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Abstract

Salinity is a threat to the crops worldwide, and together with drought, it is predicted to be a 

serious constraint to food security.  However, understanding the impact of this stressor on 

plants  is  a  major  challenge  due  to  the  involvement  of  numerous  genes  and  regulatory 

pathways.  While transcriptomic analyses of barley (Hordeum vulgare  L.) salt stress have 

been reported with microarrays, there are no reports as yet  of the use of mRNA-Seq.  We 

demonstrate the utility of mRNA-Seq by analysing cDNA libraries derived from acutely salt-

stressed and unstressed leaf material of  H. vulgare cv. Hindmarsh.  The  data yielded >50 

million sequence tags which aligned to 26,944 sequences in the Unigene reference database. 

To gain maximum information, we performed de novo assembly of unaligned reads and 

discovered >3,800 contigs, termed  novel tentative consensus sequences (NTCs),  which are 

either new, or significant improvements on current databases.  Differential gene expression 

screening found 48 significantly up-regulated and 62 significantly down-regulated transcripts. 

The work provides comprehensive insights into genome-wide effects of salinity and is a new 

resource for  study  of  gene  regulation in  barley  and  wheat.  Further,  the  bioinformatics 

workflow may be applicable to other non-model plants to establish their transcriptomes and 

identify unique sequences.  

 

Key words:

Salinity, barley, gene expression, mRNA-Seq 

2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44



Introduction

Salt and drought stresses are the two most important environmental stresses which limit plant 

growth and development.  Over 100 countries in the world were identified to be affected by 

salinity, covering about 350 million hectares in 1989 (Rengasamy 2006), and the scale of the 

problem seems to be increasing at an alarming rate, with >800 M ha (>6% of total land area) 

affected by 2000 (Munns and Tester 2008).  Salinity, together with drought, has far-reaching 

implications for food security, economic sustainability and the irreplaceable biodiversity of 

any affected area, and the challenges are expected to be exacerbated by the projected impact 

of climate change.  The effects of water-insufficiency stresses have been studied extensively, 

and in summary, they limit water and micronutrient uptake due to reverse osmotic effects, 

and lead to closure of stomata, decline in carbon metabolism, stunted growth, ion/salt toxicity 

and reduced yield (Langridge et al. 2006; Munns and Tester 2008). 

For plants to survive under such conditions, they must be able to sense and respond rapidly. 

Molecular studies on various plants including Arabidopsis thaliana show that these events 

involve complex networks of gene regulation (Bartels and Sunkar 2005; Langridge et  al. 

2006;  Munns and Tester 2008), including intracellular signalling pathways such as those 

mediated by plant hormones such as abscisic acid (Ma et al. 2009) and ethylene (Xu et al. 

2007) and effected through specific transcription factors (Urano et al. 2010), and expression 

of diverse functional genes for osmo-regulation/cell protection/acclimation, e.g., Nax (Munns 

2005), aquaporins (Tyerman et al.  2002; reviewed in Forrest and Bhave 2007), dehydrins 

(Close 1996), redox enzymes (Selote and Khanna-Chopra 2006) and chaperones (Meiri and 

Breiman 2009).  While the perception of salt and drought may share a common mechanism 

(Shinozaki and Yamaguchi-Shinozaki 1997), each stress may also have some unique effects. 

For the continued improvement of crops in the face of future environmental and socio-

economic challenges, our understanding of crop responses to drought and salinity will need 

to grow.  Central to these is a comprehensive understanding of the roles of individual genes, 

their transcripts including alternative splice forms, their protein products, as well as the ‘sum’ 

of all pathways that  plants use to manage abiotic stresses, often in a plant-specific manner. 

Despite being staple foods around the world,  the elucidation of the complete genome 

sequence of wheat has been hindered by the complexity of its genome, while a draft barley 
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whole  genome sequence  has  only  recently  been  described  (International  Barley  Genome 

Sequencing Consortium et al.  2012).  Even in the absence of a whole genome sequence, 

transcript profiling has provided important data in recent years  for the cataloguing of their 

genes.  These reports include the barley GeneChip (Walia et al. 2006) that identified several 

stress responsive genes; profiling of drought tolerant versus susceptible wheat lines that led to 

identification of altered responses of several genes and a new transcription factor 

(Mohammadi et al. 2007); wheat arrays that led to several hundred genes related to abiotic 

stress response  (Kawaura et al. 2008); and wheat GeneChip (Schreiber et al. 2009) that 

produced transcript data highly comparable to the barley gene chip (Druka et al. 2006), 

supporting the functional closeness of the two species.

