system of normal equations:

(MTM )x = MTy . (4.12)

The normal equations method is much faster than QR decomposition or SVD.

However, it is not very robust when matrix M is singular. Therefore the development

of a singularity verification rule is essential for choosing a better suited approach for

solving the system of normal equations.

4.3.2 Model 2

In this model, we assume that the wave (signal) described in Equation (4.3) is shifted

vertically (signal biasing) by a spline function. Similar to Model 1, the spline degree
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is m, the number of subintervals is n and the corresponding knots are

t0 = θ0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn−1 ≤ θn = tN .

Then, the corresponding optimization problem is an LLSP and can be formulated as

follows:

min
x
‖Bx− y‖22 , (4.13)

where x = [x1,x2] ∈ R2mn+2, x1 and x2 are described in Equation (4.4) and y ∈ RN

is the original signal (see (4.6) for details). Matrix B ∈ RN×(2mn+2) has N rows of

the form S1(τ , ti)g(ti) +S2(τ , ti) and 2mn+ 2 columns. So, the system matrix of the

optimization model (4.6) is

B = [DV V ] = [M V ], (4.14)

where V andD are described in (4.9), (4.10) and (4.11) respectively.

One can rearrange the columns of matrix B in such a way that the updated matrix

contains zero blocks in the top-right corner. This can be achieved by grouping the

columns that correspond to the same subinterval together. Note that the first sub-block

of the updated matrix B̃ contains 2m + 2 columns and all the remaining sub-blocks

contain 2m columns. Then, the updated matrix B̃ can be expressed as

B̃ = [B̃11B̃21 B̃12B̃22 . . . B̃1nB̃2n] , (4.15)

where the first index of B̃ij for i = 1, 2 indicates the main (i = 1) and shift (i = 2)

splines respectively while the second index (j = 1, . . . , n) determines the j−th

subinterval. The first sub-block (B̃11B̃21) contains 2m+ 2 columns and the following

ones (B̃1jB̃2j) for j = 2, . . . , n contain 2m columns. In the rest of this chapter, we

simplify our notation and substitute “matrix B̃” by just “matrixB”.

According to the numerical experiments, matrix B is a rank-deficient matrix. BTB

is singular. As a consequence, the system of normal equations (BTB)x = BTy has

infinitely many solutions. Therefore more robust methods such as QR decomposition

or SVD are required to solve the corresponding optimization problem (4.6) [9, 12, 89].
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Note that QR decomposition and SVD are substantially more expensive than solving

normal equations. Therefore the importance of developing a singularity verification

rule to select a proper approach for solving the corresponding optimization problems

is clear here. In Section 4.4, we demonstrate how this issue can be addressed.

4.4 Singularity Study of Linear Least Squares-based Models

It has been pointed out that matrices of M and B can be expressed as a block lower

triangular matrixA such that

A =



A11 0 · · · 0 0

A21 A22 0 · · · 0
...

... A33 0 0
...

...
... . . . ...

An1 An2 An3 · · · Ann


, (4.16)

where Aj1, j = 1, . . . , n has Nj rows (Nj is the total number of time moments

assigned to the j-th subinterval), m + 1 and 2m + 2 columns for matrices of M and

B respectively, Ajk, j, k = 2, . . . , n, j ≥ k has Nj rows, m and 2m columns for M

andB respectively, and the top-right corner (Ajk , for k > j, j, k = 1, . . . , n) contains

zeros since

max{0, ti − θl−1} = 0, for all ti ≤ θl−1, l = 2, . . . , n.

In some cases, one or more of the time moments can coincide with the corresponding

spline knots. To avoid possible ambiguity we assign the time moments into the

subintervals according to the following subdivision rule:

[θ0, θ1], (θl−1, θl], l = 2, . . . n. (4.17)

Therefore the first subinterval includes both borders while the remaining subintervals

only include the right border.
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Note that all the diagonal blocks Aii, i = 1, . . . , n in (4.16) are rectangular matrices.

The number of columns inA11 is m+ 1 and 2m+ 2 forM andB respectively while

the number of columns in Aii, i = 2, . . . , n is m and 2m for M and B respectively.

The number of rows inAii, i = 1, . . . , n coincided with the number of time moments

assigned to the i−th subinterval (subdivision rule (4.17)).

4.4.1 Model 1

In this section, a necessary and sufficient non-singularity condition is developed for

Model 1 (oscillation around “zero”). If this condition is satisfied, we can guarantee that

the corresponding matrices are non-singular and therefore one can apply the normal

equations method that is well-known to be fast and efficient for solving such problems.

So, the following theorem holds (a necessary and sufficient non-singularity condition,

Model 1).

Theorem 4.4.1. Suppose that the spline degree is m, the number of subintervals is n

and the corresponding spline knots are

θ0 = t1 ≤ θ1 ≤ · · · ≤ θn−1 ≤ θn = tN .

MatrixA is non-singular if and only if the following inequalities satisfy

N1 −K1 ≥ m+ 1 , and Nl −Kl ≥ m, l = 2, . . . , n, (4.18)

where Nl and Kl, l = 1, . . . , n are the total number of recordings in l−th subinterval

described in (4.17) and the number of time moments ti in the l−th subinterval when

g(ti) = 0 , i = 1, . . . , N respectively.

Proof of Theorem 4.4.1. The proof is based on two important facts.

1. For a rectangular matrix changing the order of the rows or multiplying a row by

non-zero constants (elementary row operations) do not change the rank of the

matrix.
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2. The determinant of a square Vandermonde matrix

V =



1 X1 X2
1 . . . Xm−1

1

1 X2 X2
2 . . . Xm−1

2

1 X3 X2
3 . . . Xm−1

3

...
...

...
...

1 Xm X2
m . . . Xm−1

m


, (4.19)

can be expressed as

det(V ) =
∏

1≤i<j≤m

(Xj −Xi) , (4.20)

and therefore it can not be zero if all Xi, i = 1, . . . ,m are distinct.

Note that the rows of the diagonal block A11 of (4.16) are Vandermonde matrix rows

that are multiplied by a constant g(tj), j = 1, . . . , N1, where N1 is the number of time

moments assigned to the first subinterval. Therefore it is possible to extract m + 1

linearly independent rows from the first N1 rows of A if N1 −K1 ≥ m + 1. For the

second subinterval the situation is similar but each row is multiplied by

g(tj)× (tj − θ1), j = N1 + 1, . . . , N1 +N2 . (4.21)

Since for the second subinterval none of the time moments can coincide with θ1 one

can conclude that

(tj − θ1) > 0, j = N1 + 1, . . . , N1 +N2 . (4.22)

Therefore it is possible to extract m linearly independent rows from the block of rows

N1+1, . . . , N1+N2 ofA ifN2−K2 ≥ m. These rows will be also linearly independent

with the m+ 1 rows extracted from the first N1 rows ofA. By continuing the process,

we finally have mn+1 linearly independent rows and therefore matrixA is a full-rank

matrix. Suppose now that the matrixA is full-rank. This means that there are mn+ 1

linearly independent rows. We have to prove that the first diagonal block of matrix

A contains at least m + 1 linearly independent rows and all the other diagonal blocks
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have at least m linearly independent rows. If one of the diagonal blocks contains less

rows than it is required, then, there is at least one block that contains more rows. In

this case, these extra rows will be linearly dependent with the rest of rows from the

same block. This contradiction proves the theorem.

Generally, it is not always easy to estimate Kl, l = 1, . . . , n. In Section 4.5, we give

an example where g(t) is a periodical (sine) function and therefore the corresponding

Kl, l = 1, . . . , n can be estimated through the corresponding frequencies.

4.4.2 Model 2

In this model, each diagonal block Aii, i = 1, . . . , n in (4.16) is a double block. The

rows of the first sub-block (main spline) can be obtained by multiplying the rows of the

second sub-block (shift spline) by the corresponding constants g(tj), j = 1, . . . , N .

Consider A11 and divide it into two parts: any m + 1 rows form the bottom part

and the remaining rows form the top part (row permutations do not affect the rank

of A11). Therefore A11 contains four sub-blocks: Λ11 ∈ R(N1−m−1)×m+1, Λ12 ∈

R(N1−m−1)×(m+1), Λ21 ∈ R(m+1)×(m+1) and Λ22 ∈ R(m+1)×(m+1). Hence,

A11 =

 Λ11 Λ12

Λ21 Λ22

 . (4.23)

Λ22 is a full-rank sub-block in A11 since it is a Vandermonde-type matrix. By

applying equivalent row operations, one can obtain zeros everywhere in sub-

block Λ12 using the last m + 1 rows of A11. Therefore there exists a unique set

of γ1ij, j = 1, . . . , N1 −m− 1, i = 1, . . . ,m+ 1, such that

Λj
12 =

m+1∑
i=1

γ1ijΛ
i
22 , (4.24)

where Λj
12 is the j−th row of Λ12 and Λi

22 is the i−th row of Λ22.

The rows of Λ11 and Λ21 are denoted by Λj
11 and Λi

21 respectively. In this

case, j = 1, . . . , N1 −m− 1 and i = 1, . . . ,m + 1. Then, the rows Λ̃
j

11 for
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j = 1, . . . , N1 −m− 1 of the updated sub-block Λ̃11 (obtained from Λ11) are as

follows:

Λ̃
j

11 = Λj
11 −

m+1∑
i=1

γ1ijΛ
i
21. (4.25)

Note thatA11 is full-rank if and only if

Λ̃11 =


Λ̃

1

11

Λ̃
2

11

...

Λ̃
N1−m−1

11

 , (4.26)

is full-rank. Similar reasoning can be applied to remaining subintervals, taking into

account that

• the dimension of each blockAii, i = 2, . . . , n is Ni× 2m, where Ni is the total

number of time moments in the i−th subinterval and

• the left border point is not included in any of each subinterval.

Hence, the following theorem holds (a sufficient condition for non-singularity,

Model 2).

Theorem 4.4.2. Suppose that the spline degree is m, the number of subintervals is n

and the corresponding spline knots are

t1 = θ0 ≤ θ1 ≤ · · · ≤ θn−1 ≤ θn = tN .

If it is possible to construct the bottom sub-blocks in each matrixAii in such a way that

the corresponding matrices in (4.26) are full-rank, then, matrixB is also full-rank.

Note that if g(t) is a constant, then, the condition of Theorem 4.4.2 can not be satisfied

by choosing appropriate bottom sub-blocks. Moreover, it indicates that matrix B in

Model 2 is rank-deficient since there exists a column that is obtained by multiplication

of another column by the corresponding g(ti), i = 1, . . . , N.
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The main advantage of Theorem 4.4.2 is that one needs to evaluate the ranks of several

lower dimensional matrices. There are also two disadvantages.

1. This condition is a sufficient condition but not necessary.

2. There are many ways to form the “bottom sub-blocks” especially when the size

of the matrices is large.

Therefore we need to develop optimality conditions that are more practical.

Consider l−th subinterval, then, the corresponding time moments are

ti, i = N1 +N2 + . . . Nl−1 + 1, . . . , N1 +N2 · · ·+Nl , (4.27)

where N1, N2 and Nl are the number of signal recordings assigned to the first,

second and l−th subintervals. Some of the functions values g(ti) within the same

subinterval may coincide. Let Kl, l = 1, . . . , n be the multiplicity coefficients

for each subinterval that are the highest number of time moments with the same

function values. For example, if a subinterval contains five recordings (time moments)

and the corresponding function values are the same at three distinct time moments

(function values at the remaining time moments may or may not coincide) then, the

corresponding multiplicity coefficient is three. Clearly, for the l−th subinterval the

multiplicity coefficient Kl is a natural number and 1 ≤ Kl ≤ Nl.

Theorem 4.4.3. If

N1 −m− 1 ≥ K1 ≥ m+ 1 , (4.28)

and

Nl −m ≥ Kl ≥ m, l = 2, . . . n , (4.29)

where Nl and Kl , l = 1, . . . n are the total number of recordings in l-th subinterval

and the multiplicity coefficients for l-th subinterval respectively. Then, matrix B is

full-rank.

Proof of Theorem 4.4.3. Consider each diagonal block of matrix A separately. For

simplicity assume that for a given subinterval the multiplicity coefficient is K̃, the

number of recordings in each subinterval is Ñ and the corresponding time moments
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are t1, . . . , tÑ . Hence, the structure of each diagonal block of matrixA is

Ad =


g(t1)b1 b1

g(t2)b2 b2
...

...

g(tÑ)bÑ bÑ

 , (4.30)

where bi, i = 1, . . . , Ñ are the rows of the diagonal submatrices ofB that correspond

to the time moments ti, i = 1, . . . , Ñ . It is worth to note that changing the order of

columns does not affect the singularity of matrix Ad. Then, one can rearrange the

columns of matrixAd such that

Ad =


b1 g(t1)b1

b2 g(t2)b2
...

...

bÑ g(tÑ)bÑ

 . (4.31)

Now we rearrange the time moments in such a way that the first K rows correspond to

the time moments with the same function value g(t1) (function value with the largest

number of distinct time moments). Then,

Ãd =



b1 g(t1)b1

b2 g(t1)b2
...

...

bK g(t1)bK

bK+1 g(tk+1)bK+1

...
...

bÑ g(tÑ)bÑ


= [A1A2], (4.32)

whereA1 andA2 are same size matrices. Ãd has the same rank asAd. The following

matrix is obtained by multiplying all the columns of A1 by g(t1) and subtract them



73

from the corresponding columns ofA2.

˜̃Ad =



b1 0

b2 0
...

...

bK 0

bK+1 (g(tK+1)− g(t1))bK+1

...
...

bN (g(tN)− g(t1))bN


. (4.33)

Therefore each diagonal block is a block triangular (lower triangular) matrix with

two diagonal sub-blocks. Each sub-block contains Vandermonde-type rows (or

Vandermonde-type rows times nonzero constants). If (4.28)-(4.29) are satisfied, then,

the number of rows in each sub-block is at least m (or m + 1 if this sub-block

corresponds to the first subinterval). Therefore it is possible to extract 2m (or 2(m+1)

if this sub-block corresponds to the first subinterval) linearly independent rows from

the current sub-block and therefore the corresponding matrix is non-singular.

