

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Xu, J., Liu, C., & Zhao, X. (2008). Resource allocation vs. business process
improvement: how they impact on each other.

Originally published in M. Dumas, M. Reichert, & M.-C. Shan (eds.) Proceedings
of the 6th International Conference on Business Process Management, BPM

2008, Milan, Italy, 02-04 September 2008.
Lecture notes in computer science (Vol. 5240, pp. 228–243). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-540-85758-7_18

Copyright © Springer-Verlag Berlin Heidelberg 2008.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

Resource Allocation vs. Business Process Improvement:
How They Impact on Each Other

Jiajie Xu, Chengfei Liu, and Xiaohui Zhao

Centre for Information Technology Research
Faculty of Information and Communication Technologies

Swinburne University of Technology
Melbourne, Australia

{jxu, cliu, xzhao}@groupwise.swin.edu.au

Abstract. Resource management has been recognised as an important topic for
the execution of business processes since long time ago. Yet, most exiting
works on resource allocation have not paid enough attentions to process
characteristics, such as structural and task dependencies. Furthermore, no effort
has been made on optimising resource allocation by improving business
processes. To address this issue, we propose an approach that optimises the use
of resources in an enterprise by exploring the structural features of a business
process and adapting the structures of the business process to better fit the
resources available in the enterprise. After a motivating example, we describe a
role-based business process model for resource allocation. Then we present
strategies for resource allocation optimisation and discuss the relationship
between resource allocation and business process improvement. A set of
heuristic rules are discussed and algorithms based on these rules are designed
for optimising resource allocation with a particular optimisation goal.

1 Introduction

Business Process Management (BPM) is aimed to investigate how to help enterprises
improve their business processes, and thereby enable enterprises to achieve their
business goals with lower cost, shorter time and better quality. Nowadays business
process management systems [10] have been widely used in many business scenarios.
Because the execution of business processes depends on the available resources, the
performance of a business process is subject to the degree of match between the given
resources and the structure of the business process. When the structure of a business
process is fixed, the business process performance, in terms of cost and time, may
vary greatly with different resource allocation plans. To this end, several works have
addressed the impact of business process structures on resource management [2, 4, 7].

We reckon that resource allocation and business process impact on each other.
Structures of business process set a constraint on how resources are allocated to tasks
due to the dependency. However, it is possible that a business process is not well-
defined, and as a result the resources may not be utilised optimally to reach certain

business goal. It is desired that the structure of a business process is improved so that
resources can be utilised in a more optimal way. However, as far as we know, no
work has discussed this kind of improvement. In this paper, we collectively discuss
the problems of resource allocation optimisation for business processes, and resource
oriented business process improvement.

To incorporate the resource allocation into business process improvement, this
paper proposes a role-based business process model to specify the relationship
between business processes, tasks, roles and resources. Based on this model, a
comprehensive framework is established to pre-analyse and optimise the resource
allocation and business process improvement, and thereby adapt the two to the best
match. The contribution of this paper to current business process improvement and
resource allocation lies in the following aspects:
• Enable the pre-analysis on resource allocation and utilisation before the

execution of business processes, and therefore be able to check if some resource
allocation requirements can be satisfied;

• Enable the business process structure change to better optimising resource
allocation;

• Develop algorithms for allocating resources to a business process with a
particular optimisation criterion for achieving minimal cost with a certain time
constraint.

The remainder of this paper is organised as follows: Section 2 discusses our
problem for collectively optimising resource allocation and improving business
processes with a motivating example; Section 3 introduces a role based business
process model, which defines the related notions for resource allocation, and the
relationship among these notions; Two algorithms for resource allocation optimisation
and resource oriented business process improvement are presented in Section 4;
Section 5 reviews the work related to our approach, and discusses the advantages of
our approach; Lastly, Concluding remarks are given in Section 6.

2 Motivating Example

t3

t2

t1

t5

t4

t6

t7

t8
And-
split

And-
split

And-
joint

And-
joint

Fig. 1. Business process structure

We use an example to illustrate the problem that we are tackling in this paper. Figure
1 shows a business process with eight tasks and four gateways. Assume that the set of

resources used for this business process are given in Table 1 and are classified
according to roles. The cost for each role is also shown in the table. A role describes
the capability of its resources for performing certain tasks. For each task, the roles
that are capable of performing it are shown is Table 2. The time for a role to perform
a task is also indicated in the table. For example, Resources s31 and s32 can perform
role r3 at the cost of $40 per hour. Task t4 can be performed by resources of role r1
and role r4 in 2 hours and 2.5 hours, respectively.