The  next-generation  mRNA-Seq,  a  high throughput cDNA sequencing technology,  is a 

powerful method for rapid characterisation of transcript sequences and gene expression levels 

in biological samples.  It is being applied widely in human genetics and medicine, but is still 

an  emerging  technology for  plants.  The use of high-throughput sequencers such as the 

Roche-454, Solid and Illumina systems has considerable potential to bring high resolution 

transcriptome maps to non-model species such as barley. Marioni  et  al.  (2008)  critically 

evaluated  gene  expression  profiling  by  RNA-Seq  by  the  Illumina  platform  to  that  by 

Affymetrix arrays from the same RNA samples, and concluded that RNA-Seq was not only 

comparable in elucidating differentially expressed genes, but also had added capabilities of 

detecting  transcripts  with  low  level  expression,  identifying  sequence  variants  and  new 

transcripts.  Transcriptome analysis from short-read Illumina sequencing is now beginning to 

be carried out for crop species, e.g., rice (Mizuno et al. 2010) and soybean (Severin et al. 

2010), which have the advantage of reference whole genome data, and also species such as 

chickpea (Garg et al. 2011) without such information. By the FAO (2005) classification of 

salinity tolerance, both corn and soybean are moderately tolerant, wheat is tolerant, while 

barley is  classified as ‘highly tolerant’;  hence it  may display important genetic attributes 

under salt challenge.  The  cultivar Hindmarsh was chosen for transcriptome analysis here 

because  it  is  the  most  widely  cultivated  barley  variety  in  Australia  (GRDC  2008; 

http://www.grdc.com.au/uploads/documents/GRDC_ImpAss_BarleyBreeding1.pdf;  p17) and 

is particularly suited to regions of South-Eastern Australia with lower rainfall (Modra Seeds 

Fact Sheet).  In this paper, we compare the transcriptomes of the leaf of barley, a major cereal 

crop and a close relative of wheat, in acute salt stressed versus control conditions, and show 

the utility of mRNA-Seq for qualitative and quantitative analyses of gene expression profiles. 
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This analysis aims to identify genes which may confer resistance to acute salinity stress and 

may thereby be  candidates  for  future  crop improvement  where  soil  salinity  is  posing  an 

increasing problem.

Materials and methods

Plant material

Hordeum vulgare L.  cv. Hindmarsh seedling were grown in  trays filled with potting mix 

consisting of vermiculite:perlite (2:1),  in a Thermoline plant growth  cabinet set at 12 h of 

light per day, 72% humidity and 20°C temperature  for 14 days. The  12  h  time  point 

represents a period of acute stress where differential genes are likely to be maximally altered 

in expression as suggested by previous reports in Arabidopsis (Seki et al. 2002).  Salt stress 

was applied to five plants by supplying 150 mM NaCl in Hoagland’s solution (Hoagland and 

Arnon 1950) for 12 h, while five others remained unstressed (controls). Leaves of each plant 

were harvested individually, snap-frozen in liquid nitrogen and stored at -80°C. 

RNA Isolation

Snap-frozen leaf material from individual plants was crushed in a microcentrifuge tube using 

a sterilized metal rod to a fine powder.  RNA was extracted using TRIsure reagent (Bioline 

Australia).  After phenol-chloroform extraction, the RNA was precipitated, the pellet washed, 

air-dried and dissolved in DEPC-treated water.  It was then treated with 10U of RQ1 RNase-

free DNaseI (Promega Australia) in the presence of 2U of RNase inhibitor (Bioline Australia) 

for 30 minutes at 37°C. RNA was recovered by LiCl precipitation (Ambion Technical 

Bulletin #160) and dissolved in 20 µL DEPC-treated water. The  integrity of  RNAs  was 

assessed with capillary electrophoresis on a MultiNA system (Shimadzu Corporation, Japan). 

Next Generation mRNA Sequencing

RNA from two salt-stressed plants was pooled in equal quantities for the mRNA-Seq library 

preparation, as reported for mRNA-Seq (Mizuno et al. 2010) and other methods (Ando and 

Grumet  2010),  to  minimise  any  biological  variations  in  transcriptomes.   RNA from two 

control plants was pooled likewise.  Libraries were produced as per the Illumina mRNA-Seq 

library preparation protocol (September 2009, CA, USA).  The main steps included mRNA 
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enrichment on oligo(dT) beads, reverse transcription (using random primer), synthesis of 

second strand, end repair, 3’ adenylation, sequencing adapter ligation and PCR amplification. 