Theorem 4.4.4. If

N1 −m− 1 < K1 , (4.34)

or

Nl −m < Kl, l = 2, . . . n, (4.35)

where Nl and Kl , l = 1, . . . n are the total number of recordings in l-th subinterval

and the multiplicity coefficients for l-th subinterval respectively. Then, matrix B is

rank-deficient.

Proof of Theorem 4.4.4. Similar to Theorem 4.4.3, for each diagonal block of matrix

A the corresponding two diagonal sub-blocks can be obtained. If (4.34) or (4.35)

holds, then, the second diagonal block of ˜̃Ad contains at least one zero row. Therefore

matrixB is singular.

Thus, the only situation that is not covered at all is when

K1 < m+ 1 or Ki < m, i = 2, . . . , n.
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The following example demonstrates that the gap can not be closed.

Example 4.4.1. Assume that there are two subintervals and θ is the only internal knot.

The degree of the corresponding polynomial pieces is two (quadratic,m = 2). Suppose

that it is possible to extract three linearly independent rows for the first subinterval,

while for the second interval N2 = 4 (four recordings t1, t2, t3 and t4 at the second

subinterval) K2 = 1 (no repeated value for g(ti) at ti, i = 1, . . . , 4). Clearly, we can

not apply Theorem 4.4.3 or Theorem 4.4.4. Assume for simplicity that

(t1 − θ) = 1, (t2 − θ) = 2, (t3 − θ) = 3, (t4 − θ) = 4.

Now consider two situations (m, N2 and K2 are the same). In the first situation, the

matrix is singular while in the second situation, it is full-rank.

1. g(t1) = 0, g(t2) = 1, g(t3) = 2, g(t4) = 3. In this case, the block that

corresponds to the second subinterval is a square matrix

A =


1 1 0 0

2 4 2 4

3 9 6 18

4 16 12 48

 , det(A) = 0.

2. g(t1) = 0, g(t2) = 1, g(t3) = −1, g(t4) = 3. In this case, the block that

corresponds to the second subinterval is a square matrix

A =


1 1 0 0

2 4 2 4

3 9 -3 -9

4 16 12 48

 , det(A) = −432.

Therefore the same combination of Ni, Ki, i = 1, . . . , n and m may lead to both

singular and non-singular matrices, depending on the prototype function.
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4.5 Application to Signal Processing

In this section, we give two examples (one for each model) of how our non-singularity

verification conditions can be applied in practice. We demonstrate that the properties

of g play the core role in singularity verification. In particular, a slight change

in g changes the singularity of the system matrix. This issue has been partially

demonstrated in Example 4.4.1. In this section, we provide another example where

the singularity was verified using Theorems 4.4.3 and 4.4.4. In addition, we propose

an algorithm for signal approximation where the choice of optimization techniques is

based on the corresponding singularity study.

4.5.1 Model 1

An EEG (electroencephalogram, also known as brain wave) signal is modeled as a sine

wave

W1 = S(x, τ , ti) sin(ωti + τ) , (4.36)

where S is the spline function defined in (4.1) whose knots θ = (θ1, . . . , θn−1) are

equidistant. The frequency and phase shift are shown by ω and τ respectively. For

each combination of ω and τ the corresponding optimization problem is

min
x

N∑
i=1

(yi −W1)
2 . (4.37)

This is an LLSP. To achieve the best combination of ω and τ we run a double loop

over the defined intervals of ω and τ . Then, we keep the optimal combination that

is the combination of ω and τ values with the lowest objective function value (see

Section 4.5.3 for details). Optimization problem (4.37) is formulated as

min
x
‖Mx− y‖22 , (4.38)

where y = (y1, y2, . . . , yN) ∈ RN are the recorded signal values at ti ∈ RN ,

x ∈ Rmn+1, and M is a matrix with N rows and mn + 1 columns. If the system

matrix M ∈ RN×(mn+1) is a full-rank matrix, then, this LLSP can be solved through

the system of normal equations.
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In this application, there are natural restrictions on ω and n that are considered in [57].

• Frequency ω is a parameter that is normally assigned by a manual scorer

(medical doctor). Therefore the value for frequency is bounded from above (by

16 Hz) and restricted to integer (due to human scorer’s perception limitations).

• The duration of the events is between 0.5 and 3 seconds (these events are called

K-complexes) [57]. It is not reasonable to consider any subinterval shorter than

1 second. Since the duration of the original signal is 10 seconds, the number of

subintervals n can not exceed 10.

We need to show that there are mn + 1 linearly independent rows to prove that M is

a full-rank matrix (see Theorem 4.4.1). Before we start proving that M is a full-rank

matrix, we have to estimate the number of constants sin(ωti+τ) being zero (estimation

ofKl, l = 1, . . . , n) where τ is a phase shift. It can happen no more than 2ωD+1 times

for a D seconds duration of an EEG. Suppose that the knots θ1, . . . , θn are equidistant.

According to the reported experiments [100], N = 1000 (total number of recordings),

n = 5 (the number of subintervals), m = 4 (degree of spline pieces) and ω did not

exceed 16 Hz and confined to integers due to human scoring limitations. Since the

duration of each signal segment is 10 seconds, the duration of each subinterval is

D/n = 2 seconds .

Nl = 200 is the total number of recordings in l−th subinterval and Kl is the number

of time moments ti in the l−th subinterval when g(ti) = 0. Due to the periodicity of

sine function

Kl ≤ 2ω ×D/n+ 1 = 65 , l = 1, . . . , n ,

and therefore

Nl −Kl = 200− 65 ≥ m = 4, l = 1, . . . , n.

Hence, due to Theorem 4.4.1, matrix M is non-singular. So, the normal equations

method can be applied.
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4.5.2 Model 2

Similar to Model 1, the knots are equidistant, N = 1000, n = 5, m = 4 and ω did not

exceed 16 Hz. An EEG signal is modeled as a sine wave. It is shifted vertically (signal

biasing) by a spline function as

W2 = S1(x1 , τ , ti) sin(ωti + τ) + S2(x2 , τ , ti) . (4.39)

Therefore the corresponding optimization problem is

min
x

N∑
i=1

(yi −W2)
2 , (4.40)

where x = [x1; x2] ∈ R2mn+2 and yi ∈ RN are the recorded signal values at ti for

i = 1, 2, . . . , N . The dimension of this problem is 2mn+2. The optimization problem

(4.40) can be rewritten as

min
x
||Bx− y||22 , (4.41)

whereB ∈ RN×(2mn+2) is described in Section 4.3.2, x ∈ R2mn+2 and y ∈ RN .

Example 4.5.1. A 10 second segment of data (original signal) is to be approximated

(Model 2). The approximation parameters are N = 1000, n = 5, m = 4, t1 = 0,

τ = 0 and ω = 50 Hz. The knots are equidistant, g(t) = sin(t) and the frequency of

recording is 100 Hz (100 recordings per second). Thus, g(ti) = 0, i = 1, . . . , 1000.

By applying Theorem 4.4.4, one can conclude that matrix B is rank-deficient. Now

consider slightly different settings. All the parameters remain the same except τ , which

is now π/2. If i is odd g(ti) = 1. Otherwise g(ti) = −1 (i = 1, . . . , 1000). In this

case, by applying Theorem 4.4.3, one can conclude that the system matrix is full-rank.

Note that similar conclusion can be made for any τ 6= kπ, k ∈ Z.

In many practical situations, the conditions of Theorems 4.4.3-4.4.4 are not satisfied

and therefore the singularity is not verified. However, when m, n, ω and recording

frequencies are increasing, the determinants of the corresponding matrices in normal

equations become very close to zero. This should be also taken into account in the

numerical experiments.
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To analyze the non-singularity of matrixM in Model 1, it is sufficient to have enough

time moments ti where the corresponding values g(ti) 6= 0, while in Model 2, it is not

important which values of g(ti) are taking, but how many of them give the same value.

This adds additional difficulty in the singularity analysis of Model 2.

Remark. Singularity verification rules for Models 1 and 2 involving polynomials as

the amplitude are as follows.

• A necessary and sufficient condition for non-singularity of Model 1 can be

developed by assigning n = 1 to the conditions of Theorem 4.4.1.

• Sufficient conditions for non-singularity and singularity of Model 2 can be

developed by assigning n = 1 to the conditions of Theorems 4.4.2, 4.4.3 and

4.4.4.

The definition of a polynomial is presented in Equation (3.2) of Chapter 3.

4.5.3 Algorithm Implementation

In this section, we present an algorithm for solving (4.5) and (4.6). In most practical

problems, ω and τ are not known in advance and therefore there should be a procedure

for choosing them. One way is to consider them as additional decision variables. This

approach is not very efficient since the corresponding optimization problems become

non-convex and can not be solved efficiently [57]. Therefore we can assign exact

values from defined intervals of ω and τ that form a fine grid (using double loops)

instead of optimizing them directly. Then, we solve the corresponding LLSPs and

keep the best obtained results [100].

Algorithm 4.2 can be used to solve a sequence of LLSPs. In this algorithm, ω0 and ωf

are the initial and final values for ω. Similarly, τ0 and τf are the initial and final values

for τ .

Remark.

1. In most our experiments ω0 = 1 Hz, ωf = 16 Hz, τ0 = 0 and τf = π. These

parameters may vary for different applications.



79

2. Theorem 4.4.1 (Model 1) provides necessary and sufficient non-singularity

conditions, while Theorem 4.4.3 (Model 2) only provides sufficient non-

singularity conditions but not necessary. Therefore it may be possible that the

conditions of Theorem 4.4.3 are not satisfied, nevertheless the corresponding

system matrices are full-rank. However, since we can not confirm non-

singularity, it is safer to use SVD or QR decomposition.

Algorithm 4.2 Signal approximation through LLSPs
1: Specify the initial and final values for the frequency (ω0 and ωf ) and phase shift

(τ0 and τf ).
2: for ω = ω0 : ωf do
3: for τ = τ0 : τf do
4: set an LLSP with fixed ω and τ
5: if the conditions of Theorem 4.4.1 (Model 1) or Theorem 4.4.3 (Model 2)

are satisfied then solve the problem through Normal equations
6: else solve the LLSP through SVD or QR decomposition
7: end if
8: record the optimal values of the objective function, ω, τ and x
9: end for

10: end for

4.6 Uniform Approximation-based Models

Models 3 and 4 are considered such that Model 3 corresponds to the case when the

wave is oscillating around “zero level” while Model 4 enables a vertical shift (signal

biasing) in a form of a polynomial spline. A signal segment y = (y1, . . . , yN) ∈ RN is

considered where yi, i = 1, . . . , N are evaluated at time ti, i = 1, . . . , N. This signal is

approximated by a function f(t) defined in Equations (4.3) and (4.4) to form Models 3

and 4 respectively. These two approximation models are formulated as follows:

Model 3 : min
x

max
i=1,...,N

|yi − S(x, ti)g(ti)| , (4.42)

Model 4 : min
x1,x2

max
i=1,...,N

|(yi − S1(x1, ti)g(ti)− S2(x2, ti)| , (4.43)

where S, S1, S2 and g are described in Section 4.3.

Models 3 and 4 are non-smooth convex optimization problems based on the uniform

(Chebyshev) approximation. There exist many methods to solve non-smooth convex
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problems for instance, subgradient-based method and smoothing approximation

methods [34]. These methods have some drawbacks as follows.

• The subgradient algorithms are very slow for solving practical problems.

• The nature of EEG signals used in this study is non-smooth because of the

sudden changes in the signal amplitude. The smoothing approximations of

signals do not enable one to capture the abrupt changes in the amplitude. So,

the smoothing approximation method may not be a suitable representative of an

EEG signal. Hence, it is not accurate and efficient in this particular application.

Further, a few methods have been proposed and reported in the literature dealing with

the development of optimality conditions for the uniform (Chebyshev) approximation

appearing in Models 3 and 4 recently. Sukhorukova and Ugon in 2016 [85] obtain

optimality conditions for the uniform (Chebyshev) approximation where a modeling

function is approximated by linear combinations of fixed knots splines with weighting

functions. In particular, by assigning a sine function as the weighting function, one

can obtain optimization problems appearing in Model 3 while optimality conditions

for Model 4 remain an open problem.

One possible way to verify that the solutions to Models 3 and 4 are optimal is via

a linear programming reformulation of aforementioned models [81]. Once this is

done they can be solved using the existent techniques such as an interior point method

efficiently and reliably.

4.6.1 Model 3

Suppose that the degree of a spline is m, the number of subintervals is n and the spline

knots are defined in Equation (4.7). It is reformulated as a linear programming problem

(LPP). Let

f(x) = max
ti, i=1,...,N

|yi − S(x, ti)g(ti)| , (4.44)

then, f(x) is a convex function but the maximum of absolute values is not a linear

function. A new variable Z is introduced to make f(x) as a linear function. Assume
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that

Z = max
ti, i=1,...,N

|yi − S(x, ti)g(ti)| , (4.45)

therefore the new model is

min
x
Z subject to Z = max

ti, i=1,...,N
|yi − S(x, ti)g(ti)| , (4.46)

now, there exist a non-linear function in the constraint however, the following

equivalent reformulation takes care of this issue.

min
x
Z subject to

 [S(ti)g(ti)] x ≤ yi + Ze ,

−[S(ti)g(ti)] x ≤ −yi + Ze ,
(4.47)

where e ∈ RN×1 is a matrix of ones or unit matrix. Since Z is a variable, the LPP

defined in (4.47) is rewritten as follows:

 M −e

−M −e

 x

Z

 ≤
 yi

−yi

 , (4.48)

where M and −M have N rows of the form S(ti)g(ti) and −S(ti)g(ti) respectively

with mn + 1 columns, x ∈ Rmn+1 and yi ∈ RN . The solutions to the LPP defined

in (4.47) can be obtained through solving the system of

QX ≤ Y . (4.49)

Q ∈ R2N×(mn+2) is a block matrix containing submatrices of M ∈ RN×(mn+1),

−M ∈ RN×(mn+1) and −e ∈ RN×1. X contains a vector of x and a variable Z.

The yi and −yi are included in vector Y.

An LPP’s solution that is optimal can be obtained by solving the linear system defined

in Equation (4.49).