Table 1. Resource classification

Role Cost Resource
r1 $50/hr s11, s12
r2 $25/hr s2
r3 $40/hr s31, s32
r4 $20/hr s4
r5 $25/hr s5

Table 2. Capabilities of roles

 Task
Role t1 t2 t3 t4 t5 t6 t7 t8

r1 2hr 2hr 1hr
r2 3hr 1.5hr
r3 1hr 2hr 2hr
r4 2hr 2.5hr
r5 3hr 2hr 3hr

Time and cost are two criteria to evaluate the performance of business process.
Assume resources are allocated as Figure 2(a). The time required is 7 hours, and
meanwhile the expense is $537.5. In the situation of allocation as Figure 2(b), the cost
is reduced to $465, while the execution time is increased to 9.5 hours. In reality, an
enterprise always has a time constraint on a production business process such that the
processing time is no more than a deadline. Therefore, the resource allocation is
considered to be optimised when the expense is low but the time constraint can be
satisfied. In this example, we assume the deadline is 7.5 hours. An optimised resource
allocation for this scenario is shown in Figure 2(c) where the expense is 487.5$ and
time is 7.5 hours which just satisfies the time constraint. Compared with Figure 2(c),
the allocation in Figure 2(a) is worse because it is more expensive, even though both
of them can satisfy time constraint; the allocation in Figure 2(b) is less expensive,
however, it violates the time constraint and hence not usable. Therefore, in order to
improve the performance of this business process, resources are expected to be
allocated as Figure 2(c) under the time constraint.
 However, sometimes the structure of business process may prevent resources from
being allocated in the optimised way. For instance, if the time constraint is 11.5 hours,
Figure 2(b) is the optimised allocation pattern under the business process structure.
However, because the limit of time is rather long, t1 and t2 can be done in sequential
order rather than parallel order. In other words, the business process can be changed
to a new business process as shown in Figure 3. If we choose to allocate resources as
shown in Figure 2(d), we can achieve an expense of $457.5, which is less than that in

Figure 2(b), and the time is 11.5 hours thereby satisfy the time constraint. Therefore,
based on the time requirement and available resources, business process redesign may
contribute to improve the performance of business process through enabling resource
to be allocated in a more optimised way.

Fig. 2. Resource allocation

t3

t2t1

t5

t4

t6

t7

t8
And-
split

And-
split

And-
joint

And-
joint

Fig. 3. Changed business process structure

From this example, we know that given a set of available resources, optimised
resource allocation is based on the structure of business process and the requirements
on the business process. Furthermore, a business process can be improved for the
purpose of optimising resource allocation. In summary, we expect that the following
requirements will be met in our resource allocation scheme:
• It should take into account the structural characteristics of a business process.

The structural constraints and dependencies defined in a business process must
be followed in resource allocation.

• It should guarantee the resource allocated with minimal expense within a given
period.

• When necessary, a business process may be improved for better optimising
resource allocation.

Task Resource

t1 s2
t2 s31
t3 s4
t4 s4
t5 s32
t6 s5
t7 s11
t8 s5

Task Resource

t1 s12
t2 s2
t3 s4
t4 s12
t5 s31
t6 s5
t7 s11

t8 s31

Task Resource

t1 s12
t2 s2
t3 s4
t4 s4
t5 s32
t6 s5
t7 s11
t8 s31

(a) (b) (c)

Task Resource

t1 s2
t2 s2
t3 s4
t4 s4
t5 s32
t6 s5
t7 s11
t8 s5

(d)

3 Role-based Business Process Model

In this section, a model comprising the definitions for resources, roles, tasks and
business processes is introduced to describe the relationships among these notions that
will be used in resource allocation and business process improvement.

Definition 1 (Resource). A resource s denotes an available unit for executing a
task. In real cases, a resource can be a human, a machine or a computer. In this model,
a resource has an attribute of role:
− Role indicates which group this resource is belonged to according to its position. In

this model a resource can have only one role to perform, yet a role may include
multiple resources.

Definition 2 (Role). A role r denotes a class of resources that own the same

capability. A role has an attribute of cost.
− Cost denotes the monetary cost a resource of role r is chosen to perform a task.

Cost in this model is valued by the hourly pay of the role.

A role is ‘an abstraction to define the relationship between a set of resources and

the capabilities of resources’ [2]. The resources belonging to role r may be capable to
perform several tasks, where function capable(r, t) depicts such mapping
relationships. When resource s is capable of performing t, capable(s, t) is true.
Therefore we have

capable(r, t) && r = role(s) → capable (s, t)

Definition 3 (Task). A task t is a logical unit of work that is carried out by a

resource. A task has an attribute of role:
− role defines what kind of resources can perform this task. In other words, a task

can be performed by resources that can match the role attribute of task. In this
model, one task can have many roles, so each task has a none-empty role set R:{r}.