A V4 kit was used for cluster generation with a DNA concentration of 8 pM on the Illumina 

Cluster Station and the flow  cell was loaded onto Illumina Genome Analyzer IIx for 

sequencing-by-synthesis for 76 cycles (V4 reagents).  Image analysis with RTA v1.8 was 

performed for base-calling and sequence file generation.

Bioinformatics methods

Datasets were filtered for spurious reads using the Fastx Artifacts Filter and poor quality 

bases were removed from the 3' end with the Fastq Quality Trimmer using a threshold of Q30 

(http://hannonlab.cshl.edu/fastx_toolkit/).  Initially, Hordeum vulgare Unigene transcript 

sequences downloaded from the NCBI database (http://www.ncbi.nlm.nih.gov/unigene; last 

accessed November 2011) were used as reference sequences.  This database consisted of 

26,941 transcripts including those annotated as ‘complete CDS’ and ‘partial CDS’.  The 76 

nucleotide (nt) mRNA reads were aligned using Burrows-Wheeler Aligner (BWA) (Li and 

Durbin 2009) using default settings which allowed up to 4 mismatches in the 76b reads.

Unaligned reads were extracted with SAMtools software (Li et al. 2009)  and underwent de 

novo assembly using the 'Assembly By Short Sequence’  (ABySS)  software package 

(Simpson et al. 2009) to elucidate any previously unidentified transcripts. ABySS was run at 

a range of k-mer lengths from 27 to 63, using a coverage threshold of 3x.  To increase the 

contiguity of the assembly, these discrete assemblies were concatenated and re-assembled 

using a range of k-mer lengths.  Any contigs less than 100 bp were discarded and remaining 

contigs were named tentative consensus sequences (TCs).  To determine whether these TCs 

represented novel sequences, they were BlastN  searched  to the above Barley Unigene 

collection as well as to a rice cDNA database (http://rice.plantbiology.msu.edu/).  Novel TCs 

were expected to find a relatively strong hit to the rice database and a poor match in the 

barley TA database.  After trial and error of various ratios (that turned out too stringent or too 

non-selective; data not shown), we implemented a rice/barley blast bit score ratio threshold of 

≥2 and discarded TCs with a score <2, leaving a set of novel TCs (NTCs), which were 

subsequently appended to the Unigene reference.  A work-flow diagram is given in Fig. 1.
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To perform differential gene expression (DGE) analysis, the Q30 quality trimmed reads were 

aligned with BWA to the updated transcriptome database.  Ambiguously aligning reads were 

not filtered, as this would have biased against contigs which have been extended in length by 

the assembly process.  Counts for each transcript were extracted with SAMtools (idxstats 

feature) and these were subject to DGE analysis using the DESeq software package (Anders 

and Huber 2010), using the conservative “blind” method to estimate variance despite lack of 

replicates.  Transcripts with false discovery rate (Benjamini-Hochberg procedure) adjusted p-

values < 0.05 were considered significantly differentially expressed.

Gene ontology (GO) analysis was performed for up- and down-regulated sets of 200 genes 

(selected based on adjusted p-value rank)  by first mapping each barley gene to its closest 

BlastN match in the rice cDNA database as above, using an e-value threshold of <0.1.  The 

rice locus name sets were then analysed with the agriGO Singular Enrichment Analysis tool 

(Du et al. 2010), using the suggested rice whole transcriptome background. Significance of 

the gene set enrichment was evaluated with Fisher test using Yekutieli FDR adjustment, with 

a significance threshold set at 0.05.

Validation of NGS findings by semi-quantitative reverse transcriptase PCR

The transcripts analysed by  semi-quantitative  reverse transcriptase PCR (sqRT-PCR) were 

those of Hv.469, Hv.10251, Hv.8888, Hv.8276, Hv.22598, Hv.20929, Hv.30571, Hv.25954, 

Hv. 22828, Hv.808, Hv.23281, with actin and α-tubulin as housekeeping controls (Suprunova 

et al. 2004). Primers were designed using Netprimer 

(http://www.premierbiosoft.com/netprimer/index.html), with the following criteria: length 15-

25 bases; GC content ~50%, minimal secondary structures, and comparable annealing 

temperatures (~60°C) of the primers of a pair, to amplify products of 60-372 bp (Table S1). 

Three salt-stressed and three control plants were used to extract total RNA individually and 

cDNAs were synthesised from each using Bioscript reverse transcriptase (Bioline, Australia). 