4.6.2 Model 4

In this model, the wave defined in Equation (4.4) is used to approximate an EEG

signal. Similar to Model 3, the spline degree is m, the number of subinterval is n and
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the corresponding knots are

t0 = θ0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn−1 ≤ θn = tN .

A linear programing formulation of Model 4 is

min
x1,x2

Z subject to

 [S1(ti)g(ti) + S2(ti)] [x1; x2] ≤ yi + Ze ,

−[S1(ti)g(ti) + S2(ti)] [x1; x2] ≤ −yi + Ze ,
(4.50)

where S1 and S2 are polynomial splines with fixed knots, g(t) is a prototype function,

x1,x2 ∈ Rmn+1, e ∈ RN×1 is an unit matrix and

Z = max
ti, i=1,...,N

|yi − S1(x1, ti)g(ti)− S2(x2, ti)| . (4.51)

Let x = [x1,x2] ∈ R2mn+2 then, the LPP defined in (4.50) can be rewritten as follows:

 B −e

−B −e

 x

Z

 ≤
 yi

−yi

 , (4.52)

where matrix B has N rows of the form S1(ti)g(ti) + S2(ti) and 2mn + 2 columns,

x ∈ R2mn+2 and yi ∈ RN . The optimal solution of an LPP defined in (4.50) is found

through solving the following system.

EX ≤ Y . (4.53)

E ∈ R2N×(2mn+3) is a block matrix containing submatrices of B ∈ RN×(2mn+2),

−B ∈ RN×(2mn+2) and −e ∈ RN×1. X contains a vector of x ∈ R2mn+2 and a

variable Z. The yi ∈ RN and −yi are included in vector Y.

Remark. The linear programming reformulation of Models 3 and 4 where a

polynomial P is approximated as an amplitude is similar to ones whose amplitudes

are approximated by splines S.
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4.7 Summary

This chapter presents the singularity study of LLSPs (Model 1 and Model 2) involving

fixed knots polynomial splines and polynomials in order to find better suited methods

to solve Models 1 and 2 and enhance the efficiency of the approximation algorithms.

This issue is especially important when one needs to solve the corresponding problems

repeatedly. This is the case for an approximation algorithm where the experiments are

run by assigning different values to ω and τ rather than optimizing them.

Due to the corresponding optimization problem complexity ω and τ are not optimized.

Most LLSPs can be solved through the system of normal equations if the system matrix

is non-singular otherwise they can be solved through a more robust approach like an

SVD. Further, linear programming reformulations of non-smooth convex optimization

problems (Model 3 and Model 4) are presented and their solutions are optimal.

To illustrate and evaluate the efficiency of four convex optimization models numerical

simulations are run in Chapters 5 and 6. Those models are used as feature extraction

methods to detect transient events in EEG signals.



Chapter 5
Medium Scale Dataset of an EEG
signal for K-complex Detection

5.1 Introduction

In the previous chapters the structure of developed convex optimization models

as optimization-based preprocessing approaches (OPAs) was discussed. In this

chapter, the efficiency and effectiveness of OPAs are illustrated and evaluated through

numerical simulations. Their performance to extract the essential features of an

EEG signal is verified in numerical simulations of an automated detection of K-

complexes problem. The OPAs are used as preprocessing approaches for extracting

the key features of an EEG signal in presence of K-complexes since it is appeared

that the automated detection of such transient event is already difficult enough. This

automation is difficult due to the ambiguity of the scoring rules, rough description

of a K-complex and complexity of dataset. To investigate the improvements in the

classification accuracy that can be achieved through employing OPAs the classification

algorithms (classifiers) are applied on the original dataset (raw dataset) and a dataset

after OPAs. The efficiency of an OPA to extract the key features of an EEG signal

significantly affect the classification accuracy obtained from classifiers. Therefore this

study is confined to the development of feature extraction methods but not classifiers.
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5.2 The Performance of OPAs

Within the feature extraction stage of the classification problem, four convex

optimization models denoted by LLSOM1, LLSOM2, UOM1 and UOM2 are

developed. The first two models are based on a sequence of linear least squares

problems and the last two ones are based on the uniform (Chebyshev) approximation.

The normal equations method is used to solve the first model since M is a full-rank

matrix. LLSOM2 is solved using an SVD method becauseB is a rank-deficient matrix.

The last two models result in convex optimization problems and are solved using the

CVX [22, 33], and linear programming routine in MATLAB.

The signal amplitude is approximated by the polynomial (P ) and spline (S) functions.

They are described by Equations (3.2) and (3.4) in Chapter 3, respectively. Let m1

and m2 be the degrees of a spline and polynomial functions respectively. According

to the technical specification of an EEG K-complex dataset provided in Section 3.10.1

of Chapter 3, m1 = 4 (degree of a spline) and n = 5 (the number of subintervals) are

assigned to the spline function S. The knots are chosen as a sequence of equidistant

knots. The frequency grid is specified as the numbers between ω0 = 0.1 Hz and

ωf = 14.1 Hz with the step size of 1 Hz. Note that the medical practitioners almost

never consider frequencies above 16 Hz. The interval [0, π] with the step size π/4

was assigned to τ . In order to balance the number of parameters in a spline and a

polynomial functions, the degree of P is increased to m2 = m1n where m1 = 4 and

n = 5. So, m2 = 20 is assigned to P . Herein, the results from four models involving

fixed knots splines S are comparable with ones involving polynomials P . Three

additional parameters that characterize the improvement of the objective function after

optimization-based preprocessing are considered as essential features. These three

parameters are the value of objective function, ω and τ .

In LLSOM1 and UOM1 involving fixed knots splines (S), the output dimension is

m1n + 1 (21 where m1 = 4 and n = 5) while the output dimension of ones involving

polynomials P is m2 + 1 (21 where m2 = 20). Therefore N = 1000 features of the

original dataset have been reduced to 24 = m1n+ 4 = m2 + 4 essential features. The

dimension of essential features is illustrated in Figure 5.1.
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Figure 5.1: The dimension of extracted features after OPAs

For the optimization models LLSOM2 and UOM2 involving the spline function S, the

output dimension is 2m1n + 2 (42 where m1 = 4 and n = 5) whereas the output

dimension of ones involving polynomials P is 2m2 + 2 (42 where m2 = 20). By

considering three additional parameters of objective function, ω and τ , N = 1000

features of the original dataset have been reduced to 2m1n + 5 = 2m2 + 5 = 45

essential features. Figure 5.1 depicts the dimension of extracted features.

5.3 The Numerical Results of Feature Extraction Methods

In this section, the results obtained from four convex optimization models called

LLSOM1, LLSOM2, UOM1 and UOM2 that are also referred as OPAs are presented

in Tables 5.1 to 5.4. These tables give the CPU time in seconds, mean frequency

of segments containing K-complexes and non-K-complexes, and mean of objective

function values for each model. The EEG signal and its approximation for each model

are illustrated in Figures 5.2 to 5.9. In the feature extraction stage of classification

problems, OPAs are applied over the EEG recordings in presence of K-complexes and

detect such transient event automatically. The OPAs enable one to

• extract the key features of original signal such that obtained features are

describing the properties of signal accurately,

• reduce the size of dataset,

• enhance the performance of classifiers.

In this part, the numerical behaviors of each OPA are analyzed.



87

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

V
ol

ta
ge

 

 
EEG curve
Approximation curve for LLSOM1

Figure 5.2: Approximation curve after LLSOM1-based preprocessing involving
spline S.

5.3.1 LLOSM1

The first model is a sequence of LLSPs when ω = ω0 : 1 : ωf and τ = τ0 : π/4 : τf

are constants. Nevertheless, ω0 = 0.1 Hz, ωf = 14.1 Hz and τ0 = 0, τf = π are

considered according to the specification of proposed dataset. This model is described

in detail in Section 3.5.1 of Chapter 3.

The spline function (S) of degree m1 = 4 whose θ = (θ1, . . . , θn−1) are fixed

(equidistant) with n = 5 as the number of subintervals and the polynomial function (P )

of degree m2 = 20 with no interval divisions are used to approximate the amplitude.

The normal equations method is utilized to solve this model since the system matrix

M is full-rank. The formal proof is given in Chapter 4.

Figure 5.2 illustrates the approximation curve (red) and the original EEG signal (blue).

The approximation amplitude S is considerably larger where the K-complex is located

(between 2 sec and 3 sec of time segment). Although the approximation does not follow

precisely the trend of original data, it is sufficient to detect the K-complex and therefore

to produce the correct classification results.

Figure 5.3 illustrates the approximation curve in red and the original EEG signal in blue

when the amplitude is approximated as a polynomial function P . The approximation
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amplitude P is almost larger where the K-complex is located between 2 sec and 3 sec

of time segment. The degree of polynomial is increased to make its parameters

comparable with the spline (S) parameters. Since the polynomial function of higher

degree is used, the signal approximation problem becomes unstable and therefore

the system matrix M may be close to singular. Therefore the polynomial function

is not as flexible as the spline one to capture the sudden changes in amplitude.

Table 5.1 demonstrates the numerical results obtained from LLSOM1 (optimization

only, without classification). CPU time corresponds to the total preprocessing time (for

the whole dataset). One can see that the CPU time for LLSOM1 involving polynomial

function is higher than one for LLSOM1 involving spline function. It can be seen that

N = 1000 features are reduced to 24 ones after LLSOM1-based preprocessing.

In addition, Table 5.1 indicates that the mean frequencies are significantly higher for

non-K-complexes. This observation can be used for classification. Mean frequencies

for K-complexes enable one to detect EEG waves containing them. They indicate that

the frequency is an essential feature to detect K-complexes.

Table 5.1: Numerical results after LLSOM1-based preprocessing.

Numerical results LLSOM1
Spline S Polynomial P

Number of recordings (features) 1000 1000
CPU time (in seconds) 21 34

Output dimension a 24 24
MFK b 1.1000 1.1000

MFNK c 1.6385 1.7410
MOF d 2.9189 3.1019

a Number of extracted features.
b Mean Frequency for K-complexes (all instances).
c Mean Frequency for non-K-complexes (all instances).
d Mean of Objective Function values for whole segments.
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Figure 5.3: Approximation curve after LLSOM1-based preprocessing involving
polynomial P .

5.3.2 LLOSM2

Similar to LLSOM1, LLSOM2 is a sequence of LLSPs when ω and τ are constants.

The proposed intervals assigned to ω and τ are same as ones in LLSOM1. In this

model, the wave defined in LLSOM1 is shifted vertically by a spline and a polynomial

functions respectively.

m1 = 4 and m2 = 20 are the degrees of a spline and a polynomial respectively. The

number of subintervals is n = 5. This model is detailed in Section 3.5.2 of Chapter 3.

MatrixB contains 2m2n+2 and 2m2+2 columns when the amplitude is approximated

by a spline and a polynomial respectively. It has N rows as well. Since B is a rank-

deficient matrix (it is discussed in Chapter 4) then, an SVD method is used to solve

this problem.

Figure 5.4 reveals that the approximation curve in the second optimization model

(LLSOM2) is more accurate than LLSOM1 that is shown in Figure 5.2 when they used

the spline function as an amplitude. It can be seen that the corresponding optimization

model can detect the K-complexes where the amplitude of the approximation curve is

considerably larger. In addition, they are located at the time intervals of 2 sec to 3 sec,

3 sec to 4 sec and 5 sec to 6 sec.

Figure 5.5 shows the approximation curve in LLSOM2 with the polynomial function
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Figure 5.4: Approximation curve after LLSOM2-based preprocessing involving
spline S.

is less accurate than with the spline one. As can be seen in Figure 5.5, LLSOM2

involving a polynomial function has trouble in detection of the K-complexes. Although

this approximation does not follow the trend of the EEG curve, we proceed to produce

the classification results.

It should be noted that the first few seconds of approximated signal produces a constant

since the polynomial coefficients are extremely small and their absolute values are

zero. There exists a trade off between a polynomial shape and a degree. In order

to model the amplitude with a structure that is comparable with a spline function,

the degree of a polynomial must be high. Therefore the number of parameters to be

optimized is high. This can lead to highly unstable model. Polynomials of high degree

are ill-famed for oscillations between exact fit values.

Table 5.2 depicts the numerical results for LLSOM2. The CPU times for LLSOM2

with a spline and a polynomial are close to each other. The objective function value

(MOF) obtained from LLSOM2 with a spline is less than with a polynomial. Further,

the value of MOF from LLSOM2 with a spline is less than from LLSOM1 in Table 5.1.

The number of features (N = 1000) is reduced to 45.

Furthermore, Table 5.2 indicates that the mean frequencies are significantly higher for

non-K-complexes. This observation can be used for the classification and shows that
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Figure 5.5: Approximation curve after LLSOM2-based preprocessing involving
polynomial P .

the frequency is one of the key features to be extracted.

Table 5.2: Numerical results after LLSOM2-based preprocessing.

Numerical results LLSOM2
Spline S Polynomial P

Number of recordings (features) 1,000 1,000
CPU time (in seconds) 346 376

Output dimension 42 42
MFK 1.1000 1.3909

MFNK 1.7667 2.2282
MOF 2.5517 3.2419

5.3.3 UOM1

The third model is based on the uniform (Chebyshev) approximation. In UOM1,

the wave is approximated in the same way as LLSOM1. This model minimizes the

maximum of the absolute deviation between the original data yi and the approximated

wave. It is detailed in Section 3.5.3 of Chapter 3. First, A(ti) is approximated by

a spline function (S) of degree m1 = 4 with n = 5 as the number of subintervals.

Second, it is approximated by a polynomial function (P ) of degree m2 = 20 with no

interval divisions. This problem is programmed and solved by the CVX package and
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Figure 5.6: Approximation curve after UOM1-based preprocessing involving spline S.

the LINPROG subroutine in MATLAB. The N = 1000 features are reduced to 24

ones after UOM1-based preprocessing over EEG recordings.

The approximation curve obtained from UOM1 described in (3.18) of Chapter 3 is

shown in Figure 5.6. The spline function is used to approximate the amplitude.

Although this approximation does not follow the trend of the EEG curve, we proceed

to produce the classification results.

