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Abstract

Quantum correlations arise from the quantum superposition in quantum states. In this thesis, we present

criteria to certify quantum correlations that are immediately applicable to experiments. They only

involve the statistics of measurable observables and are hence, state independent. Based on these

criteria, we study the monogamy of entanglement, concerned with the shareability of entanglement.

These criteria are indispensible tools in investigating quantum mechanics in macroscopic systems.

Quantum superpositions are fragile, especially so in macroscopic systems due to decoherence.

In the advent of cooling technologies and clever techniques in isolating quantum systems from its

environment, quantum states in macroscopic systems have been created. Identifying the existence

of a macroscopic quantum state is then one of the most important problems. We present a test for

quantum coherence, which of course is the source of quantumness of a quantum state. The quantum

coherence test involves an observable which is measurable in experiments. We relate the observable in

the quantum coherence test to fidelity, allowing the fidelity to be computed in experiments. The ability

to compute fidelity is important as it features in many quantum information protocols such as quantum

teleportation and quantum state transfer.

We continue the investigation of quantum mechanics in macroscopic systems by considering an

optomechanical system. It is a tangible macroscopic system that has been demonstrated to behave

quantum mechanically. In fact, quantum protocols such as quantum state transfer and quantum entan-

glement have been realised in optomechanical systems. In the analyses of the optomechanical system,

adiabatic and linearisation approximations are often employed in the literature. In this thesis, phase

space methods in the truncated Wigner and positive P representations are used. They enable optome-

chanical systems to be simulated without any approximations. In particular, we simulated specific

protocols for optomechanical quantum memory and quantum entanglement between two optomechan-

ical systems.

In the optomechanical quantum memory simulation, there are deviations in the results using phase
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space methods from the results within the linearisation approximation. Power spectral density reveals

spectral overlap between control and signal fields, which is not taken into account in analysis using

linearisation approximation. Fidelity of the output state with respect to the input state quantifies the

efficiency of optomechanical state transfer and we show how this is computed using phase space meth-

ods.

Finally, we analyse entanglement generation between two optomechanical systems that could serve

as a testing ground for Furry’s hypothesis.
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Albert Einstein was bothered by quantum entanglement. Its existence, however, is an indisputable

experimental fact. Entanglement derives from the fact that quantum superposition in quantum states

exists in nature [2–4]. Using an entangled quantum state, Einstein, together with Podolski and Rosen

pointed out the contradiction between the completeness of quantum mechanics and the intuitive notion

of local realism [5]. They considered a system of two particles where their positions are correlated

and their momenta anticorrelated. Two spatially separated detectors measure either the position or mo-

mentum of the particles. The position of one particle can be inferred from the measurement of another

particle’s position. Similarly, a measurement of one particle’s momentum allows perfect inference of

the other particle’s momentum.

At first sight, there is nothing extraordinary about these inferences. We assume both the position

and momentum of a particle have predetermined values and these quantities are said to possess physical

realities. Also, these particles should satisfy the notion of locality, in the sense where faster-than-light

information transfer/signalling is not possible. These properties of the system’s state are intuitive and

we expect them to always hold. The original EPR paper described these two properties so clearly we

quote them below [5]:

• “If, without disturbing a system, we can predict with certainty the value of a physical quantity,”

then “there exists an element of physical reality corresponding to this physical quantity.” The

element of reality represents the predetermined value for the physical quantity.

• The locality assumption postulates that no action at a distance, so that measurements at a location

B cannot immediately “disturbs” the system at a spatially separated location A.

These two premises, i.e. the existence of elements of physical reality and locality constitute what is

known as the local realism. Analysis of the EPR paper demonstrated a paradox. What we expect to

be true might not be so: Local realism seems to be violated by certain quantum states that are allowed

by quantum physics. Is it really the case that local realism does not always hold or is the formalism of

quantum mechanics incomplete?

The current (and possibly the only correct) understanding is that quantummechanics is complete, in

the sense that all predictions of quantum mechanics agree with the corresponding experimental results.

Following the argument of EPR then, it is the notion of local realism that has to be questioned. Of

course, the breakdown of local realism does not mean the absence of physical reality, but rather, our

understanding of what physical reality is has to be updated, something Einstein has not for the first time
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compelled us to do.

The philosophical debate on the objective reality and the interpretation of a quantum state are still

ongoing. At the same time, scientists embrace quantum mechanics and advance the field of quantum

information and computation. Entangled pairs of quantum particles separated by 1200 kilometers away

were recently created [6]. It is the quantum correlations that bring new paradigm in computations, and

it is essential to characterise and quantify them.

Correlations in physical states that satisfy local realism can only be established by one of the two

possible mechanisms: signalling and pre-established agreement [7–9]. Let’s first consider the sig-

nalling mechanism in a bipartite system. A party could measure an observable and communicate the

information of both the observable and its corresponding outcome to the other party. The receiving

party will carry out a measurement and the corresponding outcome is somehow influenced by the re-

ceived information such that correlation between the two parties is established. Signalling can be ruled

out by separating the two parties spacelike away and as far as we can tell, signalling is not the mecha-

nism. Or, they could establish correlated predetermined values for all possible observables before being

measured. These mechanisms are encapsulated in the hidden variables in the so-called hidden variable

models to explain quantum correlations. These variables are “hidden” because they are not given in

the description of quantum correlations in quantum physics, and serve to reveal the incompleteness of

quantum mechanics.

Quantum states that violate local realism then contain quantum correlations which cannot be ex-

plained by these two mechanisms. This statement is non-trivial and was discussed, debated and tackled

by many of the pioneers in the early days of quantum mechanics. However, it was John Bell who put

this issue to rest with his famous Bell inequality [10]. The logic behind the inequality is crystal clear,

its conclusion is irrefutable. Bell constructed a mathematical relation that has to be satisfied if local re-

alism were true. He showed that quantum mechanics violates this relation. Since the reasoning leading

to the mathematical relation is correct, the assumption must be incorrect. In his work, Bell considered

a set of observables and calculate the mathematical bound that these observables have to satisfy if the

physical states contain correlations that comply with local realism. Certain quantum states exceed the

bound and violate the inequality, which implies the assumption in the derivation of inequality is invalid;

quantum correlations have no classical explanation. There are no hidden variables to account for the

quantum correlations.

It is perhaps worth stating one of the most widely used Bell inequalities here to demonstrate the
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features of the inequality. The inequality is devised for a bipartite system, each party has two possible

measurement settings denoted by 0 and 1 with two possible outcomes for each measurement setting,

also denoted by 0 and 1. The CHSH inequality is given by [11]

E00+E01+E10�E11  2 , (1)

where Exy is the average or expectation value of the observable with measurement settings x 2 {0,1}

and y 2 {0,1} for the two parties respectively. The inequality (1) depends on the statistics of certain

observables which need not concern us here and the bound is satisfied by assuming that the statistics of

these observables come from a physical state with classical correlation. It is found that the inequality

is violated by a Bell state, defined as:

|yi= 1p
2
(|01i+ |10i) , (2)

where the state could represent, for instance, the spin state of two spin-12 particles or the polarisation

state of a pair of photons. Bell inequalities have the advantage that their derivations do not depend

on the specific physical states but rather the nature of these states and are hence general. Also, Bell

inequalities involve observables that are measurable in experiments. In this thesis, all criteria for quan-

tum correlations are derived in the same vein as a Bell inequality: A set of observables are chosen and

we find the inequality that the statistics of these observables has to satisfy, based on the assumption

of the nature of physical states we are investigating. The violation of the inequality then implies our

assumption to be false.
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Remark: It is often confusing in the literature involving jargons such as action-at-a-distance and

quantum nonlocality. The author discusses these notions below.

Action-at-a-distance is a concept that implies something that happens at one point in spacetime

can affect something else which is spacelike separated instantaneously. A physical theory might

be formulated in such a way that seems to suggest action-at-a-distance is at work. Newton’s law

of gravity is such an example. However, so far, there is no physical phenomena that exhibit this

property. In the case of the gravitational law, all action-at-a-distance can be explained by general

relativity. In quantum mechanics, action-at-a-distance does not exist too. This is because it will be

possible, for instance, to send superluminal signal using quantum correlation in a quantum state if

action-at-a-distance were true.

A physical theory that does not allow action-at-a-distance is a local one. Quantum mechanics is

a local theory; correlations in quantum states have a local origin. So, what is the claim then that

quantum mechanics is nonlocal? In order to understand the origin for this statement, consider the

Bell state (2), which is a quantum state. This state carries correlation-at-a-distance. The correlation

is preserved and observed even when the two particles are spacelike separated. This is not surprising

as correlation-at-a-distance does exist in the classical world.

Let us continue with the Bell state in Eq. (2). If spin measurements along a same, fixed axis

for both the particles are carried out, the results predicted by this quantum state are anticorrelated.

In fact, this correlation can be explained by pre-established agreement. Their values must have

been pre-determined before being measured such that they are anticorrelated and measurements only

serve to reveal this correlation. Even though quantum mechanics predicts the same result for these

measurement settings, the description of the quantum state is different. Before being measured, the

quantum state is in a quantum superposition state of the two possible states and the spin values of

these particles do not exist. The argument for nonlocality of quantum mechanics then goes as follow:

Since spin values of these particles do not exist before measurement but the anticorrelation in spin

values exists nevertheless, the measurement outcome of one spin value must have somehow affected

the measurement outcome of the other spin value. Recall that the two particles are spacelike separated

with no signalling allowed. It then seems to suggest that this quantum correlation is nonlocal in nature

and hence quantum mechanics is nonlocal.

Hence, the term “nonlocal correlations” in literature translates to mean probability distributions

that cannot be reproduced by pre-established agreement [7–9] (this will be explained in the next

section). To avoid confusion, in this thesis, we use the generic term “quantum correlations”.
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Remark: The argument for quantum nonlocality is often summarised by the collapse of wavefunc-

tions. The author takes the viewpoint that the argument for nonlocality amounts to searching for

mechanisms for the observed correlation. No mechanisms exist, as far as we can tell. It is worth

reminding the readers a few irreducible, fundamental facts of quantum mechanics. First of all, quan-

tum superposition exists and it holds true for any number of parties/modes. This is the origin of

quantum correlations. Secondly, these quantum correlations have a local nature in the sense that they

are established locally. Finally, when observables are measured, the outcomes are randomly realised,

obeying the probabilities prescribed by a quantum state.

0.1 Different classes of quantum correlations

As we consider physical states and their statistics for some observables, different assumptions can

be given to the nature of these physical states. These different assumptions form different classes

of quantum correlations. In this thesis, we consider three classes of quantum correlations, namely

quantum entanglement, EPR-steering and Bell nonlocality. We define these three classes of quantum

correlations for bipartite systems in this section.

Since quantum mechanics is probabilistic and measurement outcomes of a physical system can be

formulated in terms of probability distributions in general, we classify correlations in terms of prob-

ability distributions. Let us first establish the notation. We denote the two parties A and B with their

corresponding measurement settings mA and mB respectively. Of course, there are many settings they

can choose from. In other words, the measurement settings mA and mB are elements of the sets of pos-

sible measurements, i.e. mA 2MA and mB 2MB. Similarly, their corresponding outcomes are a 2 DA

and b 2 DB, where DA and DB are the sets of possible outcomes of measurements for party A and B

respectively. We consider the joint probability distribution because any correlations between the two

parties can be characterised by joint probability distributions. The joint probability distribution of ob-

serving outcomes a and b from measuring mA and mB is denoted by P(a,b|mA,mB). Following Scarani

[8], the set of joint probability distributions for all possible measurement outcomes for all possible

measurement settings is called the observed statistics PMA,MB :

PMA,MB = {P(a,b|mA,mB) , a 2 DA, b 2 DB}mA2MA,mB2MB
(3)

This set contains MAMB probability distributions, where each probability distribution is specified by
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mAmB numbers. Of course, the observed statistics must arise from a physical state.

0.1.1 Bell nonlocality

Having established the notation, we proceed to describe the joint probability distribution we can infer

from experimental measurements. Since measurements are made by both parties A and B separately,

they can each write down their probability distributions of their measurements P(a|mA) and P(b|mB)

respectively. If the joint probability distribution is a product of the separate probability distributions

P(a|mA) and P(b|mB), i.e. P(a,b|mA,mB) = P(a|mA)P(b|mB), then the two parties are not correlated.

In order to explain any correlations between the two parties, we introduce the variable l that describes

the observed correlations. The joint probability distribution for two parties with correlations between

them can then be expressed as [10]

P(a,b|mA,mB) = Â
i
P(li)P(a|mA,li)P(b|mB,li) . (4)

The observed statistics with joint probability distributions in the form (4) has a local hidden vari-

able. In local hidden variable models, the variable l serves as the local hidden variables that explain the

observed correlations. The “local” in the local hidden variable model is implicit in the expression for

the probability distributions P(a|mA,mB,li) = P(a|mA,li) and P(b|mB,mA,li) = P(b|mB,li), where

the probability distribution for the outcome a (b) only depends on the measurement settingmA (mB) and

this means no signalling. In this model, correlations between the two parties are restricted to those that

arise from the pre-established agreement mentioned in the previous section. When the observed statis-

tics admit no local hidden variable, the physical state that gives rise to the joint probability distribution

is said to be Bell nonlocal.

Bell inequalities are derived as a consequence of Eq. (4) and their violation, therefore, rules out

local hidden variable models for certain quantum states [9]. These inequalities do not rule out nonlocal

hidden variable models, where locality here is in the context of relativity theory with no signalling.

However, as mentioned previously, there is no experimental evidence for signalling and hence nonlocal

hidden variable models do not concern us here.
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0.1.2 Quantum entanglement

We saw how Bell nonlocality is defined. In that case, the probability distributions P(a|mA,l ) and

P(b|mB,l ) can be any valid probability distributions. We could restrict these probability distributions

to those that satisfy probability distributions arising from a quantum state, denoted by PQ (a|mA,l ) and

PQ (b|mB,l ). Mathematically, they are obtained using

PQ (a|mA,l ) = TrB
�

rPa
MA

⌦ I
�

, (5)

where r is the density operator characterising the quantum state of the bipartite system, Pa
MA

is a

projection operator that returns the outcome a for the measurement setting MA for the party A and the

trace is carried out on the other party B.

Now, the joint probability distribution P(a,b|mA,mB) corresponds to a physical state that is sepa-

rable if the joint probability can be expressed as

P(a,b|mA,mB) = Â
i
P(li)PQ (a|mA,li)PQ (b|mB,li) . (6)

If the observed statistics with joint probability distributions cannot be expressed in the form (6), the

corresponding physical state is a quantum entangled state.

Hence, depending on the assumption of the nature of a physical state that is reflected on the prob-

ability distributions, we obtain different classes of quantum correlations. It is straightforward to see

that Bell nonlocality is a stricter class of quantum correlations. A physical state with joint probability

that cannot be expressed in the form (6) can still, in principle, be expressed in the form (4). In other

words, a quantum entangled state could still be explained by a local hidden variable model: classical

mechanism for correlations in a quantum entangled state can be found.

Remark: Entanglement was first coined by Schrodinger [12] where a pure quantum state was con-

sidered. The detection and characterisation of entanglement in a mixed state is non-trivial and were

first studied by Werner [13], Peres [14] and Horodecki et al. [15].

0.1.3 EPR-steering

Following the same exercise as in the case of quantum entanglement, we could choose to describe

the probability distribution of one party, say A, to be any valid probability distribution P(a|mA,l )

while choosing the probability distribution of another party to come from a quantum state PQ (b|mB,l ).
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Figure 1: Different classes of quantum correlations and their relations. The Bell nonlocality has a
stronger quantum correlation that is harder to demonstrate, and hence constitutes a smaller subset of
quantum correlations. A Bell nonlocal state is also an EPR-steering state and a quantum entangled state,
which is to say these different classes of quantum correlations are not mutually exclusive. Detailed
discussions to be found in the main text.

This constitutes another class of quantum correlation which is called EPR-steering. Steering was first

considered by Schrodinger [16] in his response to the EPR paper. It is only after much later that an

experimental criterion that demonstrates steering was derived [17]. The wider concept of steering has

been developed and formalised by Wiseman et al. [18], and the term “EPR-steering” was coined in

Cavalcanti et al. [19].

In the literature, a local hidden state (LHS) is a physical state where the observed statistics has joint

probability distributions P(a,b|mA,mB) that can be expressed as [18]

P(a,b|mA,mB) = Â
i
P(li)P(a|mA,li)PQ (b|mB,li) . (7)

Of course, we could have chosen the probability distribution for party A to come from a quantum state

instead. This suggests that, unlike Bell nonlocality and quantum entanglement, EPR-steering is direc-

tional and asymmetric. This feature has led to many interesting ideas and proposals for applications,

for example the one-sided device independent quantum key distribution (QKD) [20].

Here, we discuss the relation between the three different classes of quantum correlations presented

above. The different classes arise from the different assumptions placed on the statistics of the mea-

surement outcomes. We reiterate what has been described previously. In a local hidden variable model
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(which is a classical model), the only requirement on the observed statistics is that they come from a

valid probability distribution. The joint probability distribution that cannot be expressed as Eq. (4) must

then be nonclassical and is said to be Bell nonlocal. On the other hand, a quantum state that contains

quantum entanglement cannot be explained by a separable model. In this model, we assume that the

probability distributions come from a quantum state. Since we restrict these probability distributions

to arise from a quantum state, the violation of the separable model does not rule out the local hidden

variable model, where no assumptions on the probability distributions are made. Hence, a quantum

entangled state could, in principle, be explained by a local hidden variable model. In other words,

the local hidden variable model cannot be ruled out in a quantum entangled state. In this sense, the

Bell nonlocality has a stronger nonclassicality than both the EPR-steering and quantum entanglement,

with the EPR-steering containing a stronger nonclassicality than quantum entanglement. We note that

these different classes of quantum correlations are not mutual exclusive. If a physical state is found

to demonstrate the Bell nonlocality, then the state also contains both the EPR-steering and quantum

entanglement. All discussions in this paragraph is encapsulated by a Venn diagram, as shown in Fig. 1.

0.2 Thesis rationale and overview

Studies of quantum correlations not only allow understanding of the fundamental issues in quantum

mechanics, it also has practical applications, especially in the field of quantum information and compu-

tation. Quantum entanglement is the most widely featured resource in a plethora of quantum protocols.

It is used in quantum cryptography [21–25] where entanglement allows quantum key distribution be-

tween two parties, which ensures secure encryption of messages exchanged between them. Another

astonishing protocol is quantum teleportation [26–28] where shared entanglement between two parties

is required for the transmission of quantum states with high fidelity. It is then essential to detect and

quantify quantum correlations that exist in a quantum state. This is no easy task. There is no sin-

gle universal criterion that verifies the presence of quantum correlations. To make matter worse, the

characterisation and quantification of quantum correlations in mixed states are highly non-trivial. For

instance, Werner states [13], which are mixed entangled states, do not violate any Bell inequality. More

recently, it has been shown by Opanchuk et al. [29] that continuous variable entanglement can be faked
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if the entanglement criterion is not chosen appropriately. In that work, the positive Wigner function of

a two-mode squeezed state is used to generate a string of classically correlated numbers that are sent to

two separated observers Alice and Bob. If a third party Charlie believes that the numbers are generated

using quantum optical measurement devices in a laboratory, he may use the Tan-Duan CV entanglement

criterion to incorrectly deduce that Alice and Bob share an entangled state. The work of Opanchuk et

al. [29] showed that if one party (Alice) can be trusted to report to Charlie only the results of genuine

quantum measurements, then an EPR-steering criterion can be used to certify whether entanglement is

genuinely shared between the two parties. In this context, criteria that verify stronger non-classicality

as described in the previous section are thus required to show that quantum correlations really do exist

in a quantum state. This is to do with the issue of device-independent criteria [20, 30, 31]. Hence, it

is not only important to detect the presence of quantum correlations but also to classify and quantify

them.

There are various approaches in determining and characterising different classes of quantum cor-

relations. One of the approaches involves convex analysis. We briefly describe how this approach is

used to derive criterion that certifies the Bell nonlocality for a given physical state. Criteria for other

classes of quantum correlations can be derived similarly. First, consider probability distributions in the

observed statistics in Eq. (3) that admits local hidden variable model, which can be expressed in the

form of Eq. (4). These probability distributions are elements of a set called the convex set. The prob-

lem can then be turned into a geometrical one, where elements in the convex set are now represented as

points in higher dimensional space, which form a geometrical object called polytope. For example, a

polygon is a two-dimensional polytope. Now, a hyperplane, a higher dimension plane, called the facet

can be defined. From this, a vector n normal to the facet can be found such that any point p on this facet

satisfies the relation n.p = f , where f is a number. It can be shown that for a probability distribution

that admits local hidden variable model plocal , it satisfies the inequality n.plocal  f . A probability

distribution with Bell nonlocality will then violate this inequality. For a detailed description of this ap-

proach, readers are referred to the paper of Scarani [8]. In that paper, an explicit example showing the

derivation of the CHSH inequality using this approach can be found. Note that in the derivation of the

CHSH inequality, there are only two measurement settings with two possible outcomes for each setting.

For larger number of measurement settings and outcomes, this approach has to be solved numerically.

In the case of continuous variable systems where the outcomes have continuous values, this approach

is not feasible. In summary, these approaches are rather abstract and not immediately applicable to
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experiments.

In this thesis, we devise criteria that unambiguously detect different classes of quantum correla-

tions. These criteria are similar to the EPR-Reid criterion, which is a criterion first derived by Reid

[17] to demonstrate the inconsistency between local realism and completeness of quantum mechanics.

This is where the condition of reality as discussed in the EPR paper was extended to include physi-

cal quantities that have intrinsic uncertainties. These criteria involve measurable observables and their

statistics, making them readily applicable in experiments, and are examples of EPR-steering criteria.

Recall the joint probability distributions that admit a local hidden state or a separable state. They con-

tain probability distributions that arise from quantum states as in Eq. (5) which satisfy Heisenberg

uncertainty principle. Eq. (5) suggests that the knowledge of density operator is required to obtain

the corresponding probability distribution and hence the resulting criteria will be state dependent. As

we will show in Chapter 1, the explicit quantum state does not appear in the derivation and only the

quantum nature of the state which is manifested by the Heisenberg uncertainty principle is used to

bound these quantum correlations criteria. Also, these criteria can be used to investigate other quantum

properties of a quantum state such as the monogamy of quantum entanglement, which aims to find out

the shareability of quantum entanglement.

With these criteria, we are at a better position to tackle the foundational question that is as old as

quantummechanics: Can quantum properties and quantum correlations persist in mesoscopic/macroscopic

systems? There is nothing that rules out quantum properties in macroscopic systems in the formalism

of quantum mechanics. However, we do not really observe quantum strangeness in the everyday clas-

sical world. There seems to be a border separating quantum physics from classical physics. There is a

prevailing sense that quantum physics governs the microscopic regime while the macroscopic regime

by classical physics. This idea is misleading, especially in the advent of technology where experimen-

talists are constantly attempting to coax macroscopic systems into behaving quantum mechanically.

To this end, we should mention that there are many views on what constitutes a macroscopic quan-

tum system. The most intuitive macroscopic systems are massive or large objects. These objects are

tangible and they obey classical mechanics typically. If these objects do behave quantum mechanically,

we say that they are macroscopic quantum systems. An example of such systems is an optomechanical

system. A quantum system can also be considered a macroscopic one if there are many degrees of free-

dom involved. For instance, a quantum optical system with many spatially separated modes. Here, the

system contains photons, which are massless. But they can nevertheless exhibit genuine multipartite
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entanglement and hence demonstrate quantum properties. Finally, a system can be massless and have a

small number of modes, but contains a very large number of excitations, and be considered in this sense

macroscopic (or mesoscopic). A NOON state with large N is an example of this. For a recent review

on macroscopic quantum systems, refer to Frowis et al. [32]. In this thesis, we investigate different

macroscopic quantum systems that include all of the aspects that are discussed above.

Macroscopic systems can indeed behave quantum mechanically. The reason that we do not have to

compute the wavefunction of the universe to predict the behaviour of nature is the observation that the

system of interest always interacts with its environment. These interactions can destroy any quantum

properties of the system, a mechanism known as the decoherence [33–35]. This is especially so for

macroscopic quantum systems where quantum properties of the state are fragile and sensitive to the

slightest of disturbance.

Experimentalists have successfully isolated quantum systems from the interactions with its envi-

ronment and created Schrodinger’s cat states in these systems [36–45]. To be sure that cat states are

indeed created, it is important to be able to distinguish a cat state from a statistical mixture of distin-

guishable classical states. There are many proposed measures to signify a cat state such as interference

fringes in probability distributions of certain observables [46, 47], negativity of Wigner function [41],

and fidelity [39, 48]. However, these measures either do not take into account or can not identify and

exclude all the nonideal, but more prevalent cat-like states. For example, some states that admit classi-

cal descriptions have high fidelities with respect to a macroscopic superposition state [46]. Similarly,

interference fringes do not in itself suffice to exclude all alternative classical description.

In this thesis, we show how to prove unambiguously that multiple different systems are genuinely

entangled. We study continuous-variable systems and derive criteria that could be applied to meso-

scopic massive systems. We also look at macroscopic quantum coherence, which of course, is the

reason why a cat state exists. We consider a quantum coherence test using observables that can be

measured in experiments to check for the presence of macroscopic quantum coherence. This test will

be shown to neatly relate quantum coherence with a particular quantum fidelity, which is a measure of

“closeness” between two quantum states. The ability to compute fidelity is important as it features in

many quantum information protocols such as quantum teleportation and quantum state transfer.

It is expected that it is preferable to work with ultracold systems for the creation of large cat states

that have mass. More impressively, tangible macroscopic objects in environments with relatively high

temperature have been demonstrated to behave quantum mechanically [49–57]. These are the op-



0.2 Thesis rationale and overview 15

tomechanical systems with nonlinear radiation pressure interaction between its optical and mechanical

degrees of freedom. Protocols such as state transfer [58, 59] and quantum entanglement generation

[60–62] in an optomechanical system have been realised in different implementations of the system.

A major stumbling block in the analyses of the dynamics of these optomechanical systems is that the

full quantum mechanical description required resulted in equations that are hard to solve. They are

operator equations in the Heisenberg picture, which is intrinsically nonlinear. To complicate the issue

further, thermal noises due to the interaction of the system with its environment essentially render these

operator equations intractable.

Most analyses in the literature are thus carried out under certain approximations, most notably the

linearisation approximation. The validity of this approximation relies on the weak optomechanical cou-

pling strength. For the vast majority of optomechanical experiments, the linearisation approximation

has worked well. The cases where the linearisation approximation fails are, however, interesting as

nonlinear quantum effects will arise. This is the single-photon strong coupling regime, where a sin-

gle photon is sufficient to affect the dynamics of the quantum optomechanical system. In this regime,

highly nonclassical states such as Fock and Schrodinger’s cat states can be generated in the mechanical

degree of freedom [63–68]. Other effects that require strong coupling strength include optomechanical

induced photon blockade [69], which has been proposed as a quantum simulator of the Bose-Hubbard

model, and single-photon generation of entanglement [70]. In this thesis, we present the phase space

methods in the truncated Wigner and positive P representations [71–73], where the full dynamics of the

optomechanical system can be studied without any approximations. In particular, we look at specific

protocols for optomechanical quantum memory and quantum entanglement between two optomechan-

ical systems.

In the optomechanical quantum memory protocol for storage and retrieval of a coherent state, de-

viations in our numerical results from results within the linearisation approximation were observed.

This suggested that the approximation often employed in the literature breaks down even in the weak

interaction regime where it is supposed to hold. Power spectral densities reveal large spectral overlap

between the control and signal fields, which is not taken into account in calculations with linearisation

approximation. Another essential issue in quantum memory is the efficiency of state transfer. In most

experiments, it is the power spectral densities that are recorded. From a power spectral density, the

energy of the stored state is then inferred. The phase information of the state is, however, lost in this

method. A more suitable measure is the quantum fidelity. We discuss the numerical computations of the
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fidelity using phase space methods, and determine parameter regimes for which a fidelity is genuinely

sufficient for the realisation of a quantum memory.

We continue the investigation of quantum mechanics in macroscopic systems by considering quan-

tum entanglement between two optomechanical systems. The proposal involves well-established tech-

niques in generating entanglement using parametric down-conversion and subsequently transfers the

entanglement to two spatially separated optomechanical systems. Using an entanglement criterion, we

can determine the experimental parameters and conditions of the environment under which entangle-

ment between the two optomechanical systems is still feasible. It is of interest to generate a long-lived

entanglement between the oscillators. This will be useful for quantum network applications and may

also provide a way to test the existence of entanglement between spatially separated yet large mas-

sive objects. It was conjectured by Furry that such entanglement may be subjected to intrinsic decay

[74]. The methods developed for the optomechanical quantum memory to store and retrieve a quantum

state using a pulsed optomechanical system are here to be extended to enable storage of entanglement.

This provides a way to test alternative quantum mechanical models that include different decoherence

mechanisms such as the Furry’s hypothesis, where the decoherence could vary with distance.

This thesis is about certifying quantum correlations and studying quantum mechanics in macro-

scopic systems, which form two parts of this thesis. The first part investigates quantum correlations

and criteria to certify these correlations. Other properties of quantum correlations such as monogamy

relations of quantum entanglement and also quantum coherence in a quantum state are studied. The

second part of the thesis deals with quantum physics in mesoscopic/macroscopic systems. In particular,

a quantum optomechanical system is studied where the optical and mechanical degrees of freedom and

interactions between them require the quantum mechanical description. Since quantum properties are

known to be extremely susceptible to decoherence, we take into account the interactions between the

quantum optomechanical system with its environment. Quantum correlations in the quantum optome-

chanical system are certified using the criteria for quantum correlations of the type presented in Part

I of this thesis. Phase space methods in the truncated Wigner and positive P representations are used

to simulate two specific protocols for optomechanical quantum memory, and quantum entanglement

between two optomechanical systems.



Part II

Quantum Correlations and Criteria





Chapter 1

Criteria for Genuine Continuous-Variable

(CV) Multipartite Entanglement

In this chapter, we investigate quantum correlations in continuous variables (CV) of a quantum opti-

cal system. In particular, we devise criteria to certify genuine multipartite entanglement, which is a

different notion from a multipartite entanglement. These criteria are derived using the Heisenberg un-

certainty principle, which provides bounds for the uncertainties of measurable conjugated observables.

A brief description of a squeezed state, which is essential in establishing quantum correlations in sub-

sequent sections, is provided in Section 1.1. In Section 1.2, we describe the specific quantum optical

system and its continuous variables, which will be used in the derivations of the criteria in Section 1.3.

In Section 1.4, we further discuss these criteria to optimise the verification of quantum correlations in

the system. Of course, no physical system is ideal and effects of losses have to be considered. This is

explained in Section 1.5. The quantities involved in the criteria derived in this chapter are also useful

in investigating certain properties of quantum correlations, such as the monogamy of quantum entan-

glement. The entanglement monogamy provides insights on the shareability of quantum correlations

among different parties in multipartite systems. This chapter is based on the work by Teh and Reid [75]

and Rosales-Zárate et al. [76].