Purified RNA (1 µg) was mixed with 1 µL of oligo(dT)18 primer (0.5µg/µL) in 12 µL, 

incubated at 70 °C for 5 minutes and chilled on ice. 10 U (0.25 µL) of RNase inhibitor, 

40mM (1 µL) dNTP, 4 µL of 1X Reaction buffer and 50 U (0.25 µL) of Bioscript (all from 

Bioline) were added to a final volume of 20µL, and incubated for 1 h at 37 °C.  The reaction 

was terminated at 70 °C for 10 min and the cDNAs stored at -20 °C.  Absence of genomic 
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DNA in cDNAs was confirmed by PCR using intron-spanning primers for actin and α-tubulin 

(Suprunova et al. 2004) and comparisons to  gDNA amplifications.  The 25 µL PCR mixes 

contained 200 ng cDNA, 12.5 µL of 2X Biomix (Bioline; contains Taq polymerase, dNTPs) 

and 0.5 µL (0.1 µg/µL) each of the  forward and reverse primers.  For sqRT-PCR of each 

gene, four identical PCR tubes were prepared for each cDNA, to amplify for 20, 25, 30 and 

35 cycles for genes showing relatively high expression in mRNA-Seq, or 25, 30, 35 and 40 

cycles  for those showing relatively low expression, with typical annealing temperatures of 

60°C. Aliquots (5 μL) of  each reaction  were electrophoresed and the intensity of bands 

recorded using Chemidoc XRS Documentation Station and Quantity One software (Bio-Rad). 

Differential expression (fold change) was calculated using actin and α-tubulin (Suprunova et 

al. 2004) as housekeeping controls that exhibit relatively constant expression. 

Results 

Next Generation Sequencing

The mRNA-Seq libraries from the control and salt-stressed cDNA were each loaded on one 

lane of Illumina Genome Analyser IIx, and yielded over 50 million sequence tags (Table 1). 

The reads were curated with artefact filtering and quality trimming and then aligned to the 

current barley Unigene database (see  Methods) using the BWA program under default 

settings, which allowed up to 4 mismatches in 76 nt reads.  From this dataset it was found 

that out of the 26,944 present in the Unigene reference database, 21,336 transcripts were 

detected in the control and 21,574 detected in the salt-stressed sample (1 read or more).

Identification of new transcripts 

To discover previously unrecognised  transcripts, the remaining 16,434,520 unaligned reads 

underwent a two-step de novo assembly in ABySS (Fig. 2).  A range of k-mer lengths was 

utilised for phase 1, which generated 5,723,131 overlapping contigs from 18 assemblies (k-

mer range 27, 29, etc., up to 63).  These contigs then underwent phase 2 assembly, with the 

average contig length and N50 length improving dramatically and the number reducing to 

<50,000.  We selected the k55 assembly for downstream analyses, which yielded 39,707 

contigs ≥100 bp in length.  These had an average length of 343.9 bp and N50 length of 518 

bp (Table 2).  The longest contig (TC21595; 13,710 bp) putatively encodes an auxin transport 
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protein of the ‘BIG-like’ family, based on homology to a Brachypodium cDNA sequence.  To 

hone in on potentially novel sequences, a rice/barley blastn ratio of ≥2 was  implemented, 

which removed 90.3% of contigs, resulting in 3,828 potentially novel tentative consensus 

sequences (NTCs).  Of the top 1,000 transcripts ranked by expression (DESeq normalised 

expression across both control and salt datasets), 61 were NTCs, demonstrating that some of 

these are highly expressed in the barley leaf.  These often had a close but incomplete blast hit 

in the  Unigene database, compared to a longer but less-similar blast hit from rice.   For 

instance, 45,336  reads aligned to NTC41084, its closest barley Unigene match being to 

Genbank accession BF620510.2  with an alignment length of 572 bp, while the rice match 

spanned 1,588 bp.