− time is associated with a role r and a task t, specifying the duration required for r to
execute t. We denote this by a function time(r, t). When resource s of role r is used
to execute task t, time can be returned by function time(s, t).

Definition 4 (Business process). A business process represents a series of linked

tasks, which collectively describe the procedure how a business goal is achieved. The
structure of a business process p can be modelled as an directed acyclic graph in the
form of P(T, E, G, type, vs, vt), where
(1) T = {t1, t2, …, tn}, ti ∈ T (1 ≤ i≤ n) represents a task in the business process

fragment;
(2) G ={g1, g2, …, gm}, gi ∈G (1 ≤ i≤ m) represents a gateway in the business process

fragment;
(3) E is a set of directed edges. Each edge e = (v1, v2) ∈ E corresponds to the control

dependency between vertex v1 and v2, where v1, v2 ∈ T ∪ G;
(4) For each v∈ T ∪ G, ind(v) and outd(v) define the number of edges which take v

as terminating and starting nodes respectively.

(5) type: G → Type is a mapping function, where Type = { And-Joint, And-Split, Or-
Joint, Or-Split }. Therefore,

If type(g) = “And-Split” or “Or-Split” then ind(g) = 1, outd(g) > 1;
If type(g) = “And-Joint” or “Or-Joint” then ind(g) > 1, outd(g) = 1.

(6) vs is the starting node of the business process fragment, which satisfies that vs∈ T
∪ G and ind(vs) = 0;

(7) vt is the terminating node of the business process p, which satisfies that vt∈ T ∪
G and outd(vt) = 0;

(8) ∀ v∈N \ { vs, vt }, ind(v) = outd(v) = 1.

Task Role

Resource

Is capable of

Can be assigned

ComposesActs as

n

11

1

1 n

1n

Process
Comprises

Dependency Allocation
Determines

Executes

Determines

cost

1

1

1 n

has

1

n

time

Determines
Fig. 4. Business process model

Figure 4 illustrates the relationships among these definitions for resource allocation
purposes. A business process consists of a set of tasks and gateways. Each resource
performs as one role, and one role may represent multiple resources. Any task can be
executed by a set of roles, and a role may be capable of executing many tasks. When
allocating resources to tasks, the allocation is subject to the dependency due to the
structure of the process and the roles of resources. Cost is an attribute of a role, and it
denotes the money that the enterprise has to pay for resources of that role when they
are allocated to execute tasks. Time for a task to be executed is determined by which
role is assigned to perform this task.

4 Resource Allocation and Business Process Improvement

As explained in the motivating example, we set the cost and time as the resource
allocation optimisation criteria for the discussion in this paper. In this section, we first
discuss the set of basic rules that follow the optimisation criteria. Then we describe
the main data structures used for resource allocation. The main steps of our
optimisation algorithms are highlighted afterward. Finally, we present two strategies
and corresponding algorithms for resource allocation and business process
improvement.

4.1 Basic Rules

As the resource allocation problem is to search for a resource allocation scheme that
meets the requirements on cost and time. This searching process has to comply with
the following rules:

Rule 1. One resource can only serve for one task at one time. When this rule is
violated, we call it resource allocation conflict at the task.

Rule 2. The overall execution time of a business process is not allowed to exceed
the time limit. If this rule is violated, resources will be required to be reallocated for
shortening the process time.

Rule 3. Whenever possible, the expense for executing a business process should be
minimal.

In fact, Rule 3 is our optimisation objective while Rule 1 and Rule 2 are the
constraints for achieving the objective. In other words, Rule 3 is applicable under the
condition that Rule 1 and Rule 2 cannot be violated.

4.2 Data Structure

In Section 2, we introduced two tables for a business process p, the role table shown
in Table 1 and the capability table shown in Table 2. For describing our resource
allocation algorithms, we also require other two data structures: an allocation table
and a path table.

An allocation table is used to record the allocation information for each task in a
business process in the format of the following table.

Task(t) Role(r) Resource(s) Start Time(st) End Time(et)

When a task is allocated with a resource, the allocation table will be appended with a
new record, where (1) “Task” t denotes the name of task; (2) “Role” r denotes the role
that is selected for performing; (3) “Resource” s of role r is the specific resource that
is assigned to execute t; (4) “Start Time” st is the starting time of t to be executed; (5)
“End Time” et is the time t finishes. It is computed as et = st + time(t, s), where time(t,
s) denotes the time that resource s needs to execute task t.