1.1 Description of the CV quantum states

All information presented in this section should already be familiar to readers with basic knowledge

of quantum mechanics and quantum optics. Workers in the field of quantum optics might wish to skip
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this section entirely. Extensive details on the description of a quantum state of light can be found in all

quantum optics textbooks, and hence only the bare minimum needed for this thesis is presented. We

refer readers to standard quantum optics textbooks such as Walls and Milburn [77], and Drummond

and Hillery [78]. The purpose of this section is mainly to set the notation that will be used throughout

Part I of this thesis.

The standard description of a quantum optical system is used, that is a quantum optical system is

modelled as a quantum harmonic oscillator. The quantum harmonic oscillator is most often described

in the Heisenberg picture, i.e. the quantum operators involved evolve in time while quantum states are

time independent. Everything that can be known about a quantum optical system can be studied using

the non-Hermitian creation â†k and annihilation âk operators. Here, k denotes the different possible light

modes. These different modes could have different frequencies or they can have the same frequency

but with different polarisations or are spatially separated: they are distinguishable. These operators

satisfy the following commutation relation:

h

âk, â†k0
i

= dk,k0 . (1.1)

Also, these operators can be defined in terms of Hermitian quadrature operators X̂ and P̂, in an appro-

priate rotating frame, as follows:

â=
1
2
�

X̂+ iP̂
�

â† =
1
2
�

X̂� iP̂
�

, (1.2)

where X̂ and P̂ satisfy the commutation relation

⇥

X̂ , P̂
⇤

= 2i . (1.3)

The quadratures are quantities that are typically measured in quantum optical experiments with the

homodyne detection scheme.

Commutation relations are related to another fundamental notion in quantum physics - the Heisen-
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berg uncertainty principle. Mathematically, their relation follows from the inequality

DÂDB̂�

�

�

�

�

�

⌦⇥

Â, B̂
⇤↵

2i

�

�

�

�

�

, (1.4)

where Â and B̂ are operators satisfying the commutator
⇥

Â, B̂
⇤

. Physically, non-commutativity implies

uncertainties in measurement outcomes in the corresponding pair of operators/observables. A pair of

operators that do not commute is a pair of conjugated operators. Eq. (1.4) says: A pair of conjugated

observables cannot be simultaneously measured with arbitrary precision and accuracy, and the

minimal uncertainty achievable is determined by their commutation relation.

Next, we look at how a quantum state of light can be expressed in terms of the creation/annihilation

operators and the quadrature operators. In particular, we focus on squeezed states [79, 80] as they

will appear throughout the thesis. A squeezed state can be generated by a parametric down-conversion

process [81]. As we will see, the parametric down-conversion process not only produces single mode,

quantum states of light that are highly nonclassical, but also EPR entangled states [17, 82, 83]. We first

consider the degenerate parametric down-conversion process, where an intense pump field is sent into a

nonlinear medium, leading to two output fields with frequencies half that of the pump frequency. This

process is described by the Hamiltonian, in the interaction picture, as follows:

H = ih̄
k

2
�

â†â†eif � ââe�if� . (1.5)

Here, k is proportional to the pump amplitude, f is the pump phase, â and â† are the annihilation and

creation operators of the output field, respectively. The time evolution of the output mode â is obtained

from the Heisenberg equation of motion

˙̂a=� i
h̄
[â,H] = keif â†

˙̂a† =� i
h̄
⇥

â†,H
⇤

= ke�if â . (1.6)

The solutions to the above equations are

â(t) = â(0)cosh(kt)+ â† (0)eif sinh(kt)

â† (t) = â(0)e�if sinh(kt)+ â† (0)cosh(kt) . (1.7)
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The squeezing in a squeezed state becomes clear when we look at the time evolution of the correspond-

ing quadrature operators. Choosing, for instance, f = 0, we get

x̂(t) = ekt x̂(0)

p̂(t) = e�kt p̂(0) . (1.8)

The variance of the x-quadrature D2 [x̂(t)] = e2ktD2 [x̂(0)] increases while the variance of the p-quadrature
⌦

D2 [p̂(t)]
↵

= e�2kt ⌦D2 [ p̂(0)]
↵

decreases. The uncertainty in the p-quadrature is said to be squeezed.

One can, of course, choose to squeeze the uncertainty in the x-quadrature instead. This is done by

choosing f = p . The choice of the pump phase f allows squeezing in any arbitrary direction in the

quadrature phase space.

There is a more general parametric down-conversion process known as the non-degenerate paramet-

ric down-conversion. The setup is identical to the degenerate case, the only difference is the different

frequencies in the two output fields. Here, we present the Hamiltonian describing the non-degenerate

parametric down-conversion and provide the solutions without explicit calculations. The dynamical so-

lutions of this process reveal that the two output modes are entangled [17]. Indeed, the non-degenerate

parametric down-conversion process is used routinely to generate entangled pairs of photons. This

process is used in the second part of this thesis where quantum entanglement between two modes is

generated. The interaction picture Hamiltonian of the non-degenerate parametric down-conversion is

given by

H = ih̄k

�

â†b̂†eif � âb̂e�if� , (1.9)

where â and b̂ are the two output modes with different frequencies. The time evolution of the two

output modes are [17]

â(t) = â(0)cosh
�

keif t
�

+ b̂† (0)sinh
�

keif t
�

b̂(t) = b̂(0)cosh
�

keif t
�

+ â† (0)sinh
�

keif t
�

. (1.10)

The first treatment establishing these solutions as giving the EPR correlations was given by Reid [17].

The correlations are between the different quadratures of these two modes. They are neatly quantified

by criterion that involves variances of the form D2 (Xa�gxXb) and D2 (Pa+gpPb). Explicit calculations
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for these expressions can be found, for example, in the paper by Rosales-Zárate et al. [84]. A full

review of that analysis and how that treatment enabled the first realisation of continuous-variable (CV)

entanglement is given in Reid [17], Reid et al. [82] and Rosales-Zárate et al. [84]. The experimental

proposal for the generation of this EPR entangled state was first given by Drummond et al. [83] and

realised experimentally by Ou et al. [85].

The corresponding quantum state in the Schrodinger picture can be obtained [86, 87]. Expressing

in terms of photon number basis, the quantum state, known as the two-mode squeezed state, is

|yi= 1
cosh(kt)

•

Â
n=0

einf (tanhkt)2n |nia|nib . (1.11)

It is easy to see from Eq. (1.11) that the photon number of these two modes are highly correlated. For

details on how Eq. (1.11) is obtained and some properties of the two-mode squeezed state, readers are

referred to [86–88].

With the described quantum model of light, we look at two classes of quantum optical states – the

CV GHZ states and CV EPR-type states – in the next section.

1.2 CV GHZ states and CV EPR-type states

The quantum state considered by Einstein, Podolski and Rosen in 1935 to elegantly demonstrate the

contradiction between local realism and the completeness of quantum mechanics is a continuous-

variable (CV) EPR state [5]. Due to the technological limitations at that time, a CV EPR state was

not created. The CV EPR states can be created by the nondegenerate parametric down conversion as

suggested in Refs. [17, 82] and discussed in the previous section. Alternatively, the EPR states can

be created using two degenerate parametric amplifiers and a beam splitter, which was realised in the

experiment of Bowen et al. [89]. For a detailed review of the experimental realisations, readers are

referred to Ref. [90].

In 1985, Greenberger, Horne and Zeilinger [91] proposed an experiment with a tripartite quantum

state involving the spin degree of freedom of spin-12 particles, now known as the GHZ state. Their

arguments lead to a more dramatic prediction from quantum mechanics: a single measurement of the

spin values of all three particles along a fixed axis suffices to show the contradiction between quantum

mechanics and local realism [92]. The realism in the local realism falls apart: conjugated observables

have no predetermined values before they are measured or observed.
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ain,1
ain,2

aout,1

aout,2

Figure 1.1: The beam splitter with two input modes ain,1, ain,2 and two output modes aout,1, aout,2. R is
the reflectivity of the beam splitter. The beam splitter operation describing the output modes in terms
of the input modes is given in Eq. (1.12).

Paradoxes revealed by both the EPR and GHZ states have profoundly reviewed our intuition on

the physical reality; local realism is a universal truth no longer. There are many local hidden variable

theories created, attempting to explain away the predictions of quantum mechanics with hidden mech-

anisms. In the advent of quantum optical tools and techniques, CV EPR and CV GHZ states are now

generated routinely. These states hold no hidden mechanisms in their correlations that would be con-

sistent with local hidden states, and we explain how these states are generated in a multi-partite form

for a quantum optical system and discuss their properties.

1.2.1 Tripartite CV GHZ and CV EPR-type states

The creation of the CV GHZ states in a quantum optical system was first proposed by van Loock

et al. [93, 94] and realised in the experiment of Aoki et al. [95]. CV EPR-type states were created in

the experiments of Armstrong et al. [96, 97]. The experimental setup required to create these quantum

states is simple enough. The exact experimental setups for tripartite CV GHZ and CV EPR states

are shown in Figure 1.2 and Figure 1.3, respectively. Both setups involve sending squeezed lights

into beam splitters with variable reflectivities. We provide detailed calculations in terms of quantum

operators to show the properties of these quantum states. For simplicity, all quantum operators are

expressed without the “caret” symbol.

Firstly, we need to establish the operation of a beam splitter, as shown in Fig. 1.1, that is used

throughout this thesis. The beam splitter operation is a unitary operation on the incoming light modes
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Figure 1.2: Experimental setup for the CV GHZ state generation with squeezed inputs.

and is given by

aout,1 =
p
Rain,1+

p
1�Rain,2

aout,2 =
p
1�Rain,1�

p
Rain,2 . (1.12)

Here, aout,1, aout,2 are the two output modes of a beam splitter, ain,1, ain,2 are the two input modes into

the input ports of a beam splitter and R is the reflectivity of the beam splitter. In this chapter, these

mode operators correspond to modes that are distinguishable by their spatial separations.

Using Eq. (1.12), the beam splitter output modes for the configuration in Figure 1.2, in terms of the

input modes, are as follows:

a1 =
1p
3
a(in)1 +

p
2p
3
a(in)2

a2 =
1p
3
a(in)1 � 1p

3
1p
2
a(in)2 +

1p
2
a(in)3

a3 =
1p
3
a(in)1 � 1p

3
1p
2
a(in)2 � 1p

2
a(in)3 . (1.13)

The input mode a(in)1 is squeezed vacuum in the p-quadrature, while a(in)2 and a(in)3 are squeezed in the

x-quadrature.
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Expressed in terms of the quadratures, it is easy to show that

⌧

x1�
(x2+ x3)

2

�

=

r

3
2

D

x(in)2

E

! 0

hp1+ p2+ p3i=
p
3
D

p(in)1

E

! 0 (1.14)

for large squeezing. In the large squeezing limit, Eq. (1.14) implies that the tripartite CV GHZ state is

a simultaneous eigenstate of the observable x1� (x2+x3)
2 and the observable p1+ p2+ p3. Let us treat,

for a moment, xi and pi as position and momentum of the i-th particle. It is hardly surprising that we

are allowed to know, at the same time, the total momentum and some observable involving differences

in positions, without any uncertainties. The Heisenberg uncertainty principle, however, is not violated

in each mode. The quadratures of each mode still obey

DxiDpi �
�

�

�

�

h[xi, pi]i
2

�

�

�

�

. (1.15)

What is more interesting lies in the correlations between the quadratures in different modes. In the

Schrodinger picture [93], a tripartite CV GHZ state is indeed an entangled state in both the x and p

basis. However, a classical physics explanation of these correlations cannot be ruled out a priori. The

nature of these correlations cannot be determined easily. We address this issue with criteria involving

inequalities in Section 1.3.

Next, we go through the same calculation for the CV EPR-type states. As shown in Figure 1.3,

only two squeezed vacuum modes are needed rather than three. The input mode a(in)1 is squeezed in the

p-quadrature, a(in)2 is squeezed in the x-quadrature and a(in)3 is a vacuum mode. The output modes are

given by

a1 =
1p
2

h

a(in)1 +a(in)2

i

a2 =
1
2

h

a(in)1 �a(in)2

i

+
1p
2
a(in)3

a3 =
1
2

h

a(in)1 �a(in)2

i

� 1p
2
a(in)3 . (1.16)

In the case of CV EPR-type states, the correlations differ slightly from that of a CV GHZ state. Inter-



1.2 CV GHZ states and CV EPR-type states 27

Figure 1.3: Experimental setup for the CV EPR-type state generation with two squeezed input states
and a vacuum input at the second beam splitter. .

estingly, correlations between quadratures of different modes exist despite the fact that one of the input

modes is vacuum. The correlations are:

⌧

x1�
(x2+ x3)p

2

�

=
p
2
D

x(in)2

E

! 0
⌧

p1�
(p2+ p3)p

2

�

=
p
2
D

p(in)1

E

! 0 , (1.17)

for large squeezing.

It is perhaps worth stating the obvious on how Eq. (1.14) and Eq. (1.17) imply correlations in

CV GHZ and CV EPR-type states, respectively. For instance,
D

x1� (x2+x3)p
2

E

= 0 means that knowing

the values of x2 and x3 allow the inference of the value of x1. The inference is possible only if x1,x2

and x3 are correlated. Once again, the nature of these correlations in Eq. (1.14) and Eq. (1.17) are

not known yet, i.e. we cannot say, at this stage, whether these correlations are classical or quantum in

nature. This question is dealt with in Section 1.3. Another point is that any inference has uncertainty

and it depends on the degree of squeezing, with perfect inference for very large squeezing. It turns out

that these uncertainties are the key to understanding quantum correlations. Indeed, we shall see that the

uncertainties in these inferences determine the nature of the correlation of a given physical state.



28 Criteria for Genuine Continuous-Variable (CV) Multipartite Entanglement

Figure 1.4: Schematic of the generation of a 4-partite CV GHZ state.

1.2.2 N-partite CV GHZ and CV EPR-type states

The tripartite setups in Fig. 1.2 and Fig. 1.3 are easily generalized to N-partite: one simply adds

more beam splitters and squeezed input lights.

The N-partite CV GHZ state is generated using one squeezed input state and N� 1 orthogonally

squeezed input states with N� 1 beam splitters. The reflectivities of these beam splitters are chosen

such that Rn =
1

N+1�n , where n = 1,2, ...,N� 1. We provide here the explicit calculation for the 4-

partite case to show the correlations among the different parties/modes. The experimental setup for

4-partite CV GHZ state is shown in Fig. 1.4. The optical output mode operators are

a1 =

r

1
4
a(in)1 +

r

3
4
a(in)2

a2 =

r

1
4
a(in)1 �

r

1
4

r

1
3
a(in)2 +

r

2
3
a(in)3

a3 =

r

1
4
a(in)1 �

r

1
4

r

2
3

r

1
2
a(in)2 �

r

1
3

r

1
2
a(in)3 +

r

1
2
a(in)4

a4 =

r

1
4
a(in)1 �

r

1
4

r

2
3

r

1
2
a(in)2 �

r

1
3

r

1
2
a(in)3 �

r

1
2
a(in)4 . (1.18)
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Figure 1.5: Schematic of the generation of an asymmetric 4-partite EPR-type state I.

Again, in terms of the quadratures, the correlations are

⌧

x1�
(x2+ x3+ x4)

3

�

=

r

4
3

D

x(in)2

E

! 0

hp1+(p2+ p3+ p4)i=
p
4
D

p(in)1

E

! 0 , (1.19)

for large squeezing.

In contrast, the N-partite EPR-type state is generated using two orthogonally squeezed input states

and N� 2 vacuum inputs with N� 1 beam splitters. Even though only two squeezed input states are

needed for this case, correlations exist in this class of states. One might jump to the conclusion that

N-partite CV EPR states are better: only two squeezed inputs are required while the rest are merely

vacuum modes. It might be easier to generate the N-partite CV EPR states than the N-partite CV

GHZ states. But the amount of quantum correlation in these states is yet to be quantified in this thesis.

It might well be that CV EPR states contain less correlations than the CV GHZ states. We know

that quantum correlations are resources in quantum computations and the greater, the better. Hence,

measures that quantify quantum correlations are pivotal. Criteria derived in the next section shed light

on this issue.

Back to the CV EPR-type states, depending on the experimental setup, two different subtypes
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Figure 1.6: Schematic of the generation of a symmetric 4-partite EPR-type state II.

of states can be generated. We label them as the asymmetric EPR-type state I and the symmetric

EPR-type state II. These states are generated in experimental setups as shown in Fig. 1.5 and Fig.

1.6, respectively. The reflectivities of the beam splitters in these experimental setups are specifically

chosen. For asymmetric EPR-type state I, the sequence of beam splitters have reflectivities R1 =
1
2 and

Rn =
1

N�n+1 , where N is the total number of modes and n= 2,3, ...,N.

On the other hand, the beam splitter reflectivities for generating the symmetric EPR-type state II

can only be expressed clearly after setting the notation used for each mode, which we present now.

Following Fig. 1.6, there are
�N
2 �1

�

beam splitters to the right of the first beam splitter BS1 and
�N
2 �1

�

beam splitters to the left of the first beam splitter BS1, where N is the total number of modes.

Note that the number of beam splitters to the right and left of the first beam splitter BS1 are the same,

hence the choice of the name symmetric EPR-type state II. The reflectivity of the first beam splitter

BS1 is always 1
2 . The reflectivities of beam splitters to the right of BS1 are labeled as Rn, where

n = 2,3, ..., N2 and it is given by Rn =
1

N
2 �n+2 ; while the reflectivities of beam splitters to the left of

BS1 are labeled as Rn+N
2 �1, where n = 2,3, ..., N2 and Rn+N

2 �1 = Rn. Experimental details on how an

asymmetric EPR-type state II is generated and measured can be found in the paper by Armstrong et al.

[96].

In the following, we express the output modes for both the asymmetric EPR-type state I and the
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symmetric EPR-type state II. For the asymmetric EPR-type state I, the output modes are

a1 =
1p
2
a(in)1 +

1p
2
a(in)2

a2 =
1p
6
a(in)1 � 1p

6
a(in)2 +

r

2
3
a(in)3

a3 =
1p
6
a(in)1 � 1p

6
a(in)2 �

r

1
6
a(in)3 +

r

1
2
a(in)4

a4 =
1p
6
a(in)1 � 1p

6
a(in)2 �

r

1
6
a(in)3 �

r

1
2
a(in)4 . (1.20)

The corresponding correlations in quadratures can then be shown to be

hx1�
1p
3
(x2+ x3+ x4)i=

p
2hx(in)2 i ! 0

hp1+
1p
3
(p2+ p3+ p4)i=

p
2hp(in)1 i ! 0 , (1.21)

for large squeezing. Similarly, the output modes for the symmetric EPR-type state II are

a1 =
1
2
a(in)1 +

1
2
a(in)2 +

r

1
2
a(in)4

a2 =
1
2
a(in)1 � 1

2
a(in)2 +

r

1
2
a(in)3

a3 =
1
2
a(in)1 � 1

2
a(in)2 �

r

1
2
a(in)3

a4 =�1
2
a(in)1 � 1

2
a(in)2 +

r

1
2
a(in)4 , (1.22)

with correlations in the quadratures

hx1� (x2+ x3+ x4)i= 2hx(in)2 i ! 0

hp1+(p2+ p3� p4)i= 2hp(in)1 i ! 0 , (1.23)

for large squeezing.

In the next section, we derive criteria to check for genuine multipartite quantum entanglement.

These criteria are based on the statistics of continuous quadrature amplitudes that are described in this
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section. We apply these criteria to the CV GHZ states and CV EPR-type states and demonstrate the

existence of genuine multipartite quantum entanglement in these states.

1.3 Criteria for Genuine Multipartite Quantum Correlations

We address two fundamental issues in this section. The first issue: Given a quantum state, what is

the nature of its correlations (if any)? This leads to the second issue: How do we quantify quantum

correlations?

We derive criteria to check for genuine multipartite quantum entanglement for the continuous-

variable quantum optical systems described in Section 1.2. The genuine multipartite entanglement is

first defined and based on this definition, the corresponding criteria are derived.

1.3.1 Full tripartite inseparability and genuine tripartite entanglement

In order to understand and define what we mean by multipartite quantum entanglement, we start from

the standard definition of a bipartite quantum entangled state and try to extend this to the multipartite

case. For clarity and generality, density operators are used. A bipartite entangled state cannot be

expressed as product states of the two parties. A state that can be expressed as product states of all the

parties involved is called a separable state:

r = Â
i
Pir i

Ar

i
B , (1.24)

where r

i
A and r

i
B are density operators that correspond to quantum states of party A and B, respectively,

and Pi is the probability for the system to be in the state r

i
Ar

i
B. To be mathematically precise, the sum in

Eq. (1.24) is a convex linear combination/sum of separable states r

i
Ar

i
B. Physically, Eq. (1.24) means

that the state is a statistical mixture of states r

i
Ar

i
B. A quantum state is bipartite entangled if it cannot be

expressed as a separable state. Since a density operator encodes all statistics of a given physical state,

the definition of bipartite quantum entanglement here is equivalent to the definition given in terms of

joint probability distributions in Section 0.1.

It is straightforward to extend the definition in Eq. (1.24) of a bipartite entangled state to a tripartite

entangled state. To this end, a tripartite state is tripartite entangled if it cannot be expressed as a
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separable state, i.e.

r 6= Â
i
Pir i

Ar

i
Br

i
C . (1.25)

A counter-example suffices to demonstrate the inadequacy of the definition given in Eq. (1.25). We

consider a tripartite state that contains a pair of entangled parties and a party that is not correlated to

them. The tripartite system is, for instance, in the state r = rArBC; a product state of party A, rA and

bipartite entangled state rBC. A product state such as this is called a biseparable state. Even though

this state r satisfies Eq. (1.25), it cannot be a tripartite entangled state as it is obviously biseparable.

The state contains quantum entanglement but the entanglement is not shared among all three parties. It

is clear from this counter-example that all possible biseparable states have to be negated for a tripartite

entangled state. In the following, we define the notion of tripartite inseparability. A tripartite state

is full tripartite inseparable if the state cannot be expressed in any of the following set of tripartite

states:

r = Â
i

hir
i
12r

i
3

r = Â
i

hir
i
13r

i
2

r = Â
i

hir
i
23r

i
1

r = Â
i

hir
i
1r

i
2r

i
3 . (1.26)

In other words, a full tripartite inseparable state cannot be expressed as product states of the three-party

system and as any one of the biseparable states. The full tripartite inseparability was used in some

works as the definition of tripartite entanglement. It turns out that the above set of tripartite states does

not encompass all possible states to demonstrate that quantum entanglement is indeed shared among all

three parties. For instance, the state r = 1
2r12r3+

1
2r23r1 cannot be expressed in any of the tripartite

states listed in Eq. (1.26). However, it is a statistical mixture of biseparable states r12r3 and r23r1, and

hence the state cannot be tripartite entangled. We see from this example that for a tripartite state to be

entangled, full tripartite inseparability is necessary, but not sufficient. It is clear as to why full tripartite

inseparability is not sufficient as mixed states are not considered in the set of states given in Eq. (1.26).

This leads to the definition of genuine tripartite quantum entanglement. In order to be sure that
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quantum entanglement is shared among all parties, we have to rule out the possibility that the state is

in (1) any of the possible biseparable states and (2) any statistical mixture of all possible biseparable

states. Mathematically, a genuine tripartite entangled state cannot be expressed as

rBS = P1Â
R

h

(1)
R r

R
1,Qr

R
23,Q+P2Â

R0
h

(2)
R0 r

R0
2,Qr

R0
13,Q+P3Â

R00
h

(3)
R00 r

R00
3,Qr

R00
12,Q . (1.27)

Here, R,R0 and R00 differentiate between different bipartitions and the subscript Q in rQ denotes a

quantum density operator.

This definition is more general and harder to show than the full tripartite inseparability as the latter

excludes only each individual bipartition but not mixtures of them. Hence, the two different definitions

of tripartite quantum entanglement mean different things but they have been used interchangeably in

the literature. The genuine tripartite entanglement and full tripartite inseparability coincide for pure

quantum states but not for mixed states.

1.3.2 Full multipartite inseparability criteria

Before deriving the criteria for genuine multipartite entanglement in quantum optical systems, it is

instructive to look at criteria for full multipartite inseparability. They tell us what observables we

should measure and what to expect of the outcomes of these observables should the correlations in the

system be classical in nature.

Van Loock and Furusawa first derived criteria based on the definition of full multipartite insepara-

bility, the violation of which imply full multipartite inseparability. In this section, we only list down the

criteria and discuss their general features. For a three-party system, Van Loock and Furusawa consider

a set of three inequalities [1]

BI ⌘ [D(x1� x2)]2+[D(p1+ p2+g3p3)]2 � 4,

BII ⌘ [D(x2� x3)]2+[D(g1p1+ p2+ p3)]2 � 4,

BIII ⌘ [D(x1� x3)]2+[D(p1+g2p2+ p3)]2 � 4, (1.28)

which are defined for arbitrary real parameters g1, g2, and g3. They show that the inequality BI � 4

in Eq. (1.28) is satisfied by both the biseparable states r13,2 and r23,1, which implies that modes 1

and 2 are separable. Similarly, the second inequality BII � 4 is satisfied by the biseparable states r13,2



1.3 Criteria for Genuine Multipartite Quantum Correlations 35

and r12,3, while the third inequality BIII � 4 is satisfied by the biseparable states r12,3 and r23,1. It

follows that the violation of any two of the inequalities in Eq. (1.28) is sufficient to negate any of the

biseparable states r12,3, r13,2, or r23,1. The state is then a “fully inseparable tripartite entangled state”.

Let’s discuss the features of these inequalities given in Eq. (1.28). They consist of uncertainties

in observables, where these observables are linear combinations of quadratures from different modes.

The uncertainties of these observables satisfy certain lower bounds if we assume these uncertainties

arise from certain class of correlation. In other words, these bounds are answers to the question: How

big should these uncertainties be if these outcomes are due to states that belong to a certain class of

correlation? Perhaps an example will clear up any potential confusions. We consider the quantity

D
h

x1� (x2+x3)
2

i

D [p1+ p2+ p3]. Suppose that we found the lower bound for which this quantity has

to satisfy if the state is tripartite separable, and the bound is a nonzero number c. This means that any

number which is smaller than c violates the assumption used to derive the bound, which is that the state

is tripartite separable. We have seen, for example, that a CV GHZ state for large squeezing has the

following properties as given in Eq. (1.14):

⌧

x1�
(x2+ x3)

2

�

=

r

3
2

D

x(in)2

E

! 0

hp1+ p2+ p3i=
p
3
D

p(in)1

E

! 0 .

The quantity D
h

x1� (x2+x3)
2

i

D [p1+ p2+ p3] is smaller than c and CV GHZ state is tripartite insepara-

ble.

As discussed in section 1.3.1, fully inseparable tripartite entangled state is not enough to show

that entanglement is really being shared among all three parties, as the system can be in a mixture

of different biseparable states and yet violate any two of the inequalities of Eq. (1.28). However,

we can still use the same logic and techniques used here to derive criteria for the genuine tripartite

entanglement. This is presented in the next section.

For completeness, there is a product version of the van Loock-Furusawa inequalities given in Eq.
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(1.28):

SI ⌘ D(x1� x2)D(p1+ p2+g3p3)� 2,

SII ⌘ D(x2� x3)D(g1p1+ p2+ p3)� 2,

SIII ⌘ D(x1� x3)D(p1+g2p2+ p3)� 2. (1.29)

They work the same way as the sum version in Eq. (1.28), where a violation of any two of the inequal-

ities in Eq. (1.29) is sufficient to negate any of the biseparable states r12,3, r13,2, or r23,1. Having said

that, a product criterion always implies the sum criterion [75]. This can be seen with the simple identity

x2+ y2 � 2xy, which holds for any real numbers x and y. From this, the violation of a sum inequality

automatically implies the violation of a product inequality. The violation of a product inequality, how-

ever, does not imply the violation of a sum inequality. In this sense, a product inequality is a better

criterion in the verification of quantum correlations.

We see from these criteria that we have to first choose a set of linear combinations of quadratures

from different modes and look at their uncertainties. The bounds for these uncertainties are then derived

by assuming the nature of the states, depending on the class of quantum correlation we are investigating.

1.3.3 Genuine multipartite entanglement criteria

The criteria listed in the previous section consist of a set of inequalities. It is also possible to devise

criteria using only a single inequality and the derivations of criteria in this thesis belong to this class.

We now derive criteria for genuine multipartite entanglement, which rule out the possibility that a

given state is in a mixture of different biseparable quantum states. For simplicity, the criteria for genuine

tripartite entanglement are first derived. Derivation of genuine multipartite entanglement criteria in the

same fashion will be presented later.

Recall the definition of genuine tripartite entanglement as impossibility of the state to be expressed

in the form given by Eq. (1.27):

rBS = P1Â
R

h

(1)
R r

R
1,Qr

R
23,Q+P2Â

R0
h

(2)
R0 r

R0
2,Qr

R0
13,Q+P3Â

R00
h

(3)
R00 r

R00
3,Qr

R00
12,Q .

We reiterate the line of reasoning behind the derivation. Firstly, assume that the statistics of the
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measured outcomes are due to a state that can be expressed in the form in Eq. (1.27). Based on this

definition, find the corresponding inequality or bound that the statistics must satisfy. The violation of

the inequality implies false assumption and that the statistics corresponds to that of a genuine tripartite

entangled state. The quantities that are measured in a quantum optical system in this thesis are the

continuous-variable quadrature amplitudes xi, pi and the quantities that we would like to have in our

criteria have the following form:

(Du)2 =
h

D(h1x1+h2x2+ ...+hnxn)2
i

(Dv)2 =
h

D(g1p1+g2p2+ ...+gnpn)2
i

, (1.30)

where (Du)2 and (Dv)2 are the variances of u and v, respectively. xi and pi are complementary/conjugated

observables of the mode i and they do not commute. The coefficients h1, ...,hn;g1, ...,gn can be opti-

mized depending on the state and they give us information about the correlations between quadrature

amplitudes of different parties/modes for that state. The criteria will involve the sum or product of these

quantities (Du)2 and (Dv)2.

1.3.3.1 Tripartite case

The task is to derive bound for the quantity (Du)2+(Dv)2 such that the violation of the bound implies

genuine multipartite quantum entanglement. The derivation is lengthy but essential in demonstrating

the concepts and logic involved so we include them in this section. Bounds for different quantities and

also for the general N-partite case are derived using the same techniques.