In addition, the amplitude is approximated as a polynomial function of degree

m2 = 20. The high degree polynomial is chosen to be comparable with the structure

of a spline. The numerical results indicate that both prime and dual problems

are infeasible and different solvers in CVX fail during their implementation. As

mentioned earlier, the high degree polynomial (m2 = 20) approximated as an

amplitude results in highly unstable model.

To evaluate the performance of a polynomial in approximation of an amplitude the

degree of m2 = 5 is selected. Note that theses results are not comparable with

those ones obtained from UOM1 involving the spline function since the number of

parameters for a spline is m1n + 1 = 21 whereas for a polynomial is m2 + 1 = 6.

Therefore the classifiers are not employed over the set of features obtained from UOM1

containing the polynomial of degree m2 = 5.
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Figure 5.7: Approximation curve after UOM1-based preprocessing involving
polynomial P .

Figure 5.7 illustrates the approximation curve obtained from UOM1 with polynomial

function of degree m2 = 5 as an amplitude. It can be seen that this feature extraction

method fails to detect the K-complexes and this approximation dose not follow the

trend of the EEG signal.

Table 5.3 demonstrates the numerical results for UOM1. Two solvers from CVX

are used. The default one is SDPT3 and the professional one is GUROBI. The

GUROBI has less computation time than LINPROG and SDPT3 for implementation

of UOM1 containing the spline. The mean frequencies are significantly higher for

non-K-complexes. This observation can be used for the classification. The MOF has

less value than other MOFs obtained from LLSOM1 and LLSOM2 when a spline is

approximated as an amplitude. The number of features (N = 1000) is reduced to 24

after UOM1-based preprocessing containing the spline.
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Table 5.3: Numerical results after UOM1-based preprocessing.

Numerical results CVX SDPT3 LINPROG CVX GUROBI
S ? P ? ? S ? P ? ? S ?

Number of recordings 1,000 1,000 1,000 1,000 1,000
CPU time (in seconds) 2,654 1,341 2,300 1,387 1,534

Output dimension 21 6 21 6 21
MFK 1.1000 1.7452 1.1000 1.7452 1.1000

MFNK 2.2538 4.1513 2.2538 4.1513 2.2538
MOF 0.2922 0.3290 0.2922 0.3290 0.2922

? The degree of spline (S) is m1 = 4 and n = 5 is the number of subintervals.
? ? The degree of polynomial (P ) is m2 = 5.

5.3.4 UOM2

Similar to UOM1, UOM2 is based on the uniform approximation. In UOM2, the EEG

signal is approximated similarly to LLSOM2. This model is presented in detail in

Section 3.5.4 of Chapter 3. There is no solution for this model when a polynomial of

degreem2 = 20 is approximated as the amplitude with the same reasoning as described

for UOM1.

Figure 5.8 presents the approximation curve using UOM2 with the spline. In

Figure 5.8, there is a clear trend of increasing the frequency of each segment rather than

Figure 5.6. One can see that the amplitude of the approximation curve is considerably

larger at the time intervals of 2 sec to 3 sec and 3 sec to 4 sec (possible K-complex).

Finally, Figure 5.9 illustrates the approximation curve using UOM2 with the

polynomial of degree m2 = 5. Therefore UOM2 involving the polynomial fails to

detect K-complexes and it does not follow the trend of the EEG curve. In conclusion,

the spline function is more flexible than the polynomial one to detect the abrupt

changes in amplitude.

Table 5.4 reveals the numerical results obtained from UOM2. One can see that the

CPU time for UOM2 through GUROBI is less than LINPROG and SDPT3. Table 5.4

indicates that the mean frequencies are significantly higher for non-K-complexes. This

observation can be used for classification. The number of features is reduced to 45 after
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Figure 5.8: Approximation curve after UOM2-based preprocessing involving spline S.
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Figure 5.9: Approximation curve after UOM2-based preprocessing involving
polynomial P .
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Table 5.4: Numerical results after UOM2-based preprocessing.

Numerical results CVX SDPT3 LINPROG CVX GUROBI
S ? P ? ? S ? P ? ? S ?

Number of recordings 1,000 1,000 1,000 1,000 1000
CPU time (in seconds) 4,270 2,371 4,143 2,305 3,632

Output dimension 42 12 42 12 42
MFK 2.1323 1.9065 2.1323 1.9065 2.1323

MFNK 3.5615 3.9718 3.5615 3.9718 3.5615
MOF 0.2348 0.3023 0.2348 0.3023 0.2348

? The degree of spline (S) is m1 = 4 and n = 5 is the number of subintervals.
? ? The degree of polynomial (P ) is m2 = 5.

UOM2-based preprocessing containing the spline.

Data from Tables 5.1 to 5.4 indicates the remarkable results.

• The first two models are faster than the last two ones.

• UOM1 and UOM2 are not accurate on large scale datasets.

• Splines are more flexible and efficient to detect the abrupt changes in the

amplitude than polynomials for this particular application.

• A comparison of the MOFs obtained from four models (LLSOM1, LLSOM2,

UOM1 and UOM2) reveals that whenever the complexity of a model increases,

its MOF value decreases gradually.

• The last model containing the spline has the least value of MOF.

As shown in Figures 5.2 to 5.9, LLSOM1 and LLSOM2 involving the spline can detect

the K-complexes where the amplitude of the approximation curve is larger. Therefore

splines perform better than polynomials in approximation of an amplitude.

5.4 Classification Results and Discussion

In the feature extraction stage described in Section 5.3, the key features of an EEG

signal are extracted through LLSOM1–2 and UOM1–2. These models significantly

reduce the dimension of the problem. Therefore N = 1000 features of the original



97

signal is reduced to 24 and 45 with 70 segments after applying LLSOM1, UOM1 and

LLSOM2, UOM2 respectively.

There is no solution for the last two models when the high degree polynomial

is approximated as the amplitude. Therefore the results obtained from UOM1–2

involving the spline are considered to produce the classification results.

In order to evaluate the performance of the OPAs in detection of K-complexes, different

statistical measurements for instance, ACC, sensitivity, specificity, FPR, FNR and the

area under ROC curve are required. These metrics are described in Section 3.9 of

Chapter 3. A range of different classifiers used in [57] is applied over the set of

extracted features obtained from OPAs. These classifiers are defined in Section 3.8

of Chapter 3.

Table 5.5: Classification accuracy (ACC) on the test set for (a) the original dataset,
1000 features and (b) the preprocessed dataset (after optimization-based preprocessing
when the spline (m1 = 4, n = 5) is approximated as the amplitude), 24 features for
LLSOM1 and UOM1, 45 features for LLSOM2 and UOM2.

ACC on (a) ACC on (b) Classifiers
LLSOM1 LLSOM2 UOM1 UOM2

47% 47% 47% 47% 47% LibSVM
N/A 74% 68% 53% 63% Logistic
74% 63% 74% 68% 53% RBF Network
47% 63% 84% 47% 53% SMO
53% 63% 74% 53% 79% LazyIB1
53% 74% 79% 47% 69% LazyIB5
47% 74% 74% 47% 68% KStar
47% 74% 74% 47% 79% LWL
37% 47% 47% 47% 47% OneR
47% 74% 79% 47% 74% J48
47% 74% 79% 47% 74% J48graft
42% 74% 74% 53% 79% LMT

First, the classifiers are used over the original dataset with N = 1000 features. The

results are presented in the first column of Tables 5.5 and 5.6. It is apparent that

“RBF Network” produces a good classification accuracy on the original dataset. The

“Logistic” algorithm does not produce any result. This is most probably due to the

memory limitations of the used software implementation. Second, all classifiers are
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Table 5.6: Classification accuracy (ACC) on the test set for (a) the original dataset,
1000 features and (b) the preprocessed dataset (after LLSOM1 and LLSOM2 when
the high degree polynomial (m2 = 20) is approximated as the amplitude), 24 and 45
features for LLSOM1 and LLSOM2 respectively.

ACC on (a) ACC on (b) Classifiers
LLSOM1 LLSOM2

47% 47% 47% LibSVM
N/A 47% 58% Logistic
74% 63% 68% RBF Network
47% 58% 53% SMO
53% 63% 53% LazyIB1
53% 53% 58% LazyIB5
47% 58% 53% KStar
47% 63% 58% LWL
37% 53% 47% OneR
47% 63% 58% J48
47% 58% 58% J48graft
42% 63% 58% LMT

applied to the obtained set of features after optimization-based preprocessing. The

classification accuracy results are presented in Tables 5.5 and 5.6 when a spline and a

polynomial of degree m2 = 20 are approximated as the amplitude respectively. Their

corresponding confusion matrices (CMs) are presented in Tables 5.7 and 5.8.

Table 5.5 demonstrates the classification accuracy (ACC) on the original dataset

and the set of features obtained from OPAs when the spline (m = 4, n = 5) is

approximated as the amplitude. The accuracy of all classifiers except LibSVM and

RBF Network is considerably improved by using the preprocessed dataset rather than

the original dataset. The RBF Network classifier provides a better accuracy on the

original dataset and LLSOM2 than LLSOM1, UOM1 and UOM2 and no classification

method failed on the preprocessed dataset. In general, it is seen that faster optimization

methods of LLSOM1 and LLSOM2 work quite well compared to the slow optimization

methods of UOM1 and UOM2. Note that some of the classifiers perform better with

specific optimization methods.

• Logistic works well after LLSOM1-based preprocessing;
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• RBF Network, SMO, LazyIB5, J48 and J48graft perform well after LLSOM2-

based preprocessing;

• LazyIB1, LWL and LMT produce better results after UOM2-based

preprocessing;

• KStar works well after LLSOM1 and LLSOM2-based preprocessing.

In summary, all the classifiers except LibSVM and OneR are prominent in combination

with LLSOM1–2 and UOM2.

Table 5.6 provides the ACC on the original dataset and the set of extracted features

from LLSOM1–2 when the high degree polynomial (m2 = 20) is approximated as the

amplitude. Data from this table can be compared with the second and third columns

of Table 5.5. This comparison shows that all the above classifiers are performed better

after LLSOM1–2 when the spline is approximated as the amplitude.

The structure of a confusion matrix is described in Table 3.1 of Chapter 3. In the

confusion matrices presented here, entry {11} corresponds to the number of non-

K-complexes classified correctly, entry {12} corresponds to the number of non-K-

complexes classified as K-complexes (the number of false positives), entry {21}

corresponds to the number of K-complexes classified as non-K-complexes (the number

of false negatives) and entry {22} corresponds to the number of K-complexes classified

correctly.

One of the main goals is to develop an approach for automatic detection of K-

complexes that is fast and accurate. To address this the number of false negatives

has to be decreased. For further investigation, it is much better to highlight the suspect

segments of K-complexes for doctors to accept or reject rather than eliminate them

thoroughly.

As Shown in Table 5.7, the rate of false negatives of all classifiers except LibSVM,

RBF Network and OneR is considerably decreased when the high degree polynomial

is approximated as the amplitude.

The comparison between the Table 5.8 and the first column of Table 5.7 shows that

the number of false negatives of all classifiers except for LibSVM, RBF Network and
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Table 5.7: Confusion matrices (CMs) on the test set for (a) the original dataset, and
(b) the preprocessed dataset (after LLSOM1 and LLSOM2 when the high degree
polynomial (m2 = 20) is approximated as the amplitude).

CM on (b)
CM on (a) LLSOM1 LLSOM2 Classifiers(

9 0
10 0

) (
9 0
10 0

) (
9 0
10 0

)
LibSVM

N/A
(

4 5
5 5

) (
6 3
5 5

)
Logistic(

4 5
0 10

) (
2 7
0 10

) (
3 6
0 10

)
RBF Network(

9 0
10 0

) (
7 2
6 4

) (
8 1
8 2

)
SMO(

8 1
8 2

) (
7 2
5 5

) (
5 4
5 5

)
LazyIB1(

9 0
9 1

) (
4 5
4 6

) (
6 3
5 5

)
LazyIB5(

9 0
10 0

) (
3 6
2 8

) (
5 4
5 5

)
KStar(

8 1
9 1

) (
3 6
1 9

) (
4 5
3 7

)
LWL(

7 2
10 0

) (
9 0
9 1

) (
9 0
10 0

)
OneR(

9 0
10 0

) (
3 6
1 9

) (
4 5
3 7

)
J48(

9 0
10 0

) (
3 6
2 8

) (
4 5
3 7

)
J48graft(

8 1
10 0

) (
3 6
1 9

) (
4 5
3 7

)
LMT

OneR has considerably decreased after LLSOM1–2 and UOM2 when the spline is

approximated as the amplitude.

The performance of above methods (combination of feature extraction methods and

classifiers) based on aforementioned statistical metrics is summarized in Table 5.9.

It demonstrates LazyIB5, J48 and J48graft are performed well after LLSOM2-based

preprocessing as their specificity and FNR are 1.000 and 0.000 respectively. These

values show that no K-complex segments are misclassified as non-K-complexes.

Further investigation requires to evaluate the performance of LazyIB5, J48 and

J48graft after LLSOM2-based preprocessing.
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Table 5.8: Confusion matrices (CMs) on the test set for the preprocessed dataset
(after LLSOM1, LLSOM2, UOM1 and UOM2 when the spline (m1 = 4, n = 5)
is approximated as the amplitude).

CM
LLSOM1 LLSOM2 UOM1 UOM2 Classifiers(

9 0
10 0

) (
9 0
10 0

) (
9 0
10 0

) (
9 0
10 0

)
LibSVM(

6 3
2 8

) (
4 5
1 9

) (
6 3
6 4

) (
3 6
1 9

)
Logistic(

7 2
5 5

) (
5 4
1 9

) (
3 6
0 10

) (
0 9
0 10

)
RBF Network(

7 2
5 5

) (
8 1
2 8

) (
9 0
10 0

) (
8 1
8 2

)
SMO(

7 2
5 5

) (
5 4
1 9

) (
8 1
8 2

) (
6 3
1 9

)
LazyIB1(

6 3
2 8

) (
5 4
0 10

) (
7 2
8 2

) (
4 5
1 9

)
LazyIB5(

6 3
2 8

) (
5 4
1 9

) (
6 3
7 3

) (
4 5
1 9

)
KStar(

6 3
2 8

) (
5 4
1 9

) (
6 3
7 3

) (
6 3
1 9

)
LWL(

9 0
10 0

) (
9 0
10 0

) (
9 0
10 0

) (
9 0
10 0

)
OneR(

6 3
2 8

) (
5 4
0 10

) (
9 0
10 0

) (
5 4
1 9

)
J48(

6 3
2 8

) (
5 4
0 10

) (
9 0
10 0

) (
5 4
1 9

)
J48graft(

6 3
2 8

) (
5 4
1 9

) (
6 3
6 4

) (
6 3
1 9

)
LMT

Since there exist 39 and 31 segments containing non-K-complexes and K-complexes

respectively there exists an unbalanced dataset. Therefore the area under ROC curve

(ROC area) is required to assess the performance of a classifier regardless of class

distribution. Its definition is given in Section 3.9 of Chapter 3. To evaluate the

performance of the prominent classifiers their ROC areas are presented in Table 5.10.