A path table records the information of all paths from the start node vs to end node
vt on business process p.

Path(i) TaskSet(ts) Time(tm)

In the path table, “Path” i denotes the path number of this path. “TaskSet” ts records
the set of tasks belonging to path i. “Time” t denotes the total time required to execute
all the tasks in ts. Note, a task in business process p may appear in more than one path.

4.3 Resource allocation steps

As the cost and time for executing a task are unknown until it is allocated with actual

resource, the analysis on the business process performance is inevitably involved with
resource allocation. Resource allocation to tasks will be done in such an optimised
way that cost is minimal while satisfying time constraint.

According to the rules introduced in Section 4.1, optimised resource allocation for
business process is carried out by the following three steps:

(1) A basic allocation strategy will be applied to searching for a resource allocation
satisfying Rule 3 and Rule 1, which aims the minimal expense for executing a
business process with balanced allocation for all paths. Surely, no resource is
allocated to more than one task at any time.

(2) In case that the allocation scheme in Step (1) violates Rule 2, an adjustment
strategy will be applied to shorten the execution time by re-allocating resources until
time constraint is satisfied;

(3) In case that the time is less than the limit from Step (1) or Step (2), according to
Rule3, the adjustment strategy will be applied to do the resource oriented business
process improvement in order to achieve a lower expense while maintaining the time
constraint to be satisfied.

Step (1) will be discussed in Section 4.4, and Section 4.5 introduces how Step (2)
and Step (3) are carried out.

4.4 Basic allocation strategy

In the first step, we introduce the basic resource allocation strategy. The goal of this
basic strategy is first to minimise the overall expense without considering the time
limit. This strategy is achieved by two steps: Firstly, each task is allocated with a role
which makes the expense to be minimal, and allocation table is updated according to
the resource allocations. However, due to the characteristic of business process
structure, it is possible that a role is over-allocated in such a way that at a time, a
resource is allocated to perform more than one task, and hence allocation conflict is
made and Rule 1 is not satisfied. Therefore the second step is used to handle
allocation conflicts through reallocation. In this procedure, overall expense is aimed
to be minimal. Also, in order to improve efficiency, for the routings in parallel or
selective blocks, balanced time is preferred for the allocation of different paths.
 The basic resource allocation strategy is shown in Algorithm 1. Lines 1-3 initialise
several variables ntbp for nodes to be processed, pd for processed nodes and pathT for
storing all paths of the business process p. The function genPathTable(p) generates
the path table for p with time for each path set to 0. Lines 4-17 are the loop for
processing one node of the graph for p, starting from vs to vt. Function
getNextNode(ntbp) (Line 5) finds the next node v in ntbp such that v cannot be
processed before its predecessor nodes. For a task node v (Line 6), function bestRole
(v) (Line 7) returns the role of minimal expense to execute v. A heuristic rule is used
here: if two roles are capable to execute task v at same expense and one can only be
assigned to v, then this role is selected. Function allocRes(r) (Line 8) assigns a
resource s for r. When a resource of role r is allocated v, the one that is available to
perform v is selected. Lines 9-10 calculate the maximum ending time for all paths
involving v as a node. When all the required information is ready, function alloc(t, r,
s, st, et) adds a new record into the allocation table allocT. Line 11 resets the ending

time for all paths for v. After that, for either a task node or a gateway node, the
successor nodes of v will be added to ntbp, and v is removed from ntbp and added to
pd (Lines 14-16).
 To this point, each task has been allocated with a resource that is least expensive
for executing the task. However, we need to check and see if Rule 1 is violated. If so,
we have to change resources for the task at which the allocation conflict occurs.
This is achieved by calling the function conflictProc(allocT, 0, p) to check the
allocation starting from the beginning of the business process (Line 18).

Input: p
roleT

 capaT

– a business process
– the associated role table for p;
– the capability table for p.

Output: allocT – the result allocation table.