Now, we present the derivation of the lower bound for (Du)2+(Dv)2 in the tripartite case, assuming

that the state is a biseparable mixture state rBS =P1 ÂR h

(1)
R r

R
1 r

R
23+P2 ÂR0 h

(2)
R0 r

R0
2 r

R0
13+P3 ÂR00 h

(3)
R00 r

R00
3 r

R00
12 ,

as given in Eq. (1.27). We dropped the subscript Q to simplify the notation, but all density operators

here are quantum density operators. Suppose that the statistics for u and v arise from the biseparable

mixture state rBS and using the Cauchy-Schwarz inequality, we obtain

42u� P1Âh

(1)
R D2uR+P2Âh

(2)
R0 D2uR0 +P3Âh

(3)
R00 D2uR00 (1.31)
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and

42v� P1Âh

(1)
R D2vR+P2Âh

(2)
R0 D2vR0 +P3Âh

(3)
R00 D2vR00 . (1.32)

Here, D2uR is the variance of h1x1+ h2x2+ h3x3 for the state r

R
1 r

R
23, D2uR0 is the variance of h1x1+

h2x2+ h3x3 for the state r

R0
2 r

R0
13 and D2uR00 is the variance of h1x1+ h2x2+ h3x3 for the state r

R00
3 r

R00
12 .

Similarly, D2vR, D2vR0 and D2vR00 are variances of g1p1+g2p2+g3p3 for the states r

R
1 r

R
23, r

R0
2 r

R0
13 and

r

R00
3 r

R00
12 , respectively. From Eq. (1.31) and Eq. (1.32), their sum satisfies

(Du)2+(4v)2 � P1Âh

(1)
R

h

(DuR)2+(DvR)2
i

+P2Âh

(2)
R0

h

(DuR0)2+(DvR0)2
i

+P3Âh

(3)
R00

h

(DuR00)2+(DvR00)2
i

. (1.33)

Next, we find the bounds for each of the individual terms
h

(DuR)2+(DvR)2
i

,
h

(DuR0)2+(DvR0)2
i

and
h

(DuR00)2+(DvR00)2
i

in the above inequality (1.33). We do that by deriving the inequality satisfied

by
�

Du
x

�2
+
�

Dv
x

�2 that corresponds to an arbitrary bipartition r

x

kmr

x

n . The variances of u
x

and v
x

are

�

Du
x

�2
= [D(hnxn)]2+[D(hkxk)]2+[D(hmxm)]2+2hkhm(hxkxmi�hxkihxmi)

= [D(hnxn)]2+[D(hkxk+hmxm)]2 (1.34)

and

�

Dv
x

�2
= [D(gnpn)]2+[D(gkpk)]2+[D(gmpm)]2+2gkgm(hpkpmi�hpkihpmi)

= [D(gnpn)]2+[D(gkpk+gmpm)]2 . (1.35)

From Eqs. (1.34) and (1.35),
�

Du
x

�2
+
�

Dv
x

�2 has the lower bound:

�

Du
x

�2
+
�

Dv
x

�2
= [D(hnxn)]2+[D(gnpn)]2+[D(hkxk+hmxm)]2+[D(gkpk+gmpm)]2

� |hngn|
[xn, pn]

2
+ |hkgk

[xk, pk]
2

+hmgm
[xm, pm]

2
|

= |hngn|+ |hkgk+hmgm| . (1.36)

The Heisenberg uncertainty principle is employed going from the first to second line.



1.3 Criteria for Genuine Multipartite Quantum Correlations 39

With the above inequality in Eq. (1.36), we consider each bipartition separately. For the biparti-

tion r1r23, we have
h

(DuR)2+(DvR)2
i

� |h1g1|+ |h2g2+ h3g3| . Similarly, for the bipartition r2r13,
h

(DuR0)2+(DvR0)2
i

� |h2g2|+ |h1g1+h3g3| and
h

(DuR00)2+(DvR00)2
i

� |h3g3|+ |h1g1+h2g2| for the

bipartition r3r12. Thus, Eq. (1.33) becomes

(Du)2+(4v)2 � P1Âh

(1)
R

h

(DuR)2+(DvR)2
i

+P2Âh

(2)
R0

h

(DuR0)2+(DvR0)2
i

+P3Âh

(3)
R00

h

(DuR00)2+(DvR00)2
i

� P1Â
R

h

(1)
R (|h1g1|+ |h2g2+h3g3|)+P2Â

R0
h

(2)
R0 (|h2g2|+ |h1g1+h3g3|)

+P3Â
R00

h

(3)
R00 (|h3g3|+ |h1g1+h2g2|)

� min{|h1g1|+ |h2g2+h3g3|, |h2g2|+ |h1g1+h3g3|, |h3g3|+ |h1g1+h2g2|} .

(1.37)

The violation of the inequality (1.37) implies genuine tripartite entanglement. Following the same idea,

we derive a set of genuine tripartite entanglement criteria. For instance, the product criterion is given

by

DuDv�min{|h1g1|+ |h2g2+h3g3|, |h2g2|+ |h1g1+h3g3|, |h3g3|+ |h1g1+h2g2|} . (1.38)

In the following, we list down the criteria that are used in this thesis to certify genuine tripartite

entanglement in continuous-variable quantum optical systems. These criteria are derived using the

same approach just presented. More details can be found in Teh and Reid [75].

Criterion (1) : The violation of inequality

BI +BII +BIII � 8 (1.39)

is sufficient to confirm genuine tripartite entanglement, where BI, BII and BIII are defined in Eq. (1.28).
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Criterion (2) : The violation of inequality

SI +SII +SIII � 4 (1.40)

is sufficient to confirm genuine tripartite entanglement, where SI, SII and SIII are defined in Eq. (1.29).

Criterion (3) : The violation of inequality



D
✓

x1�
(x2+ x3)p

2

◆�2

+



D
✓

p1+
(p2+ p3)p

2

◆�2

� 2 (1.41)

is sufficient to confirm genuine tripartite entanglement.

Criterion (4) : The violation of inequality



D
✓

x1�
(x2+ x3)p

2

◆�

D
✓

p1+
(p2+ p3)p

2

◆�

� 1 (1.42)

is sufficient to confirm genuine tripartite entanglement.

Criterion (5) : The following generalized criterion is derived above.

(Du)2+(4v)2 �min{|h1g1|+ |h2g2+h3g3|, |h2g2|+ |h1g1+h3g3|, |h3g3|+ |h1g1+h2g2|} . (1.43)

The violation of which confirms genuine tripartite entanglement.

Criterion (6) : This generalized criterion is derived above.

DuDv�min{|h1g1|+ |h2g2+h3g3|, |h2g2|+ |h1g1+h3g3|, |h3g3|+ |h1g1+h2g2|} . (1.44)

The violation of which confirms genuine tripartite entanglement. This criterion is stronger than Cri-

terion (5) as the violation of this criterion implies the violation of criterion (5). As described in the

previous section, this can be seen with the simple identity x2 + y2 � 2xy, which holds for any real

numbers x and y.

Criterion (7) : Using Eq. (1.28), there is genuine tripartite entanglement if

B̃I + B̃II � 4 (1.45)
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(or B̃I + B̃III � 4, or B̃II + B̃III � 4) is violated. Here, B̃I , B̃II and B̃III have the same expressions as

those in Eq. (1.28) but with g1 = g2 = g3 = 1.

The criteria listed above allow quantum correlations to be quantified. These criteria are sufficient,

but not necessary in showing genuine tripartite entanglement. What this means is that the violation of

a criterion is sufficient to demonstrate genuine tripartite quantum entanglement. On the other hand,

not violating a criterion does not necessarily imply the absence of genuine tripartite quantum entan-

glement. For instance, Criteria (3) and (4) are designed to check for genuine tripartite entanglement

of EPR-type states. The CV GHZ state might not violate these criteria. However, not violating these

criteria does not necessarily mean that the CV GHZ state is not genuinely tripartite entangled. This is

true for all the criteria for all different classes of quantum correlations that we derive.

We point out another feature of these criteria. When these criteria are violated, the degree of

violation, i.e. how different the value is from the bound, quantifies the amount of quantum multi-

partite EPR-type correlations. In other words, these criteria are “measures” that quantify quantum

correlations in a given quantum state, in the sense of EPR where one makes predictions at one location

based on measurements at another. As described before, the ability to quantify quantum correlations is

essential in quantum information and computing protocols. For instance, the fidelity, which measures

how “close” the output state with respect to a quantum input state, in a quantum teleportation scheme

depends on the amount of quantum correlations as the resource shared between two parties [27].

1.3.3.2 Multipartite case

We use the method in Section 1.3.3.1 for three parties to arbitrary N parties. Recall, from the derivation

of the tripartite sum inequality in Eq. (1.36), that for an arbitrary bipartition r

x

kmr

x

n , the sum inequality

is given by
�

Du
x

�2
+
�

Dv
x

�2 � |hngn|+ |hkgk+hmgm|. The right side of the inequality is a sum of two

terms: the absolute value of the gain coefficients for all the parties in one partition and the absolute

value of the gain coefficients for all the parties in another partition. For a general N-partite system,

we first identify all possible bipartitions and then write down their corresponding inequalities. This is

described explicitly in Criterion (8) below:

Criterion (8) [75] : We define u = Âi hixi and v = Âk gk pk (h1 and g1 are chosen to be 1), and denote

each bipartition by Sr�Ss where Sr and Ss are two disjoint sets of parties/modes so that their union is
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the whole set of N parties/modes. The N-partite single inequality is then

(Du)2+(Dv)2 � 2min{SB}, (1.46)

where SB is the set of the numbers
⇣

�

�

�Âhrgr
�

�

�

+
�

�

�Âhsgs
�

�

�

⌘

, where the sums involve all modes in a partic-

ular bipartition. The violation of this inequality (1.46) demonstrates genuine N-partite entanglement.

For concreteness, let’s consider the 4-partite case. The bipartitions for this case are Sr � Ss =

{123�4, 124�3, 234�1, 134�2, 12�34, 13�24, 14�23} and the corresponding set of numbers

SB is then

{|1+h2g2+h3g3|+ |h4g4| , |1+h2g2+h4g4|+ |h3g3| , |h2g2+h3g3+h4g4|+1,

|1+h2g2|+ |h3g3+h4g4| , |1+h3g3|+ |h2g2+h4g4| , |1+h4g4|+ |h2g2+h3g3|} .

Thus far, we derived criteria, first for genuine tripartite entanglement, and then genuine multipartite

entanglement. In the next section, we are concerned about how these criteria can be optimally violated,

as a function of the input state and the degree of squeezing in the input state.

1.4 Optimisation of gains

In Section 1.3.3, we discussed the quantities that are to be measured in a quantum optical experiment

involving CV GHZ states and CV EPR-type states. They are given by Eq. (1.30) and are listed below:

(Du)2 =
h

D(h1x1+h2x2+ ...+hnxn)2
i

(Dv)2 =
h

D(g1p1+g2p2+ ...+gnpn)2
i

, (1.47)

where h1, ...,hn and g1, ...,gn are real numbers that are not yet determined. Depending on the quantum

state, specific choices of these coefficients minimise the variances of quantities in Eq. (1.47). For
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instance, the tripartite CV EPR state, in the limit of large squeezing, has the following correlations:

⌧

x1�
(x2+ x3)p

2

�

=
p
2
D

x(in)2

E

! 0
⌧

p1�
(p2+ p3)p

2

�

=
p
2
D

p(in)1

E

! 0 , (1.48)

Choosing h1 = g1 = 1 and h2 = h3 = g2 = g3 = 1p
2
minimise (Du)2 and (Dv)2 and as a result, a Criteria

(5) and (6) can be violated optimally for a tripartite CV EPR state. For the case where the squeezing

of input states is finite or when there are noises in the input states, the violation of that criterion is no

longer optimal with those coefficients in the example above. Coefficients can then be chosen to reflect

the corresponding different correlations among different modes. In this sense, the criteria derived so

far are flexible and general.

Note, however, that our derivations are independent of the quantum states that these criteria certify.

The lesson here is that criteria can be violated more easily if we choose the coefficients in Eq. (1.47)

as a function of the quantum state that one wishes to certify. With that in mind, we choose the set

of coefficients h1, ...,hn and g1, ...,gn such that the variances (Du)2 and (Dv)2 are minimised, and we

expect these coefficients to depend on the amount of squeezing in the input states.

In this section, we relate the choices of these coefficients to the input states of the experimental

setups described in Section 1.2. Incidentally, both the coefficients and input states are the only control-

lable parameters in the experimental setups described in Section 1.2 (Actually, this is not quite accurate.

The beam splitter reflectivities can be changed. However, once these reflectivities are fixed, the input

modes and gain coefficients are the only free parameters.). In the preparation stage, the input modes are

characterised by their corresponding squeezing parameters; while the coefficients are electronic gains

that can be tuned in the detection stage [96].

Here, we describe how quantities in Eq. (1.47) are measured in an experiment. The quadratures

xi’s and pi’s are measured using the standard homodyne detection scheme. Appropriate electronic gains

are applied to these measured quadratures according to the set of coefficients h1, ...,hn and g1, ...,gn.

Depending on the sign of these coefficients, the outputs are then electronically summed/subtracted,

and the variances of these quantities are subsequently inferred from the noise power using spectrum

analysers.



44 Criteria for Genuine Continuous-Variable (CV) Multipartite Entanglement

1.4.1 Tripartite case

Let’s begin by considering the tripartite case. In both the experimental setups to generate CV GHZ and

EPR-type states, we choose h1 = g1 = 1. In the following, we calculate the choices of h2, h3, g2 and

g3 explicitly for the tripartite CV GHZ state. Using Eq. (1.16) that relates the output modes a j to the

input modes a(in)j :

a1 =
1p
2

h

a(in)1 +a(in)2

i

a2 =
1
2

h

a(in)1 �a(in)2

i

+
1p
2
a(in)3

a3 =
1
2

h

a(in)1 �a(in)2

i

� 1p
2
a(in)3 , (1.49)

we express the quantity D2u in terms of the input modes as below:

(Du)2 =
h

D(x1+h2x2+h3x3)2
i
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. (1.50)

Here,
⇣

Dx(in)j

⌘2
is the variance of the x quadrature of the i-th input mode. Next, we compute d

dh2
[Du]2,

which will be set to zero in order to find the optimal h2 that minimises (Du)2. We obtain

d
dh2

[Du]2 =h2
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2
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2
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h3
2
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2

◆

⇣

Dx(in)2

⌘2

+
p
2h2

✓

h2p
2
� h3p

2

◆

⇣

Dx(in)3

⌘2
. (1.51)

We note that the right side of Eq. (1.51) is identical to the expression we get for d
dh3

[Du]2. Thus,

h2 = h3 = h. Setting d
dh2

[Du]2 = 0, the optimal h2 is found to be

h=�
(Dx(in)1 )2� (Dx(in)2 )2

(Dx(in)2 )2+2(Dx(in)1 )2
, (1.52)
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where (Dx(in)1 )2 = e2r and (Dx(in)2 )2 = e�2r with r as the squeezing parameter. By carrying out the same

procedure for (Dv)2, we find g2 = g3 = g and

g=�
(Dp(in)1 )2� (Dp(in)2 )2

(Dp(in)2 )2+2(Dp(in)1 )2
, (1.53)

where (Dp(in)1 )2 = e�2r and (Dp(in)2 )2 = e2r are the variances of p quadratures of the input modes. For

large squeezing, h = � 1
2 and g = 1, which coincide with the correlations given in Eq. (1.14). The

second derivative test shows that these optimal choices of h and g minimise the variances D2u and D2v.

r CV GHZ EPR
g h g h

0 0 0 0 0
0.25 0.36 -0.27 0.33 -0.33
0.5 0.68 -0.40 0.54 -0.54
0.75 0.86 -0.46 0.64 -0.64
1 0.95 -0.49 0.68 -0.68
1.5 0.99 -0.50 0.70 -0.70
2 1.00 -0.50 0.70 -0.70

Table 1.1: Values of g and h used for the plots of Fig 1.7.

On the other hand, the set of coefficients for the CV GHZ state, using the exact procedure presented

above, are:

h=�
(Dx(in)1 )2� (Dx(in)2 )2

p
2[(Dx(in)2 )2+(Dx(in)1 )2]

g=�
(Dp(in)1 )2� (Dp(in)2 )2

p
2[(Dp(in)2 )2+(Dp(in)1 )2]

. (1.54)

The variances for the x and p quadratures of the input modes are the same as the CV GHZ state. Again,

in the large squeezing limit, we have h = � 1p
2
and g = 1p

2
, which are exactly the coefficients used in

Criterion (3) and Criterion (4) in Eq. (1.41) and Eq. (1.42), respectively.

The coefficients in Criterion (5) and Criterion (6) for both the tripartite CV GHZ and tripartite CV

EPR states are presented in Table 1.1. These coefficients are obtained from the analytical expressions
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Figure 1.7: Genuine tripartite entanglement and EPR steering detection as a function of the squeezing
parameter r. Criteria (3) and (4) are labelled as “simple” in the legend and their results are indistinguish-
able. Criteria (5) and (6) are labelled as “gen” in the legend and again their results are indistinguishable.
These criteria are normalised so that Ent < 1 implies genuine tripartite entanglement.

given in Eq. (1.52) and Eq. (1.53) for the tripartite CV GHZ state and in Eq. (1.54) for the tripartite CV

EPR state. From the Table 1.1, we see that g and h are zero when there is no squeezing. This is expected

as there are no correlations between quadratures of different modes without squeezed inputs. Also, for

the squeezing parameter r = 2, the coefficients are the same as those predicted in the large squeezing

limit, suggesting that this limit is already reached for r = 2. To get a feel for the magnitude, in the

work of Armstrong et al. [97], where the squeezing is large enough to observe both genuine tripartite

entanglement and EPR steering, the maximum squeezing achieved experimentally in the variance of an

input mode quadrature is �4.1dB, relative to the quadrature of a vacuum mode. This corresponds to a

squeezing parameter r of 0.472.

We plot the values of Criteria (3), (4), (5) and (6) in Fig. 1.7. Since these criteria have different

lower bounds, we divide the left side by the right side of these criteria and define this as Ent. This

allows different values of these different criteria to be plotted in a single figure. W normalise these

criteria such that if Ent is less than 1, genuine tripartite entanglement is certified and if Ent is less than

0.5, genuine tripartite EPR steering is certified.
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Figure 1.8: Genuine tripartite entanglement and EPR steering detection as a function of the squeezing
parameter r. Criteria (1) and (2) are labelled as “vLF sum” and “vLF product” respectively; while
Criterion (7) is labelled as “2 vLF”. These criteria are normalised so that Ent < 1 implies genuine
tripartite entanglement.
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Table 1.2: Values of gi (i = 1,2,3) for the plots of Figure 1.8. The same values are used for the sum
and product versions of the criteria.

r
g1

GHZ
g2 g3 g1

EPR
g2 g3

0 0 0 0 0 0 0
0.25 0.53 0.53 0.53 0.63 0.29 0.29
0.5 0.81 0.81 0.81 1.08 0.44 0.44
0.75 0.93 0.93 0.93 1.28 0.50 0.50
1 0.97 0.97 0.97 1.36 0.50 0.50
1.5 1.00 1.00 1.00 1.41 0.46 0.46
2 1.00 1.00 1.00 1.41 0.43 0.43

For Criterion (7) in Eq. (1.45), the coefficients in BI , BII and BIII as given in Eq. (1.28) are obtained

using the same method as described above. We list the coefficients in Criterion (7) for both the CVGHZ

and CV EPR states in Table 1.2. Based on these coefficients, we plot the values of Criteria (1), (2) and

(7) as a function of squeezing parameter r for both the CVGHZ and CV EPR states in Fig. 1.8. Identical

to Fig. 1.7, the criteria are normalised such that Ent < 1 implies genuine tripartite entanglement.

1.4.2 Multipartite case

We also obtain analytical expressions for the quantities (Du)2 and (Dv)2 for the arbitrary N-partite

case. They are obtained using exactly the same method as described in the previous section. However,

explicit calculations are tedious and not instructive to be included here, and we only present the final

expressions. For CV GHZ state, (Du)2 and (Dv)2 are expressed in terms of the variances of input modes

as follows:

(Du)2 = 1
N
[(N�1)2h2+2h(N�1)+1](Dx(in)1 )2+

(N�1)
N

[h2�2h+1](Dx(in)2 )2

(Dv)2 = 1
N
[(N�1)2g2+2g(N�1)+1](Dp(in)1 )2+

(N�1)
N

[g2�2g+1](Dp(in)2 )2 , (1.55)
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Figure 1.9: GenuineN-partite entanglement using Criterion (8) as a function of the squeezing parameter
r for the CV GHZ state.

which gives, after differentiating, the choice of

h=�
(Dx(in)1 )2� (Dx(in)2 )2

(Dx(in)2 )2+(N�1)(Dx(in)1 )2

g=�
(Dp(in)1 )2� (Dp(in)2 )2

(Dp(in)2 )2+(N�1)(Dp(in)1 )2
. (1.56)

Here (Dx(in)1 )2 = e2r , (Dx(in)2 )2 = e�2r , (Dp(in)1 )2 = e�2r and (Dp(in)2 )2 = e2r are the variances of the two

inputs into the first beam splitter. For the N = 4, the gain coefficients reduce to g= 1 and h=�1/3 in

the large r limit. In general, for g,h values satisfying |gh| 1, gh< 0, 1�2gh� 1, one can show that

the right-side of Criterion (8) reduces to 2[1+(N�3)gh]. Table 1.3 lists the coefficients g and h for the

CV GHZ state for 4, 5 and 6 parties/modes. The values of the normalised Criterion (8) for multipartite

CV GHZ state as a function of the squeezing parameter r is shown in Fig. (1.9).

The gains for the asymmetric EPR-type state I are obtained with the same method and they are

given by:
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Table 1.3: Gains for single inequality Criterion (8) for the CV GHZ. Here, h1 = g1 = 1,h2 = h3 = h4 =
h,g2 = g3 = g4 = g.

r N=4 N=5 N=6
g h g h g h

0 0 0 0 0 0 0
0.25 0.30 -0.19 0.26 -0.14 0.22 -0.12
0.5 0.61 -0.28 0.56 -0.21 0.52 -0.17
0.75 0.83 -0.31 0.79 -0.23 0.76 -0.19
1 0.93 -0.33 0.91 -0.24 0.90 -0.20
1.5 0.99 -0.33 0.99 -0.25 0.99 -0.20
2 1.00 -0.33 1.00 -0.25 1.00 -0.20

h=�
(Dx(in)1 )2� (Dx(in)2 )2

p

(N�1)[(Dx(in)2 )2+(Dx(in)1 )2]

g=�
(Dp(in)1 )2� (Dp(in)2 )2

p

(N�1)[(Dp(in)2 )2+(Dp(in)1 )2]
. (1.57)

For N = 4, the gain coefficients reduce to g= 1/
p
3 and h=�1/

p
3 at large r.

Table 1.4: Gains for the single inequality Criterion (8), as used for the asymmetric EPR-type state I.

r N=4 N=5 N=6
g h g h g h

0 0 0 0 0 0 0
0.25 0.27 -0.27 0.23 -0.23 0.21 -0.21
0.5 0.44 -0.44 0.38 -0.38 0.34 -0.34
0.75 0.52 -0.52 0.45 -0.45 0.40 -0.40
1 0.56 -0.56 0.48 -0.48 0.43 -0.43
1.5 0.57 -0.57 0.50 -0.50 0.45 -0.45
2 0.58 -0.58 0.50 -0.50 0.45 -0.45

Finally, the analytical expressions of the gain coefficients for the symmetric EPR-type state II can

be obtained in the same way. However, the expressions depend on whether the number of parties that

are involved is even or odd. We do not include them here and just list the values of these coefficients.
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Table 1.5: Gains for single inequality Criterion (8) for the symmetric EPR-type II state. Here h1 =
g1 = 1,h2 = h3 = ...= hR,g2 = g3 = ...gR,h4 = h6 = ...= hL = g4 = g6 = ...= gL.

r N=4 N=5 N=6
hR hL gR hR hL gR hR hL gR

0 0 0 0 0 0 0 0 0 0
0.25 -0.24 -0.06 0.24 -0.20 -0.06 0.20 -0.17 -0.04 0.17
0.5 -0.46 -0.21 0.46 -0.38 -0.21 0.38 -0.33 -0.15 0.33
0.75 -0.63 -0.40 0.63 -0.52 -0.40 0.52 -0.50 -0.31 0.50
1 -0.76 -0.58 0.76 -0.62 -0.58 0.62 -0.63 -0.50 0.63
1.5 -0.91 -0.82 0.91 -0.74 -0.82 0.74 -0.83 -0.75 0.83
2 -0.96 -0.93 0.96 -0.79 -0.93 0.79 -0.93 -0.90 0.93

Table 1.4 and Table 1.5 list the coefficients g and h for the asymmetric CV EPR I and the symmetric

CV EPR II states, respectively, for 4, 5 and 6 parties/modes. The normalised Criterion (8) for the

asymmetric CV EPR I state as a function of the squeezing parameter r is plotted in Fig. 1.10.

1.5 Effect of losses

The results presented thus far are for pure states that can only be generated under ideal conditions with

optimal control of the quantum system. Even if they are generated, noises and fluctuations from the

environment would inevitably degrade these idealised states, turning them into mixed states. Two main

sources of noises in the experiments are the impurity of the input squeezed states and the losses that

occur during transmission along the channels. The impurity of the input squeezed states can be taken

into account by using input states with larger quadrature variances than those predicted in theory as in

Eq. (1.8). In this section, we focus on the effect of losses.

We model the transmission losses with a simple beam splitter model that has the unitary transforma-

tions on the modes given in Eq. (1.12), such that the detected output is aout =
p

hain+
p

(1�h)avac,

where ain is the mode before loss, avac is a vacuum state and h is the transmissivity that characterise

the efficiency of the transmission or the detection process.

The effect of loss on the genuine tripartite entanglement as detected by the Criteria (5) and (6) is

shown in the Fig. 1.11 and Fig. 1.12. Fig. 1.11 shows the effect of losses in mode labelled 1 while

modes 2 and 3 are lossless; while Fig. 1.12 shows the effect of losses in modes labelled 2 and 3, without



52 Criteria for Genuine Continuous-Variable (CV) Multipartite Entanglement

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 1.10: Genuine N-partite entanglement for the asymmetric EPR-type state I, using the generalised
Criterion (8) (solid lines) for different number of parties. The dashed lines correspond to a criterion not
described in this thesis. It is derived by van Loock et. al [1] and is given by Ent = D2u+D2v

4/(N�1) . The values
of gi and hi are given in Table 1.4.
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Figure 1.11: Genuine tripartite entanglement with losses on the mode 1, using Criterion (6). The solid
curves correspond to GHZ states while + curves correspond to EPR-type states.
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Figure 1.12: Genuine tripartite entanglement with losses on the modes 2 and 3, using Criterion (6).
The solid curves correspond to GHZ states while + curves correspond to EPR-type states.

losses in mode 1. Recall that the quantity Ent < 1 implies genuine tripartite entanglement. We see that

the degree of tripartite entanglement reduces with the decreasing transmission efficiency h . However,

with large enough squeezing, genuine tripartite entanglement is still observed even for relative low

transmission efficiencies.

We also investigated the notion of quantum entanglement monogamy in these quantum optical

systems. The entanglement monogamy provides insights on the shareability of quantum entanglement.

Monogamy relations are derived and a few CV tripartite states are used to check for these monogamy

relations. These relations are found to always hold. All related results can be found in Appendix A.

Here, we just want to point out that these monogamy relations have been confirmed, for instance,

in the experiment of Bowen et al. [89]. The experiment detected continuous-variable entanglement in

a pair of beams generated using optical parametric amplifiers and a beam splitter. In that experiment,

they considered the effect of losses on a bipartite continuous-variable entanglement that is certified us-

ing a particular criterion, known as the TDGCZ entanglement certifier. In particular, they observed that

when the detection efficiency is 50%, the TDGCZ criterion is saturated. In other words, the criterion

detects no bipartite continuous-variable entanglement at that level of efficiency. Using the same exper-

imental configuration, the TDGCZ monogamy relation of Result (1) (see Appendix A) replicated this
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observation: the saturation observed in the experiment is a simple consequence of the system satisfying

the monogamy relation.

This observation is by no means the only example that can be explained by the monogamy of

entanglement. For instance, in the investigation of genuine tripartite EPR-steering in both the CV GHZ

and CV EPR-type states with losses [75], results show that no matter how large the squeezing parameter

r is, as long as the transmission efficiency is equal or less than 50%, there is no EPR-steering. Similar

to the scenario in the experiment of Bowen et al., this can be explained with the result in the work of

Reid based on monogamy relations of EPR-steering in a continuous-variable tripartite system [98].

1.6 Summary and outlook

We defined the notion of genuine multipartite continuous-variable quantum entanglement. Based on

the definition, we derived the corresponding criteria to certify genuine multipartite continuous-variable

quantum entanglement. In particular, we consider quantum states generated from quantum optical sys-

tems and apply our criteria to these states. The effect of losses in the system was also investigated.

The genuine tripartite entanglement was detected in an experiment carried out by the quantum optics

group in Australian National University (ANU) [97]. Armstrong et al. [96] devised a programmable

multimode quantum network that emulates a linear optics network, and used this to create CV tripar-

tite EPR-type states that are described in Fig. 1.3. The different quadratures of all modes were then

measured with a homodyne detection scheme, which were then used to check for the genuine tripartite

entanglement criterion (4) as given in Eq. (1.42). The minimum value of the genuine tripartite entan-

glement obtained from experimental measurements is around 0.7, which remarkably agrees with the

theoretical prediction within the error bars due to imperfect homodyne detection. This unambiguously

demonstrates genuine tripartite entanglement in a continuous-variable quantum optical system as pre-

sented in this chapter. For a review of the various experiments on the detection of continuous-variable

EPR entanglement, see Ref. [90].

It is worth briefly discussing the classes of quantum correlations not presented in this chapter. In the

criteria for genuine multipartite continuous-variable entanglement, all biseparable states in a bipartition

are quantum mechanical. They satisfy Heisenberg uncertainty principle and thus constrains and place

a bound for the uncertainties of certain observables. We can proceed the same way with genuine
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multipartite EPR-steering, with the difference that only one partition in the bipartition is quantum

mechanical and satisfies the uncertainty principle; while the other partition does not. The associated

variances in the non-quantum partition are assumed to be non-negative and hence have a lower bound

of zero. The resulting criteria will then have a smaller lower bound, which means that the certifier (the

variances of certain observables involved in the corresponding criterion) has to be lower too to violate

the inequality. In other words, stronger quantum correlations are needed to reduce the certifiers and

demonstrate genuine EPR-steering.

In the case of continuous-variable Bell nonlocality, all biseparable states in all bipartitions are non-

quantum. It is immediately obvious that the criteria of the form discussed will not rule out the hidden

local variables model as there is no uncertainty principle to provide a non-zero lower bound. We note,

however, that Bell inequalities that certify multipartite continuous-variable Bell nonlocality have been

derived, for instance, the Cavalcanti-Foster-Reid-Drummond inequalities in Ref. [99–101] and in the

case of discrete multipartite, the Svetlichny inequalities [102].

Even though the criteria presented in this chapter are for the continuous-variable case, the approach

used in deriving these criteria would also work for the discrete-variable case, where the observables

have discrete outcomes. This would require the appropriate uncertainty relations to be used. Criteria

for multipartite quantum correlations in discrete-variable high spin systems with a finite dimension

have been derived, for instance, in the works in Refs. [101, 103]. These criteria do not, however, detect

genuine multipartite entanglement. Reviews on quantum correlation criteria for the discrete-variable

case can be found in Refs. [104–106].