It demonstrates that which classifiers are performed well after LLSOM1, LLSOM2

and UOM2 in terms of the area under the ROC curve.

The results, as shown in Table 5.10, indicate that



102

Table 5.9: Performance of proposed methods based on corresponding statistical
measures.

Method Sensitivity Specificity FPR FNR
LLSOM1+Logistic 0.444 0.9000 0.5556 0.100

LLSOM2+RBF Network 0.556 0.900 0.444 0.100
LLSOM2+SMO 0.889 0.800 0.111 0.200
UOM2+LazyIB1 0.667 0.900 0.333 0.100

LLSOM2+LazyIB5 0.556 1.000 0.444 0.000
LLSOM2+KStar 0.556 0.900 0.444 0.100

UOM2+LWL 0.667 0.9000 0.333 0.100
LLSOM2+J48 0.5565 1.000 0.444 0.000

LLSOM2+J48graft 0.556 1.000 0.444 0.000
UOM2+LMT 0.6667 0.900 0.333 0.100

• Logistic performs well after LLSOM1-based preprocessing with the ROC area

of 0.731.

• RBF Network works better over the set of features obtained from LLSOM2 than

the original dataset with the ROC area of 0.850

• LazyIB5 performs better than RBF Network, SMO, KStar, J48 and J48graft after

LLSOM2-based preprocessing with the ROC area of 0.906.

• LWL executes better than LazyIB1 and LMT after UOM2-based processing with

the value of 0.856 as the ROC area.

• KStar works better in combination with LLSOM2 than LLSOM1. In this case,

the value of the ROC area is 0.839.

As can be seen from the Table 5.10, the nearest value to 1 is obtained from the

combination of LLSOM2 with LazyIB5 (0.906). This value indicates that the proposed

combination has high discriminating capability to classify an EEG signal between the

sets of non-K-complexes and K-complexes. Further, it demonstrates that the LLSOM2

is a very promising feature extraction method in this particular application.

Example 5.4.1. ACC vs area under the ROC curve These findings indicate that

SMO and LazyIB5 are promising classifiers in combination with LLSOM2 in terms of

ACC (84%) and the ROC area respectively. Confusion matrices obtained from SMO
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and LazyIB5 over the extracted features after LLSOM2-based preprocessing are as

follows.

1. LLSOM2+SMO:

 8 1

2 8

 .

2. LLSOM2+LazyIB5:

 5 4

0 10

 .

In the first confusion matrix, 1 out of 9 non-K-complexes is categorized as the K-

complex and 2 out of 10 K-complexes are categorized as non-K-complexes. Therefore

• ACC= 84%,

• Sensitivity = 8/(8 + 1) = 0.889,

• Specificity = 8/(8 + 2) = 0.800,

• FPR = 1/9 = 0.111,

• FNR = 2/10 = 0.200 and

• The area under ROC curve = 0.844.

In the second confusion matrix, 4 out of 9 non-K-complexes are categorized as K-

complexes and all 10 K-complexes are categorized correctly. Then,

• ACC= 79%,

• Sensitivity = 5/(5 + 4) = 0.556,

• Specificity = 10/(0 + 10) = 1.000,

• FPR= 4/9 = 0.444,

• FNR= 0.000 and

• The area under ROC curve = 0.906.

It is somewhat surprising that LazyIB5 performs better than SMO regardless of higher

ACC obtained from SMO. Notwithstanding these ACCs, the area under ROC curve

(ROC area) is often employed to assess the quality of the classifiers. A perfect classifier

has a ROC area of one. As shown above, LazyIB5 has the higher values of specificity
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and ROC area than SMO. Therefore LazyIB5 is a very promising classifier.

Table 5.10: The prominent results of ROC area for (a) the original dataset, and (b)
the preprocessed dataset when the spline (m1 = 4, n = 5) is approximated as the
amplitude.

ROC area for (a) ROC area for (b) Classifiers
LLSOM1 LLSOM2 UOM2

N/A 0.731 Logistic
0.815 0.850 RBF Network
0.500 0.844 SMO
0.511 0.822 LazyIB1
0.600 0.906 LazyIB5
0.500 0.733 0.839 KStar
0.806 0.856 LWL
0.500 0.778 J48
0.500 0.778 J48graft
0.472 0.783 LMT

The comparison of corresponding ROC areas presented in Table 5.10 indicates

LazyIB5 has the highest value of the ROC area among others. Consequently, the

combination of LLSOM2 (containing the spline) with LazyIB5 form a very promising

method to detect K-complexes.

Tables 5.1 to 5.4 reveal that the mean frequencies are significantly higher for non-

K-complexes. This observation is important for classification of an EEG signal in

presence of K-complexes. Thus, we just keep ω as the only feature of an EEG signal

instead of 24 and 45 features of LLSOM1, UOM1 and LLSOM2, UOM2 respectively.

Note that the spline functions are more flexible and efficient than the polynomial

ones to approximate the amplitude. Therefore ω is kept as the only extracted feature

after optimization-based preprocessing approaches (LLSOM1, LLSOM2, UOM1 and

UOM2) when the amplitude is approximated by splines.

The classification accuracy of K-complexes after optimization-based preprocessing

approaches (OPAs) on the basis of frequency ω (one feature) is reported in Table 5.11.

The classification accuracies are surprisingly high, especially in the case of LLSOM2,

where we reach 79% for the first 12 classifiers. Consequently, a classifier can be

developed based on the mean frequencies of K-complexes and non-K-complexes.
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Appendix A describes a way to develop an additional classifier.

Table 5.11: Classification accuracy on the test set for the preprocessed dataset, one
feature (ω).

Classifiers LLSOM1 LLSOM2 UOM1 UOM2
LibSVM 74% 79% 53% 79%
Logistic 74% 79% 53% 74%

RBF Network 74% 79% 53% 74%
SMO 74% 79% 53% 74%

LazyIB1 74% 79% 53% 74%
LazyIB5 74% 79% 53% 79%

KStar 74% 79% 53% 74%
LWL 74% 79% 53% 74%
OneR 74% 79% 53% 74%
J48 74% 79% 47% 74%

J48graft 74% 79% 47% 74%
LMT 74% 79% 53% 79%

5.5 Summary

This research develops four convex optimization models to extract and generate

the essential features of an EEG signal. In order to illustrate the efficiency and

effectiveness of them an EEG K-complex dataset is taken as the recorded signal values.

The spline and the polynomial functions are approximated as the amplitude. The

results of this research confirm that the spline functions are more flexible and efficient

then the polynomial ones to describe abrupt changes in the amplitude in order to detect

the K-complexes. Note that one of the main properties of the K-complexes is a sudden

change in the amplitude.

The numerical results demonstrate that the developed models enable robust and

efficient detection of the K-complexes. Namely, they enable one to improve (in most

cases) the classification accuracy after preprocessing while the computational time is

not very high. The number of false negatives obtained from most of classifiers has

considerably decreased after preprocessing.

Taken together, the main conclusions are as follows.
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• OPAs enhance the classification accuracy of all 12 classifiers except LibSVM

and RBF Network (for some models).

• LLSOM1–2 perform better with the spline than the polynomial.

• The best classification accuracy is achieved from the combination of LLSOM2

and SMO (45 features) with an accuracy of 84%.

• LazyIB5 is the highest quality classifier with the ROC area of 0.906 after

LLSOM2-based preprocessing.

• Overall, LLSOM1 and LLSOM2 are fast and accurate. This may due to the fact

that the corresponding optimization problems are much simpler than UOM1 and

UOM2.

• UOM1 and UOM2 are so expensive. They will not be applied to large scale

datasets.



Chapter 6
Large Scale Dataset of an EEG
Signal for Seizure Detection

6.1 Introduction

This chapter is concerned with the capability of optimization-based preprocessing

approaches (OPAs) introduced in Chapter 3 to extract and generate the key features of

an EEG signal in the presence of seizures. Their performance is verified in numerical

simulations of an automated detection of seizures problem. Epileptic seizures can be

obstructed by detection of electrical changes in the brain that happen before the seizure

takes place. Therefore the automatic detection of seizures is necessary due to the fact

that the visual screening of EEG recordings is a time consuming task and requires

experts to improve the diagnosis.

The efficiency of OPAs to extract the essential features of an EEG epileptic signal

significantly affects the classification accuracy obtained from classifiers. To verify the

improvements in the classification accuracy that can be achieved through employing

OPAs, a different range of classifiers is applied. These classifiers are employed over

the original dataset and a dataset after OPAs. Hence, this study is restricted to the

development of feature extraction methods but not classifiers.

6.2 The Performance of OPAs

Four convex optimization models called LLSOM1, LLSOM2, UOM1 and UOM2 are

developed in the feature extraction stage of the classification problem. The numerical
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results shown in Chapter 5 indicate that the last two models are computationally

expensive and are not as efficient as the first two models to locate the abrupt changes

in the amplitude. Consequently, they are not considered any further for large scale

dataset.

LLSOM1 and LLSOM2 are based on a sequence of linear least squares problems.

The analysis of them is provided in Chapter 4 that gives raise to the fact that

the system matrices obtained from LLSOM1 and LLSOM2 are full-rank and rank-

deficient respectively. Hence, the normal equations method is employed to solve

LLSOM1 while an SVD method is used to solve LLSOM2. The polynomial (P ) and

the spline (S) functions described in Equations (3.2) and (3.4) of Chapter 3 respectively

are used to model the signal amplitude. According to the technical specification of the

EEG epileptic dataset provided in Section 3.10.2 of Chapter 3, m1 = 4 (degree of a

spline) and n = 12 (the number of subintervals) are assigned to the spline S. The

knots are chosen as a sequence of equidistant knots. The frequency grid is specified

as the numbers between ωi = 0.53 Hz and ωf = 40 Hz with the step size of 1 Hz

based on the given band-pass filter settings (0.53− 40 Hz (12 dB/oct, the unit dB/oct is

deciBel per Octave where deciBel is a unit of logarithmic and an Octave is a doubling

of frequency)) while the initial and final values of τi = 0 and τf = π with the step size

of π/4 are assigned to the phase shift grid.

In order to balance the number of parameters in a spline and a polynomial functions,

the degree of P is increased to m2 = m1n where m1 = 4 and n = 12. Then, m2 = 48

is assigned to P . Herein, the results from LLSOM1 and LLSOM2 involving fixed

knots splines S are comparable with ones involving polynomials P .

The values of objective function, ω and τ are considered as three additional essential

features after LLSOM1 and LLSOM2. To simplify the notations, LLSOM1 and

LLSOM2 involving P are denoted by LLSP1 and LLSP2 respectively while the ones

involving S are denoted by LLSP3 and LLSP4 respectively.

The output dimensions of LLSP1, LLSP3 and LLSP2, LLSP4 are

m2 + 1 = m1n+ 1 = 49 and 2m2 + 2 = 2m1n + 2 = 98 respectively. Therefore

N = 4097 features of the original dataset have been reduced to 52 = m2+4 = m1n+4
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and 101 = 2m2 + 5 = 2m1n + 5 essential features after LLSP1, LLSP3 and LLSP2,

LLSP4 respectively. Figure 5.1 of Chapter 5 illustrates the dimension of essential

features (extracted features) after OPAs.

6.3 The Numerical Results and Discussion

In this section, the results obtained from LLSP1– 4 are presented in Tables 6.1 and 6.2.

These tables give the computational time in seconds and the mean frequency for each

set (A, B, C, D and E) of the EEG signal. The LLSP1– 4 enable one to

• extract key features of the waves that are crucial for detecting seizures,

• reduce the size of dataset,

• improve the performance of classifiers.

Table 6.1 indicates that LLSP2 and LLSP4 have higher CPU times than LLSP1 and

LLSP3. The execution time of LLSP3 is less than LLSP1 therefore a preprocessing

approach with a spline amplitude would be preferable in terms of computational time.

LLSP3 had spent the least time to extract the essential features of a signal described in

Experiment 1.

Table 6.2 displays the mean frequencies for each set of the EEG signal. One can see

that the mean frequencies of seizures (set E) are significantly higher than those of

non-seizure events (sets A, B, C and D) except for set B. It may be due to the fact

that the frequency of seizures is higher than non-seizures. Therefore the frequency

(ω) is not kept as the only feature of an EEG signal after LLSP1– 4 for the seizure

detection unlike the K-complex detection. It is because of the fact that the pattern of

EEG epileptic waveforms is not as clear as EEG K-complex waveforms.

The essential features of an EEG signal are extracted through LLSP1– 4 in the feature

extraction stage. Therefore N = 4097 features of the original signal is reduced to

52 and 101 with 200 segments after employing LLSP1, LLSP3 and LLSP2, LLSP4

respectively.



110

Table 6.1: Computational time (in seconds) for preprocessing.

LLSP approaches LLSP1 LLSP2 LLSP3 LLSP4
Experiment 1 2,209 5,652 1,562 4,219
Experiment 2 2,190 5,610 1,774 4,206
Experiment 3 2,223 5,702 1,723 4,458
Experiment 4 2,184 5,631 1,597 4,456

Table 6.2: Mean frequencies for each set of the EEG signal.