1 ntbp = { vs }; // initial value of nodes to be processed
2 pd = ∅; // set for processed nodes
3 pathT = genPathTable(p);
4 while (ntbp ≠ ∅)
5 v = getNextNode(ntbp); // get v such that pred(v)∈pd or pred(v)=∅
6 if (v∈P.T) then
7 r = bestRole(v);
8 s = allocRes(r);
9 pts = paths(v); // find all paths that involve v

10 tm = max{pts[i].time}; // maximum time for all paths in pts
11 alloc(v, r, s, tm, tm+time(r, v))→allocT;
12 for each pt in pts do pt.time += time(r, v) end for;
13 end if
14 ntbp = ntbp ∪ succ(v);
15 ntbp = ntbp \ {v};
16 pd = pd ∪ {v};
17 end while
18 call conflictProc(allocT, 0, p);
19 return allocT;

Algorithm 1. Basic allocation

Algorithm 2 is a function for resolving resource allocation conflicts.
ConflictProc(allocT, t, p) is to check conflict for tasks started after time t in the order
they appear in p. When a task v0 is checked, if conflicts exist, all conflicts involving
this task are handled. When there is only one task v1 conflict with v0 and they are in
the same nearest And block, three approaches can be made: reallocation on v0 or on v1,
or change the structure. The longest path processing time in three cases are computed
respectively and compared. Process is changed when its processing time is no less
than other cases. Otherwise, resource is reallocated at the task which leads to minimal
overall processing time. The resource that increase minimal expense but does not
increase time is preferred. If there are multiple conflicts, each of them will be handled
until there is no task conflict with v0. Each task v conflicting with v0 is selected, and

reallocation is done on the task in the longest path among those paths including v0 or
v. Function replaceRow(allocT, (v, r, s, v.st, v.st.et)) returns an allocation table that
replaces the row for v in allocT with the specified new row. Function
adjustTime(allocT, tm, p) update the start time and end time for those tasks that start
after the time tm in allocT for process p, and returns the end time of vt.

function conflictProc(allocationTable allocT, Time startTime, Process p)
timeline=startTime;
V={v | v.st ≥ startTime}
while(timeline < vt.st)
 select v0 ∈V : v0.st=min({v’.st| v’∈V})
 Vc={v’|v’.st< v0.et & v’∈V}
 timeline= v0.st;
 if (|Vc |=0) then
 V=V \{v0};
 else if((|Vc |=1& andStruc(v0, Vc [0])) then
 v1= Vc[0];
 r1=nextBestRole(v0); s1=allocRes(r1); //reallocate v0

 allocT1=replaceRow(allocT, (v0, r1, s1, v0.st, v0.st+ time (r1, v0)));
 t1 = adjustTime(allocT1, v0.st, p);
 r2=nextBestRole(v1); s1=allocRes(r2); //reallocate v1
 allocT2=replaceRow(allocT, (v1, r2, s2, v1.st, v1.st+ time(r2, v1)));
 t2 = adjustTime(allocT2, v1.st, p);
 p’=changeP(p, v0, v1); //change structure
 r3= allocT[v0].role; s3= allocT [v0].resource;
 allocT3=replaceRow(allocT, (v0, r3, s3, v2.et, v2.et+ time(r3, v0)));
 t3 = adjustTime(allocT3, v0.st, p’);
 if t3≤min(t1, t2) then p=p’; allocT=allocT3;
 else if(t2<t1) then V=V \{v0}; allocT= allocT2;
 Else V=V \{v0}; allocT= allocT1;
 end if
 else
 allocT’=allocT;
 for each v∈ Vc
 pt = longestPath(paths(v0) ∪ paths(v);
 v’= pt.Tasks∩{ v0, v };
 r’=nextBestRole(v’); s’=allocRes(r’);
 allocT=replaceRow(allocT, (v’, r’, s’, v’.st, v’.st+ time (r’, v’)));
 adjustTime(allocT, v’.st, p);
 if (v’ = v0) then V=V \{v0}; break; end if;
 end for
 end if
end while
return allocT;

Algorithm 2. Resource Allocation Conflict Resolution

Fig. 5. Allocation conflict and handling

Consider the example introduced in Section 2. The basic allocation algorithm first
comes up with an initial allocation as shown in Figure 5(a). After that, allocation
conflicts are checked. Starting from t1, each task will be checked. When t1 is examined,
we can easily detect that task t1 conflicts with t2 because they use same resource s2 in
an intervening duration. At this stage, reallocation will be applied on t1 because it is
on the longest path, and hence the overall time can be reduced and times of different
paths become more balanced. This results in the change shown in Figure 5(b).
Similarly, the conflict between t4 and t5 can be resolved by reallocating s5 with s32 as
shown in Figure 5(c).