The publications that are relevant to this chapter are:

• R. Y. Teh and M. D. Reid, Criteria for genuine N-partite continuous-variable entanglement and

Einstein-Podolsky-Rosen steering, Phys. Rev. A 90, 062337 (2014).

• L. Rosales-Zárate, R. Y. Teh, B. Opanchuk, and M. D. Reid, Monogamy inequalities for cer-

tifiers of continuous-variable Einstein-Podolsky-Rosen entanglement without the assumption of

Gaussianity, Phys. Rev. A 96, 022313 (2017).





Chapter 2

Quantum correlations in NOON states

A Bell state |yi= 1p
2

�

|10iAB+ eif |01iAB
�

is a maximally entangled state, where |10iAB is a state with

one particle in mode A and zero particle in mode B (|01iAB is defined similarly). It is well-known that

its non-classicality cannot be demonstrated from the statistics of photon number measurements; a local

hidden variable explanation exists. A Bell inequality is required to rule out the possibility of a hidden

variable model.

A NOON state

|yNOONi =
1p
2

�

|N0iAB+ eif |0NiAB
�

(2.1)

is also a maximally entangled state. In fact, for large N, the NOON state is a Schrodinger’s cat state - a

quantum superposition of states with macroscopically different quantum number N in each mode. It is

similar to the Bell state above, but at a larger scale. Devising a way to investigate the quantum nature

of the NOON state is a challenge. Previous work has proposed Bell inequalities for the NOON state,

but so far there has been no experiment for N > 1 to our knowledge. Instead, we want to demonstrate

the EPR-steering in a NOON state. As described in Section 0.1, EPR-steering is an intermediate class

of quantum correlations between Bell nonlocality and quantum entanglement. Although a weaker

class of quantum correlation compared to Bell nonlocality, EPR-steering in a physical state is easier to

demonstrate and verify.

In Section 2.1, we look at some observables and derive criteria in terms of these observables to

show the quantum nature of a NOON state. In particular, we investigate steering, which is a stricter

quantum correlation than entanglement, in the NOON state. We do this for the ideal NOON state before
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considering the more realistic scenario where losses are taken into account.

The quantum nature of a NOON state lies in the fact that it contains quantum superposition or

quantum coherence. However, detecting and quantifying the quantum coherence in a quantum state is

nontrivial. We present a test and discuss how the observables in the test can be measured in experiments.

It turns out that this test not only detects the presence, but also quantifies, the quantum coherence in a

NOON-like state. These are to be found in Section 2.2. This chapter is based on the work by Teh et al.

[107] and Opanchuk et al. [108].

2.1 Steering inequalities for the NOON state

Let us first discuss the correlation that exists in a NOON state. It is obvious by inspection of Eq. (2.1)

that if the mode number of one of the modes is known, the mode number of the other mode is exactly

known. In other words, the variance of the observable n̂A � n̂B is zero, i.e. D2 (n̂A� n̂B) = 0. This

mathematical expression can be understood as the variance of the mode number inference of, say mode

B, given measurement outcomes of the mode number of mode A. For simplicity, we represent this

understanding as D2
in f n̂B.

Of course, to determine that the correlation in a given state is indeed of quantum nature, another

observable which is conjugated to the mode number is needed. Any observable that has a nonzero

commutation relation with the mode number will work. In this section, we propose the quadratures as

the corresponding conjugated observables. This is mainly because quadrature measurements are well

established and routinely performed in laboratories.

We certify EPR steering in the NOON state, which is a stricter form of quantum correlation than

quantum entanglement. The verification of EPR steering in a NOON state automatically implies the

presence of quantum entanglement. Based on the idea from the previous chapter, we consider steering

criteria in the form of inequalities. In the following, we introduce steering inequalities involving the

mode number and quadrature measurements. These inequalities are

E(p)
N =

Din f nbDin f PN
b

1
2 |h
⇥

nb,PN
b
⇤

i|in f
< 1 (2.2)
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and

E(x)
N =

Din f nbDin f XN
b

1
2 |h
⇥

nb,XN
b
⇤

i|in f
< 1 . (2.3)

Here, Din f nb, Din f PN
b and Din f XN

b are the uncertainties in the inference of n̂b, P̂N
b and X̂N

b , given mea-

surement of n̂a, X̂a and X̂a, respectively. To be precise,

D2
in f nb = Â

na
P(na)Â

nb
P(nb|na) [nb�hnbina ]

2

= Â
na
P(na)D2

in f (nb|na) , (2.4)

where hnbina is the average value of nb given the measurement n̂a with a specific outcome na and

D2
in f (nb|na) = Ânb P(nb|na) [nb�hnbina ]

2. Similarly,

Din f PN
b =

Z Z

P(xa)P
�

pNb |xa
�⇥

pNb �hpNb ixa
⇤2 dpNb dxa

=
Z

P(xa)D2
in f
�

pNb |xa
�

dxa , (2.5)

where D2
in f
�

pNb |xa
�

=
R

P
�

pNb |xa
�⇥

pNb �hpNb ixa
⇤2 dpNb . We note that the criteria (2.2) and (2.3) hold for

any measurements on mode a, but they are chosen to optimise the violation of these criteria. If either

one of the inequalities in Eq. (2.2) and Eq. (2.3) holds, the quantum state contains EPR-steering, where

mode B can be steered by mode A. We should mention that criteria involving additive or multiplica-

tive variances, which include all criteria in this thesis, are not suitable for certifying Bell nonlocality.

However, NOON states do contain Bell nonlocality, as certified by Bell inequalities [109].

We compute analytically both E(p)
N and E(x)

N for the ideal NOON state with arbitrary mode number

N as given by Eq. (2.1). The calculations can be carried out straightforwardly but are lengthy and

hence will not be included here. All details can be found in Appendix C. It should be pointed out,

however, that the inequality (2.2) is useful when cosf 6= 0 for odd N and sinf 6= 0 for even N; while

the inequality (2.3) is useful when sinf 6= 0. When these conditions are not satisfied, it turns out that

the commutators in the corresponding inequalities are zero.

We also model losses using beam splitter operations, identical to the loss model described in Section

1.5. The effect of losses is especially important in the study of NOON states. This is because a
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Figure 2.1: EPR steering in NOON states subjected to losses.

mesoscopic/macroscopic quantum state such as a NOON state is very sensitive to interaction with its

environment and losses. In order to compute the steering parameters E(p)
N and E(x)

N for the lossy case, it

is more convenient to use the density operator formalism. Using the beam splitter operation to model

losses, the detected mode operators adet , bdet for modes A and B in terms of their corresponding initial

mode operators a and b are:

adet =
p

haa+
p

1�haav

bdet =
p

hbb+
p

1�hbbv , (2.6)

where ha and hb are the transmission efficiencies for modes A and B respectively. Now, starting from

the ideal NOON state

|yNOONi=
1p
2

�

|N0iAB+ eif |0NiAB
�

=
1p
2

"

�

a†
�N

p
N!

+ eif
�

b†
�N

p
N!

#

|00i , (2.7)

we express the mode operators a and b in terms of their respective detected mode operators adet , bdet .
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This leads to an expression of a lossy NOON state. The corresponding density operator has the form:

rlossy =
1
2

2

4Â
s

0

@

N

N� s

1

A(ha)
N�s (1�ha)

s |N� s,0ihN� s,0| +(
p

hahb)
N e�if |N,0ih0,N|

+(
p

hahb)
N eif |0,NihN,0|+ Â

s

0

@

N

N� s

1

A(hb)
N�s (1�hb)

s |0,N� sih0,N� s|

3

5 . (2.8)

Any expectation value of an observable O is then obtained by evaluating Tr
�

rlossyO
�

. Here, we

consider the NOON state with f = 0 and so we present the results of E(p)
N . The values of E(p)

N for

different loss rates, characterised by 1� h , where ha = hb = h is the transmission efficiency, and

different mode number N are plotted in Fig. 2.1. We see from this figure that EPR steering is extremely

sensitive to losses and this is especially so for larger N. Of course, this is just the standard explanation

for why we do not observe a macroscopic Schrodinger’s cat: they are destroyed by the slightest of noise

and losses.

In practice, ideal NOON states are very hard to prepare and one is more likely to produce NOON-

like states instead. They consist of superpositions of states other than |N0i and |0Ni, with the other

states still having a number difference of N between modes. They have the form [101, 110, 111]

|yi=
N

Â
m=0

dm|N�mia|mib . (2.9)

What cannot be answered by these inequalities, though, is what provides quantum correlations

in the first place? For ideal NOON states, the answer lies, of course, on the fact that we have a

quantum superposition or quantum coherence of two macroscopically distinguishable states. Surely

there must also be some degree of quantum coherence in a nonideal NOON state for it to have quantum

correlations. This naturally leads to the question: How can we quantify the quantum coherence of a

quantum state? The characterisation of the quantum coherence of a NOON state is nontrivial and we

propose a practical measure for this in the next section.
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2.2 Quantifying the two-mode quantum coherence of nonideal NOON-

type states

Let’s first analyse the quantum coherence in an ideal NOON state as given in Eq. (2.1)

|yNOONi=
1p
2

�

|N0iAB+ eif |0NiAB
�

.

Consider a measurement of quantum number difference between the modes A and B, 2Ĵz ⌘ n̂A� n̂B. The

outcomes of measurements on |yNOONi are labeled as alive and dead, for h2Ĵzi = N and h2Ĵzi = �N,

respectively. We also define the alive and dead states as rA = |0NiABh0N| and rD = |N0iABhN0|,

respectively. It is clear from the density operator rNOON for an ideal NOON state that it cannot be

expressed as statistical mixture of rA and rD. The ideal NOON state contains quantum coherence as

evident from the presence of off-diagonal terms in the density operator rNOON . In fact, we say that an

ideal NOON state has N-th order quantum coherence from the fact that off-diagonal terms in rNOON

have the form |Nih0| and |0ihN|. In other words, in order to confirm N-th order quantum coherence, all

statistical mixtures of the form

rmix = PArA+PDrD (2.10)

have to be negated. Here PA, PD are the probabilities of being in the states rA, rD respectively, and

PA+PD = 1.
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Figure 2.2: Probability P(2 jz) of an outcome of 2Ĵz for the lossy NOON state with particle number

N = 50. Plot (a,b) correspond to h = 0.8 and h = 0.05 respectively.

We now turn to nonideal NOON-type states by considering the example of the state characterised

by the density operator rlossy with total mode number N, as in Eq. (2.8). The order of coherence for this

state is not as trivial as the ideal NOON state. To see that, we compute the expectation value of the mode

number difference between modes A and B, h2Ĵzi by evaluating Tr
�

2rlossyĴz
�

. Taking ha = hb = h ,

we get the probability distribution P(2Jz = m) = 1
2 ÂN

m=1

0

@

N

N�m

1

A

h

N�m (1�h)m, for both m< 0 and

m > 0, while P(2Jz = 0) = (1�h)N . We plot these probability distributions of detecting different

number difference P(2Jz) with h = 0.8 and h = 0.05 in Fig. 2.2(a) and (b) respectively. Recall in

the case of ideal NOON states, all measurement outcomes are identified as either belonging to the

dead or alive state, with their corresponding outcome �N and N respectively, giving them an N-th

order coherence. Fig. 2.2(a) show measurement outcomes that can be binned into two distinguishable

groups: they are either dead or alive. However, there is a spread of measurement outcomes in both

the dead and alive groups and it is not clear as to how we should quantify its order of coherence. To

complicate the issue further, in Fig. 2.2(b), there is a range of measurement outcomes that cannot

even be distinguished as either dead or alive, which we labelled as sleepy. It is possible that there are

states rDS and rSA that give the outcome in the combined “dead and/or sleepy” and “sleepy and/or

alive” regions, respectively. An unambiguous, operational definition of n-th order quantum coherence

is hence required. Following Refs. [112, 113], we define the notion of quantum coherence and n-th

order quantum coherence as below:
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Definition 1 [113]: The state of a physical system displays quantum coherence between two outcomes

n1 and n2 of an observable n̂ if and only if the state r of the system cannot be considered as a statistical

mixture of some underlying states r1 and r2, where r1 assigns probability zero for n2 and r2 assigns

probability zero for n1.

Definition 2 [113]: If r displays coherence between some outcomes 2Jz  n1 and 2Jz � n2 (for n2 > n1)

such that n2�n1 � n, then that state has the generalised n-scopic quantum coherence. This coherence

is said to be macroscopic when n is macroscopic.

Using these definitions, let’s analyse the measurement outcomes in Fig. 2.2(b) more carefully.

From that figure, we see that outcomes 2JZ � n correspond to the alive state rA while outcomes 2JZ 

�n correspond to the dead state rD. In the intermediate region, there are outcomes that cannot be

binned into either dead or alive. Let rDS be a (quantum) state with possible outcomes of 2Jz that are

smaller than n; while rSA is a (quantum) state with possible outcomes of 2Jz that are larger than �n. It

is possible that the state of the system can be expressed as a mixture such that

rmix = P�rDS+P+rSA , (2.11)

where P� and P+ are probabilities for the system to be in the states rDS and rSA, respectively, with

P�+P+ = 1. If the state of the system cannot be expressed in the form given in Eq. (2.11), then it

has n-scopic quantum coherence. However, we cannot determine this from the measurement outcomes

plotted in Fig. 2.2. In other words, we are yet to determine the value n in that figure. We need criteria

to certify the presence of n-scopic quantum coherence. A particular criterion is presented next.

2.2.1 Existence of quantum coherence and correlation test

Having defined and discussed the notion of n-scopic quantum coherence, we look at a particular ob-

servable and what criterion it should satisfy to certify the presence of n-scopic quantum coherence in a

nonideal NOON state. Here, we show that

hâ†nb̂ni 6= 0 (2.12)
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implies the existence of n-scopic quantum coherence. It is straightforward to show that a nonzero

hâ†nb̂ni implies the existence of the quantum state of the form

|yni= a(n)n0m0 |n0i|m0+ni+b(n)n0m0 |n0+ni|m0i+d|y0i , (2.13)

where a(n)n0m0 ,b
(n)
n0m0 ,d are probability amplitudes satisfying a(n)n0m0 ,b

(n)
n0m0 6= 0 and d corresponds to a quantum

state orthogonal to the states |n0i|m0+ni and |n0+ni|m0i. Note that this state in Eq. (2.13) satisfies

bhn+m0|ahn0|r|n+n0ia|m0ib 6= 0 , (2.14)

which implies the existence of n-scopic quantum coherence as described in Section 2.2. This inference

is based on the fact that nonzero off-diagonal terms in a density operator imply the presence of quan-

tum coherence in a physical state. Hence, the observable hâ†nb̂ni is a measure of n-scopic quantum

coherence.

We discuss how hâ†nb̂ni, which is not Hermitian, can be inferred in an experiment. Let’s first

consider the case for n = 1. We carry out optical operations on the two modes â and b̂. In particular,

we include a phase shifter which shifts the phase of mode b̂ by f . These two modes â and b̂ are then

sent into a 50 : 50 beam splitter, with the corresponding output modes ĉ and d̂ as follows:

ĉ=
1p
2

�

â+ b̂eif
�

d̂ =
1p
2

�

â� b̂eif
�

. (2.15)

Finally, we measure the output number/intensity difference ID:

ID = ĉ†ĉ� d̂†d̂

= â†b̂eif + âb̂†e�if

= 2ĴX cosf �2ĴY sinf , (2.16)

where ĴX =
�

â†b̂+ âb̂†
�

/2 and ĴY =
�

â†b̂� âb̂†
�

/2i are the Schwinger operators and they can be

measured in experiments. By choosing f , we can choose to measure ĴX or ĴY . For f = 0, ĴX is

measured while for f = �p

2 , ĴY is measured. Measurements with two values of the phase f = 0,�p

2

can then be used to deduce hâ†b̂i, where hâ†b̂i= hĴXi+ ihĴY i.
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Next, for n= 2, we carry out the same optical operations, except that we measure the second order

intensity moments of the output modes, rather than the first order intensity moments. In this case, we

take the sum of the normally ordered, second order output intensities I(2)S :

I(2)S = ĉ†2ĉ2+ d̂†2d̂2

= â†2â2+4â†b̂†âb̂+ b̂†2b̂2+ â†2b̂2e2if + â2b̂†2e�2if . (2.17)

The first three terms are second-order intensity moments that are accessible in experiments. Again, we

can choose the phase f and subsequently deduce hâ†2b̂2i. Another possible approach is to measure the

normally ordered, second order output intensity of one of the output modes, say c†2c2. This quantity

has the term a†2b2 which oscillates with e2if . By measuring c†2c2 for a set of many different f values,

an observation of oscillation in c†2c2 with frequency 2
2p

= 1
p

implies the presence of second order

quantum coherence.

Hence, in order to measure hâ†nb̂ni, first apply a phase shift to one of the modes and send both

modes into a beam splitter, before measuring the sum or difference of the corresponding n-th order

intensity moments of the output modes from the beam splitter. Another approach would be to measure

the normally ordered, n-th order output intensity for a set of many different phase f and infer from the

oscillating frequency the order of quantum coherence.

In this subsection, we consider a test that demonstrates the existence of quantum coherence. Next,

we take a step further in our investigation of quantum coherence by attempting to quantify the quantum

coherence in a given quantum state.

2.2.2 Quantification of quantum coherence and catness fidelity

The correlation test presented in the previous section demonstrates whether quantum coherence exists

or not. As described in that section, nonzero hâ†nb̂ni implies the existence of quantum coherence in a

quantum state in Eq. (2.13) of the form

|yni= a(n)n0m0 |n0i|m0+ni+b(n)n0m0 |n0+ni|m0i+d|y0i .

The correlation test, however, does not quantify the magnitude of the quantum coherence and does

not provide the information on the probability amplitudes a(n)n0m0 and b(n)n0m0 for specific n0 and m0. These

probability amplitudes are needed if we want to know the fidelity, i.e. how close is a given quantum
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state to a reference state such as the NOON state. To this end, we analyse the fidelity and determine

from the analysis how quantum coherence is defined. In the following, we consider the fidelity of the

state |yni with respect to a specific n-scopic superposition quantum state

|ysupi=
1p
2
(|n0i|m0+ni+ eif |n0+ni|m0i) . (2.18)

The fidelity F is given by

F =
�

�hysup|yni
�

�

2

=
1
2

⇣

|a(n)n0m0 |2+ |b(n)n0m0 |2+2|a(n)n0m0b
(n)⇤
n0m0 |

⌘

(2.19)

and it is one if and only if |yni is identical to |ysupi. We know that the n-scopic quantum coherence

manifests itself in the off-diagonal elements of the corresponding density operator. For the state |yni,

we have the off-diagonal element

hn+m0|hn0|r|n+n0i|m0i= a(n)n0m0b
(n)⇤
n0m0 . (2.20)

We can then define the magnitude of n-scopic quantum coherenceC(n0,m0)
n as

C(n0,m0)
n = 2|hm0+n|hn0|r|n+n0i|m0i|

= 2|a(n)n0m0b
(n)⇤
n0m0 | , (2.21)

which is exactly the third term in Eq. (2.19). In other words, the third term in the last line in Eq. (2.19)

is related to the n-scopic quantum coherence of a quantum state. We see that the fidelity F in Eq. (2.19)

is 1 if and only if a(n)n0m0b
(n)⇤
n0m0 = 1/2, which implies thatC(n0,m0)

n = 1. Also,C(n0,m0)
n = 1 implies F = 1. Not

surprisingly, this tells us that the fidelity of a given quantum state with respect to a reference quantum

state with n-scsopic quantum coherence is related to the magnitude of n-scopic quantum coherence

of the given quantum state. All these suggest that we may identify n-scopic quantum coherence with

fidelity. We take this approach for the rest of this chapter. Note, however, that n-scopic quantum

coherence is a property of a given physical state, while the fidelity is a property of that given state with

respect to a reference state. To avoid confusion, the reference state always has to be explicitly stated.

What is less trivial is how the fidelity of a given quantum state with respect to a reference quantum
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state, that contains n-scopic quantum coherence from superposition of states over different n0 and m0, is

related to the n-scopic quantum coherenceC(n0,m0)
n . These are the states where different values of n0 and

m0 each contributes to the total n-scopic quantum coherence. One may define the total n-scopic quan-

tum coherence/total “n-scopic fidelity” as the sum of the magnitudes of each of the n-scopic quantum

coherences i.e.

Cn =N Â
n0,m0

C(n0,m0)
n = 2N Â

n0,m0
|a(n)n0m0b

(n)⇤
n0m0 | , (2.22)

where N is a normalisation factor that ensures the maximum value of Cn is 1. If we can infer the

probability amplitudes a(n)n0m0 and b(n)n0m0 for specific n0 and m0 from probabilities of measuring the mode

number n0 and m0 for modes a and b, respectively, then we can deduce the fidelity. We will look at a

few quantum states and compute their n-scopic fidelityCn. We should mention that the second equality

in Eq. (2.22) holds true only for a pure quantum state, which is almost always not the case in practice.

For a mixed state with density operator r , the n-scopic catness fidelity

Cn =N Â
n0,m0

C(n0,m0)
n

= 2N Â
n0,m0

|hm0+n|hn0|r|n+n0i|m0i| (2.23)

has to be computed.

Before computing Cn for a few quantum states, we would like to find out more about Cn. In

particular, we try to relate Cn to the quantity hâ†nb̂ni, which we described in Section 2.2.1. There are

two reasons for this. Firstly, hâ†nb̂ni is measurable in experiments. Also, this gives a lower bound to the

n-scopic catness fidelity Cn. This provides important insight as many quantum information protocols

require the fidelity to be above certain value to work. In the following, we establish the fact that hâ†nb̂ni

is the lower bound of the n-scopic catness fidelityCn. To do that, we derive the expressions for hâ†nb̂ni

for both the pure and mixed states, and relate this to the n-scopic catness fidelityCn.

For an n-scopic quantum state of the form

|yi= Â
n0,m0

a(n)n0m0 |n0i|m0+ni+b(n)n0m0 |n0+ni|m0i , (2.24)
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the quantity hâ†nb̂ni has the expression

hâ†nb̂ni= Â
n0,m0�0

a(n)n0m0b
(n)⇤
n0m0

r

(m0+n)!
m0!

r

(n0+n)!
n0!

. (2.25)

Note the presence of a(n)n0m0b
(n)⇤
n0m0 , which is related to the magnitude of n-scopic quantum coherenceC(n0,m0)

n

in Eq. (2.21) for a specific n0 and m0.

For a general two-mode mixed state, the quantity hâ†nb̂ni is calculated with the corresponding

density operator as follows:

hâ†nb̂ni= Tr(ra†nbn)

= Â
n0,m0�0

hn0|hm0+n|ra†nbn|n0+ni|m0i

= Â
n0,m0�0

r

(n0+n)!
n0!

r

(m0+n)!
m0!

hn0|hm0+n|r|n0+ni|m0i . (2.26)

Recall that C(n0,m0)
n = 2 |hn0|hm0+n|r|n0+ni|m0i|. We now relate hâ†nb̂ni and the n-scopic quantum

coherence Cn. Using Eq. (2.26), the lower bound for n-scopic catness fidelity Cn can be found easily,

as derived below:

hâ†nb̂ni= Â
n0,m0�0

r

(n0+n)!
n0!

r

(m0+n)!
m0!

hn0|hm0+n|r|n0+ni|m0i

 S Â
n0,m0�0

hn0|hm0+n|r|n0+ni|m0i

= S
Cn

2
, (2.27)

where S = supn0,m0{
q

(m0+n)!
m0!

q

(n0+n)!
n0! } is the largest value of

q

(m0+n)!
m0!

q

(n0+n)!
n0! over values of n0, m0.

Hence, the lower bound forCn is given by

Cn �
2
�

�hâ†nb̂ni
�

�

S
⌘ cn . (2.28)

To this end, the quantity hâ†nb̂ni not only allows us to certify n-scopic quantum coherence, but also

quantifies it, as shown in Eq. (2.28). Next, we consider a few examples of quantum states and compute
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their corresponding catness fidelitiesCn and lower bounds cn.

2.2.2.1 Ideal NOON state

Suppose one finds in an experiment that measurement outcomes are either N particles in mode a or N

particles in mode b. Then, the best guess of the corresponding density operator has the form

r = PNrN +Paltralt , (2.29)

where rN is the density operator of a NOON state given in Eq. (2.24) with n0,m0 = 0, and ralt is the

density operator of a statistical mixture of |N0i and |0Ni states. PN and Palt are the probabilities of

the density operators rN and ralt , respectively. In other words, the system could be in an ideal NOON

state, a statistical mixture of |N0i and |0Ni states or both, with probabilities PN and Palt .

Let’s begin with the N-scopic quantum coherence,CN , which is also identified as the catness fidelity

as described in the previous section.

CN = 2 |hN0|r|0Ni|

= 2PN
�

�

�

a(N)00 b(N)⇤00

�

�

�

. (2.30)

This picks up the NOON superposition state with probability PN . CN would be zero if the density

operator is just the statistical mixture of |N0i and |0Ni states.

Recall also that the quantity hâ†Nb̂Ni 6= 0 certifies N-scopic quantum coherence. We compute this

below:

hâ†Nb̂Ni= Tr
�

r â†Nb̂N
�

= PNN!a
(N)
00 b(N)⇤00 . (2.31)

Again, we see that there is no N-scopic quantum coherence if PN = 0. Using Eq. (2.31), we can

compute the lower bound ofCN as described in Eq. (2.28).

cn =
2
�

�hâ†nb̂ni
�

�

S

= 2PN
�

�

�

a(N)00 b(N)⇤00

�

�

�

, (2.32)
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where S = N!. The lower bound of CN coincides with CN in the case of ideal NOON state. For a pure

ideal NOON state,CN = 1. This will obviously not be the case when we take into account losses in the

system. In the next example, we consider an attenuated NOON state due to losses and we shall see how

the catness fidelityCN changes with the degree of losses and also how the particle number plays a role.

2.2.2.2 Attenuated NOON state

We model the losses with beam splitter, as described in Section 1.5. The detected output modes âdet

and b̂det are expressed in terms of the non-attenuated modes â and b̂. In other words, the losses are

modeled as inefficiency in the detection process. These detected output modes are

âdet =
p

h â+
p

1�h âv

b̂det =
p

h b̂+
p

1�h b̂v , (2.33)

where âv and b̂v are vacuum modes entering into the beam splitter, and h is the transmissivity of the

beam splitter and it represents the probability of detection of particle/photon in a specific mode. To

demonstrate the effect of losses on an ideal NOON state, we assume the density operator before the

detection to be rN , i.e. PN = 1 and Palt = 0 in Eq. (2.29). The quantity hâ†ndet b̂ndeti is found to be

hâ†ndet b̂
n
deti= h

nhâ†nb̂ni= h

n
dnNN!/2 , (2.34)

giving the lower bound of catness fidelity

cN = h

N . (2.35)
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Figure 2.3: N-th order catness fidelity for attenuated NOON states as a function of detection efficiency

h .

The catness fidelity is plotted as a function of the probability of detecting the modes â and b̂, for

different particle numbers, in Fig. 2.3. As expected, the fidelity reduces with losses and the reduction is

much more dramatic for high particle number. Recall that for high particle number N, a NOON state is

a Schrodinger’s cat state, and it is known that a cat state (and its quantum superposition and coherence)

is more susceptible to noise and loss. In fact, this is the best explanation we have so far in explaining

the absence of a cat that is in a superposition of being dead and alive: they are just too delicate to exist.

2.2.2.3 Experimentally Realisable States

In the previous two examples, the lower bound of cn coincides with the catness fidelity Cn. This is

because the state contains superposition of just two states, |N0i and |0Ni. Also, the fidelities are

computed with respect to a NOON state with N-scopic quantum coherence, which has a normalisation

factorN of 2. In this example, we will consider pure quantum states with n-scopic quantum coherence

as the reference states for the fidelity computations. This means that the normalisation factor in the

catness fidelity lower bound will be different from the normalisation factor where we assume ideal

NOON state as the reference state. But first, we describe the quantum state of our example:

|outi=
N

Â
m=0

dm|mia|N�mib , (2.36)
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where dm =
p
N!/

p

2Nm!(N�m)! is the probability amplitude of m mode number in mode a and it is

a binomial coefficient. The state |outi can be generated by sending a two-mode number state |N0iab
into two input ports of a beam splitter.

Unlike the ideal and attenuated NOON states, the quantity hâ†mb̂mi is not zero form 6=N. This com-

plicates the calculation of catness fidelity slightly. The total n-scopic catness fidelity for the quantum

state |outi is

Cn =Nn,N

N�n

Â
m=0

|dmd⇤m+n| , (2.37)

where Nn,N is a normalisation constant to ensure the maximum value of Cn is 1. To ensure that,

we choose quantum states that has the corresponding maximum n-scopic quantum coherence. This

also implies that the corresponding fidelity is computed with respect to that quantum state with the

maximum n-scopic quantum coherence. For this system, the normalisation Nn,N is determined by the

bounds on the coherences of the density matrix for a pure state. For example, where n=N, d0d⇤N  1/2

and henceNN,N = 2. The general result for the normalisationNn,N can be obtained numerically and is

not provided here. The purpose of the discussion on the normalisation factor is to make clear the fact

that we are comparing quantum states of the form given in Eq. (2.36) with a pure quantum state with

the corresponding n-scopic quantum coherence. The lower bound to the catness-fidelity is

cn =
Nn,N |ha†nbni|

S
, (2.38)

where S=max{B(N,n)
m } is given by Eq. (2.27) with m0 = m and n0 = N�m�n and

B(N,n)
m =

s

(m+n)!(N�m)!
m!(N�m�n)!

. (2.39)

The value of m that gives the maximum value of B(N,n)
m is given by: m= (N�n)/2 if N and n have the

same parity, i.e. N and n are either even or odd numbers, and m = (N� n± 1)/2 if n and N does not

have the same parity.
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2.3 Summary and outlook

We considered the NOON state, which is a Schrodinger’s cat state for large N. In Section 2.1, we de-

rived steering inequalities that certify the existence of EPR steering in NOON states. These inequalities

were also applied to attenuated NOON states to study the effect of losses on EPR-steering on NOON

states. These steering inequalities for N > 1 extend the proposals of Jones et al. [114] and the experi-

ment of Fuwa et al. [115] that investigate steering and collapse of the wavefunction for the state given

by N = 1.

Even though steering inequalities are useful in certifying the quantum correlations in NOON states,

they do not provide information on how these quantum correlations arose. The quantum correlations in

NOON states come from the fact that it is a quantum superposition of states and not just classical, sta-

tistical mixture of these states. In other words, the quantum coherence of a quantum state is the source

of its quantum correlations. In Section 2.2, we defined the notion of quantum coherence and more

generally, the n-scopic quantum coherence. With these definitions, we looked at a specific correlation

test to verify the presence of n-scopic quantum coherence in a given state. The correlation test involves

the observable hâ†nb̂ni that can be and has been measured in experiments [116–123].