LLSP approaches LLSP1 LLSP2 LLSP3 LLSP4
Set A 0.7500 1.9900 0.5400 1.9500
Set B 6.5800 6.9600 5.2500 9.6600
Set C 0.9800 1.4300 0.8000 1.1800
Set D 1.6800 1.7883 1.3300 1.9700
Set E 5.1100 5.0600 4.8500 4.9100

Four different binary classification problems made from sets A, B, C, D and E are used

to validate LLSP1– 4 in order to detect seizures. They are described in Section 3.10.2

of Chapter 3 as Experiment 1 to Experiment 4.

To avoid inconsistency in EEG signals and enhance the performance of classifiers,

the dataset related to each experiment is balanced. The proper balancing of datasets

where there are the same number of segments in each class (seizure and non-seizure)

is described in Section 3.10.2 of Chapter 3.

Several statistical measurements such as classification accuracy (ACC), precision,

sensitivity, specificity, FPR and FNR are used to assess

• the robustness of LLSP1– 4 in extraction of essential features and

• the influence of LLSP1– 4 on the performance of classifiers.

Above metrics are described in Section 3.9 of Chapter 3. The area under the ROC

curve is an alternative to the ACC when there exists an unbalanced dataset. Because

the dataset of each experiment is balanced then, there is no need to consider the area

under the curve for this particular application unlike the EEG K-complex dataset.



111

First, the classifiers are employed over the original dataset with N = 4097 features.

The results are shown in the first column of Tables 6.3, 6.7, 6.11 and 6.15. The

“Logistic”, “SMO” and “LMT” algorithms do not produce any results on original

dataset. This is most probably due to the memory limitations of the used software

implementation.

Second, all classifiers are applied over the obtained set of features after LLSP

approaches. The classification accuracy results based on the four experiments are

presented in the Tables 6.3, 6.7, 6.11 and 6.15.

The classification results obtained from four experiments after LLSP1– 4 are presented

in the following sections.

6.3.1 Experiment 1

The first experiment contains five datasets (A, B, C, D and E) in such a way that sets

A, B, C and D are treated as a non-seizure class while set E is treated as a seizure

class. There exist 4097 features (recordings) and 200 segments such that the first 100

segments belongs to a non-seizure class whereas the last 100 segments to a seizure

class. This experiment has 178 and 22 segments as training and test sets respectively.

Therefore each of 12 classifiers is trained on the training set and tested on the test set

and the ACC on the test set is reported.

Table 6.3 presents the ACC on the test set for the original dataset and the preprocessed

dataset after LLSP1– 4. Because of the long computational time taken for LLSP4 (in

Table 6.1) and the fact that the “RBF Network” classifier in Table 6.3 provides a better

accuracy on the original dataset rather than the preprocessed dataset after LLSP4, the

performance of LLSP4 is not satisfactory.

Although LLSP2 has a long computational time similar to LLSP4, “RBF Network”

and “LibSVM” classifiers work well after LLSP2. Tables 6.3 shows that the accuracy

of all classifiers is considerably improved and no classifiers failed on the preprocessed

dataset. It is worth to note that some classifiers perform better with specific LLSP

approaches.
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• LibSVM and RBF Network work better after LLSP2;

• Logistic, SMO, LazyIB1, LazyIB5, KStar, LWL, J48, J48graft and LMT work

well after LLSP3.

Confusion matrices based on the above specific LLSP approaches are provided in

Table 6.4. The structure of a confusion matrix is expressed in Table 3.1 of Chapter 3.

Their precision and sensitivity values are provided in Table 6.5 as well.

Table 6.3: Classification accuracy (ACC) of Experiment 1 on the test set for (a)
the original dataset, 4097 features and (b) the preprocessed dataset (after LLSP1 to
LLSP4), 52 features for LLSP1 and LLSP3, 101 features for LLSP2 and LLSP4.

ACC on (a) ACC on (b) Classifiers
LLSP1 LLSP2 LLSP3 LLSP4

45% 45% 50% 45% 45% LibSVM
N/A a 95% 91% 100% 95% Logistic
54% 68% 86% 68% 45% RBF Network
N/A a 77% 91% 100% 95% SMO
64% 77% 82% 100% 86% LazyIB1
68% 73% 77% 91% 91% LazyIB5
54% 82% 86% 100% 55% KStar
68% 77% 86% 100% 86% LWL
54% 55% 55% 55% 55% OneR
45% 82% 91% 100% 95% J48
45% 82% 91% 100% 95% J48graft
N/A a 82% 91% 100% 91% LMT

a No Answer.

In the confusion matrices presented in Table 6.4, entry {11} corresponds to the number

of non-seizures classified correctly, entry {12} corresponds to the number of non-

seizures classified as seizures (the number of false positives), entry {21} corresponds

to the number of seizures classified as non-seizures (the number of false negatives) and

entry {22} corresponds to the number of seizures classified correctly.

One of the main goals of feature extraction methods (LLSP1– 4) is to reduce the

number of false negatives. Table 6.4 shows the rate of false negatives of all classifiers

except LibSVM, J48 and J48graft is considerably decreased.

In summary, all classifiers except LibSVM and RBF Network are prominent in
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Table 6.4: Confusion matrices of Experiment 1 from the prominent combinations of
LLSP2 and LLSP3 with corresponding classifiers in terms of classification accuracy.

Preprocessed dataset
Original dataset LLSP2 LLSP3 Classifiers(

0 12
0 10

) (
1 11
0 10

)
LibSVM

N/A a

(
12 0
0 10

)
Logistic(

12 0
10 0

) (
11 1
2 8

)
RBF Network

N/A a

(
12 0
0 10

)
SMO(

12 0
8 2

) (
12 0
0 10

)
LazyIB1(

12 0
7 3

) (
12 0
2 8

)
LazyIB5(

12 0
10 0

) (
12 0
0 10

)
KStar(

12 0
7 3

) (
12 0
0 10

)
LWL(

0 12
0 10

) (
12 0
0 10

)
J48(

0 12
0 10

) (
12 0
0 10

)
J48graft

N/A a

(
12 0
0 10

)
LMT

a No Answer.

combination with LLSP3 with the zero value as the rate of false positives and negatives.

Therefore LLSP3 is a very promising feature extraction method for Experiment 1. In

addition, LLSP2 with RBF Network works well in spite of the long computational time

for LLSP2 (5, 652 seconds) presented in Table 6.1.

The precision and sensitivity values provided in Table 6.5 demonstrate which

classifiers are performed well after LLSP2 and LLSP3. A perfect classifier has the

precision and sensitivity values equal to 1. This value indicates that the combination

of the proposed feature extraction method (LLSP2 and LLSP3) with the classifier has

the high discriminating capability to classify an EEG signal between the sets of non-

seizures and seizures. Hence, the best classifiers are Logistic, SMO, LazyIB1, KStar,
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Table 6.5: Precision and Sensitivity values for the prominent classifiers in combination
with LLSP2 and LLSP3 for Experiment 1.

Precision/Sensitivity Precision/Sensitivity Classifiers
Original dataset LLSP2 LLSP3

N/A a/ 0 1.00 / 0.08 LibSVM
N/A a 1.00 / 1.00 Logistic

0.55 / 1.00 0.85 / 0.92 RBF Network
N/A a 1.00 / 1.00 SMO

0.60 / 1.00 1.00 / 1.00 LazyIB1
0.63 / 1.00 0.86 / 1.00 LazyIB5
0.55 / 1.00 1.00 / 1.00 KStar
0.63 / 1.00 1.00 / 1.00 LWL

N/A a/ 0 1.00 / 1.00 J48
N/A a/ 0 1.00 / 1.00 J48graft

N/A a 1.00 / 1.00 LMT
a No Answer.

LWL, J48, J48graft and LMT after LLSP3 in terms of precision and sensitivity values.

The precision and sensitivity values can be obtained from the corresponding confusion

matrix.

Example 6.3.1. The confusion matrices obtained from LazyIB1 on the original dataset

and the dataset after LLSP3 are considered.

1. LLSP3+LazyIB1:

 12 0

0 10

 .

2. Original dataset+LazyIB1:

 12 0

8 2

 .

There are 22 segments in the test set where 12 segments belong to the non-seizure

class and 10 segments to the seizure class. In the first confusion matrix, 0 out of 12

non-seizures is categorized as seizure and 0 out of 10 seizures are categorized as non-

seizure. On the other hand, non-seizure and seizure segments are classified correctly.

Therefore

• ACC= (12 + 10)/(12 + 0 + 0 + 10) = 1× 100 = 100%,

• Sensitivity = 12/(12 + 0) = 1.00,
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• Specificity = 10/(0 + 10) = 1.00,

• FPR = 0/(12 + 0) = 0.00,

• FNR = 0/(0 + 10) = 0.00 and

• Precision = 12/(12 + 0) = 1.00.

In the second confusion matrix, all 12 non-seizures are categorized correctly and 8 out

of 10 seizures are categorized as non-seizures. Hence,

• ACC= (12 + 2)/(12 + 0 + 8 + 2) = 0.64× 100 = 64%,

• Sensitivity = 12/(12 + 0) = 1.00,

• Specificity = 2/(8 + 2) = 0.20,

• FPR = 0/(12 + 0) = 0.00,

• FNR = 8/(8 + 2) = 0.80 and

• Precision = 12/(12 + 8) = 0.60.

In summary, LazyIB1 works better on the preprocessed dataset after LLSP3 rather

than the original dataset because the precision value of the first confusion matrix is 1

whereas the second one is 0.60. The FNR that is also referred as type-II error is zero

for the first confusion matrix while it is 0.80 for the second one.

To evaluate the performance of corresponding classifiers with the accuracy of 100% (in

Table 6.3) after LLSP3 their computational times are shown in Table 6.6. It illustrates

which classifiers perform well after LLSP3 in terms of computational time. The

performance of LMT with LLSP3 is not satisfactory since it has a long computational

time (104 seconds). In conclusion, the combinations of Logistic and LazyIB1 with

LLSP3 perform well for Experiment 1 with the classification accuracy of 100% and

the computational time of 0.01 seconds.
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Table 6.6: Computational time on the test set over the preprocessed dataset after LLSP3
for Experiment 1.

Classifiers CPU time (in seconds)
Logistic 0.01

SMO 0.17
LazyIB1 0.01

KStar 0.05
LWL 0.06
J48 0.02

J48graft 0.18
LMT 104

6.3.2 Experiment 2

The second experiment contains four datasets (A, C, D and E). Sets A, C and D are

treated as a non-seizure class while set E is treated as a seizure class. There are 4097

features (recordings) and 200 segments such that the first 100 segments belongs to a

non-seizure class whereas the last 100 segments to a seizure class. This experiment

has 180 and 20 segments as training and test sets respectively.

Table 6.7 demonstrates that the accuracy of all classifiers except LibSVM considerably

improved after LLSP approaches (LLSP1– 4) rather than the original dataset.

Although the LibSVM classifier provides a better accuracy on the original dataset, no

classification method failed on the preprocessed dataset after LLSP approaches. Most

of the classifiers in Table 6.7 achieved the accuracy of 100% after LLSP1.

Since the maximum accuracy obtained after LLSP4 is 95% and its computational time

reported in Table 6.1 is 4, 206 seconds then, the performance of LLSP4 in Experiment 2

is not satisfactory. Moreover, the performance of LLSP2 is not efficient regardless

of 100% accuracy obtained from Logistic because of the long computational time

(5, 6104 seconds) presented in Table 6.1.

Some classifiers in Table 6.7 carry out better with specific LLSP approaches.

• Logistic, J48, J48graft and LMT work well after LLSP1;

• SMO, LazyIB1, KStar and LWL perform well after LLSP1 and LLSP3;
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Table 6.7: Classification accuracy (ACC) of Experiment 2 on the test set for (a)
the original dataset, 4097 features and (b) the preprocessed dataset (after LLSP1 to
LLSP4), 52 features for LLSP1 and LLSP3, 101 features for LLSP2 and LLSP4.

ACC on (a) ACC on (b) Classifiers
LLSP1 LLSP2 LLSP3 LLSP4

85% 50% 55% 60% 50% LibSVM
N/A a 100% 100% 95% 95% Logistic
50% 85% 75% 90% 50% RBF Network
N/A a 100% 85% 100% 95% SMO
65% 100% 80% 100% 80% LazyIB1
65% 95% 70% 100% 85% LazyIB5
50% 100% 80% 100% 50% KStar
65% 100% 90% 100% 95% LWL
50% 50% 50% 50% 50% OneR
50% 100% 95% 95% 95% J48
50% 100% 95% 95% 95% J48graft
N/A a 100% 85% 95% 91% LMT

a No Answer.

• RBF Network and LazyIB5 work well after LLSP3.

Their confusion matrices and precision/sensitivity values are shown in Tables 6.8 and

6.9 respectively. Table 6.8 indicates that the rate of false negatives of all classifiers is

considerably decreased. Therefore all classifiers except RBF Network and LazyIB5

are prominent in combination with LLSP1. Further, all classifiers except Logistic, J48,

J48graft and LMT work well after LLSP3.

The precision and sensitivity values presented in Table 6.9 illustrate that the best

classifiers after LLSP1 and LLSP3 are SMO, LazyIB1, KStar and LWL with the value

of 1 for both precision and sensitivity. In addition, Logistic, J48, J48graft and LMT are

the best classifiers after LLSP1 while LazyIB5 is the best classifier after LLSP3 with

precision and sensitivity values of 1.

To investigate the performance of the corresponding classifiers after LLSP1 and LLSP3

their computational times are reported in Table 6.10. As discussed above, most

of classifiers reached high accuracy of 100% after LLSP1 of Experiment 2. So, a

preprocessing approach with a polynomial amplitude (LLSP1) is preferable.
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Table 6.8: Confusion matrices of Experiment 2 from the prominent combinations of
LLSP1 and LLSP3 with corresponding classifiers in terms of classification accuracy.

Preprocessed dataset
Original dataset LLSP1 LLSP3 Classifiers

N/A a

(
10 0
0 10

)
Logistic(

10 0
10 0

) (
9 1
1 9

)
RBF Network

N/A a

(
10 0
0 10

) (
10 0
0 10

)
SMO(

10 0
7 3

) (
10 0
0 10

) (
10 0
0 10

)
LazyIB1(

10 0
7 3

) (
10 0
0 10

)
LazyIB5(

10 0
10 0

) (
10 0
0 10

) (
10 0
0 10

)
KStar(

10 0
7 3

) (
10 0
0 10

) (
10 0
0 10

)
LWL(

10 0
10 0

) (
10 0
0 10

)
J48(

10 0
10 0

) (
10 0
0 10

)
J48graft

N/A a

(
10 0
0 10

)
LMT

a No Answer.