4.5 Adjustment strategy

A time constraint is not considered in the basic strategy. As Rule 2 stated, the overall
execution time of a business process is not allowed to exceed the time limit. In case
this rule is violated, i.e., the ending time of vt in the allocation table is greater than the
time limit tmax, we have to follow Rule 2 and shorten the time until it is within tmax.
However, if the overall time is less than tmax, we may relax the time and to reduce the
expense based on possible business process improvement.
 First we discuss the adjustment strategies for the case that time constraint is
violated. We have several heuristic rules. As the overall time is dependent on the
longest path in the business process, it is more effective to adjust those tasks
belonging to the longest path. When a task t currently assigned with resource s is
reallocated with s’, both the time and cost may change accordingly. Assume ∆time
denotes the time reduced and ∆expense is expense increased. The value of
∆time/∆expense, called as compensation ratio, can be used to measure the
effectiveness of an adjustment. Obviously a higher compensation ratio is preferable
because more time can be reduced with less expense. If this adjustment is on a task
that belongs to the longest path, the overall time will be reduced accordingly.
 Algorithm 3 is designed for handling time constraint violation. The reallocation
process is done until time constraint is satisfied. Firstly, the longest path pt is selected.

Task Resource

t1 s12
t2 s2
t3 s4
t4 s4
t5 s4
t6 s5
t7 s11
t8 s5

Task Resource

t1 s2
t2 s2
t3 s4
t4 s4
t5 s4
t6 s5
t7 s11

t8 s5

Task Resource

t1 s12
t2 s2
t3 s4
t4 s4
t5 s32
t6 s5
t7 s11
t8 s5

(a) (b) (c)

In Lines 3-17, we select a task on pt to be reallocated. mcr, with 0 as initial value, is
used to record the maximal compensation ratio for each reallocation, and mallocT is
the allocation table after such a reallocation has been made. For each task v in pt, the
role rv of maximal compensation ratio (calculated by maxRatioRole(v)) for v selected,
and resource sv of rv is reallocated, and allocT’ is the allocation table to record this
reallocation in Lines 5-7. If v is in And block, this reallocation may cause allocation
conflict, hence function conflictProc(allocT’, v.st, p) is called to handle potential
resource allocation conflicts from the starting time of v. Lines 9-11 computes the
compensation ratio cr of this reallocation from overall perspective. If cr is lager than
mcr, mcr is updated to cr and mallocT is changed to allocT’ in Lines 13-14. After
compensation ratio on all the tasks in pt has been computed, allocT is updated to
mallocT and returned if time constraint is satisfied.

Input: p
allocT
pathT

tmax

- allocation table(based on business process p)
- the old allocation table
- a path table for p
- time limit

Output: allocT - new allocation table

1 while(vt.et> tmax)
2 pt = longestPath(pathT);
3 mcr=0;
4 for each v ∈ pt.Tasks
5 rv = maxRatioRole(v);
6 sv = allocRes(r);
7 allocT’=replaceRow(allocT, v, rv, sv, v.st, v.st+time(rv, v));
8 if(v is in And block) then call conflictProc(allocT’) end if;
9 et= allocT[vt].et; exp=expense(allocT[v].role, v); //previous

10 et’= adjustTime(allocT’, v.st, p); exp’=expense(rv, v); //new
11 cr=(et-et’) / (exp’-exp);
12 if(cr>mcr) then
13 mcr=cr;
14 mallocT=allocT’;
15 end if
16 end for
17 allocT=mallocT;
18 end while
19 return allocT;

Algorithm 3. Time constraint violation handling approach

Come back to the example introduced in Section 2, the outcome from Algorithm 1 is
shown in Figure 5(c), where the time constraint is violated. At this stage, adjustment
strategy must be applied in order to guarantee time constraint be satisfied. The longest
path is computed as path 1 (t1→t4→t7→t8). Therefore, reallocation will be done on
tasks on path 1. It is easy to calculate and compare the compensation ratio for
replacing each task in this path, and find that reallocation for t8, which achieve the
maximal compensation ratio. Therefore reallocation on t8 is applied and the new

allocation is shown as Figure 2(c).
 Now we discuss the adjustment strategies for the case that the overall time is less
than the time limit tmax. We also have some heuristic rules to reduce expense while
relaxing time. In Algorithm 1, the resource allocation conflict caused by two parallel
executing tasks that required same role with minimal expense but there was no
sufficient resource for allocating them was resolved by reallocating one of them with
a higher expense resource. In this scenario, actually, we could change the structure of
the process to support both of them to be assigned with the original cheapest
resources. The reduced expense through process change is usually compensated with
increased time. Therefore, it is wise to make change to those tasks that do not belong
to a long path, because a task in a long path has less room for increasing time.
 Algorithm 4 is designed for relaxing time for maximum reduction of expense.
allocT’ and p’ records the allocation table and the process structure after change, and
they are initialised with allocT and p respectively (Lines 1-2). While the end time of
allocT’ is less than tmax (Line 3), the process change is accepted (Line 22) and further
process improvement can be made based on allocT’ and p’. Process change is realized
in the following way. In the process p the shortest path pt is first selected (Line 4),
and the change is focused on task in pt. For each task v in pt (Line 5), we select a role
r by function minRatioRole(v) that looks for the maximum expense deduction with
minimum time increase (Line 6). If such a role exists and it is not used by v (Line 7),
function getTasks(r, v.st, v.et) returns the set of tasks that are within the same nearest
And block, are overlapped with v, and are assigned resources with the same role (Line
8), then Lines 9-16 finds the task mv with the minimal time in its involved longest
path. Lines 17-21 change the structure and replace the resource.