In a typical quantum information protocol involving quantum states with quantum correlations, it

is inevitable that the quantum states will be affected by losses and noises from the environment. This

might destroy the quantum coherence of the quantum state and hence its quantum correlations. It is

then essential to be able to tell how “close” a quantum state is with respect to another quantum state.

One of the possible measures is the fidelity. In Section 2.2.2, we demonstrated the connection between

quantum coherence of a NOON state and the catness fidelity. We also showed that the lower bound

of the catness fidelity can be estimated using the observable hâ†nb̂ni. It is useful to compute the lower

bound of the fidelity. For instance, in order to have a quantum memory, there is a minimal fidelity that

the system has to achieve.

Finally, we considered a few examples of quantum states and computed their corresponding catness

fidelity and their lower bound. The quantum state in Eq. (2.36) can be generated by sending a number

state into a beam splitter. This is a good model for realistic physical systems, for example, a photonic

number state can be prepared from the twin beams of a parametric down conversion. NOON states

have been created in the experiments of [118, 119, 121–124].

The relevant publications to this chapter are:
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• R. Y. Teh, L. Rosales-Zárate, B. Opanchuk, and M. D. Reid, Signifying the nonlocality of NOON

states using Einstein-Podolsky-Rosen steering inequalities, Phys. Rev. A 94, 042119 (2016).

• B. Opanchuk, L. Rosales-Zárate, R. Y. Teh, andM. D. Reid,Quantifying the mesoscopic quantum

coherence of approximate NOON states and spin-squeezed two-mode Bose-Einstein condensates,

Phys. Rev. A 94, 062125 (2016).
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We investigated quantum correlations such as the quantum entanglement and EPR steering in the

continuous variables of quantum optical systems. The effects of decoherence on quantum correlations,

treated using beam splitter operations, are also studied in previous chapters. In the second part of the

thesis, we study quantum mechanics in mesoscopic or macroscopic systems. In particular, we consider

optomechanical systems where recent experiments in the field of optomechanics have demonstrated

quantum effects including ground state cooling of the mechanical mode, coherent state transfer and

quantum entanglement generations. As is well-known, any quantum features in a macroscopic system

are extremely sensitive to the interaction with its environment. This interaction manifests itself in the

fluctuation and dissipation of the macroscopic system under study. We treat them with the standard

open system formalism in the form of a master equation.

In this part of the thesis, we first describe a typical quantum optomechanical system and consider

its dynamics using the linearisation approximation which simplifies the analyses. The purpose of this

is to gain some understanding on how a quantum optomechanical system behaves. The full, nonlinear

quantum optomechanical system and its dynamics are studied in detail in later chapters. Operators are

needed to characterise a quantum optomechanical system, and its dynamics inevitably involves solving

operator equations with nonlinearity. These operator equations are impossible to solve in general.

Phase space methods map these operator equations into complex number equations, which can be

solved numerically.

Approximations such as linearisation and adiabaticity are often employed in both the experimental

and theoretical analyses in the literature. The validity of these approximations will be discussed. Us-

ing phase space methods, these approximations are not needed and the full, nonlinear dynamics of the

optomechanics can be simulated. These simulations are also extensible, allowing us to study more com-

plex quantum optomechanical systems involving more subsystems. Hence, we take a detour to present

the phase space methods that will be used to simulate the dynamics of optomechanical systems. All

these are to be found in Chapter 3. We then analyse two specific quantum protocols: optomechanical

quantum memory and entanglement between two optomechanical systems. In Chapter 4, we look at the

optomechanical quantum memory of coherent states. Finally, we investigate the feasibility of quantum

entanglement between two optomechanical systems in Chapter 5.





Chapter 3

Quantum mechanics of optomechanical

systems

The quantum optomechanical system is first described in Section 3.1; the optical and mechanical sys-

tems, with the interaction between them. The Hamiltonian describing the quantum optomechanical

system, including external coherent fields, thermal noises and losses are given. The fluctuations and

dissipations in the system are dealt with in the master equation formalism. In Section 3.2, we introduce

the linearisation approximation that simplifies the optomechanical Hamiltonian and the corresponding

linearised dynamics. We explicitly derive this simplified Hamiltonian to demonstrate the quantum pro-

tocols that can be carried out in an optomechanical system. We then return to the master equation and

motivate the use of phase space methods as a way to solve for the dynamics of the optomechanical

system. This is discussed in Section 3.3.

3.1 Quantum optomechanical system

A prototypical quantum optomechanical system consists of a Fabry-Perot cavity which allows certain

optical modes to exist in it. One of the mirrors is movable and is treated as the mechanical mode. The

interactions between the optical mode and the mechanical mode are due to the radiation pressure force,

where photons in the cavity impart momentum on the mechanical mode. The mechanical mode will, in

turn, change the resonance frequency of the cavity and hence the amplitude of the optical mode.

Both the optical and mechanical modes are modelled by quantum harmonic oscillators and are

described by bosonic operators satisfying the canonical bosonic commutation relations. Excitations of
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the optical and mechanical modes are the photons and phonons respectively. The Hamiltonian for a

quantum optomechanical system is given by

H = h̄wca†a+ h̄wmb†b+ h̄g0a†a
�

b+b†
�

, (3.1)

where the first two terms are the free Hamiltonian for the optical and mechanical modes respectively

and the last term describes the interaction between these modes due to radiation pressure. Here, g0

is known as the single photon optomechanical coupling strength and has the dimension of frequency.

It quantifies the interaction strength between a single photon and a single phonon [68]. Even though

we consider an optomechanical system using a Fabry-Perot cavity, there are many implementations

employing different systems that share the same Hamiltonian (3.1).

Under what conditions do we need the quantum mechanical description of the optomechanical

systems? For one thing, quantum description is required if we are able to put the optomechanical system

in its ground state. This has practical usage too, for instance, in the initialisation of the system for any

quantum protocol. The quantum ground state of an optomechanical system has been achieved [50, 53,

125, 126]. Secondly, the system has to allow quantum states. This is routinely achieved in quantum

optics. It is much harder for a mechanical quantum state as it is interacting with its environment,

introducing noises that destroy any quantum superposition and quantum coherence in the mechanical

quantum state. The decoherence of a mechanical quantum state is determined by the decoherence

rate, which is typically defined as the rate for an excitation to enter from the environment [68]. This

quantity depends on the decay rate of the mechanical system and also the mean occupation number

due to its interaction with the environment at a fixed temperature. Experiments have achieved both low

mechanical dissipation rate and cool environment temperature for the mechanical oscillator to behave

quantum mechanically.

It is instructive to look at the eigenvalues and eigenstates for the Hamiltonian in Eq. (3.1). They

are obtained in the theoretical work by Liao et. al [127] and are given by

H|mia|ñ(m)ib = h̄
�

mwc+nwm+m2g20/wm
�

|mia|ñ(m)ib , (3.2)

where m and n are the photon and phonon numbers respectively and |ñ(m)i= exp
h

mg0
wm

�

b†�b
�

i

|ni is

a displaced number state of the mechanical mode by m photons. The energy levels of the total optome-

chanical system still resemble that of a quantum harmonic oscillator. For weak coupling strength where
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Figure 3.1: The prototypical quantum optomechanical setup.

g0 is small, the energy levels of the optomechanical system are essentially the sum of two independent

quantum harmonic oscillators. The Hamiltonian (3.1), however, is incomplete for a practical reason. In

most experimental implementations of the quantum optomechanical system, the optomechanical cou-

pling strength g0 is weak. One or more intense, coherent external fields are typically used to enhance

the coupling strength. This introduces extra terms in the Hamiltonian and the eigenstates of this new

Hamiltonian will not be those given in Eq. (3.2).

Besides, there are always interactions with the environment that give rise to dissipations and fluctu-

ations in the quantum optomechanical systems. Also, external driving fields can be applied to generate

certain desired quantum states of the optical mode and carry out certain quantum protocols, further

complicating the Hamiltonian needed to describe the system. A more general Hamiltonian is then

H = h̄wca†a+ h̄wmb†b+ h̄g0a†a
�

b+b†
�

+ ih̄E (t)
⇥

�aeiwdt +a†e�iwdt
⇤

+HR , (3.3)

where the fourth term includes all external driving fields and the last term describes the coupling be-

tween the optomechanical system and its environment. The coupling between the optomechanical

system to its environment introduces decay channels with their corresponding decay rates. We de-

note go and gm to be the cavity decay rate and mechanical dissipation rate respectively. We further

distinguish two contributions to the cavity decay rate that corresponds to different sources of losses,

go = go,ext + go,int . The external cavity decay rate go,ext comes from the cavity field leaking out of the

cavity while the internal cavity decay rate go,int includes all sources of dissipation in the cavity. This
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distinction is important as it is the external cavity decay that allows the photons that contain information

about the physical state of the optical mode to be detected. The internal cavity losses are undetected.

A quantum system that interacts with its environment is an open quantum system and one of the

standard methods in describing an open quantum system is the master equation formalism. The master

equation dictates the time evolution of a density operator and this is a Schrodinger picture formalism.

We will not delve into the details of the master equation approach but rather refer readers to literature

with extensive analyses and discussions [77, 78, 128]. Assuming interactions with the environment to

be Markovian, the master equation for an open quantum system is [128]

d
dt

r =� i
h̄
[H,r]+Â

j
g jn̄ j

⇣

2a†jra j�a jra†j �ra ja†j
⌘

+Â
j

g j (n̄ j+1)
⇣

2a jra†j �a†ja jr �ra†ja j

⌘

. (3.4)

Here, r is the density operator of the system. The index j = 1, 2 ⇠ o,m refer to the cavity and me-

chanical modes respectively, and n̄ j are the average thermal occupation numbers from interactions with

their corresponding reservoirs.

One can also approach the problem in the Heisenberg picture. An equivalent set of quantum

Langevin equations can be derived from the master equation in Eq. (3.4). They dictate the time evo-

lution of the cavity and mechanical mode amplitudes. In general, both the master equation and quan-

tum Langevin equations cannot be solved analytically and numerical solutions are required. Before

attempting to tackle these equations, we first consider the linearised quantum optomechanical Hamil-

tonian, which is an approximation widely used in the literature. This simplifies the analysis which

permits the understanding of different physics in an optomechanical system. The origin and validity of

the linearisation approximation are discussed in the next section.

3.2 Linearised quantum optomechanical Hamiltonian and its dynamics

In this section, we analyse and discuss the optomechanical system within the linearisation approxi-

mation. This approximation is often used in the literature, so it is worth going through the analysis

carefully, to check for the validity of the approximation. The linearised scheme is also instructive in

providing physical pictures on how quantum protocols work in optomechanics.

We start from the Hamiltonian (3.3) which includes the coupling between a single external driv-
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ing field and the optical mode. For simplicity, we will neglect the interactions between the quantum

optomechanical system and its environment. The Hamiltonian is then given by:

H = h̄wca†a+ h̄wmb†b+ h̄g0a†a
�

b+b†
�

+ ih̄E (t)
⇥

�aeiwdt +a†e�iwdt
⇤

. (3.5)

It is convenient to transform the Hamiltonian into the rotating frame of the driving field as this elimi-

nates the driving field time dependence. In the rotated frame, an important free parameter is the detun-

ing between the driving field and the cavity optical field D ⌘ wc�wd . Different detuning D gives rise

to different optomechanical dynamics. As we will see in the next section, this determines the nature of

quantum protocols using quantum optomechanical systems. Also, from a practical point of view, trans-

forming into the fast rotating frame allows better performance in numerical simulations. This removes

the high frequency that would otherwise require much smaller step size in time in our simulations. We

obtain the rotated frame Hamiltonian by applying the transformation

H̃ =U†HU�A , (3.6)

where A= h̄wda†a andU = exp
�

�i th̄A
�

. This gives

eH = h̄Da†a+ h̄wmb†b+ h̄g0a†a
�

b+b†
�

+ ih̄E (t)
�

�a+a†
�

. (3.7)

Here, D = wc�wd is the detuning between the cavity resonance frequency and the frequency of the

driving field.

Next, we introduce the linearisation approximation. There are two ways to do this. One could

invoke the approximation right away at the level of the Hamiltonian (3.7). Or one could obtain the

equations of motion from the Hamiltonian (3.7) and only introduce the linearisation approximation in

these dynamical equations. Both approaches are equivalent. Most literature pick the first approach

as it makes clear an essential feature that allows different quantum protocols to be carried out. We

will present both approaches, starting with the second approach because it is less tedious and provides

a physical picture as to why this approximation is a good one. We then take the second approach,

linearising the optomechanical Hamiltonian to demonstrate how different quantum protocols can be

achieved.
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3.2.1 Heisenberg equations of motion and their dynamics

Using the rotated frame Hamiltonian in Eq. (3.7) and the Heisenberg picture, the time evolution equa-

tions for both the optical â and mechanical b̂ modes are given by

˙̂a=
i
h̄

h

eH, â
i

=�iDâ� ig0â
�

b̂+ b̂†
�

+E (t) (3.8)

˙̂b=
i
h̄

h

eH, b̂
i

=�iwmb̂� ig0â†â . (3.9)

To this end, we introduce the linearisation approximation. It is based on the fact that an intense external

field will dominate the amplitude of the optical mode, reaching a steady state amplitude in equilibrium.

Any fluctuations around the steady state amplitude has a quantum nature and are described by quantum

operators. We proceed to express both the optical and mechanical modes as a sum of classical steady

state amplitude and fluctuations around this amplitude as follows:

â= ass+ d̂a(t) (3.10)

b̂= bss+ d̂b(t) (3.11)

with the properties hâi= ass and hb̂i= bss. Replacing â and b̂ in Eqs. (3.10) and (3.11) into Eqs. (3.8)

and (3.9), we obtain

d
dt

d̂a= E� iD
⇣

ass+ d̂a
⌘

� ig0
⇣

ass+ d̂a
⌘⇣

bss+b

⇤
ss+ d̂b+ d̂b

†⌘

=�i [D+g0xss] d̂a� ig0assd̂x (3.12)

and

d
dt

d̂b=�iwm

⇣

bss+ d̂b
⌘

� ig0
⇣

a

⇤
ss+ d̂a

†⌘⇣
ass+ d̂a

⌘

=�iwmd̂b� ig0a

⇤
ssd̂a� ig0assd̂a

†
. (3.13)

Expressing the optical and mechanical modes in the forms in Eqs. (3.10) and (3.11) amounts to using

the linearisation approximation. Note that the time evolution equations in Eqs. (3.12) and (3.13) are

now linear.

In going from the second to the third line in Eqs. (3.12) and (3.13), we neglect terms that are second
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order in the fluctuating operators. Also, the steady state solutions are

ass =
E

iD+ ig0 (bss+b

⇤
ss)

(3.14)

bss =� ig0 |ass|2

iwm
=�g0Nd

wm
, (3.15)

where Nd = |ass|2 is the mean intracavity photon number. From the solution in Eq. (3.14), we see

that the cavity steady state amplitude is due to the external pump field E as described previously.

The external pump field is present in most of the experiments to date. This is because the single

optomechanical coupling strength g0 is weak and the pump enhances the coupling strength by a factor

of ass. Hence, the linearisation approximation appears to be a good one when an intense field is required

to enhance the optomechanical coupling strength. We also see that the equilibrium displacement of the

mechanical mode depends on the mean intracavity photon number and it is given by

xss = bss+b

⇤
ss

=�2
g0Nd

wm
. (3.16)

Note, however, that the steady state solution of optical mode ass depends on xss. This leads to a cubic

equation for xss as a function of the intensity of the pump field E [129], demonstrating bistability in the

system [129, 130].

The linearisation approximation is used in most of the experiments carried out thus far as the single

photon coupling strength g0 is weak and an intense, coherent driving field is required to enhance the

coupling strength. In the next section, we linearise the optomechanical Hamiltonian as this will make

clear the quantum protocols such as quantum state transfer and quantum entanglement generation.

3.2.2 Linearised quantum optomechanical Hamiltonian

We linearise the Hamiltonian in Eq. (3.7) and show that quantum optomechanical interactions allow

quantum state transfer and generation of quantum entanglement. As mentioned previously, the bare

optomechanical coupling strength g0 is usually very weak and a strong driving field is applied to en-

hance the coupling strength. This allows optical mode amplitude to be decomposed into two parts, the

steady state amplitude and fluctuations around that amplitude. This decomposition is possible because
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the cavity mode is dominated by the intense driving field as shown in Eq. (3.14). The mechanical mode

is also decomposed similarly. Substituting a= ass+da and b= bss+db into Eq. (3.7) gives

H = h̄Dda†da+ h̄wmdb†db+ h̄D |ass|2+ h̄wm |bss|2

+ h̄g0 |ass|2 (bss+b

⇤
ss)+ h̄g0da†da(bss+b

⇤
ss)+ h̄g0da†da

�

db+db†
�

+ h̄g0assda†
�

db+db†
�

+ h̄g0a

⇤
ssda

�

db+db†
�

+[h̄Da

⇤
ss+ h̄g0a

⇤
ss (bss+b

⇤
ss)� ih̄E]da+[h̄Dass+ h̄g0ass (bss+b

⇤
ss)+ ih̄E]da†

+
h

h̄wmb

⇤
ss+ h̄g0 |ass|2

i

db+
h

h̄wmbss+ h̄g0 |ass|2
i

db† . (3.17)

We choose to transform the optical and mechanical modes such that the steady state solutions are

zero and hence obtaining a Hamiltonian that only consists of fluctuating terms. This is done by choosing

ass =� iE
D+g0 (bss+b

⇤
ss)

bss =�g0 |ass|2

wm
. (3.18)

The resulting Hamiltonian is then

H = h̄Dda†da+ h̄wmdb†db+ h̄D |ass|2+ h̄wm |bss|2

+ h̄g0 |ass|2 (bss+b

⇤
ss)+ h̄g0da†da(bss+b

⇤
ss)+ h̄g0da†da

�

db+db†
�

+ h̄g0assda†
�

db+db†
�

+ h̄g0a

⇤
ssda

�

db+db†
�

. (3.19)

We further neglect terms that do not depend on da, da†, db and db† since they do not contribute to the

dynamics, and also neglect terms involving third order fluctuation operators.

H(2) = h̄ [D+g0 (bss+b

⇤
ss)]da

†
da+ h̄wmdb†db+ h̄g0

�

a

⇤
ssda+assda†

��

db+db†
�

. (3.20)

Redefining our detuning by introducing D0 = D+ 2g0bss, the final form of linearised Hamiltonian is
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given by

H(2) = h̄D0
da†da+ h̄wmdb†db+ h̄g0

�

a

⇤
ssda+assda†

��

db+db†
�

= h̄D0
da†da+ h̄wmdb†db+ h̄

�

g⇤dadb+g⇤dadb†+gda†db+gda†db†
�

. (3.21)

Here, H0 ⌘ h̄D0
da†da+ h̄wmdb†db is the free evolving part of the Hamiltonian andH1 includes the rest

of the terms in Eq. (3.20) which describe the interaction between the optical and mechanical modes.

We are really interested in the dynamics due to interactions between these different modes and so, we

transform into the interaction frame. The full derivation is included in Appendix D and we show the

resulting interaction Hamiltonian below:

Hint = h̄
h

ei(D+wm)tg⇤dadb+ ei(D�wm)tg⇤dadb†+ e�i(D�wm)tgda†db+ e�i(D+wm)tgda†db†
i

. (3.22)

For D = wm,

Hint = h̄
�

e2iwmtg⇤dadb+g⇤dadb†+gda†db+ e�2iwmtgda†db†
�

' h̄
�

g⇤dadb†+gda†db
�

. (3.23)

In Eq. (3.23), the rotating wave approximation is used where the fast oscillating terms are neglected.

This is a valid approximation in this thesis as wm used in our numerical simulations are large. For

instance, the electromechanical experiment of Palomaki et. al [59] is of the order of 10 MHz and the

optomechanical experiment of Chan et. al [50] is of the order of 10 GHz. The interaction Hamiltonian

in Eq. (3.23) resembles the beam splitter interaction in quantum optics where quantum state transfer

can be achieved. Similarly, for D =�wm,

Hint = h̄
�

g⇤dadb+ e�2iwmtg⇤dadb†+ e2iwmtgda†db+gda†db†
�

' h̄
�

g⇤dadb+gda†db†
�

. (3.24)

This interaction Hamiltonian (3.24), on the other hand, has the form of two mode squeezed state gen-

eration interaction in quantum optics [17, 81, 83, 85, 89, 131]. As discussed in Section 1.1, this form

of interaction generates quantum entangled states.

We see that by choosing the detuning in the linearised, optomechanical interaction Hamiltonian
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(3.22), we could carry out different quantum protocols. The analyses within the linearisation approxi-

mation show us that different dynamics and quantum protocols can be chosen by simply changing the

detuning of the optomechanical system. From the interaction Hamiltonians in Eqs. (3.23) and (3.24),

we also see that the linearisation scheme changes the nature of the nonlinear optomechanical inter-

action due to the radiation pressure. The corresponding time evolution equations of the optical and

mechanical modes are linear, as discussed in Section 3.2.1.

3.3 Nonlinear quantum optomechanical Hamiltonian and phase space

methods

In the previous section, the linearisation approximation was used to show that certain quantum protocols

can be carried out in an optomechanical system. For most of the experiments carried out so far, the

bare optomechanical coupling strength is weak, and the linearisation approximation does work well.

However, as mentioned in Section 0.2, the full nonlinear quantum optomechanical Hamiltonian allows

nonlinear quantum dynamics and effects to be observed. However, nonlinear quantum systems are hard

to solve and analytical solutions are almost always impossible. This is where the phase space methods

are useful. These methods work for both the linearised and nonlinear Hamiltonians. We discuss the

phase space methods in the following.

Both the master equation and quantum Langevin equations described in Section 3.1 are nonlinear

operator equations. Solutions can be obtained in the single mode optomechanical model with the

linearization approximation [127]. However, analytical solutions without any approximations does not

appear to exist. In addition to the nonlinear terms in the operator equations, the Hilbert space grows

exponentially with the number of modes in the quantum system, making these equations intractable.

There are different methods in tackling these operator equations such as quantum trajectories and

phase space methods. In this thesis, we use the phase space methods, which transform the master equa-

tion in Eq. (3.4) into a set of corresponding c-number stochastic differential equations. These stochastic

differential equations can then be simulated numerically on a computer. The techniques and algorithms

required to solve these stochastic differential equations numerically are well established [132–136]. In

particular, we use the truncated Wigner and positive-P representations. These different representations

are different ways of mapping operator equations into their corresponding c-number equations. Both

the truncated Wigner [71, 72] and positive-P representations [73] have been employed in the previ-
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ous work on the pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics [137].

We devote this section to setting up stochastic differential equations based on phase space methods.

It is intended as a quick guide to turn operator equations into c-number equations. For more details

on phase space methods, we refer the readers to literature with extensive discussions on this method

[71–73, 77, 78, 128].

3.3.1 Master equation to stochastic differential equations

The master equation dictates the time evolution of an optomechanical density operator, which char-

acterise the probability amplitudes of the optical and mechanical modes in certain physical states. In

phase space methods, operator identities map all operators in the master equation in Eq. (3.4) into

complex numbers. The resulting equation is a time evolution equation of the probability distribution

P(a,a+,b ,b+, t), where a , a

+, b and b

+ are complex amplitudes of optical and mechanical modes.

This is the Fokker-Planck equation. However, the Fokker-Planck equation cannot always be easily

solved. Also, we are interested in the moments/statistics of certain observables. It is thus more useful

to obtain time evolution equations of these complex optical and mechanical amplitudes. These time

evolution equations constitute a set of stochastic differential equations and they can be obtained from

the Fokker-Planck equation. Here, we just present the result without going through the derivations.

Interested readers are referred to textbooks in Refs. [77, 78, 128]. A Fokker-Planck equation has the

form

∂

∂ t
P(~a, t) =�Â

i

∂

∂ai
Ai (~a, t)P(~a, t)+

1
2 Â

i, j

∂

2

∂ai∂a j
[D(~a, t)]i j P(~a, t) , (3.25)

where ~a = (a1,a2, ...) is a vector containing all the complex amplitudes of the modes of a physical

system, ~A(~a, t) is a vector called the drift and D(~a, t) is a positive matrix with real entries that is

known as the diffusion matrix. The corresponding stochastic differential equations of the Fokker-

Planck equation (3.25) is given by:

dai = Ai (~a, t)dt+Â
j
Bi jdw j . (3.26)



92 Quantum mechanics of optomechanical systems

Here B is a noise matrix, defined as D= BBT and dwj is a real, random number with Gaussian distri-

bution such that hdwidwji= di j.

The part that is less trivial in obtaining the corresponding stochastic differential equations from a

Fokker-Planck equation is the decomposition of the diffusion matrix D. In certain cases, the diffusion

matrix can be easily diagonalised. If this is the case, the decomposition is just the square root of the

diagonalised diffusion matrix. In general, there is a mathematical decomposition called the Takagi

factorisation which always exists [138]. This factorisation is a special case of singular value decompo-

sition. More often than not, one is fortunate enough to have a diffusion matrix that can be expressed as

a set of diffusion matrices, each with known decomposition. When this is the case, there is an easy way

to find the corresponding decomposition of the diffusion matrix. To be concrete, assume a diffusion

matrix D that can be expressed as D=D1+D2+ ..., where the decomposition of each Di is known, i.e.

Di = BiBT
i . The decomposition of the diffusion matrix D then has the following form:

B=
⇣

B1 B2 ...
⌘

BT =

0

B

B

B

@

BT
1

BT
2
...

1

C

C

C

A

. (3.27)

It is straightforward to see that D= BBT.

Given the expressions of the corresponding stochastic differential equations in Eq. (3.26) from a

Fokker-Planck equation (3.25), we next present the stochastic differential equations satisfied by the

master equation (3.4)

d
dt

r =� i
h̄
[H,r]+Â

j
g jn̄ j

⇣

2a†jra j�a jra†j �ra ja†j
⌘

+Â
j

g j (n̄ j+1)
⇣

2a jra†j �a†ja jr �ra†ja j

⌘

,

where H is the optomechanical Hamiltonian given in Eq. (3.1):

H = h̄wca†a+ h̄wmb†b+ h̄g0a†a
�

b+b†
�

+ ih̄E (t)
⇥

�aeiwdt +a†e�iwdt
⇤

.

In this thesis, we consider two possible phase space representations, namely the Wigner and positive-P

representations to map the master equation (3.4) into the corresponding Fokker-Planck equation.
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3.3.2 Truncated Wigner representation

The master equation (3.4) in the Wigner representation contains terms which have derivatives larger

than the second order. The corresponding complex number equation is thus not a Fokker-Planck equa-

tion and the stochastic differential equations of the form (3.26) cannot be established. To circumvent

this problem, we neglect terms with third order or higher derivatives. This is the truncation approxima-

tion.

There is a mathematically formal way to truncate higher order derivative terms. Roughly, one

chooses a “system size” parameter, which in our case could be the cavity photon number N. Re-

expressing cavity mode amplitude in terms of the scaled amplitude, the complex number equation is

1/
p
N expansion. Terms that are of the order 1/N3/2 are truncated. Obviously, this truncation is a good

approximation for large cavity photon number. We note, however, that the argument provided is for

the cavity mode amplitude. In principle, this expansion also has to be carried out for the mechanical

mode amplitude. This can be done, but was not carried out. Instead, we run the truncated Wigner phase

space simulation and compare the results with those using positive P representation, which has no

truncation. All results agree within sampling errors justifying the validity of truncation approximation

in the Wigner representation in our case. For a mathematically detailed treatment of the truncation,

refer to Chapter in Carmichael’s book [128]. A shorter explanation can be found in Chapter 5 of the

thesis of Opanchuk [139].

The stochastic differential equations that dictate the time evolutions of the optical mode a and

mechanical mode b amplitudes are then given respectively by

da =
n

�
h

iD+ ig0 (b +b

⇤)+
go

2

i

a

o

dt +dain

db =
n

�
h

iD+
gm

2

i

b � ig0|a|2
o

dt +dbin , (3.28)

where D is the detuning between the external laser and cavity fields, g0 is the optomechanical coupling

strength, go, gm are the cavity and mechanical decay rates respectively and

dain =
p

go,extE (t)+
p

go,extda

in
ext +

p
go,intda

in
int

⌘p
go,extda

in
ext,total +

p
go,intda

in
int

dbin =
p

gmdb

in . (3.29)
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dain consists of the coherent input field, external and internal cavity losses. The thermal Gaussian

noises satisfy

hda

in
i da

in⇤
j i=

✓

n̄i,th+
1
2

◆

di jdt . (3.30)

The input mode into the cavity and the output mode from the cavity are related by the input-output

relation [140–143]

aout (t) =
p

go,exta (t)�a

in
ext,total (t) . (3.31)

Note that a

in
ext,total (t) in the input-output relation only includes the coherent input field E (t) and noises

entering the cavity a

in
ext but not noises due to internal cavity losses. The integrated input and output

mode amplitudes are then obtained by integrating these modes with their corresponding temporal mode

functions uin (t) and uout (t) as given below

Ain =

0
Z

�•

uin (t)a

in
ex,total (t) dt

Aout =

•
Z

0

u⇤out (t)aout (t) dt . (3.32)

These integrated input and output mode amplitudes will play important roles in the optomechanical

quantum protocols in Chapters 4 and 5.

Next, we present the stochastic differential equations in the positive P representation. The process is

identical to the one in the truncated Wigner representation and the only difference is the use of operator

identities in the positive P representation.

3.3.3 Positive-P representation

The positive-P representation has no truncation approximation used in the truncated Wigner represen-

tation and hence it is exact in the absence of boundary terms [144, 145], apart from a controllable

sampling error. The number of independent complex phase space variables are, however, doubled

due to the dimension doubling approach for positive-P representation. The corresponding stochastic
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differential equations are

da =
n

�
h

iD+
go

2
+ ig0

�

b +b

+
�

i

a

o

dt+dain

db =
n

�
h

iD+
gm

2

i

b � ig0a

+
a

o

dt+dbin

da

+ =
nh

iD� go

2
+ ig0

�

b +b

+
�

i

a

+
o

dt+da

+
in

db

+ =
nh

iD� gm

2

i

b

++ ig0a

+
a

o

dt+db

+
in , (3.33)

where

dain =
p

go,extE (t)+
p

go,extda

in
ext +

p
go,intda

in
int +da

in
g0

dbin =
p

gmdb

in+db

in
g0

da

+
in =

p
go,extE⇤ (t)+

p
go,extd

�

a

in
ext
�+

+
p

go,intd
�

a

in
int
�+

+d
�

a

in
g0

�+

db

+
in =

p
gmd

�

b

in�++d
�

b

in
g0

�+
. (3.34)

In the positive-P representation, there are noise terms due to the nonlinear interaction between the dif-

ferent modes. These are given by da

in
g0 , d

�

a

in
g0

�+, db

in
g0 and d

�

b

in
g0

�+ and the only nonzero correlations

between them are

hda

in
g0db

in
g0i=�ig0adt

hd
�

a

in
g0

�+ d
�

b

in
g0

�+i= ig0a

+dt . (3.35)

The thermal Gaussian noises are similar to those in the truncated Wigner representation.

hda

in
i d

�

a

in
j
�+i= (n̄i,th)di jdt . (3.36)

The integrated input and output mode amplitudes are identical to those defined in Eq. (3.32).