Taken together, the results from Table 6.10 suggest that for Experiment 2 the

combinations of LazyIB1 and J48 with LLSP1 perform well with the classification

accuracy of 100% and the zero value of computational time. The combination

of LazyIB5 with LLSP3 results in the classification accuracy of 100% and the

computational time of 0.01 seconds.
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Table 6.9: Precision and Sensitivity values for the prominent classifiers in combination
with LLSP1 and LLSP3 for Experiment 2.

Precision/Sensitivity Precision/Sensitivity Classifiers
Original dataset LLSP1 LLSP3

N/A a 1.00 / 1.00 Logistic
0.50 / 1.00 0.90 / 0.90 RBF Network

N/A a 1.00 / 1.00 1.00 / 1.00 SMO
0.60 / 1.00 1.00 / 1.00 1.00 / 1.00 LazyIB1
0.60 / 1.00 1.00 / 1.00 LazyIB5
0.50 / 1.00 1.00 / 1.00 1.00 / 1.00 KStar
0.60 / 1.00 1.00 / 1.00 1.00 / 1.00 LWL
0.50 / 1.00 1.00 / 1.00 J48
0.50 / 1.00 1.00 / 1.00 J48graft

N/A a 1.00 / 1.00 LMT
a No Answer.

Table 6.10: Computational time on the test set over the preprocessed dataset after
LLSP1 and LLSP3 for Experiment 2.

Classifiers with LLSP1 CPU time (in seconds)
Logistic 0.03

SMO 0.22
LazyIB1 0

KStar 0.05
LWL 0.05
J48 0

J48graft 0.12
LMT 89

Classifiers with LLSP3 CPU time (in seconds)
SMO 0.15

LazyIB1 0.01
LazyIB5 0.01

KStar 0.13
LWL 0.16
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6.3.3 Experiment 3

This experiment includes two datasets called B and E. Set B belongs to a non-seizure

class and set E belongs to a seizure class. There exist 4097 features (recordings) and

200 segments in such a way that the first 100 segments belongs to a non-seizure class

while the last 100 segments to a seizure class. Similar to Experiment 2, Experiment 3

has 180 and 20 segments as training and test sets respectively.

All classifiers in Table 6.11 except LibSVM have achieved the better classification

accuracy on the preprocessed dataset than original one. Most of the classifiers obtained

the accuracy of 100% after LLSP1. The maximum classification accuracy obtained

after LLSP2 is 95% and it has a long computational time of 5, 702 seconds (Table 6.1).

Although LLSP2 is not a suitable preprocessing approach for Experiment 3, RBF

Network performs well after it.

LLSP4 is not a better suited method for preprocessing since it has a long computational

time of 4, 458 seconds (Table 6.1) in spite of the obtained classification accuracy of

100% for Logistic and LMT. LibSVM gives the accuracy of 55% on the original dataset

and after LLSP3. So, LibSVM works better after LLSP3. There are classifiers that

perform well with specific LLSP approaches as follows:

• Logistic, SMO and LMT perform well after LLSP1 and LLSP3;

• RBF Network and LWL work better after LLSP2;

• LazyIB1, LazyIB5, KStar, J48 and J48graft work well after LLSP1.

Confusion matrices and precision/sensitivity values of all above specific LLSPs are

illustrated in Tables 6.12 and 6.13 respectively. As shown in Table 6.12, the rate of

false negatives of all classifiers is considerably decreased.

It is apparent from Table 6.13 that the best classifiers with the precision and sensitivity

values of 1 are as follows:

• Logistic, SMO and LMT are the best classifiers after LLSP1 and LLSP3;

• LazyIB1, KStar, J48 and J48graft are the best classifiers after LLSP1.
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Table 6.11: Classification accuracy (ACC) of Experiment 3 on the test set for (a)
the original dataset, 4097 features and (b) the preprocessed dataset (after LLSP1 to
LLSP4), 52 features for LLSP1 and LLSP3, 101 features for LLSP2 and LLSP4.

ACC on (a) ACC on (b) Classifiers
LLSP1 LLSP2 LLSP3 LLSP4

55% 50% 50% 55% 50% LibSVM
N/A a 100% 95% 100% 100% Logistic
50% 50% 90% 65% 70% RBF Network
N/A a 100% 95% 100% 95% SMO
65% 100% 95% 90% 95% LazyIB1
60% 95% 85% 90% 95% LazyIB5
50% 100% 95% 90% 50% KStar
65% 90% 95% 80% 95% LWL
50% 50% 50% 50% 50% OneR
50% 100% 95% 95% 95% J48
50% 100% 95% 95% 95% J48graft
N/A a 100% 95% 100% 100% LMT

a No Answer.

To evaluate the performance of LLSP1 and LLSP3 with the corresponding classifiers

that obtained the classification accuracy of 100%, the values of computational time are

set out in Table 6.14. It is apparent from this table that the combinations of Logistic and

LazyIB1 with LLSP1, and Logistic with LLSP3 perform well with the classification

accuracy of 100%. Interestingly, LLSP1 is a better suited approach for Experiment 3

since most of classifiers achieved the maximum accuracy of 100% in combination with

it.
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Table 6.12: Confusion matrices of Experiment 3 from the prominent combinations of
LLSP1, LLSP2 and LLSP3 with corresponding classifiers in terms of classification
accuracy.

Preprocessed dataset
Original dataset LLSP1 LLSP2 LLSP3 Classifiers

N/A a

(
10 0
0 10

) (
10 0
0 10

)
Logistic(

10 0
10 0

) (
10 0
2 8

)
RBF Network

N/A a

(
10 0
0 10

) (
10 0
0 10

)
SMO(

10 0
7 3

) (
10 0
0 10

)
LazyIB1(

10 0
8 2

) (
10 0
1 9

)
LazyIB5(

10 0
10 0

) (
10 0
0 10

)
KStar(

10 0
7 3

) (
10 0
1 9

)
LWL(

10 0
10 0

) (
10 0
0 10

)
J48(

10 0
10 0

) (
10 0
0 10

)
J48graft

N/A a

(
10 0
0 10

) (
10 0
0 10

)
LMT

a No Answer.

Table 6.13: Precision and Sensitivity values for the prominent classifiers in
combination with LLSP1, LLSP2 and LLSP3 for Experiment 3.

Precision/Sensitivity Precision/Sensitivity Classifiers
Original dataset LLSP1 LLSP2 LLSP3

N/A a 1.00 / 1.00 1.00 / 1.00 Logistic
0.50 / 1.00 0.83 / 1.00 RBF Network

N/A a 1.00 / 1.00 1.00 / 1.00 SMO
0.59 / 1.00 1.00 / 1.00 LazyIB1
0.55 / 1.00 0.91 / 1.00 LazyIB5
0.50 / 1.00 1.00 / 1.00 KStar
0.59 / 1.00 0.91 / 1.00 LWL
0.50 / 1.00 1.00 / 1.00 J48
0.50 / 1.00 1.00 / 1.00 J48graft

N/A a 1.00 / 1.00 1.00 / 1.00 LMT
a No Answer.
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Table 6.14: Computational time on the test set after LLSP1 and LLSP3 for
Experiment 3.

Classifiers with LLSP1 CPU time (in seconds)
Logistic 0.01

SMO 0.12
LazyIB1 0.01

KStar 0.05
J48 0.02

J48graft 0.45
LMT 124

Classifiers with LLSP3 CPU time (in seconds)
Logistic 0.01

SMO 0.15
LMT 138
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6.3.4 Experiment 4

Similar to Experiment 3, the last experiment contains two datasets called sets A and E.

Set A is treated as a non-seizure class whereas set E is treated as a seizure class. There

exist 200 segment where the first 100 segments are considered as a non-seizure class

and the second 100 segments as a seizure class. There are 180 and 20 segments as

training and test sets respectively same as Experiment 3.

Table 6.15 presents the classification accuracy of Experiment 4 on the original and

preprocessed datasets (after LLSP approaches). As it can be seen from the table below

LibSVM provides a better accuracy on the original dataset rather than the preprocessed

dataset. The performances of LLSP2 and LLSP4 are not satisfactory due to their long

computational times for Experiment 4.

Table 6.15: Classification accuracy (ACC) of Experiment 4 on the test set for (a)
the original dataset, 4097 features and (b) the preprocessed dataset (after LLSP1 to
LLSP4), 52 features for LLSP1 and LLSP3, 101 features for LLSP2 and LLSP4.

ACC on (a) ACC on (b) Classifiers
LLSP1 LLSP2 LLSP3 LLSP4

75% 50% 55% 65% 55% LibSVM
N/A a 100% 90% 100% 90% Logistic
50% 50% 85% 85% 50% RBF Network
N/A a 100% 90% 100% 95% SMO
65% 100% 85% 100% 85% LazyIB1
65% 95% 85% 100% 80% LazyIB5
50% 100% 85% 100% 50% KStar
65% 100% 80% 100% 95% LWL
55% 50% 50% 50% 50% OneR
50% 100% 90% 95% 90% J48
50% 100% 90% 95% 90% J48graft
N/A a 100% 90% 100% 95% LMT

a No Answer.

The more surprising is with the simpler preprocessing approaches called LLSP1 and

LLSP3. They obtained the highest classification accuracy of 100% in combination

with the most of classifiers. They are faster than LLSP2 and LLSP4. In summary,

some classifiers work well with specific preprocessing approaches.
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• Logistic, SMO, LazyIB1, KStar, LWL and LMT perform well after LLSP1 and

LLSP3;

• RBF Network and LazyIB5 work well after LLSP3;

• J48 and J48graft perform well after LLSP1.

Their confusion matrices and precision/sensitivity values are displayed in Tables 6.16

and 6.17 respectively. Table 6.16 demonstrates that the rate of false negatives of all

classifiers is considerably decreased.

Table 6.16: Confusion matrices of Experiment 4 from the prominent combinations of
LLSP1 and LLSP3 with corresponding classifiers in terms of classification accuracy.

Preprocessed dataset
Original dataset LLSP1 LLSP3 Classifiers

N/A a

(
10 0
0 10

) (
10 0
0 10

)
Logistic(

10 0
10 0

) (
7 3
0 10

)
RBF Network

N/A a

(
10 0
0 10

) (
10 0
0 10

)
SMO(

10 0
7 3

) (
10 0
0 10

) (
10 0
0 10

)
LazyIB1(

10 0
7 3

) (
10 0
0 10

)
LazyIB5(

10 0
10 0

) (
10 0
0 10

) (
10 0
0 10

)
KStar(

10 0
7 3

) (
10 0
0 10

) (
10 0
0 10

)
LWL(

10 0
10 0

) (
10 0
0 10

)
J48(

10 0
10 0

) (
10 0
0 10

)
J48graft

N/A a

(
10 0
0 10

) (
10 0
0 10

)
LMT

a No Answer.

Table 6.17 indicates that the best classifiers in combination with LLSP1 and LLSP3

with precision and sensitivity values of 1 are as follows.

• Logistic, SMO, LazyIB1, KStar, LWL and LMT after LLSP1 and LLSP3;
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Table 6.17: Precision and Sensitivity values for the prominent classifiers in
combination with LLSP1 and LLSP3 for Experiment 4.

Precision/Sensitivity Precision/Sensitivity Classifiers
Original dataset LLSP1 LLSP3

N/A a 1.00 / 1.00 1.00 / 1.00 Logistic
0.50 / 1 0.89 / 0.80 RBF Network

N/A a 1.00 / 1.00 1.00 / 1.00 SMO
0.59 / 1.00 1.00 / 1.00 1.00 / 1.00 LazyIB1
0.59 / 1.00 1.00/ 1.00 LazyIB5
0.50 / 1.00 1.00 / 1.00 1.00 / 1.00 KStar
0.59 / 1.00 1.00 / 1.00 1.00 / 1.00 LWL
0.50 / 1.00 1.00 / 1.00 J48
0.50 / 1.00 1.00 / 1.00 J48graft

N/A a 1.00 / 1.00 1.00 / 1.00 LMT
a No Answer.

• J48 and J48 graft after LLSP1;

• LazyIB5 after LLSP3.

To assess the performance of LLSP1 and LLSP3 in combination with the

corresponding classifiers with the accuracy of 100%, Table 6.18 is presented. Logistic

and LazyIB5 perform well after LLSP1 and LLSP3 respectively while LazyIB1

performs well after both LLSP1 and LLSP3.
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Table 6.18: Computational time on the test set after LLSP1 and LLSP3 for
Experiment 4.

Classifiers with LLSP1 CPU time (in seconds)
Logistic 0.01

SMO 0.14
LazyIB1 0.01

KStar 0.07
LWL 0.06
J48 0.02

J48graft 0.34
LMT 90

Classifiers with LLSP3 CPU time (in seconds)
Logistic 0.03

SMO 0.13
LazyIB1 0.01
LazyIB5 0.01

KStar 0.05
LWL 0.15
LMT 96

6.4 Comparative Performance of LLSP Approaches with Classifiers

The performance of above methods (combinations of feature extraction models

and classification algorithms) based on the aforementioned statistical metrics is

summarized in Table 6.19. Therefore no seizure segments are misclassified as non-

seizure and vice versa. A comparison of the related algorithms’ performance in

detection of epileptic seizures is presented in Table 6.20 in terms of the classification

accuracy (ACC). Further, it should be noted that the total accuracy of the proposed

methods in this work is improved in the case of all experiments.
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Table 6.19: Performance of proposed methods based on corresponding statistical
measures.

Method Experiment Sensitivity Specificity FPR FNR
LLSP3+Logistic, LazyIB1 1 1 1 0 0

LLSP1+LazyIB1, J48 2 1 1 0 0
LLSP3+LazyIB5 2 1 1 0 0

LLSP1+Logistic, LazyIB1 3 1 1 0 0
LLSP3+Logistic 3 1 1 0 0

LLSP1+Logistic, LazyIB1 4 1 1 0 0
LLSP3+LazyIB1, LazyIB5 4 1 1 0 0

Table 6.20: Comparative performance based on the classification accuracy obtained by
various methods.