Input: p
allocT
pathT

tmax

- allocation table(based on business process p)
- the old allocation table
- a bath table for p
- time limit

Output: allocT
p

- new allocation table
- new process structure

1 allocT’=allocT; //new allocation table after reallocation, initially allocT
2 p’=p; //new process structure after reallocation, initially p
3 while(allocT’[vt.et]< tmax)
4 pt=shortestpath(PathT);
5 for each v∈pt
6 r = minRatioRole(v);
7 if(r≠null and allocT[v].role≠r)
8 ts=getTasks(r, v.st, v.et);
9 mtm= vt.et;

10 for each v’∈ts
11 ts’=longestPath(paths(v’));
12 if (ts’.time<mtm)
13 mv=v’; mtm=ts’.time;
14 end if
15 end for

16 end for
17 p’=changeP(p, v, mv);
18 s=allocRes(r);
19 allocT’= replaceRow(allocT, (v, r, s, v.st, v.st+time(r, v)));
20 call conflictProc(allocT’, v.st, p’);
21 adjustTime(allocT’, v.st, p’);
22 if(allocT’[vt.et]< tmax) then allocT=allocT’; p=p’; end if;
23 end while
24 return allocT;

Algorithm 4. Relaxation approach

For the example in Section 2, when the time constraint is 11.5 hours rather than 8,
allocation after Algorithm 3 is shown as Figure 5(c). However, t2 is not using resource
of best role due to conflict with t1, therefore, we examine if process change
contributes to expense reduction. In the new process shown as Figure 3, resource
allocation can be made as shown in Figure 2(d) and the expense is reduced. Therefore,
in this case, we adopt the changed business process structure in Figure 3 and resource
allocation in Figure 2(d).

5 Related Work and Discussion

Resource allocation is a topic related to task/workflow scheduling, which seeks the
proper execution sequence for a set of tasks to achieve specific goals. This procedure
is dependent on the resource allocated to execute the tasks. Scheduling problem has
been discussed at task level and workflow level in previous work. Task level
scheduling is based on independent tasks. Many algorithms have been proposed to
schedule tasks within the homogenous systems in previous literatures such as [12, 15].
Our paper investigates the resource allocation in a heterogeneous environment, and
for heterogeneous scheduling many work has been done. In order to reduce the
processing time, Topcuoglu, Hariri and Wu have proposed an Earliest-Finished-Time
(HEFT) algorithm in [9]. The HEFT algorithm selects the task with the highest
upward rank value at each step and assigns the selected task to the processor. This
algorithm can minimise the earliest finished time, but the cost is not considered. The
work in [6] deals with problem of scheduling tasks to minimise transition cost within
a rigid deadline for completion. A mathematical formulation and a two-phased
algorithm are introduced to solve this problem in [6]. All the works on task level
scheduling have their limit in effective resource management because they do not
follow the structure of a business process.

Compared with task scheduling, workflow scheduling is based on tasks of
compulsory execution order constraint. In [5], Johann, Euthimios and Michael have
proposed some modelling primitives to express the lower- and upper-bound of time
constraints for workflow scheduling. In addition, they have also developed the
technique for checking if time constraints are satisfied at process build and
instantiation time, and enforcing these constraints at run-time. Their work has solved
the problem of deadline constraints and provided the solution about how to avoid the

deadline violation, but this work does not include any resource allocation strategy.
Work [8, 3] has modelled the workflow with resource constraints. In the framework
of [8], workflow scheduling is under both temporal constraints and resource
constraints (composed of control constraints and cost constraints). However, this
work does not touch how to manage and allocate resource in workflow. A number of
Grid workflow management systems such as [1, 11] have proposed scheduling
algorithms to facilitate the workflow execution and minimise the execution time. Yu
and Buyya [13, 14] have considered not only execution time, but also execution cost.
In [14], Yu has proposed a genetic algorithm for scheduling scientific workflows for
utility Grid applications by minimising the execution time while meeting user’s
budget constraint. In [13], the problem of minimising the overall cost while meeting
user’s deadline constraint for the scientific workflow scheduling is also investigated.