3.4 Summary

We presented the Hamiltonian that describes an optomechanical system. As the system interacts with

its environment and is hence an open quantum system, the master equation is used to formally describe

the dynamics of the system. The Hamiltonian is linearised in this chapter to simplify the analysis of the
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optomechanical system. The conclusion of the analyses is that the detuning of the system with respect

to an external driving field allows demonstration of different physics. With a blue-detuned driving

field, quantum entanglement between the optical and mechanical modes can be generated, while a

red-detuned driving field allows quantum state transfer between optical and mechanical modes.

We then return to the problem of solving the master equation. Since it is an operator equation with

nonlinearity and hence cannot be solved in general, the strategy is to convert it into a complex-number

equation known as the Fokker-Planck equation. We presented two ways that this transformation can

be carried out, using what is known as the truncated Wigner and positive P representations. From the

Fokker-Planck equation, it turns out that a set of stochastic differential equations dictating the time

evolution of amplitudes of the optical and mechanical modes can be obtained. Explicit stochastic

differential equations for the full, nonlinear optomechanical system, in both the truncated Wigner and

positive P representations, are presented.



Chapter 4

Optomechanical quantum memory and

coherent state transfer

We have seen how quantum states can be transferred between the optical and mechanical modes in an

optomechanical system in Chapter 3. This is the basis of an optomechanical quantum memory, which

is the topic of this chapter. A quantum memory is a device that stores quantum states. Optomechanics

is a good candidate for a quantum memory: there are standard quantum optical techniques for the gen-

eration of quantum states of light that can be shaped temporally and spatially. These quantum states

can be stored in long lived mechanical modes via a radiation pressure interaction. A quantum mem-

ory has important applications in proposed quantum internet systems [146–148], where a network of

nodes are connected by optical fibers. There are many other proposed applications as well. Generally,

optomechanical nodes can transmit and receive optical quantum states, which can be stored in me-

chanical oscillators at each node with low dissipation. Advances in mechanical quantum ground state

cooling techniques [50, 53, 125, 126] further reduce the spurious effects of thermal noise entering the

optomechanical system.

In Section 4.1, we describe a specific optomechanical quantum memory protocol involving two

pulses, one for generating the quantum state and the other for transferring the quantum state between

the optical cavity and mechanical modes. In particular, we study this protocol for coherent states.

In Section 4.2, we look at a linearised quantum memory model. Finally, we present the phase space

simulation results for the full, nonlinear optomechanical quantummemory protocol in Section 4.3. This

chapter is based on the published work by Teh et al. [149].
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Figure 4.1: The two-pulse optomechanical state transfer protocol, where ts is the storage time of the
quantum state in the mechanical mode. In this chapter, we also consider the effect of finite transfer field
turning on/off (also known as the transfer field switching) time. This is the time taken for a transfer
field to be fully turned on/off, and these are represented in the diagram where the transfer field has finite
gradients.

4.1 Optomechanical quantum state transfer and quantum memory

Based on the fact that a red-detuned external field transfers quantum states between the cavity

and mechanical oscillator, we consider a particular state transfer protocol as shown in Fig. 4.1, that

involves two external field pulses, which we named the preparation and transfer fields. The prepara-

tion/signal field generates the cavity quantum state that is to be stored in the quantum memory and the

transfer/control field facilitates the quantum state transfer between the cavity and mechanical modes.

The preparation field has the same frequency as the resonance frequency of the resonator wc while the

transfer field has frequency wd such that the detuning D between the resonator and the transfer field

frequency is the frequency of the mechanical oscillator, i.e. D = wc�wd = wm.

The optomechanical state transfer protocol consists of three stages. The writing stage involves

sending the quantum state into the cavity and transferring it to the mechanical system. During this stage,

both the preparation and transfer fields are applied. This simultaneously generates the cavity quantum

state and transfers it to the mechanical mode. After the quantum state is completely transferred to the

mechanical mode, both fields are turned off in the storing stage. Due to the low mechanical decay rate

gm, the mechanical oscillator serves as a good quantum memory. The stored quantum state will retain

its coherence on a timescale of 1/gm. Finally, a second transfer field is applied in the readout stage.
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This transfers the quantum state from the mechanical mode back into the cavity, which will then leak

out of the cavity and subsequently be detected.

Based on the Hamiltonian in Eq. (3.3), the optomechanical quantum memory Hamiltonian is ex-

pressed as

H̃ = h̄wma†a+ h̄wmb†b+ h̄g0a†a
�

b+b†
�

� ih̄
p

2gext
⇥

e (t)a� e

⇤ (t)a†
⇤

, (4.1)

where e (t) = etrans (t) + eprep (t)e�iwmt . Here, etrans (t) and eprep (t) correspond to the transfer field

and preparation field amplitudes, respectively. We choose to transform into the rotating frame of the

transfer field, leaving the preparation field oscillating at the resonance frequency of the mechanical

oscillator wm. Note that both the transfer and preparation fields are time dependent. This is essential

for an optimal optomechanical state transfer. We discuss this by considering a linearised quantum

memory model in the next section and give more details of the precise time-dependence of preparation

and transfer fields in later sections.

4.2 Linearised quantum memory model

In this section, we use the linearisation approximation so that analytical solutions for both the optical

and mechanical modes time evolution equations can be found. As we will see shortly, these solutions

make clear the choice of optimal temporal mode function of the preparation field. The temporal mode

function determines the time scale of the optomechanical state transfer protocol. Similarly, the output

field from the cavity that will be detected has a time dependence in its mode function and has to be

mode matched too for efficient detection.

4.2.1 Input fields

The cavity mode is a function of space and time. In this chapter, we assume single (longitudinal) mode

with the cavity resonance frequency wc which is fixed by the size of the cavity and express the cavity

mode in terms of a set of orthogonal temporal transverse modes. For simplicity, we only consider the

storage of a coherent cavity amplitude in one of these temporal modes. In order to optimise the coupling

between the preparation field and the cavity, the preparation field containing the coherent state to be

stored in the optomechanical system has to temporally mode match to one of these orthogonal cavity
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temporal modes. Perfect mode matching ensures that only the intended cavity mode will remain in the

cavity and other modes will either be reflected or leak out of the cavity.

The optimal mode function for the preparation field is obtained by solving the time evolution equa-

tions and since these equations are nonlinear and intractable in general, we invoke the linearisation

approximation. Within this approximation, analytical expressions for both optical and mechanical

modes will be obtained, which determine the optimal temporal mode function. The optimal mode

function for the preparation field within the linearisation approximation was first obtained by He et al.

[150, 151]. These linearised calculations are instructive as they provide a simple theoretical descrip-

tion of the subsequent experimental demonstrations of coherent state transfer [59]. In this section, we

include linearised calculations similar to those of He et al. [150], but taking into account internal cavity

losses. These calculations serve the purpose of checking the validity of the linearisation approxima-

tion in optomechanical quantum memory experiments. In their work, He and co-workers solved the

stochastic differential equations describing the time evolution of both the cavity a(t) and mechanical

modes b(t). Those equations are derived from the effective interaction Hamiltonian

Hint = h̄g
�

ab†+a†b
�

, (4.2)

where g= g0
p
N is the effective coupling strength andN is the intracavity photon number of the transfer

field. The interaction Hamiltonian (4.2) contains the linearisation and rotating wave approximations.

The corresponding linearised Heisenberg time evolution equations

d
dt
a(t) =�goa� igb+

p

2gextainext +
p

2gintainint
d
dt
b(t) =�gmb� iga+

p

2gmbin (4.3)

can be solved analytically. Here, ainext contains the preparation field and other noises from outside of the

cavity, while ainint includes all other noises in the cavity. The general solution ~a(t) =

0

@

a(t)

b(t)

1

A for the

writing stage is

~a(t) =
t
Z

�•

ek+tcosh(mt) I~ain (t) dt +

t
Z

�•

ek+t

sinh(mt)

m

0

@

k� ig

ig �k�

1

A~ain (t) dt , (4.4)
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where ~ain (t) =

0

@

p
2gextainext +

p
2gintainint

p
2gmbin

1

A , k+ = (go+ gm)/2, k� = (go� gm)/2 and m=
q

k

2
��g2.

The preparation field in the optomechanical state transfer protocol is ainext = a0uin, where a0 is the

initial mode-matched external field operator whose coherent amplitude we want to store, and uin is the

temporal external mode function yet to be determined. The task is to find out what should the time

dependence of the preparation field be for optimal state transfer.

To this end, we consider the stored mode in the mechanical system which is given by

b(0) =
p

2gext

0
Z

�•

ig
m
a0uin (t)ek+tsinh(mt) dt +noise . (4.5)

From the mechanical mode amplitude solution above, we choose the mode function of the form

uin (t) =�2i
p

(k++m)(k+�m)k+

m
exp(k+t)sinh(mt) , (4.6)

which is normalised, i.e.
R 0
�• |uin (t)|2 dt = 1. To verify that this choice is an optimal one, solve Eq.

(4.5) using the temporal input mode function uin (t) given in Eq. (4.6). The stored mode operator is

then

b(0) =
p
2gextga0

2
p

(k++m)(k+�m)k+

+noise . (4.7)

For the case where there are no internal cavity losses and in the limit where the cavity decay rate is

much larger than the mechanical dissipation rate go � gm, it is straightforward to show that the stored

mode operator (4.7) will always be the external operator a0, in addition to a noise term that includes all

possible noises:

b(0) = a0+noise . (4.8)

Note that the optimal mode function is obtained from the solutions of Eq. (4.3) and the mode func-

tion is optimal for any arbitrary coupling strength g. In reality, the validity of the linearised interaction

Hamiltonian in Eq. (4.2) might not hold in certain regimes where nonlinear effects cannot be neglected.

For those cases, the mode function in Eq. (4.6) will not be the optimal one. Depending on the observ-
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ables one wishes to compute, other methods, such as functional optimisation, can be used to obtain the

optimal mode function.

Remark: The transfer field only affects the steady state of the cavity mode in the linearisation

analyses. In nonlinear simulations, these intense transfer fields give rise to transient behavior in the

cavity mode amplitude when transfer fields are switched on or off. They appear as huge spikes in the

cavity mode amplitude. Power spectral densities reveal that the frequency content of the transfer and

preparation fields overlap. Moreover, the finite transfer field switching time has significant effects on

the efficiency of the optomechanical state transfer. This phenomenon cannot be easily studied in the

linearisation scheme. In other words, the linearisation approximation can be problematic.

Next, we discuss the issue of the optomechanical state transfer protocol duration. The duration of

the writing stage is determined by the temporal input mode function, which we analyse in the following.

The input mode function has the form
⇥

e(k++m)t � e(k+�m)t⇤Q(�t) as in Eq. (4.6). In the limit where

gm ⌧ g ⌧ go, it can be shown that k+ +m ⇡ go, k+ �m ⇡ g2/go and hence e(k+�m)tQ(�t) is the

dominating term in the temporal input mode function during the writing stage. The duration of the

writing stage has to be longer than 1/(k+�m). Simply put, the duration has to be long enough to

include the whole pulse. In the weak coupling limit (g< go), the pulse duration depends on the ratio

between g and go and weaker coupling strength g requires a longer writing stage.

In the strong coupling limit (g> go), m is a complex number and the duration of the writing stage

has to be longer than 1/k+. The storage time in the mechanical mode is determined by the mechanical

dissipation rate and it has to be shorter than 1/gm. In this chapter, the storage time is restricted to be

much smaller than the mechanical lifetime in order to reduce the number of time steps in our simu-

lations. In the state transfer protocol treated here, the output mode is a time-reversed version (around

t = ts/2) of the input field, where ts is storage time of the quantum state in the mechanical mode.

Hence, the read-out stage duration is chosen to be the same as the writing stage. Other protocols are

available where the input and output modes are symmetric functions [151], and in such cases the input

and output modes are identical, which is more useful for cascaded quantum logic operations. The use

of symmetric function in the input and output modes in a quantum protocol is discussed in Chapter 5.

4.2.2 Output fields

The output field from the cavity aout contains the signal stored in a single mode, as well as other



4.2 Linearised quantum memory model 103

LO

Displacement 
operation

Cancellation field

Output field

Homodyne 
detection

D

D

d

Figure 4.2: The transfer field contribution to the output field is subtracted using the cancellation field.
The resulting field is then detected with a homodyne detection scheme.

noises, in all other independent, orthogonal modes. The output field obeys the standard input-output

theory [140–143], which relates the output field to the input and cavity fields. Typically, the output

fields are measured using a homodyne detection scheme. In order to detect and extract the signal,

the local oscillator mode in the homodyne detection scheme has to be temporally mode matched to the

mode function of the signal. The schematic of the above mentioned approach is shown in Fig. 4.2. This

extraction is possible due to the orthogonality of these mode functions. Also, due to the time-reversal

symmetry of the state transfer protocol around t = ts/2, the output temporal mode function uout (t) is

related to the input temporal mode function uin (t) by uout (t) = u⇤in (ts� t), so that:

uout (t) = 2
p

(k++m)(k+�m)k+

m
exp [�k+ (t� ts)]sinh [m(T � t)] . (4.9)

We note that the output field is a product of the mode amplitude and the corresponding mode function.

To extract the mode amplitude of the corresponding temporal mode, the integrated output is computed

using

Aout =

•
Z

ts

u⇤out (t)aout (t) dt . (4.10)
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The integrated output in the linearised approximation is calculated to be

Aout =
gext

2(k++m)(k+�m)k+

�

g2e�gmts � g

2
me

�gots
�

Ain+noise , (4.11)

where Ain =
R 0
�• u⇤in (t)ain (t)dt is the integrated input.

The advantage of the output mode matching approach for quantum state retrieval is that both the

amplitude and phase information of the quantum state are retained. This is crucial for any claim of a

working quantum memory.

It is more common, however, to record the output power spectrum in experiments. This is mainly

because output power spectra allow the characterisation of optomechanical parameters. In the case of

optomechanical state transfer, integrating the power spectrum around the signal frequency gives the

intensity or energy of the state stored. This can then be compared with the intensity or energy of the

input state. The state transfer efficiency is subsequently deduced from the ratio of these two quantities.

This method has the drawback of lost information on the phase of the state stored. The quantum nature

of the stored state cannot be verified and the claim of a memory device is at best a classical one.

In this section, we solved linearised Heisenberg time evolution equations to demonstrate the need

for time dependence in the preparation field for optimal coupling into the cavity. From the tempo-

ral mode function, the time scale of the optomechanical state transfer protocol is determined. In the

next section, we present the numerical phase space simulation results of the optomechanical quantum

memory protocol.

4.3 Numerical simulations and results

Using the phase space methods described in Section 3.3, it is possible to carry out the corresponding

phase-space simulations using either normally ordered positive P methods, or symmetrically ordered

truncated Wigner methods that include a truncation approximation. While the first are more precise,

the second can be faster, depending on the random sampling error that is required. We carry out both

types of calculation, and find that they give results that are the same within sampling error, for these

parameter values. We present and discuss the results of our nonlinear phase space simulations.

We first briefly describe the experiment and its parameter that are used in the numerical simulations.

An aspect which is not often discussed in the literature is the finite time needed to turn the transfer field
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on or off. This finite switching time of the transfer field affects the efficiency of the protocol and this

will be presented. Also in this section, we discuss how power spectral densities and quantum fidelity

can be computed using phase space methods.

4.3.1 Electromechanical experiment and parameters

We simulated the quantum memory protocol using electromechanical experiment parameters of Palo-

maki et al. [59]. The experiment demonstrated coherent state transfer using an electromechanical

system, consisting of an LC resonator where one of the plates of the capacitor is movable, behaving

like a mechanical oscillator. The resonance frequency of the resonator is wc/2p ⇡ 7.5GHz and the res-

onance frequency of the mechanical oscillator is wm/2p = 10.5MHz. The decay and dissipation rates

for the resonator and mechanical oscillator are characterized by go = gint+gext and gm respectively. The

total decay rate of the resonator, go/2p is 170kHz with gext/2p = 137.5kHz.

The mechanical dissipation rate gm is 2p ⇥ 17.5Hz. The interaction between the resonator and

mechanical modes is analogous to the interaction in cavity optomechanics due to the radiation pressure.

The coupling between the resonator and mechanical mode is g0, which is 2p⇥200Hz in the experiment.

The enhanced coupling strength g is defined to be g0
p
N, where N is the average number of photons

in the cavity. The electromechanical system is maintained at 25µK, which corresponds to an average

thermal phonon number of 50. The constant transfer field amplitude etrans is determined from the steady

state solutions of the corresponding stochastic differential equations. It is given by

etrans =

s

(w2
m+ g

2
o )N

2gext
, (4.12)

where N is the average number of photons in the cavity. The coherent state sent into the electromechan-

ical system has a photon number expectation value of 35 and the storage time in mechanical oscillator

is ts = 25µs.

We assume both the resonator and mechanical oscillator to be in their ground states initially. This

is a good approximation for the resonator in the gigahertz range as the average thermal occupation

number is essentially zero at the temperature of order µK, as in their experiment. The mechanical

ground state is harder to achieve as it is more susceptible to thermal noise. Besides, theoretical analyses

[152, 153] showed that, even in the resolved sideband limit (wm � go), there is a nonzero lower bound
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to the mean mechanical phonon number. However, mechanical ground state has been achieved in many

different experimental implementations of optomechanics. In particular, recent experimental work

demonstrated sideband cooling beyond the quantum back-action limit using squeezed light [126]. This

allows mechanical quantum ground states to be reached.

4.3.2 Numerical methods

All numerical simulations are carried out using xSPDE, which is an open source software package writ-

ten in Matlab to solve stochastic differential equations [154]. The numerical results were obtained using

a fourth order Runge-Kutta method in the interaction picture [132, 154], with 105 parallel trajectories

for both the truncated Wigner and positive P simulations.

We express all stochastic differential equations in dimensionless form, by introducing dimension-

less time variable t = got, where all parameters are relative to the cavity amplitude decay rate, go. This

makes clear the regimes of interest. For instance, Wm = wm/go determines whether the system is in

the resolved sideband regime, which is important for mechanical ground state cooling [50, 53, 125].

The ratio G= g/go, on the other hand, determines whether the system is in the strong coupling regime

[59, 155]. All dimensionless parameters are denoted by capital Greek letters of their corresponding

parameters given in Section 4.3.1, unless stated otherwise.

For instantaneous switching, as used in all the subsections below except subsections (4.3.5), and

(4.3.6), the plots are obtained by first solving the dimensionless stochastic differential equations given

in Eq. (4.3) with a time dependent input field E (t) as follows:

E (t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

Etrans+Eprep (t) ,�tw  t  0

0 , 0 t  ts

Etrans , ts  t  tr ,

(4.13)

where tw, ts and tr = tw are the duration of the writing, storing and read-out stages, respectively.

The transfer field amplitude Etrans=
p

(W2
m+G2

o)N/(2Gext) , the preparation field amplitude Eprep (t)=

a0uin (t), with coherent state amplitude a0 =
p
Nc, whereNc is the coherent photon number that is input

for storage. The temporal input mode function is calculated as the optimal one, namely:

uin (t) =�2i
p

(K++M)(K+�M)k+

M
e(K+t)sinh(Mt)e�iWmt . (4.14)
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Here, K+ = (Go+Gm)/2, k� = (Go�Gm)/2 andM=
q

K2
��G2. In most of the simulations, Nc = 35,

as in recent coherent state transfer experiments, however, the effect of storing different input photon

numbers on the measurable fidelity is explored in subsection (4.3.6). It should be noted that recent

experiments did not use this optimal pulse shape.

In subsection (4.3.5), dealing with finite switching time, a different state transfer protocol is ex-

plored in which the transfer fields are turned on and off continuously over a finite time duration. This

reduces the spectral width of the transfer field. It is closer to what is actually used in an experiment,

although experimental transfer fields may have spectra that differ in detail from the relatively simple

models used here. Details of this are given later.

The number of time steps differ for different coupling strengths G, since the optomechanical

state transfer protocol duration varies with G. The step in dimensionless time dt was chosen to be

1/ [10(Wm+ Im(M))], whereM =
q

K2
��G2 is defined in the previous section. This choice of step in

dimensionless time dt is much smaller than that stated in the sufficient sampling rate criterion in the

Shannon sampling theorem [156]. Consequently, the finite time step error, which was calculated by

repeating calculations with a step-size reduced by 50%, was much less than the sampling error.

4.3.3 Power spectral densities

As mentioned previously, the spectral content of the output field reveals overlap between the con-

trol and signal fields. The spectral content of a field is obtained by computing the power spectral

density. Here, we define the output power spectral density and its computation in the truncated Wigner

representation. The output power spectral density is given by the expectation value:

S (W) =
2p

T
hâ†out (W) âout (W)i (4.15)

which gives the average dimensionless intensity of the output signal at the dimensionless frequency W,

over a dimensionless observation time T = tr � ts. The frequency domain mode operator âout (W) is

defined as the windowed Fourier transform of the time domain mode operator âout (t), i.e,

âout (W) =
1p
2p

tr
Z

tS

eiWt âout (t) dt (4.16)
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Figure 4.3: The output field power spectral density S (W) given in Eq. (4.18) for G = 0.5 from the
nonlinear truncated Wigner simulations. The signal is on top of the transfer field frequency content.

and the operator â† (W) is the Hermitian conjugate of the operator â(W):

â†out (W) =
1p
2p

T
Z

0

e�iWt â†out (t) dt . (4.17)

The dimensionless output power spectral density is obtained in the truncated Wigner representation

using the relation

S (W) = h|aout (W)|2iWigner�
1
2
, (4.18)

where aout (W) is the Fourier transform of the output field amplitude in the truncated Wigner represen-

tation aout (t). The 1
2 in Eq. (4.18) comes from the fact that Wigner representation is used to evaluate

symmetrically ordered observables.

From nonlinear numerical simulations, without displacement operations as described in Section

4.2.2, we compute the output field power spectral densities expressed in Eq. (4.18). Fig. 4.3 and Fig.

4.4 show the full, nonlinear output field spectra for G= 0.5 and G= 2.0, respectively, in the truncated

Wigner representation.
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Figure 4.4: The output field power spectral density S (W) given in Eq. (4.18) for G = 2.0 from the
nonlinear truncated Wigner simulations. The signal is on top of the transfer field frequency content.

We see in Fig. 4.3 and Fig. 4.4 that the signal content is situated on top of a large amplitude due

to the intense transfer field. This overlap of signal and carrier in output spectra means that filtering

is required for signal extraction. We note that this overlap occurs even when the transfer field and

preparation field frequencies are about 2p ⇥ 107Hz apart. This overlap is due to the intense transfer

field that drives the electromechanical system. Even forG< 1, the output spectrum is radically different

to what is expected for a Lorentzian signal, owing to strong interference between the spectral tails of

the transfer field and the signal itself, which has a very low amplitude by comparison. For G > 1, the

output field spectra exhibit double-peak feature known as the optomechanical normal mode splitting.

First observed experimentally by Gröblacher et al. [157] and subsequently with larger G by Teufel et

al. [52], the optomechanical normal mode splitting with the splitting set by 2G is a signature of the

strong coupling regime. Note that the two peaks observed in the output field spectrum is distinctively

different from the input spectrum expected for a coherent light, which has a Lorentzian signal. Hence,

we expect the fidelity of the output field with respect to the input field to be lower in the strong coupling

regime than in the weak coupling regime.

There are a number of ways one can attempt to remove the transfer field contribution in the output

field that one detects. In the experimental work by Andrews et al. [158], the frequency content of the

transfer field around the signal frequency is notch filtered before sending it into the electromechanical
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Figure 4.5: The top figure corresponds to the displaced, output field spectrum in a full, nonlinear
truncated Wigner simulation while the bottom figure shows the output field spectrum of a linearised
truncated Wigner simulation. The dimensionless signal frequency in the nonlinear simulation is at
W = Wm as the system is in the rotating frame of the transfer field, while the dimensionless signal
frequency in the linearized simulation is at W0 = 0. The number of samples taken is 105.
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Figure 4.6: The top figure corresponds to the displaced output field spectrum in a full, nonlinear trun-
cated Wigner simulation while the bottom figure shows the output field spectrum of a linearised trun-
cated Wigner simulation. Axes labels as for Figure 4.5. The number of samples taken is 105.
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system. Another method removes the amplitude due to the transfer field in the time domain, using a

beam splitter in what is essentially a type of Mach-Zehnder interferometer. Here we adopt the second

approach in our nonlinear simulations.

This second approach of removing the transfer field amplitude in the output field involves a can-

cellation field. This has also been suggested by Akram et al. [159] by mixing the output field with

a local oscillator field using a beam splitter. This procedure, achieved in quantum optics experiments

[160–162], is nothing but a displacement of the phase space cavity amplitude by the amplitude due to

the transfer field. The gedanken experiment that corresponds to this method is shown in Fig. 4.2. An

output field containing amplitudes from both the signal a and transfer field b is mixed with a cancel-

lation field Acancel in a beam splitter with transmissivity h . The output port d in the Fig. 4.2, obtained

using the standard beam splitter operation, is given by

d =
p

h (a +b )�
p

1�hAcancel

=
p

ha +
⇣p

hb �
p

1�hAcancel

⌘

. (4.19)

By setting the transmissivity h close to 1, the amplitude of the cancellation field Acancel is adjusted

accordingly to cancel out the second term. It is straightforward to see that a cancellation field Acancel

that is much more intense than the transfer field is necessary. Ideally, the cancellation field is split off

from the transfer field. This implies that the initial transfer field has to be greatly amplified, which is

not always possible. For instance, in order to place the optomechanical system in the strong coupling

regime, a very intense transfer field is needed to enhance the optomechanical coupling. This renders an

even more intense cancellation field impractical. This scheme also leads to losses in the signal a , but

we treat this rather simple protocol to allow a clear explanation of the issues involved. Other schemes,

like a balanced cancellation where the transfer fields are subtracted while the signals are added, may be

feasible also.

The phase space amplitude displacement described above is implemented numerically by simulat-

ing the whole state transfer protocol without the preparation field. The mean output field from this

simulation is then subtracted from the output field of a full, nonlinear optomechanical state transfer

simulation.

Fig. 4.5(a) and Fig. 4.6(a) show the numerical results for the output field spectra after the dis-

placement operation in the nonlinear truncated Wigner simulations. Also plotted are the output field
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spectra obtained from the linearised truncated Wigner simulations as shown in Fig. 4.5(b) and Fig.

4.6(b). These plots are obtained by solving stochastic differential equations as given in Eq. (4.3), in the

dimensionless form with the effective coupling strength

G(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

G ,�tw  t  0

0 , 0 t  ts

G , ts  t  tr

(4.20)

and the input field

E (t) =

8

>

<

>

:

Eprep (t) ,�tw  t  0

0 , otherwise ,
(4.21)

where Eprep (t) = a0uin (t), with the coherent state amplitude a0 =
p
35 and the temporal input mode

function

uin (t) =�2i
p

(K++M)(K+�M)k+

M
e(K+t)sinh(Mt) . (4.22)

The signal frequency in the linearised simulations is at W0 = 0 while the signal frequency in the

nonlinear simulations is at W = Wm since we transformed into the rotating frame of the transfer field.

4.3.4 Integrated input and output modes using temporal mode functions

Using the temporal mode functions introduced in Section 4.2.2, the energy retrieved with respect to

the energy stored can be computed straightforwardly. However, due to the fact that the stored cavity

amplitude in a particular mode contains a contribution from the transfer field, we remove this amplitude

via a displacement operation in the phase space as described in Section 4.3.3. We integrate the input

and output modes with their corresponding temporal mode functions to pick out the desired input and

output signals. The efficiency of the protocol is defined to be

zinstant ⌘
|Aout |
|Ain|

. (4.23)
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G Integrated input, Ain Integrated output, Aout zinstant ⌘ |Aout|
|Ain|

0.50 5.9161 (4.7716+0.0971i)± (0.0056+0.0063i) 0.8067±0.0010
0.75 5.9161 (4.7697+0.1869i)± (0.0052+0.0056i) 0.8068±0.0009
1.00 5.9161 (4.7604+0.2890i)± (0.0062+0.0071i) 0.8061±0.0012
1.25 5.9161 (4.7458+0.4328i)± (0.0067+0.0075i) 0.8055±0.0011
1.50 5.9161 (4.7176+0.6097i)± (0.0054+0.0062i) 0.8041±0.0010
1.75 5.9161 (4.6612+0.8108i)± (0.0095+0.0057i) 0.7997±0.0017
2.00 5.9161 (4.5943+1.0495i)± (0.0089+0.0119i) 0.7966±0.0016

Table 4.1: The efficiency of the state transfer protocol as defined in Eq. (4.23), for different coupling
strengths G with instantaneous transfer field switching. These values are obtained from positive P
simulations.

We obtain numerical results for the state transfer energy efficiencies for different coupling strengths

using both the truncated Wigner and positive P representations. The numerical results are shown in

Table 4.1 and Table 4.2. They are obtained by solving the dimensionless form of stochastic differential

equations given in Eq. (3.28) and Eq. (3.33) for the truncated Wigner and positive P representations,

respectively, with the time dependent input field E (t) as described in Eq. (4.13). The integrated input

is

Ain =

0
Z

�•

u⇤in (t)
⇥

E (t)+a

in
ext
⇤

dt , (4.24)

where uin (t) is defined in Eq. (4.14) and a

in
ext is thermal Gaussian noise. The integrated output is given

by

Aout =

•
Z

ts

u⇤out (t)aout (t) dt . (4.25)

Here, the temporal output mode function uout (t) = u⇤in (ts� t) and the dimensionless output field

aout (t) is obtained from the input-output relation given in Eq. (3.31).

These numerical results are compared with the analytical result given in Eq. (4.11) in Fig. 4.7. The

analytical results plotted here are the first term in Eq. (4.11), ignoring the additional noise term. The
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G Integrated input, Ain Integrated output, Aout zinstant ⌘ |Aout|
|Ain|

0.50 (5.9146�0.0025i)± (0.0023+0.0025i) (4.7675+0.0939i)± (0.0028+0.0022i) 0.8062±0.0002
0.75 (5.9160+0.0010i)± (0.0020+0.0021i) (4.7651+0.1768i)± (0.0033+0.0026i) 0.8060±0.0003
1.00 (5.9169+0.0006i)± (0.0017+0.0024i) (4.7576+0.2896i)± (0.0028+0.0030i) 0.8056±0.0003
1.25 (5.9152+0.0007i)± (0.0026+0.0016i) (4.7431+0.4349i)± (0.0028+0.0021i) 0.8052±0.0002
1.50 (5.9167�0.0008i)± (0.0015+0.0027i) (4.7119+0.6098i)± (0.0034+0.0034i) 0.8030±0.0003
1.75 (5.9167+0.0013i)± (0.0025+0.0018i) (4.6669+0.8135i)± (0.0040+0.0029i) 0.8007±0.0004
2.00 (5.9139+0.0003i)± (0.0021+0.0023i) (4.5996+1.0445i)± (0.0021+0.0034i) 0.7976±0.0002

Table 4.2: The efficiency of the state transfer protocol as defined in Eq. (4.23), for different coupling
strengths G with instantaneous transfer field switching. These values are obtained from truncated
Wigner simulations.
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Figure 4.7: The efficiency of the state transfer protocol for different coupling strengths G. The number
of samples taken for both the truncated Wigner and positive P simulations is 105. The error bars denote
the sampling errors in our phase space simulations. For a coherent state with a coherent amplitude of 5,
using the given experimental parameter values, the corresponding dimensionless G is 0.006. This puts
the experiment well in the regime where the linearisation approximation holds.