Method Experiment ACC (%)
Time frequency analysis-artificial neuralnetwork [91] 1 97.73
Multi-wavelet transform and approximate 1 98.27
entropy feature-MLPNN [38]
Wavelet-based sparse functional linear model [98] 1 100
DE-RBFNs ensemble [25] 1 97.60
LLSP3-Logistic, LazyIB1 (this work) 1 100
DE-RBFNs ensemble [25] 2 99.25
Discrete wavelet transform-approximate entropy (ApEn) [66] 2 96.65
Discrete wavelet transform-line length feature-MLPNN [37] 2 97.75
LLSP1-LazyIB1, J48 (this work) 2 100
Time frequency analysis [92] 3 94.50
EEG complexity and spectral analysis [54] 3 98.33
Sample entropy and extreme learning machine [79] 3 95.67
Spectral method and statistical analysis [71] 3 97.50
LLSP1-Logistic, LazyIB1 (this work) 3 100
LLSP3-Logistic (this work) 3 100
Nonlinear pre-processing filter-Diagnostic neural network [60] 4 97.2
Time frequency domain features-Recurrent neural network [80] 4 99.6
Entropy measures-Adaptive neuro-fuzzy inference system [47] 4 92.22
Chaotic measures-Surrogate data analysis [46] 4 90
Fast Fourier transform-Decision tree [69] 4 98.72
Discrete wavelet transform-Mixture of expert model [82] 4 95
Time frequency analysis-Artificial neural network [91] 4 100
Discrete wavelet transform-relative wavelet energy-MLPNN [36] 4 95.2
Discrete wavelet transform-line length feature-MLPNN [37] 4 99.6
ANN methods [17] 4 98.3
LLSP1-Logistic, LazyIB1 (this work) 4 100
LLSP3-LazyIB1, LazyIB5 (this work) 4 100
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6.5 Summary

An epileptic EEG signal has been approximated by a sine wave. Its amplitude is

approximated by a polynomial of increased degree and a spline. The parameters of the

amplitude are optimized by solving a sequence of LLSPs through a normal equations

method if the system matrix is full-rank. An SVD method is employed to solve a

sequence of LLSPs if its system matrix is rank-deficient.

The preprocessing approaches (LLSP1– 4) are used to extract the key features of

an epileptic EEG signal. Four different experiments are carried out to evaluate the

performance of the preprocessing models in the classification of an EEG signal.

A promising performance is reported based on the evaluation criteria described in

Section 3.9 of Chapter 3.

The findings of this study are summarized below. Following combinations achieved

the classification accuracy of 100%.

1. Logistic and LazyIB1 perform well with LLSP3 for Experiment 1;

2. LazyIB1 and J48 work well with LLSP1, and LazyIB5 performs well with

LLSP3 for Experiment 2;

3. Logistic performs well with LLSP1 and LLSP3, and LazyIB1 works well with

LLSP1 for Experiment 3;

4. Logistic and LazyIB5 work well with LLSP1 and LLSP3 respectively, and

LazyIB1 performs well with both LLSP1 and LLSP3 for Experiment 4.

Generally, LLSP1 and LLSP3 are fast and accurate feature extraction methods since

they are much simpler than LLSP2 and LLSP4. The best classifiers for this work

are Logistic, LazyIB1, LazyIB5 and J48. The numerical results show that most

of classifiers achieved the classification accuracy of 100% after LLSP1 except for

Experiment 1 where LLSP3 works well. Therefore LLSP1 carries out better in terms of

classification accuracy whereas LLSP3 performs well in terms of computational time

for this particular application.



Chapter 7
Summary and Conclusions

7.1 Summary

This chapter presents a summary of the work which was done throughout this study.

EEG measures and records human brain activities. It has an important role to

help in the diagnosis of brain diseases such as epileptic seizures. The necessity of

classification of an EEG signal is clear in biomedical research since recording of a

brain activity results in obtaining a very large and a complex set of data. Identification

of different types of EEG waveforms is a complicated problem. It needs the analysis

of large sets of EEG signals and requires a long computational time.

In classification of EEG signals, representative features of EEG recordings play

a vital role. One interesting finding is that if the extracted features from a

signal are not accurate enough to describe the original signal, the classification

algorithms do not recognize those features appropriately. Hence, the quality of the

performance of classification algorithms depends on the efficiency of the extracted

features. Consequently, the development of sophisticated feature extraction methods

can significantly enhance the performance of classification algorithms. This research

intends to develop convex optimization-based models such that an EEG signal is

approximated by a sine wave and its amplitude is approximated by a polynomial of

increased degree and a spline. Developed models are used as feature extractors in

order to detect transient events called K-complexes and seizures automatically.
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This thesis discusses the significance of convex optimization-based methods to extract

and generate the essential features of EEG signals in order to reduce the dimensionality

of the recording data and improve the performance of classification algorithms. Four

feature extraction methods are developed based on convex optimization problems. The

first two methods (LLSOM1 and LLSOM2) are linear least squares problems (LLSPs)

while the last two ones are uniform approximation problems (UOM1 and UOM2).

Most LLSPs can be solved using the system of normal equations if the corresponding

matrix is non-singular otherwise one needs to apply a more robust (and time-

consuming) approach (for example, QR decomposition and SVD). To identify

when the corresponding matrix is non-singular, the singularity verification rules are

developed for the first two methods (LLSOM1 and LLSOM2). Therefore one can

choose a more suitable method for solving the corresponding LLSPs and enhance the

efficiency of the approximation algorithms. This issue is especially important when

one needs to solve the corresponding problems repeatedly. This is the case for our

approximation algorithm where we run the experiments by assigning different values

to ω and τ rather than optimizing them (due to the corresponding optimization problem

complexity).

Consequently, the parameters of the approximated amplitudes are optimized by solving

a sequence of LLSOM1 through a normal equations method since the system matrix

is full-rank. An SVD method is employed to solve a sequence of LLSOM2 since its

system matrix is rank-deficient.

The linear programming reformulation of last two methods (UOM1 and UOM2)

that are non-smooth convex optimization problems are provided to verify that their

solutions are optimal. They are solved using the CVX software and the LINPROG

solver in MATLAB in order to optimize the parameters of the amplitude and extract

the essential features of an EEG signal.

After extracting the essential features of an EEG signal through developed models,

a range of different classifiers from WEKA is applied over the set of extracted

features. These classifiers are used to evaluate the performance of developed models

in classification of an EEG signal.
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The K-complex and epileptic seizure datasets are applied to validate the proposed

models. Further, they are compared based on the different statistical measures like

ACC, TPR, TNR, FPR, FNR, the area under the ROC curve and corresponding

computational time. Then, efficient and robust methods, best classifiers, and the

best combinations of proposed methods with classifiers are reported for each dataset

separately.

7.2 Conclusions

The numerical results demonstrate that the developed models, namely LLSOM1,

LLSOM2, UOM1 and UOM2, are robust and efficient for automatic detection of K-

complexes. They enable us to improve (in most cases) the classification accuracies

after preprocessing, while the computational time is not very high. The main

conclusions for the K-complex detection are as follows.

1. Optimization-based preprocessing approaches (OPAs) improve the classification

accuracy of all 12 classifiers, except LibSVM and RBF (for some models).

2. We observe that most classifiers produce similar classification accuracies when

only one feature (frequency ω) is used in the classification stage after OPAs

(see Table 5.11). Therefore the frequency (ω) is an essential feature for all

classification methods.

3. LLSOM1 and LLSOM2 perform better with splines than polynomials.

4. The combination of LLSOM2 and SMO (45 features) with an accuracy of 84%

gives the best classification accuracy result when a spline is approximated as an

amplitude.

5. The highest quality classifier is LazyIB5 after LLSOM2 (involving a spline) in

terms of the area under the ROC curve with the value of 0.906.

6. LLSOM1 and LLSOM2 are fast and accurate since they are much simpler than

UOM1 and UOM2.

7. UOM1 and UOM2 are computationally expensive therefore they are not efficient

to apply over large scale datasets such as epileptic seizure datasets.
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The singularity of the system matrices obtained from LLSOM1 and LLSOM2 are

analyzed. The main difference between these two models is that in LLSOM2,

the signal is shifted vertically (signal biasing) by a polynomial and a spline. The

corresponding optimization problems can be formulated as linear least squares

problems (LLSPs). If the system matrix is non-singular, then, the corresponding

problem can be solved inexpensively and efficiently while for singular cases, slower

(but more robust) methods have to be used. To choose a better suited method

for solving the corresponding LLSPs we have developed singularity verification

rules. In this thesis, we develop necessary and sufficient conditions for non-

singularity of LLSOM1, and sufficient conditions for non-singularity and singularity of

LLSOM2. Consequently, the system matrices obtained from LLSOM1 and LLSOM2

are full-rank and rank-deficient respectively. These conditions can be verified much

faster than the direct singularity verification of the system matrices. Therefore the

algorithm efficiency can be improved by choosing a suitable method for solving the

corresponding LLSPs.

Since UOM1 and UOM2 are not as efficient as LLSOM1 and LLSOM2 for large

scale datasets then, they are not considered for the EEG epileptic datasets. The

preprocessing approaches (developed models), namely LLSOM1 and LLSOM2, are

used to extract the essential features of an epileptic EEG signal. For simplicity,

LLSOM1 with a polynomial and a spline as the amplitudes is referred to LLSP1 and

LLSP3 respectively. In addition, LLSOM2 with a polynomial and a spline is referred to

LLSP2 and LLSP4 respectively. Four different experiments are carried out to evaluate

the performance of the preprocessing models in the classification of an EEG signal in

presence of seizures.

In the study of signal approximation, the splines with fixed knots are preferable to the

higher degree polynomials in order to approximate an amplitude, due to the fact that

• higher degree polynomials are unstable functions,

• splines are suitable candidates to describe abrupt changes in the amplitude and

• OPAs involving splines had spent the least time to extract the essential features

of an EEG signal.
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Subsequently, LLSOM1 and LLSOM2 (LLSP1 and LLSP3) are promising models to

generate and extract the essential features of an EEG signal. The main conclusions for

classification of an epileptic EEG signal are as follows.

• LLSP1 and LLSP3 are fast and accurate feature extraction methods because they

are much simpler than LLSP2 and LLSP4.

• The best classifiers are Logistic, LazyIB1, LazyIB5 and J48.

• Most of classifiers achieved the ACC of 100% after LLSP1 except for

Experiment 1 where LLSP3 performs well.

• In Experiment 1, LLSP3 is a very promising feature extraction method.

• In Experiments 2 to 4, LLSP1 performs better in terms of classification accuracy

while LLSP3 carries out better in terms of computational time.

7.3 Suggestions for Future Work

This research work can be extended along the following research directions.

• Study the shape of the residuals to be able to find a suitable function for the

vertical shift approximation.

• Further development of necessary (if possible) and sufficient conditions for non-

singularity of LLSOM2.

• The development of more flexible models where vertical shift (signal biasing)

splines do not have the same degrees and knot locations as they have in the main

spline.

• Develop analytical optimality conditions to UOM2. The optimality conditions

for UOM1 is developed by Sukhorukova and Ugon in 2016 [85].

• Develop a classifier based on the mean frequencies for targeted and non-targeted

classes. More detail is provided in Appendix A.

• The extension of the results to the case when other types of functions

(not necessary polynomial splines) are used to construct the corresponding

approximations.
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Appendix A
Development of MeanFreq as a
Classifier

The numerical experiments of Chapter 5 demonstrate that the frequency (ω) is an

essential feature for automatic detection of K-complexes. Therefore we kept the

frequency as the only feature of an EEG signal instead of m1n + 1 and 2m1n + 2

features of LLSOM1, UOM1 and LLSOM2, UOM2 respectively. Table A.1 presents

the classification accuracies of K-complexes after optimization-based preprocessing

approaches (LLSOM1, LLSOM2, UOM1 and UOM2) based on the frequency (ω, one

feature). The important observation is that the classification accuracies are consistent

in each of optimization methods after feature extraction. The performance of all

classifiers is similar to each other. The most accurate optimization method is LLSOM2

regardless of the number of essential features extracted. These facts encourage us to

develop a classifier called “MeanFreq” based on the mean frequency for K-complexes

and non-K-complexes.

First, this classifier evaluates the mean frequency for both classes (K-complex and non-

K-complex) on the training set segments. Second, it calculates the threshold value for

the mean frequency (TMF) as the average of the mean frequencies for K-complexes

and non-K-complexes (see Table A.2, TMF). Finally, it assigns all the test set segments

with the frequency less than or equal to the calculated threshold to the class with K-

complexes, otherwise to the class without K-complexes. Despite the simplicity of

“MeanFreq”, it produces very reasonable results, especially in the case of UOM1 with
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the accuracy of 74%.

Table A.1: Classification accuracy on the test set for the preprocessed dataset, one
feature (ω).

Classifiers LLSOM1 LLSOM2 UOM1 UOM2
LibSVM 74% 79% 53% 79%
Logistic 74% 79% 53% 74%

RBF Network 74% 79% 53% 74%
SMO 74% 79% 53% 74%

LazyIB1 74% 79% 53% 74%
LazyIB5 74% 79% 53% 79%

KStar 74% 79% 53% 74%
LWL 74% 79% 53% 74%
OneR 74% 79% 53% 74%
J48 74% 79% 47% 74%

J48graft 74% 79% 47% 74%
LMT 74% 79% 53% 79%

MeanFreq 68% 68% 74% 58%

Table A.2: Numerical results on optimization-based preprocessing.

Optimisation Models LLSOM1 LLSOM2 UOM1 UOM2
CPU time (in seconds) 21 346 2654 4270

MFK a 1.1000 1.1000 1.1000 2.1323
MFNK b 1.6385 1.7667 2.2538 3.5615
TMF c 1.4810 1.5167 1.8286 3.0190

a Mean Frequency for K-complexes (all instances).
b Mean Frequency for non-K-complexes (all instances).
c Threshold value for the mean frequency (on the training set).