In contrast to the previous work, the work discussed this paper is intended to
improve performance of business processes by integrating resource allocation with
business process structural improvement. Compared to existing approaches, our
approach has the following features:
• Business process improvement for providing better resource allocation. In our

approach, the structure of process can be modified to better adapt to the
resources allocation when necessary. Based on the analysis on relationship
between the types of available resource and the business process structure, such
modifications can make the process structure more effective for available
resources. In this way, resource allocation on the new process has better
performance than allocation on the old process structure.

• Resource optimisation based on business process characteristics. In our approach,
business process characteristics, which include the constraints and dependencies
pre-defined by the process structure, are preserved in the resource allocation.

• Requirement oriented resource allocation. Our approach is able to guarantee the
requirements set for resource allocation been satisfied. In this paper, time
constraints and cost requirements for a business process have been considered.

6 Conclusion

This paper discussed the problem of resource allocation for business processes. An
approach was proposed to allocate resources to tasks in such a way that the total
expense is minimal while the requirement of executing time on a business process is
satisfied. In this approach, a basic strategy is applied first to minimise total expense.
Then, an adjustment strategy is applied to modify allocation such that the time
constraint is met in a smart way. The advantage of this approach over previous
approaches lies in the relationship between the effective resource allocation and the
business process improvement. To cater for the resource allocation requirements and
available resources of an enterprise, the structure of a business process can be
changed. After the structure of the business process is changed, the performance of
the business process in terms of better utilising resources is improved.
 In the future, we plan to take more task dependencies into account in the resource
allocation and explore more structure changes of a business process.

References

1. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task
Scheduling Strategies for Workflow-based Applications in Grids. Proceedings of the 5th
International Symposium on Cluster Computing and the Grid, Cardiff, UK (2005) 759-767

2. Du, W., Eddy, G., Shan, M.-C.: Distributed Resource Management in Workflow
Environments. Proceedings of the 5th Database Systems for Advanced Applications,
Melbourne, Australia (1997) 521-530

3. Etoundi, R.A., Ndjodo, M.F.: Feature-oriented Workflow Modelling based on Enterprise
Human Resource Planning. Business Process Management Journal 12 (2006) 608-621

4. Huang, Y.-N., Shan, M.-C.: Policies in a Resource Manager of Workflow Systems:
Modeling, Enforcement and Management. Proceedings of the 15th International Conference
on Data Engineering. IEEE Computer Society, Sydney, Austrialia (1999) 104

5. Johann, E., Euthimios, P., Michael, R.: Time Constraints in Workflow Systems. Proceedings
of the 11th International Conference on Advanced Information Systems Engineering.
Springer-Verlag (1999)

6. Lee, Y.-J., Lee, D.-W., Chang, D.-J.: Optimal Task Scheduling Algorithm for Non-pre-
emptive Processing System. Proceedings of the 8th Asia-Pacific Web Conference, Vol.
3841. Springer-Verlag, Harbin, China (2006) 905-910

7. R-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating Planning and Scheduling in
Workflow Domains. Expert Systems with Applications 33 (2006) 389-406

8. Senkul, P., Toroslu, I.H.: An Architecture for Workflow Scheduling under Resource
Allocation Constraints. Information System 30 (2004) 399-422

9. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-Effective and Low-Complexity Task
Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and Distributed
Systems 13 (2002) 260-274

10. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge (2004)

11. Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of Scientific Workflows in the
ASKALON Grid Environment. SIGMOD Record 34 (2005) 56-62

12. Wu, A.S., Yu, H., Jin, S., Lin, K.-C., Schiavone, G.A.: An Incremental Genetic Algorithm
Approach to Multiprocessor Scheduling. IEEE Transactions on Parallel and Distributed
Systems 15 (2004) 824-834

13. Yu, J., Buyya, R., Tham, C.-K.: Cost-Based Scheduling of Scientific Workflow Application
on Utility Grids. International Conference on e-Science and Grid Technologies, Melbourne,
Australia (2005) 140-147

14. Yu, J., Buyya, R.: Scheduling Scientific Workflow Applications with Deadline and Budget
Constraints using Genetic Algorithms. Scientific Programming 14 (2006) 217-230

15. Zomaya, A.Y., Teh, Y.-H.: Observations on Using Genetic Algorithms for Dynamic Load-
Balancing. IEEE Transactions on Parallel and Distributed Systems 12 (2001) 899-911