116 Optomechanical quantum memory and coherent state transfer

errors in the error bars in Fig. 4.7 include both the sampling error and time step error. The main source

of error is the sampling error.

It can be easily seen from the tables and figures that the two types of numerical simulation generate

very similar results up to the numerical sampling error. The Wigner truncation error is negligible for

these calculations, even though the coherent signal amplitude is not very large. However, the analytical

predictions using linearization give large errors for G> 1.

4.3.5 Finite switching time

The state transfer protocol with minimal degradation relies on having the optimal, enhanced coupling

strength G = g0
p
N/go, where N is determined by the transfer field amplitude as in Eq. (4.12). In

practice, it takes time to switch the transfer field to its required amplitude. Hence, the efficiency of the

state transfer protocol defined in Eq. (4.23) depends on how fast the transfer field can be turned on and

off. Within the linearised approximation, the finite switching time of the transfer field cannot be easily

taken into account. A full, nonlinear simulation then becomes both more accurate and simpler to carry

out. We run the same numerical simulations as in the Section 4.3.4, except that the transfer field is now

time dependent, to take into account the finite switching of the field. We model the finite transfer field

switching with a smoothing function as follows:

Etrans(t) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Etrans cos2
h

(t�t1)
t1+tw

p

2

i

, �tw  t  t1

Etrans , t1  t  t2

Etrans cos2
h

(t2�t)
t2

p

2

i

, t2  t  0

0 , 0 t  ts

Etrans cos2
h

(tr�t)
tr�t3

p

2

i

, ts  t  t3

Etrans , t3  t  tr.

(4.26)

Here, Etrans (t) is the time dependent transfer field and its constant amplitude Etrans=
p

(W2
m+G2

o)N/(2Gext).

tw is the length of the writing stage, t1 is the time when the writing stage transfer field is fully turned on,

t2 is the time when the writing stage transfer field starts to turn off, t3 is the time we start turning on the

read-out stage transfer field, t4 is when the read-out stage transfer field is fully turned on and tr is the

length of the read-out stage. As described in Section 4.2.2, the duration of the writing stage is the real
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G Integrated input, Ain Integrated output, Aout zfinite ⌘ |Aout|
|Ain|

0.50 5.9161 (4.7561+0.1106i)± (0.0053+0.0048i) 0.8041±0.0008
0.75 5.9161 (4.7515+0.1951i)± (0.0068+0.0077i) 0.8038±0.0010
1.00 5.9161 (4.7124+0.2773i)± (0.0047+0.0041i) 0.7979±0.0008
1.25 5.9161 (4.6761+0.4056i)± (0.0067+0.0056i) 0.7934±0.0010
1.50 5.9161 (4.6300+0.5759i)± (0.0058+0.0068i) 0.7886±0.0010
1.75 5.9161 (4.5441+0.7632i)± (0.0044+0.0074i) 0.7788±0.0009
2.00 5.9161 (4.4531+0.9661i)± (0.0079+0.0068i) 0.7702±0.0013

Table 4.3: The efficiency of the state transfer protocol as the ratio between the integrated output Aout
and integrated input Ain. These are computed for different coupling strengthsG with finite transfer field
switching time. These values are obtained from positive P simulations.

G Integrated input, Ain Integrated output, Aout zfinite ⌘ |Aout|
|Ain|

0.50 (5.9146�0.0025i)± (0.0023+0.0025i) (4.7566+0.0957i)± (0.0028+0.0022i) 0.8044±0.0002
0.75 (5.9160+0.0010i)± (0.0020+0.0021i) (4.7409+0.1781i)± (0.0031+0.0026i) 0.8019±0.0003
1.00 (5.9169+0.0006i)± (0.0017+0.0024i) (4.7149+0.2860i)± (0.0028+0.0030i) 0.7983±0.0003
1.25 (5.9152+0.0007i)± (0.0026+0.0016i) (4.6777+0.4226i)± (0.0028+0.0022i) 0.7940±0.0002
1.50 (5.9167�0.0008i)± (0.0015+0.0027i) (4.6205+0.5837i)± (0.0029+0.0034i) 0.7871±0.0004
1.75 (5.9167+0.0013i)± (0.0025+0.0018i) (4.5485+0.7684i)± (0.0039+0.0026i) 0.7797±0.0004
2.00 (5.9139+0.0003i)± (0.0021+0.0023i) (4.4532+0.9747i)± (0.0021+0.0035i) 0.7708±0.0002

Table 4.4: The efficiency of the state transfer protocol as the ratio between the integrated output Aout
and integrated input Ain. These are computed for different coupling strengthsG with finite transfer field
switching time. These values are obtained from truncated Wigner simulations.

part of 1/(K+�M), where K+ = (Go+Gm)/2, K� = (Go�Gm)/2, Gm = gm/go and M =
q

K2
��G2.

We choose the switching time to be 1% of the duration of the writing stage. The resulting efficien-

cies are shown in Table 4.3 and Table 4.4. The reduced efficiency in percentage relative to the efficiency

with instantaneous switching is defined as

zreduced =
z f inite�zinstant

zinstant
⇥100% , (4.27)

where z f inite is the efficiency, taking the finite transfer field switching into account. The results are

plotted in Fig. 4.8.
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Figure 4.8: The reduced efficiency of the state transfer protocol due to finite switching for different
coupling strengths G. The number of samples taken for both the truncated Wigner and positive P
simulations is 105. The error bars denote the sampling errors in our phase space simulations.

4.3.6 Quantum fidelity

In this section, we compute the quantum fidelity in the truncated Wigner representation. We note that

the quantum fidelity computation in the positive P representation is nontrivial as the sampling error

can be very large [163]. It was observed by Rosales-Zarate and Drummond [163] that a generalized

Gaussian phase space representation is more suited in computing the quantum fidelity exactly.

The quantum fidelity is defined as

F = Tr(rir f ) , (4.28)

where ri is the density operator of the stored quantum state and r f is the density operator of the

retrieved quantum state. The fidelity (4.28) is just the overlap between two pure quantum states, if one

of the density operators characterises a pure state. This is the case in our consideration where we take

the stored quantum state ri to be pure. The quantum fidelity in the truncated Wigner representation is

given by [164, 165]

F = p

Z

Wi (a)Wf (a) d2a . (4.29)
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G Fidelity, F
0.50 0.2772±0.0012
0.75 0.2702±0.0015
1.00 0.2553±0.0014
1.25 0.2276±0.0013
1.50 0.1847±0.0016
1.75 0.1325±0.0014
2.00 0.0820±0.0008

Table 4.5: The fidelity of the optomechanical state transfer protocol with instantaneous transfer field
switching. These values are obtained from truncated Wigner simulations.

G Fidelity, F
0.50 0.2716±0.0013
0.75 0.2585±0.0015
1.00 0.2359±0.0012
1.25 0.2028±0.0014
1.50 0.1578±0.0012
1.75 0.1098±0.0014
2.00 0.0665±0.0006

Table 4.6: The fidelity of the optomechanical state transfer protocol with finite transfer field switching
time as described in Section 4.3.5. The fidelity is lower compared to the case of instantaneous transfer
field switching. These values are obtained from truncated Wigner simulations.

Here,Wi (a) andWf (a) are the corresponding Wigner functions for ri and r f respectively. The deriva-

tion of the fidelity expression in Eq. (4.29) can be found in Appendix E. In particular, for a coherent

state |a0i, the corresponding Wigner function is given by

W (a) =
2
p

exp
⇣

�2 |a �a0|2
⌘

. (4.30)
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Nc F Fpure Fmin

1 0.7694±0.0027 0.9641 0.6667
5 0.6825±0.0026 0.8329 0.5455
15 0.5055±0.0019 0.5779 0.5161
25 0.3743±0.0016 0.4009 0.5098
35 0.2772±0.0012 0.2782 0.5070

Table 4.7: Fidelities for different number of photons. Here, Nc is the mean photon number of the
corresponding coherent state one wishes to store. Fidelities F are obtained from truncated Wigner
simulations. These are compared with the corresponding fidelities as given in Eq. (4.33) and also the
minimum fidelities required for claiming a quantum memory for a coherent state, as in Eq. (4.32).

The quantum fidelity can then be computed using the Monte Carlo method as follows:

F = p

Z

Wi (a)Wf (a) d2a

⇡ p

Nsample

Nsample

Â
j=1

Wi (a j)

=
2

Nsample

Nsample

Â
j=1

exp
�

�2|a j�a0|2
�

. (4.31)

We can think of the first line in Eq. (4.31) as the expectation value of Wi (a) with the probability

distributionWf (a). TheMonte Carlo method comes in the second line, where instead of the probability

distribution Wf (a), we have a set of sampled values of a from the distribution Wf (a). We use the

expression forWi as in Eq. (4.30) in the final line.

The fidelity for different coupling strengths is tabulated in Table 4.5. The fidelity, taking into

account the effect of finite transfer field switching time, is shown in Table 4.6. The results show a

decrease in fidelity when the transfer field takes a finite time to turn on and off, compared to the case

where transfer field is assumed to be switched instantaneously. This is expected since the efficiency of

the state transfer protocol as defined in Eq. (4.23) is reduced in the case of finite transfer field switching

time.

Hammerer et al. [166] and Braunstein et al. [28] computed the minimum fidelity Fmin required for

a quantum memory and it is given by

F � (1+Nc)

(2Nc+1)
⌘ Fmin , (4.32)
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where Nc is the mean photon number of the quantum state one wishes to store. The criterion in Eq.

(4.32) provides a benchmark for the quantum memory of a coherent state. Assuming that both the

input and output states are pure coherent states with amplitudes a0 and ha0 respectively, the quantum

fidelity of the coherent output state |ha0i with respect to the coherent input state |a0i is given by

Fpure = |hha0|a0i|2 = exp
h

� |a0 (1�h)|2
i

. (4.33)

Here h = 0.8088, as quoted in the experiment by Palomaki et al. [59].

As suggested by Eq. (4.32) and Eq. (4.33), the state transfer protocol fidelity and its minimum

value required for a quantum memory of a coherent state depends on the mean photon number of the

coherent state. We computed the fidelities F for coherent states with mean photon number 1,5,15,25

and 35, for G = 0.5 with instantaneous transfer field switching. They are carried out in the truncated

Wigner representation. These fidelities are then compared to Fmin and Fpure predicted by Eq. (4.32)

and Eq. (4.33), respectively, as shown in Table 4.7. From the table, we see that Fpure is quantitatively

different from fidelity F computed numerically. The discrepancies increase with smaller mean photon

numbers of the corresponding coherent states. This is because a coherent state with small mean photon

number is more susceptible to noise from the environment and hence the assumption that the output

state is a pure coherent state is invalid.

On the other hand, the fidelities for coherent states with smaller mean photon numbers are increased

to the point that they do exceed Fmin. For these cases, a genuine quantum optomechanical memory of a

coherent state can be achieved. For larger mean photon numbers the fidelity is reduced, since the losses

will lead to a substantial probability of an output state with a different photon number, that is therefore

orthogonal to the input. In these cases, the predicted fidelity is lower than that required by the criterion

in Eq. (4.32). In order to achieve quantum state transfer, either the stored photon number of the internal

cavity losses and thermal noises on mechanical oscillator have to be significantly reduced compared to

a recent experiment on coherent state transfer.

4.4 Summary

Based on the fact that quantum state transfer can be achieved in an optomechanical system with a

red-detuned field, we analysed a specific optomechanical state transfer protocol using two fields. One

field (the preparation field) is used to generate the optical quantum state in a cavity while the other (the
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transfer field) facilitates the transfer of this quantum state between the optical and mechanical modes.

We analysed a linearised quantum memory model to demonstrate mode-matching for optimal coupling

of the field into the cavity. This is achieved by choosing a specific temporal mode function for the

preparation field.

The scheme presented in this chapter relies on the temporal mode-matching for a fixed coupling

strength. More often, one wants to transfer a state that has a specific temporal mode. When this is the

case, the coupling strength can be made time dependent that still ensures an optimal coupling of the

state into the optomechanical system. This is done by making the transfer field time dependent. The

theoretical work on this can be found in the paper of He et al. [150].

We then presented numerical phase space simulation results in the truncated Wigner and positive

P representations. We computed the power spectral densities for the output fields from the optical

cavity and observed the spectral content overlap between the control and signal fields. Removal of

the control field is then required for signal extraction and we discussed the procedure of removing

the control field amplitude in the time domain. The full, nonlinear simulations demonstrate that for

stronger optomechanical coupling strengths, nonlinearity of the system cannot be neglected and the

linearisation approximation breaks down.

Finally, we presented fidelity as a more suitable measure to quantify the efficiency of a quantum

memory. We showed that either the use of coherent states with smaller photon numbers or improve-

ments in the quality factor of the cavity and mechanical systems are necessary to increase the fidelity

beyond the threshold required for a quantum memory.

We should mention the progress in achieving optomechanical quantum memory in the electrome-

chanical implementation, where the experimental parameters are used in our numerical simulations.

In the earliest work on optomechanical memory in an electromechanical system, Palomaki et al. [59]

used a fixed coupling strength and specific temporal mode function for optimal coupling of the state

into their electromechanical system. In that work, a coherent state was transferred. A coherent state is

a Gaussian state, and it can be treated essentially as a classical state as its statistics can be simulated

using a classical computer. The optomechanical quantum memory of highly nonclassical states such

as the Schrodinger’s cat or Fock states is challenging due to thermal noises from the environment and

also the experimental challenges in characterising these quantum states. In a recent work by Reeds et

al. [167] using the same electromechanical implementation, a quantum state in a quantum superposi-

tion of zero and one photon was transferred to and then read-out from their electromechanical system.
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The state tomography were then carried out to infer both the density operator of the input and stored

quantum states. This allows them to compute the fidelity, which is essential for a quantum memory.

As experimental techniques advance, an optomechanical quantum memory of any arbitrary quantum

states is very much feasible in the near future.

The publication relevant to this chapter is:

• R. Y. Teh, S. Kiesewetter, M. D. Reid, and P. D. Drummond, Simulation of an optomechanical

quantum memory in the nonlinear regime, Phys. Rev. A 96, 013854 (2017).





Chapter 5

Creating quantum entanglement between

two optomechanical systems: a pulsed

scheme

Quantum entanglement between the optical cavity and mechanical modes in an optomechanical system

can be generated by applying a blue-detuned pump field as described in Chapter 3.2. This has been

achieved, for instance, in the electromechanical experiment [62]. Theoretically, the use of phase space

methods in investigating quantum entanglement in optomechanical systems first appeared in the work

of Kiesewetter et al. [137]. In that work, the cavity and mechanical modes in an optomechanical system

are entangled and the entanglement is certified by a criterion similar to those presented in Chapter 1.

In this chapter, we extend this to quantum entanglement between two optomechanical systems, which

resulted in a recently published paper by Kiesewetter et al. [168].

One motivation for this is to explore and discover alternative decay mechanisms of quantum cor-

relations. Quantum correlations are known to be very fragile, especially in macroscopic systems. The

most accepted explanation for the absence of quantum effects in macroscopic systems is decoherence

due to interaction of these systems with their environment. In the conventional quantum mechanics,

quantum correlations between two systems, in the ideal case, should remain correlated whether they

are in the same room or in the opposite ends of the universe. This is true even for macroscopic systems.

However, it is conceivable that there might be other mechanisms that can destroy quantum correla-

tions in a system even if that system is well isolated from its environment. In fact, there are a couple
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Figure 5.1: Schematic diagram of entanglement protocol.

of models [169–171] that consider this possibility and one of them is Furry’s hypothesis [74]. This

model concerns the decay of quantum correlations as a function of spatial separation. We know that the

Furry’s hypothesis is ruled out in the case of massless particles [2–4]: Entangled photons do not decay

with spatial separation. However, no experiments thus far involving entanglement in center-of-mass

motion in massive systems have been carried out to check against the Furry’s hypothesis. Obviously,

explicit decoherence models with spatial separation dependence are needed to predict any deviations

from the standard decoherence model due to interaction of the quantum system with its environment.

These Furry-type decoherence models [172] are being considered and they would predict different

entanglement results as we will present in this chapter. This allows Furry’s hypothesis to be tested.

In this chapter, we describe and analyse a proposal to generate quantum entanglement between

two spatially separated quantum optomechanical systems. This proposal involves well established

techniques in creating and transferring entanglement in optomechanical systems. The numerical results

in this chapter are obtained from the linearised stochastic differential equations in the truncated Wigner

representation. As we have seen in Chapter 4, in the weak coupling regime, the linearised, truncated

Wigner simulation results agree well with the full, nonlinear truncated Wigner simulation results. All

results in this chapter are in this weak coupling regime.

5.1 Proposal of quantum entanglement generation

In this section, we describe the protocol used to generate quantum entanglement between two spa-

tially separated optomechanical system. The schematic depiction of the protocol is shown in Fig. 5.1.
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The two mode squeezed state is first generated using the nondegenerate parametric down conversion.

These entangled modes a1 and a2 are then subsequently sent into two spatially separated optomechan-

ical systems, labelled Cavity 1 and Cavity 2, respectively. Using the quantum optomechanical state

transfer technique described in Chapter 4, these entangled modes a1 and a2 are transferred to their cor-

responding mechanical modes b1 and b2. In other words, we now have two massive systems that are

entangled with each other. Finally, we measure the quadratures of these mechanical modes and confirm

that they are entangled using an entanglement criterion.

In the following, we elaborate each of these steps in detail. Let’s first discuss the standard en-

tanglement generation with the parametric down conversion process. As described in Chapter 1, the

two mode squeezed state is created by pumping continuous wave laser field into a nonlinear optical

medium that is placed in a cavity. We name this the source cavity to avoid the possible confusion of

mixing up with the cavity in the optomechanical system. The two outputs from the source cavity are

correlated and the degree of correlations are characterised by the squeezing parameter r that depends

on the strength and power of the pump field. The subsequent steps are more involved and they are

described in separate subsections for clarity.

5.1.1 Transfer of entangled modes from source cavity to optomechanical system

Next, we move on to the transfer of these entangled modes into two spatially separated optomechanical

systems. In particular, these two modes are pulses rather than continuous wave fields. Depending on

the experimental implementation of the optomechanical system, the techniques and methods required

to send these pulses from the source cavity into the optomechanical cavities differ. For instance, we

envisage a low loss optical fiber which is connected between the source and optomechanical cavities. In

practice, there will inevitably be losses in the transfer process. These losses can be modelled by a beam

splitter sitting between the source and optomechanical cavities, with the transmissivity characterises the

efficiency of the transfer. Losses during this transfer process are neglected in our theoretical analysis.

In order to maximise the coupling between these entangled pulses into their corresponding cavities

in the optomechanical systems, their temporal mode functions have to match that of the cavities. In

this chapter, we choose to feed symmetric pulses into the optomechanical systems. The shape of these

output pulses from the source cavity can be modulated by changing the decay rate of the source cavity

as a function of time. This is the cavity Q-switching method [173]. Other methods such as the time-

dependent cavity detuning are possible and could be more practical experimentally [150, 174]. There
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is, however, no significant difference in the theoretical analyses for both of these methods [150]. Here,

we adopt the conceptually simpler Q-switching method.

Once the symmetric pulse is in the cavity of the optomechanical system, this pulse has to be trans-

ferred from the cavity mode to the mechanical mode. Recall from Chapter 3 that a red-detuned pump

facilitates the state transfer between the cavity and mechanical modes in an optomechanical system. In

the following, we analyse what is required of the red-detuned pump in order to transfer a symmetric

pulse. Let’s first express the time evolution of the source cavity mode ak, where k = 1,2 denotes the

two output modes in the source cavity from a parametric down conversion process:

ȧk =�k (t)ak+
p

2k (t)ak,in (5.1)

Here, k (t) is the time dependent decay rate of the source cavity and ak,in is any input into the source

cavity, including thermal noises. We neglect thermal noises into the source cavity to simplify our

analytical analysis. Also, the source cavity satisfies the input-output relation that relates the source

cavity mode ak and both the input ak,in and output ak,out modes of the source cavity:

ak,out =
p

2k (t)ak�ak,in. (5.2)

Suppose that we wish to generate output mode with a pulse shape that is symmetric in time of the form

ak,out µ sech(t). It can be shown that this can be achieved by setting k (t) = [1+ tanh(t)]/2. We

verify this by solving for Eq. (5.1), the source cavity and the corresponding output modes are

ak = ak (�•)

s



1� tanh(t)
2

�

+avac

ak,out =
a(�•)p

2
sech(t)+a0vac , (5.3)

where avac, a0vac are the input and output vacuum noises of the source cavity, respectively.

5.1.1.1 Time dependent optomechanical coupling strength

Next, we see how these symmetric output pulses from the source cavity can be transferred into optome-

chanical systems by having a time dependent optomechanical coupling strength. The time evolution
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equations of the cavity and mechanical modes in the optomechanical system are given by:

ḋk =�dk� ig(t)bk+
p
2dk,in

ḃk =�ig(t)dk . (5.4)

Here, dk and bk are the optomechanical cavity and mechanical modes respectively, dk,in is the input

mode into the optomechanical cavity. In this scheme, dk,in = ak,out : the output pulse from the source

cavity is the input into the optomechanical cavity, with no degradation and loss. The optomechanical

cavity satisfies the input-output relation dk,out =
p
2dk�dk,in. Also, for the linearised analytical analy-

sis, we drop the dissipation and noise terms in the time evolution equation for the mechanical mode in

Eq. (5.4). These terms are present in our numerical simulations.

To this end, we are ready to find the optimal time dependent optomechanical coupling strength g(t)

for optimal coupling and transfer of the source cavity output pulse into an optomechanical system. For

an optimal coupling and transfer, the output of the optomechanical system should be zero during the

transfer process. This implies, from the input-output relation, that dk,in =
p
2dk, giving ḋk = dk �

ig(t)bk. Also, it follows from the time evolution equation of the mechanical mode bk that �ig(t) =

ḃk/dk. Putting all these together, we re-express the time evolution equation of the cavity mode dk:

�

ḋk+ igbk
�

/dk = ḋk/dk�
�

ḃ2
�

/
�

2d2k
�

= 1 . (5.5)

We note that dk = a(�•)sech(t � t1)/2, where t1 is the time where the pulse shape reaches its peak.

The task is to solve for bk from ḋk/dk�
�

ḃ2
�

/
�

2d2k
�

= 1 from Eq. (5.5) and then obtain the time depen-

dent coupling strength g from �ig(t) = ḃk/dk. One can verify that bk = ia(�•) [1+ tanh(t � t1)]/2

is the solution of ḋk/dk �
�

ḃ2
�

/
�

2d2k
�

= 1. The time-dependent coupling strength g is then g(t) =

�sech(t � t1). This analysis gives us g(t) for the symmetric pulse to enter the cavity and be trans-

ferred to the mechanical mode. The coupling strength g(t) for transfer of mechanical mode back into

the cavity is identical apart from a different peak time.

Remark: It is worth pointing out the difference between the coupling and optomechanical transfer

of this entanglement protocol and the state transfer protocol in Chapter 4. In the optomechanical state

transfer protocol, the coupling strength is fixed and the pulse sent into the cavity has to have a temporal

mode function that matches to that of the cavity, for optimal coupling, while in the entanglement

protocol, we want the pulse to have a certain temporal mode function and the coupling strength g in
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turn has to be tuned to allow optimal coupling and state transfer.

5.1.2 Two-optomechanical system quantum entanglement verification

5.1.2.1 Temporal mode function and optomechanical output modes

These optomechanical mechanical modes are stored for a time ts. After that, these modes will be trans-

ferred back from the mechanical to the optomechanical cavity mode, and subsequently be detected. In

order to measure the state stored in the mechanical mode, the output mode from the optomechanical

system has to be integrated with time. In particular, we measure the integrated output from the optome-

chanical system. The procedure for measuring the integrated output is identical to the one explained in

Section 4.2.2 of Chapter 4. The only difference is the temporal mode function used, since the pulses

used are different in both optomechanical quantum protocols.

Since the input pulse into the optomechanical system from the source cavity has the form âk,out µ

sech(t), the input temporal mode function for the optomechanical cavity input is uin (t) = Nsech(t),

where N is the normalisation factor such that
R

|uin (t)|2 dt = 1, and N is given by

N = 1/
r

Z •

�•
sech(t)2 dt =

r

1
2
. (5.6)

The integrated output is then:

Ak,out =

tmax
Z

t1+ts/2

uout (t)dk,out (t) dt , (5.7)

where uout (t) = uin (t � (t1+ ts/2)). Note that the integration in Eq. (5.7) begins after the first transfer

pulse has been completed. These integrated outputs are necessary to certify the quantum entanglement

between the two optomechanical systems.

To certify quantum entanglement in these systems, we use an entanglement criterion similar to

those presented in Chapter 1 [175]:

Dp
ent =

4D
�

X1�GXq

2
�

D
�

P1+GPq

2
�

(1+G2)
> 1 , (5.8)

where Xq

k = 1
2

h

e�iqAk,out+ eiqA†
k,out

i

, Pq

k = Xq+p/2
k and G is the gain and it is an adjustable real con-

stant. When the inequality in Eq. (5.8) is violated, it implies the existence of entanglement between
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the two optomechanical systems. In order to minimise the value of Dp
ent and maximise the violation of

the inequality in Eq. (5.8), we find the optimal phase q and gain G. These are obtained using the same

method as presented in Chapter 1.

5.2 Numerical simulations and results

5.2.1 Experimental parameters

In this two-optomechanical systems entanglement protocol, we used experimental parameters similar

to the optomechanical experiment of Chan et al. [50]. The initial average thermal occupation number

for the mechanical modes are nth,b (0) = 0.7. The cavity resonance frequency wc/2p = 195THz with

a decay rate gc/2p = 0.26GHz; while the mechanical oscillator has a resonance frequency wm/2p =

3.68GHz, with a mechanical dissipation rate of gm/2p = 35kHz. The bare optomechanical coupling

strength is g0/2p = 0.91MHz, which justifies the linearisation [61, 176] and adiabatic approximations

[60].

5.2.2 Numerical methods

Numerical phase space simulations are carried out as described in Chapter 3. Here, we list down the

stochastic differential equations dictating the time evolutions of the source cavity ak, optomechanical

cavity dk and mechanical bk modes in the truncated Wigner representation. We note that dimensionless

units are now used in all subsequent analyses, where all parameters with the unit of frequency are scaled

with respect to the cavity decay rate gc. These stochastic differential equations were derived by Simon

Kiesewetter using the quantum cascaded formalism [177–179] and they are given by:

ȧk =�k (t)ak+
p

2k (t)xk

ḋk =�dk� ig(t)bk+2
p

k (t)ak�
p
2xk

ḃk =�gmbk� ig(t)dk+
q

2gm (2n̄th,m+1)x2+k . (5.9)
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Here, k (t) =
1
2
[1+ tanh(t � t1)] is the time dependent source cavity decay rate, while the effective

coupling strength is

g(t) =

8

>

<

>

:

�
p
2u(t � t1) ,80 t  t1+

ts
2

�
p
2u(t � t2) ,8t1+

ts
2  t  tmax ,

(5.10)

where t1 = 8.17 and t2 = t1 + ts are the dimensionless times when the storing and reading pulses

peak, and tmax = 2t1 + ts, while ts is the dimensionless time between the peaks of the storage and

readout pulses. It is also the storage time of the entangled state in the mechanical mode. n̄th,m =

1/ [exp(h̄Gcwm/kBT )�1] is the average thermal occupation number in the mechanical mode, and xk are

complex Gaussian noises with variances that correspond to the ’half-quanta’ occupations of symmetric

Wigner vacuum correlations, hxk (t)x

⇤
l (t

0)i= 1
2dkld (t � t

0).

To solve the set of stochastic differential equations in Eq. (5.9), initial states of these modes have

to be specified. We assume initial thermal states for both the optomechanical cavity and mechanical

modes. On the other hand, the initial state of the source cavity is a two-mode squeezed state. The

Wigner distribution for the two-mode squeezed state can be found in the standard quantum optics

textbook of Walls et al. [77]. The Wigner distribution for this state is given by

W (a+,a�,t0) =
4

p

2 exp

"

�2

 

|a+|2

e2r
+

|a�|2

e�2r

!#

, (5.11)

where a±= (a1±a

⇤
2 )/

p
2 and r is the squeezing parameter that characterizes the degree of entangle-

ment.

Instead of the source cavity modes a1 and a2, a± is used as the variables in the Wigner distri-

bution because the corresponding distribution consists of the product of two Gaussian distributions,

which can be sampled straightforwardly. One can sample a1,a2 by generating Gaussian noise vec-

tors x

±
x ,x±

y with unit variance, defining a±=
⇥

x

±
x + ix±

y
⇤

e±r/2 and then obtaining mode amplitudes

a1 = (a++a�)/
p
2 and a2 =

�

a

⇤
+�a

⇤
�
�

/
p
2.

All numerical results in this chapter are obtained with the linearised, truncated Wigner representa-

tion. The software package xSPDE [154] is used to solve the stochastic differential equations with the

fourth order Runge-Kutta method in the interaction picture. The number of samples used is 104 with

500 grid points in time. The corresponding time step is much smaller than that required according to the
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Figure 5.2: Entanglement criterion as a function of thermal occupation number for three different
storage times. The results are obtained from phase space simulation in the linearised, truncated Wigner
representation.

Shannon sampling theorem [156]. Consequently, both the sampling and time step errors are negligible

in the numerical results presented in this chapter.

The full, nonlinear phase space simulations in both the truncated Wigner and positive P representa-

tions are carried out by Simon Kiesewetter and the results can be found in the paper by Kiesewetter et

al. [168]. At the outset, we state that the numerical results using the linearised, truncated Wigner rep-

resentation agree with the results using the nonlinear truncated Wigner and positive P representations.

This is not surprising, as we have established in Chapter 4 that when the effective coupling strength,

relative to the cavity decay rate, is weak, the linearisation approximation is a good one.

5.2.3 Entanglement

We compute Dp
ent in Eq. (5.8) as a function of average thermal occupation number for the me-

chanical modes. These are carried out for a set of three different storage times ts = 16.3, 40.8, 81.7,

corresponding to 10 ns, 25ns and 50ns, respectively, and a fixed squeezing parameter r= 1. To give an

approximate analytic prediction, we consider only the degradation of the entanglement during its stor-

age period in the mechanical oscillators. Using results described in [84], we predict an entanglement
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Figure 5.3: Fidelity F as a function of the thermal occupation number and three different storage times.

value of

Dp
ent = e�2gmtse�2r+

�

1� e�2gmts
�

(1+2n̄th,m) . (5.12)

Fig. 5.2 shows these numerical results, as compared to the corresponding theoretical predictions given

in Eq. (5.12). The solid lines indicate simulation results in the linearised, truncated Wigner represen-

tation and dashed lines theoretical predictions. The sampling and time step errors are too small to be

observed in the figure.

These chosen storage times are much smaller than the mechanical oscillators’ lifetime 1/gm, which

means that the quantum coherence in the entangled state between the two optomechanical systems are

still present. However, the noisy environment destroys the coherence and the entanglement. As cooling

techniques are constantly improving and quantum systems are better isolated from their environment,

the entanglement protocol proposed here is feasible.

5.2.4 Quantum fidelity

It is interesting to find out the efficiency lower bound of the protocol that still allows entanglement to

be observed. To quantify the efficiency of the entanglement protocol, we compute the quantum fidelity
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of the final output states from the optomechanical systems with respect to the two mode squeezed state

generated in the source cavity. The quantum fidelity F as defined in Eq. (4.28) is given by:

F = Tr(rir f ) , (5.13)

where ri is the density operator of the two mode squeezed state and r f is the density operator of

the output states from the two optomechanical systems. In the Wigner representation [164, 165], the

quantum fidelity is:

F = p

2
Z

Wi (a1,a2)Wf (a1,a2) d2a1d2a2 , (5.14)

which follows from the derivation in Appendix E.

From the quantum simulations, we obtain sampled temporal output modes from the Wigner func-

tionWf . The quantum fidelity F is then computed using

F =
p

2

Nsample
Â
m
Wi
�

Am
1,out,A

m
2,out

�

, (5.15)

where Am
k,out is them-th sample of temporal output mode Ak,out andNsample is the total number of samples

taken.

The quantum fidelity in Eq. (5.15) is also computed as a function of average mechanical thermal

occupation number and storage time. The result is shown in Fig. 5.3. As expected, for a fixed tem-

perature, longer storage time leads to more losses and hence lower fidelity. Larger mechanical thermal

occupation numbers also leads to lower fidelities. More interestingly, by comparing plots in Fig. 5.2

and Fig. 5.3, a fidelity F of at least about 0.3 is needed for entangled output modes.

5.3 Summary

This chapter analysed a protocol that aims to entangle two spatially separated optomechanical systems.

An entangled two mode squeezed state is generated by the well-established parametric down conver-

sion process in a source cavity. By changing the source cavity decay rate as a function of time, two

entangled pulses from the source cavity are sent into two spatially separated optomechanical systems.

Detailed explanations for the optimal coupling of these pulses into the optomechanical systems and
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the subsequent optomechanical state transfer between the optical and mechanical modes are presented.

In order to verify the entanglement in the quadrature amplitudes of these optomechanical systems, we

compute an entanglement criterion. The quantum fidelity that measures the “closeness” of the detected

physical state to the initial entangled two mode squeezed state is also computed. This entanglement

protocol can be implemented, in principle, and the results presented based on the conventional quantum

mechanics in this chapter allow alternative decoherence mechanisms to be checked.

The publication relevant to this chapter is:

• S. Kiesewetter, R. Y. Teh, P. D. Drummond, and M.D. Reid, Pulsed entanglement of two optome-

chanical oscillators and Furry’s hypothesis, Phys. Rev. Lett. 119, 023601 (2017).
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Conclusion

We discussed the different classes of quantum correlations. In particular, we focused on criteria that

certify the presence of genuine multipartite continuous-variable entanglement in a physical state. The

advantage of these criteria is that they are not state dependent and only involve statistics of measurable

observables, making them more general. Using these criteria, other properties of quantum correla-

tions, such as the monogamy of quantum entanglement, which restricts the shareability of entangle-

ment among different modes in a multimode system, can be studied. Monogamy relations of quantum

entanglement were formulated in terms of these criteria. Yet another quantum property is the quantum

coherence of quantum states, which is the source of quantum correlations. However, the verification of

the presence of the quantum coherence is not trivial.

In the second part of the thesis, we study an optomechanical system, which is a macroscopic sys-

tem where the traditional, conventional wisdom is that macroscopic systems obey classical physics.

However, it has been shown that quantum properties do exhibit in these macroscopic systems, blurring

the boundary between classical and quantum physics. We study the quantum properties of a quantum

optomechanical system. In particular, two quantum protocols were analysed. These quantum proto-

cols are timely as the technological advancement in the field of optomechanics allow these protocols

to be carried out. They allow fundamental issues in quantum mechanics to be addressed. For instance,

the classical-quantum boundary problem and alternative decoherence mechanisms of quantum corre-

lations. However, to study the dynamics of an optomechanical system, operator equations that are

inherently nonlinear have to be solved. The analytical solutions are generally not possible. A very

powerful approach using the phase space methods transform these operator equations into complex

number equations, allowing numerical solutions to be obtained.
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To simplify the analysis of an optomechanical system, the linearisation approximation is often em-

ployed. The argument provided for the validity of this approximation invoked the weak nature of the

optomechanical coupling strength. With the phase space methods, the linearisation approximation is

not needed which allows the validity of the approximation to be checked. From the numerical results

using both the truncated Wigner and positive P representations, deviations from the results within the

linearisation approximation were found. The cause of this is that the intense control field contains

spectral content that overlaps with that of the signal field and hence cannot be easily removed. We also

point out that the linearisation approximation breaks down in the regime where optomechanical cou-

pling strength is strong. As experiments are achieving ever stronger optomechanical coupling strength,

full analysis of the system without approximations is needed.



Appendix A

Monogamy inequalities of quantum

entanglement

We have seen how to quantify tripartite quantum entanglement. Can we understand more about the en-

tanglement shared between two of the parties? Consider the example of a discrete tripartite GHZ state

|y1i = 1p
2
(|000iABC+ |111iABC). Are modes A and B entangled? A quick analysis gives negative re-

sult. The density operator of the system is rABC =
1
2 (|000ih000|+ |000ih111|+ |111ih000|+ |111ih111|).

Trace out the mode C and we obtain rAB = 1
2 (|00ih00|+ |11ih11|), which is a statistical mixture of

product states |00iAB and |11iAB. The conclusion from the above example is that quantum entangle-

ment cannot be shared between two parties in a tripartite state where entanglement is shared among all

three parties. However, a GHZ state is maximally entangled (defined from the fact that the reduced den-

sity operator is a diagonal matrix with uniform probability distribution). Is it possible to have bipartite

entanglement in a tripartite state with weaker entanglement shared among all three parties?

Let’s consider another example with a bipartite entangled state |y2i = 1p
2
(|00iAB+ |11iAB) be-

tween modes A and B. Suppose that a third modeC is allowed to form an entangled state with mode A.

This implies that mode C is entangled with both modes A and B. However, the corresponding density

operator after tracing out mode C will not be that of the state |y2i, but rather a mixed state. Hence,

a mode in a bipartite entangled state |y2i cannot simultaneously form an entangled state with a third

party. There is a limit on how quantum entanglement can be shared and distributed. This is important

in any quantum information protocols involving quantum entanglement, where, for instance, a third

party attempts to gain access to the state of a party in a bipartite entangled system.
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Coffman et al. [180] tackled the problem of shareability and distribution of quantum entanglement

and came up with an inequality that advances the understanding of shareability of entanglement. The

Coffman-Kundu-Wootters (CKW) inequality goes as follows:

EA|(BC) � EA|B+EA|C, (A.1)

where EA|(BC) is a measure of entanglement between mode A and modes BC, while EA|B and EA|C

are measures of entanglement between mode A and B, and between mode A andC, respectively. These

measures are known as concurrences. They are not quantities that are easily measurable in experiments,

making them less useful in practice. Also, the inequality in Eq. (A.1) was derived for discrete-variable

systems. Recent works by Adesso et al. [181], Adesso and Illuminati [182], Adesso et al. [183] address

these two issues, by using measures that can be experimentally measured and also generalise these

measures for continuous-variable systems. These works assume Gaussian states, which include most

quantum states that are generated in a continuous-variable quantum optical system.

In the following, we present inequalities to study the shareability of quantum entanglement in the

multipartite CV quantum optical system, without assuming Gaussian states. These inequalities are

known as monogamy inequalities of entanglement. They constraint the entanglement allowed to be

shared with a third party, when bipartite entanglement has already been established between two other

parties. They also constraint the entanglement allowed to be shared between two parties in a tripartite

entangled state. In particular, these inequalities involve quantities that are routinely measured in lab-

oratories. This section is based on the work by Rosales-Zárate et al. [76]. All analytical expressions

presented in the following are obtained with Laura Rosales-Zárate and Bogdan Opanchuk.

A.0.1 Monogamy relation for TDGCZ entanglement certifier

The observables involved in the monogamy inequalities are the quadratures of light modes as described

in Section 1.2. As mentioned before, these monogamy relations study the shareability of quantum

entanglement in multipartite systems. It is thus natural that these inequalities involve bipartite entan-

glement certifiers, which are measures to certify the presence of quantum entanglement between two

modes A and B. In this section, we consider the Tan-Duan-Giedke-Cirac-Zoller (TDGCZ) entangle-
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ment certifier defined by Tan [184] and Duan et al. [185]:

DAB =
1
4
⇥

D2 (XA�XB)+D2 (PA+PB)
⇤

, (A.2)

where D2 (XA�XB) and D2 (PA+PB) are the variances of the observables XA�XB and PA+PB, respec-

tively. Entanglement is present if DAB is less than 1. Here, we present the monogamy relation involving

TDGCZ entanglement certifiers, leaving the proof in Appendix B.

Result (1): For any three modes A, B andC, the following monogamy relation holds

DBA+DBC � 1 . (A.3)

The monogamy relation in Eq. (A.3) constraints how entanglement is shared in a tripartite system. For

instance, if modes A and B are entangled, indicated by DBA < 1, then modes B and C has to satisfy

DBC � 1�DBA, which places a lower bound on how strongly modes B and C can be entangled. Next,

we relate the notion of entanglement monogamy with EPR-steering. By expressing the monogamy

relation in terms of EPR-steering certifier, the lower bound established in Eq. (A.3) can be increased,

further restricting the amount of bipartite entanglement allowed in a tripartite system.

First, let us define the steering certifier SB|{AC}, with the subscript B|{AC} representing the steering

of mode B by modes A andC:

SB|{AC} = D [XB+(gBA,xXA+gBC,xXC)]D [PB+(gBA,pPA+gBC,pPC)] , (A.4)

where gBA,x,gBC,x,gBA,p,gBC,p are gains which can be chosen to minimise the steering certifier. Here,

the mode B has a quantum description while modes AC are represented by any density operators that

are not quantum in nature. With the steering certifier SB|{AC}, we present the monogamy relation in

Result (2).

Result (2): The following inequality holds:

DBA+DBC �max
�

1,SB|{AC}
 

. (A.5)

We will consider a few examples to demonstrate that SB|{AC} can indeed be larger than 1, further re-

stricting the amount of bipartite entanglement that can be shared in a tripartite system.
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Figure A.1: Entanglement relation between mode B and modes A and C. The amount of entanglement
shared has to satisfy the monogamy relation.

A.0.2 Monogamy relation for GMVT entanglement certifier

The monogamy relations in Results (1) and (2) have fixed gains. However, we learned in Section

1.4 that entanglement certifiers can be minimised by choosing a set of optimal gain coefficients. It is

possible then that with these minimised certifiers, monogamy relations can be violated. The general,

optimisable gains are incorporated in the GMVT entanglement certifier which will be defined below.

The GMVT entanglement certifier is the generalisation of the DGCZ entanglement certifier and has the

form

EntAB(gAB) =
D(XA�gAB,xXB)D(PA+gAB,pPB)

(1+gAB,xgAB,p)
, (A.6)

where gAB = (gAB,x,gAB,p), with gAB,x and gAB,p as real numbers that can be optimised to minimise

EntAB(gAB). Entanglement between modes A and B is certified when EntAB(gAB) is less than 1. The

monogamy relation involving the GMVT entanglement certifier is presented in Result (3). Note that in

Result (3), the gains for the x and p quadratures are chosen to be identical, i.e. gAB,x = gAB,p = gAB.

This set of gain coefficients are optimal for EPR type states where the correlations among different

modes have the same form in both the x and p quadratures. For any arbitrary states, the set of optimal

gain coefficients has to be determined separately.

Result (3): The monogamy inequality

EntBA(gBA)EntBC(gBC)>MB (A.7)
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Figure A.2: Experimental setup for the generation of CV tripartite entangled states. The transmittivity
of the beam splitter BS2 is h0.

holds for any real values gBA, gBC, where

MB =
max{1,S2B|{AC}}

�

1+g2BA
��

1+g2BC
� (A.8)

and S2B|{AC} = D2 [XB+(gBAXA+gBCXC)]D2 [PB+(gBAPA+gBCPC)].

A.0.3 Monogamy for CV tripartite entangled states

Here, we apply the monogamy relations of Results (2) and (3) in Eqs. (A.5) and (A.7) to CV GHZ and

CVW -type states. Instead of labelling the modes 1,2 and 3 as in Section 1.2, the modes are labelled

as A,B and C. Fig. A.2 shows the setup and notations used in this section. This setup generates a CV

tripartiteW -type state; while a CV GHZ state is generated by using a squeezed vacuum state into the

second beam splitter BS2. We look at CV GHZ states first, as they are maximally entangled states and

should therefore satisfy monogamy relations.

A.0.3.1 CV tripartite GHZ states

We evaluate the monogamy relations of Results (1) and (2) for the CV tripartite GHZ state. The

covariances are obtained using Eq. (1.13) and the entanglement certifiers can be showed to be DBA =
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DBC and it is given by

DBA =
1
4

✓

3
2
e�2r2 +

1
2
e�2r3 +

4
3
e�2r1 +

1
6
e2r2 +

1
2
e2r3

◆

, (A.9)

which diverges as r1,r2,r3 ! •. Since DBA > 1 and DBC > 1, monogamy relations are always trivially

satisfied. This is consistent with what we expect from the analysis of the example in the beginning of

Appendix A, that there is no bipartite entanglement in a GHZ state.

A.0.3.2 CV tripartiteW -type states

From our previous analysis, we find that there is no bipartite entanglement in a maximally entangled

tripartite state. For these maximally entangled states then, it should be of no surprise that monogamy

relations are satisfied. What about states that are not maximally entangled? Do they contain bipartite

entanglement such that monogamy relations are violated? To answer this question, we look at CV

tripartite W-state, which is “less” entangled than a maximally entangled state. In order to show that,

we first consider the discrete tripartite W state, given by

|yW i= 1p
3
(|001i+ |010i+ |100i) . (A.10)

We attempt to find out whether there can be bipartite entanglement for the tripartite W state by

tracing out one of the modes, say mode C, of the corresponding W state density operator rW . This

leads to

rAB = TrCrW

=
1
3
(|00ih00|+ |01ih01|+ |01ih10|+ |10ih01|+ |10ih10|) , (A.11)

which is a statistical mixture of bipartite entangled state 1p
2
(|01i+ |10i) with probability 2

3 and a

vacuum state |00i with probability 1
3 . This simple analysis shows that bipartite entanglement can be

observed in a W state. It is possible then to have DBA < 1 and DBC < 1 while violating monogamy

relations. Explicit calculations are needed to check for this possibility.

In order to evaluate the monogamy inequalities, the covariances are computed for both the CV
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Figure A.3: Checking the monogamy relation for the CVW -type states. The DBA, DBC and DBA+DBC
versus h0 . Here r = 0.5 (a) and r = 2 (b). The monogamy bound of 1 is indicated by the gray dotted
line.

tripartite W -type and CV GHZ states. They are denoted by nIJ = hXI,XIi, mIJ = hXJ,XJi and cIJ =

hXI,XJi. These covariances are evaluated for general transmittivity h0 for the beam splitter BS2 and

also the squeezing parameter r, which characterises the degree of squeezing of the input states. For the

CV tripartiteW -type state, the covariances for this case are nBA = cosh2r, mBA = h0 cosh2r+(1�h0)

and cBA =
p

h0 sinh2r. Those for modes B and C are obtained by replacing h0 with 1�h0. For this

case, DBA reduces to

DBA =
⇣

h0 cosh2r+(1�h0)+ cosh2r�2
p

h0 sinh2r
⌘

/2 . (A.12)

The expression for DBC is found by replacing h0 with 1�h0.

We plot the quantities DBA, DBC and DBA+DBC as a function of the transmittivity h0 of BS2 for

the squeezing parameter r = 0.5 and r = 2.0, in Fig. A.3(a) and Fig. A.3(b) respectively. From

these figures, we see that the monogamy relation of Result (1) always holds. In other words, bipartite

entanglement of arbitrary strength cannot exist in a tripartite entangled state. In Fig. A.3(a) which

corresponds to a state with squeezing parameter r = 0.5, we see that it is possible to have bipartite

entanglement between modes BA and modes BC. However, this is not the case for r = 2.0 as shown in

Fig. A.3(b). For this squeezing parameter, it seems that if we observe bipartite entanglement in two of

the modes, say BA, then there cannot be bipartite entanglement between modes BC. We check for the

validity of this observation using the more general GMVT entanglement certifiers with variable gain
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Figure A.4: Checking the monogamy relation for the CVW -type states. The EntBA, EntBC, EntBAEntBC
and the monogamy bound MB (gray dotted line) are plotted versus h0. The symmetry parameters
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coefficients.

In order to compute the monogamy relation of Result (2), we evaluate the steering parameter SB|F

for the CV tripartiteW -type states and it is given by

SB|F =
�

nBF � c2BF/mBF
�

, (A.13)

where gx = cBF/mBF , gp = cBF/mBF .

In Fig. A.4(a) and Fig. A.4(b), we plot the quantities EntBA, EntBC and EntBAEntBC as a function of

the transmittivity h0 of BS2, for the squeezing parameter r = 0.5 and r = 2.0 respectively. We see that

it is possible to have bipartite entanglement between modes BA and modes BC where both DBA < 1 and

DBC < 1. However, we also see that the monogamy relation of Result (2) always holds for CV tripartite

W -type states. This suggests that monogamy entanglement is an intrinsic property of a system with

multipartite entanglement. It dictates the shareability of entanglement in multipartite systems, putting

constraints on entanglement among parties that is fewer than the total number of parties.





Appendix B

Monogamy relation: Result (1)

We prove two lemmas that will be used in the proof of Result (1) in Appendix A.

Lemma 1: D2 (XB�XA)� D2 (XB|XA), where D2 (XB|XA) is the average variance of XB over all possible

measurement outcomes of XA.

Proof:

D2 (XB�XA) = Â
xA,xB

P(xA,xB)(xB� xA�hXB�XAi)2

= Â
xA,xB

P(xA,xB)(xB� xA�hXBi�hXAi)2

⌘ Â
xA
P(xA)Â

xB
P(xB|xA)(xB� f (xA))2

� Â
xA
P(xA)Â

xB
P(xB|xA)

�

xB�µB|xA
�2

⌘ D2 (XB|XA) .

The second lemma is related to the EPR-Reid criterion, first derived by Reid [17] to demonstrate

the EPR paradox. It has been shown to be an EPR-steering criterion by Cavalcanti et al. [19]. The

EPR-Reid criterion is given by D(XB�XA)D(PB�PA) � 1. From Lemma 1, we obtain the inequality

D(XB|XA)D(PB|PA)� 1.

Lemma 2: D(XB|XA)D(PB|PA)� 1 implies D2 (XB|XA)+D2 (PB|PA)� 2.
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Proof: The proof follows from the inequality x2+ y2 � 2xy. It is straightforward to show that

D2 (XB|XA)+D2 (PB|PA)� 2D(XB|XA)D(PB|PA)

� 2 .

With Lemmas (1) and (2), we proof Result (1):

DBA+DBC � 1 .

Proof:

DBA+DBC � 1
4
⇥

D2 (XB�XA)+D2 (PB�PA)+D2 (XB�XC)+D2 (PB�PC)
⇤

� 1
4
⇥

D2 (XB|XA)+D2 (PB|PA)+D2 (XB|XA)+D2 (PC|PC)
⇤

� 1 .
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Steering inequalities including losses

The detected fields adet , bdet and the undetected fields aloss, bloss due to losses are given by

adet =
p

haa+
p

1�haav

aloss =�
p

1�haa+
p

haav

bdet =
p

hbb+
p

1�hbbv

bloss =�
p

1�hbb+
p

hbbv , (C.1)

where av and bv are vacuum states. Using these mode operators, we express a, b in terms of a†det , a
†
loss,

b†det and b†loss. The density operator for a NOON state, r = |yihy |, can then be expressed in terms of

these operators. Since we are not interested in the modes aloss and bloss (which we label A, loss and

B, loss) we take the trace over the states of the loss mode to evaluate r

0 ⌘ TrA,loss;B,lossr . After using

the binomial expansion for terms such as
⇣p

haa†det �
p

(1�ha)a†loss
⌘

and performing the trace, the

reduced density operator for the detected modes is:

r

0 =
1
2

2

4Â
s

0

@

N

N� s

1

A(ha)
N�s (1�ha)

s |N� siA,dethN� s|⌦ |0iB,deth0|+(
p

hahb)
N e�if |NiA,deth0|⌦ |0iB,dethN|

+ (
p

hahb)
N eif |0iA,dethN|⌦ |NiB,deth0|+Â

s

0

@

N

N� s

1

A(hb)
N�s (1�hb)

s |0iA,deth0|⌦ |N� siB,dethN� s|

3

5

(C.2)
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C.1 Calculating D2
in f (P

N
b ) and D2

in f (X
N
b )

As described in Section 2.1, the D2
in f (P

N
b ) and D2

in f (X
N
b ) are the inferred variances of quantities P

N
b and

XN
b due to a measurement in Xa. We evaluate these inferred variances using the density operator for

modes adet and bdet given in Eq. (C.2). For the inferred variances we evaluate the density operator r

00,

where we consider that the mode A,det is in the state |xi. This density operator is given by:

r

00 =
|xiA,dethx|r 0|xiA,dethx|

P(x)

=
1

2P(x)

2

4Â
s

0

@

N

N� s

1

A(ha)
N�s (1�ha)

s hx|N� siAdhN� s|xi|xiAdhx|⌦ |0iBdh0|

+(
p

hahb)
N e�if hx|NiAdh0|xi|xiAdhx|⌦ |0iBdhN|+(

p
hahb)

N eif hx|0iAdhN|xi|xiAdhx|⌦ |NiBdh0|

+Â
s

0

@

N

N� s

1

A(hb)
N�s (1�hb)

s hx|0iAdh0|xi|xiAdhx|⌦ |N� siBdhN� s|
#

(C.3)

where

P(x) = Tr
⇥

|xiA,dethx|r 0|xiA,dethx|
⇤

=
1
2

2

4Â
s

0

@

N

N� s

1

A(ha)
N�s (1�ha)

s |hx|N� si|2+Â
s

0

@

N

N� s

1

A(hb)
N�s (1�hb)

s |hx|0i|2
#

(C.4)

For clarity of the expressions, we denote the detected modes by Ad ⌘ A,det and Bd ⌘ B,det in the

following. In order to compute D2(PN
b |x) and D2(XN

b |x), we trace out the A,det mode to get the reduced

density operator for B,det mode:

rred,det,x = TrA,det
�

r

00�

=
1

2P(x)

2

4Â
s

0

@

N

N� s

1

A(ha)
N�s (1�ha)

s hx|N� siAdhN� s|xi|0iBdh0|

+(
p

hahb)
N e�if hx|NiAdh0|xi|0iBdhN|+(

p
hahb)

N eif hx|0iAdhN|xi|NiBdh0|

+Â
s

0

@

N

N� s

1

A(hb)
N�s (1�hb)

s hx|0iAdh0|xi|N� siBdhN� s|]

(C.5)
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The inferred variances are defined as:

D2(XN
b |x) = h

�

XN
b
�2 |xi�hXN

b |xi2

D2(PN
b |x) = h

�

PN
b
�2 |xi�hPN

b |xi2 (C.6)

Next we evaluate hXn
b |xi= Tr

⇥

rred,det,xXn
b
⇤

and hPn
b |xi= Tr

⇥

rred,det,xPn
b
⇤

using the density operator

given in Eq. (C.5) obtaining:

hXn
b |xi=

1
2P(x)
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hPn|xi= 1
2P(x)

2
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The value of the corresponding variances for D2(XN
b |x) and D2(PN

b |x) of equations (C.6) is evaluated

using the expressions given in equations (C.7) and (C.8) considering n= N or n= 2N.

C.2 Inferred variances D2
in f (nb) including losses

D2
in f (nb) is the inferred variance of nb due to a measurement in na. In order to evaluate this variance we

will consider that the outcome in na is m. We define P(m) as the probability for obtaining the result m

for na. Next, we evaluate the reduced density operator rm for the modes A,det and B,det given that the
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outcome is m:

rm =
1

P(m)
⇥

|miAdhm|r 0|miAdhm|
⇤

=
1

2P(m)

2

4

0

@

N

m

1

A

h

m
a (1�ha)

N�m |miAdhm|⌦ |0iBdh0|+Â
s

0

@

N

N� s

1

A

h

N�s
b (1�hb)

s |0iAdh0|⌦ |N� siBdhN� s|
#

(C.9)

where

P(m) = Tr
⇥

|miA,dethm|r 0|miA,dethm|
⇤

=
1
2

0

@

N

m

1

A

h

m
a (1�ha)

N�m+
1
2
. (C.10)

Next we evaluate hnBiin f ,m = Tr [rmnB] and hn2Biin f ,m = Tr
⇥

rmn2B
⇤

obtaining:

hnBiin f ,m =
1
2

Âs

0

@

N

N� s

1

A

hb (1�hb)
s
dm,0 (N� s)

P(nA = m)

hn2Biin f ,m =
1
2

Âs

0

@

N

N� s

1

A

hb (1�hb)
s
dm,0 (N� s)2

P(nA = m)
. (C.11)

Since nA = m= 0 is the only non-zero contribution for the statistical moments we obtain:

hnBiin f ,0 =
1
2

Nhb

P(nA = 0)

hn2Biin f ,0 =
1
2

hb
�

N�Nhb+N2
hb
�

P(nA = 0)

P(nA = 0) =
1
2

⇣

(1�ha)
N +1

⌘

. (C.12)

Using the above results we evaluate the inferred variance for m= 0, which we denote by D2
in f nb,0:

D2
in f nb,0 =

hb (N�Nhb)+Nhb (1�ha)
N (1�hb+Nhb)

⇣

(1�ha)
N +1

⌘2 (C.13)
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The variance of the inferred value nB is then obtained by summing over all possible values of m:

D2nin f =
N

Â
m
P(nA = 0)D2nin f ,m=0

=
hb (N�Nhb)+N (1�ha)

N �
hb�h

2
b +Nh

2
b
�

2
⇣

(1�ha)
N +1

⌘ . (C.14)

C.3 Evaluation of
�

�h
⇥

nb,XN
b
⇤

i
�

�

in f and
�

�h
⇥

nb,PN
b
⇤

i
�

�

in f

Full evaluation of the terms
�

�h
⇥

nb,XN
b
⇤

i
�

�

in f and
�

�h
⇥

nb,PN
b
⇤

i
�

�

in f reveals that for the lossy system and for

N  5:

�

�h
⇥

nb,XN
b
⇤

i
�

�

in f = N
�

��hbNi+ hb†Ni
�

�

in f
�

�h
⇥

nb,PN
b
⇤

i
�

�

in f = N
�

�hbNi+(�1)N+1hb†Ni
�

�

in f (C.15)

We evaluate hbNi= Tr
⇥

rred,det,xbN
⇤

and hb†Ni= Tr
h

rred,det,x
�

b†
�N
i

using the reduced density matrix

given in Eq. (C.5) and perform the corresponding trace. The expression is:

hbNiin f ,x =
1

2P(x)
(
p

hahb)
N eif hx|Nih0|xi

p
N! (C.16)

and h
�

b†
�Niin f ,x = (hbNiin f ,x)⇤.





Appendix D

Linearised optomechanical Hamiltonian

in the interaction picture

In the following, we transform the linearised optomechanical Hamiltonian (3.21) into a Hamiltonian

in the interaction picture. The corresponding dynamics from this interaction picture Hamiltonian Hint

arises solely from the interaction between the optical and mechanical modes.
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Hint = e
i
h̄H0tH1e�

i
h̄ H0t

= h̄ei(Dda†da+wmdb†db)t �g⇤dadb+g⇤dadb†+gda†db+gda†db†
�

e�i(Dda†da+wmdb†db)t

= h̄
��

g⇤dadb+g⇤dadb†+gda†db+gda†db†
�

+ it
⇥

Dda†da+wmdb†db,g⇤dadb
⇤

+it
⇥

Dda†da+wmdb†db,g⇤dadb†
⇤

+ it
⇥

Dda†da+wmdb†db,�gda†db
⇤

+

it
⇥

Dda†da+wmdb†db,�gda†db†
⇤

+H.O.T
 

= h̄
��

g⇤dadb+g⇤dadb†�gda†db�gda†db†
�

+ it (�Dg⇤dadb�wmg⇤dadb)

+it
�

�Dg⇤dadb†+wmg⇤dadb†
�

+ it
�

Dgda†db�wmgda†db
�

= h̄g⇤dadb [1+ i(D+wm) t+ ...]+ h̄g⇤dadb† [1+ i(D�wm) t+ ...]

+h̄gda†db [1� i(D�wm) t+ ...]+ h̄gda†db† [1� i(D+wm) t+ ...]

Hint = h̄
h

ei(D+wm)tg⇤dadb+ ei(D�wm)tg⇤dadb†+ e�i(D�wm)tgda†db+ e�i(D+wm)tgda†db†
i

,

where the Baker-Hausdorf lemma is used:

eil d̂a
d̂be�il d̂a = d̂b+ il

h

d̂a, d̂b
i

+
(il )2

2!

h

d̂a,
h

d̂a, d̂b
ii

+ ... . (D.1)



Appendix E

Fidelity expression in the Wigner

representation

The Wigner representation of a density operator is given by

r =
Z

W (a)L(a) d2a , (E.1)

whereW (a) is the Wigner function and L(a) is a projector operator. For instance, in the Glauber P

representation, the projection operator is |aiha |. In the computation of the fidelity, the exact form of

L(a) is not required, as we will show below.

Using the expression of a density operator in the Wigner representation as in Eq. (E.1), the fidelity

defined in Eq. (4.28) is

F = Tr(rir f )

=
Z Z

Wi (a)Wf (b )Tr [L(a)L(b )] d2ad2b

= p

Z

Wi (a)Wf (a) d2a , (E.2)

where Tr[L(a)L(b )]=pd (a �b ) [163].
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