Analysis of differential gene expression

Quality trimmed reads from control and salt-stressed samples were aligned to the appended 

reference sequence, which saw the total unaligned reads decrease from 16,434,520  to 

13,505,967 (Table 3).  Using DESeq to scan for differential gene expression between control 

and acute salinity stress in leaves using a negative binomial model, we found 110 genes to be 

significantly  de-regulated (FDR adjusted p-val < 0.05).  From these, 48 transcripts showed 

increases and 62 showed decreases (Fig. 3).  The top 20 differentially expressed (up- and 

down-regulated)  transcripts ranked by p-value  from the barley Unigene and NTC sets are 

shown in Table 4.  The list of up-regulated genes includes a number of genes (or homologs 

thereof)  which  have  been  shown  previously  to  mediate  osmotic/drought/salinity  stress 

tolerance, such as cellulose synthase-like protein, lipoxygenase 2.1, protein phosphatase 2C, 

late embryogenesis abundant, calcium/calmodulin dependent protein kinase, as well as those 

encoding membrane bound proteins  such as  a  peptide transporter,  two plasma membrane 

ATPases and a novel wall-associated receptor kinase.  Down-regulated transcripts include 

those in the  Jumonji, Pumilio RNA binding and MYB transcription factor classes, as also 

several transcripts of unknown function.  The full sequence data set is  available at SRA in 

Genbank (accession number SRA062960) and the differential gene expression spread sheet is 

attached as Table S3. 

Gene ontology analysis was performed with sets of 200 differentially regulated barley genes 

(ranked by p-value).  As few GO analysis tools exist as yet for barley, we mapped each barley 
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sequence to its best blast hit in rice, and compared these lists to the rice transcriptome-wide 

background using agriGO (Du et al. 2010).  The set of genes which were down-regulated 

(only 120 loci had GO annotation) did not show any significant enrichment (p-val <0.05), but 

the set of 200 up-regulated genes (only 104 loci had any GO annotation) was significantly 

enriched for genes annotated with ‘response to abiotic stimulus’ (Table S2).  The genes  in 

significant GO terms in the up-regulated list were all linked to response to osmotic stress, 

desiccation or water limitation.  Combining the up- and down regulated lists showed that the 

GO terms  ‘response  to  chemical  stimulus’ and ‘response  to  abiotic  stimulus’ were  over-

represented.

Validation of transcript profiles by sqRT-PCR

SqRT-PCR of  eleven  randomly selected  sequences  from the  mRNA-Seq data  resulted  in 

successful amplification of the bands of expected sizes (Fig. S2; Table S1), and quantitation 

of the band intensities in relation to house-keeping controls largely supported the direction of 

change of expression as detected by mRNA-Seq for all transcripts (Fig. S1).  Exceptions to 

this occurred when the fold-changes detected were slight, and the deviations were within the 

observed variation of the ‘housekeeping’ genes alpha-tubulin (-1.39) and actin (+1.17) in 

mRNA-Seq datasets.   In cases of extreme fold-changes,  sqRT-PCR recorded smaller  fold 

changes in comparison to those determined with mRNA-Seq due to known limitations (e.g., 

saturation and detection range limits) of ethidium bromide staining of gels and quantitation.

Discussion

Transcriptome profiling by mRNA-Seq is fast becoming an attractive method as it facilitates 

rapid generation of large datasets for transcript identification and quantification, even in the 

absence of a reference genome. In this  work,  using  just 2 lanes of an Illumina Genome 

Analyser flow cell, over 50 million 75 nt reads were generated, amounting to 3.56 Gbp after 

quality trimming. In comparison, Genbank contained 525,999 capillary-sequenced barley 

ESTs, amounting to 272.6 Mbp (November 2011).  It thus appears that  mRNA-Seq has a 

profound potential for plant biology, as also indicated by recent studies on crop species such 

as rice (Mizuno et al. 2010) and soybean (Severin et al. 2010) with reference genomes, and 

chickpea (Garg et al. 2011) which assumed no a-priori sequence information.
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In this work, we aimed at addressing two main points; to determine barley genes which are 

differentially expressed under acute  salt stress,  and  to discover previously un-identified 

transcripts in the barley leaf.  To this end, we show that the two-phase assembly method 

significantly improved the contiguity over the standard assembly, with k55 N50 increasing 

from 223 bp to 518 bp.  Furthermore, the use of stringent blast ratio filtering enabled the 

discovery of 3,828 NTCs, some of which are new and others are more complete in size. 

While many of the differentially regulated genes identified here agree with previous work 

using microarrays (Ueda et  al.  2004), differentially expressed NTCs found here represent 

transcripts which could not have been detected using microarray technology.  One such NTC 

is a 2.0 kb transcript encoding a wall-associated receptor kinase-like 22, which has only a 450 

bp  blast  hit  in  the  current  barley  Unigene  database  but  a  1.2  kbp  match  to  rice  and 

Brachypodium homologues.  A related gene in Arabidopsis, WAKL4, is responsive to Na+ as 

well as other cations such as K+, Ni2+ and Zn2+ (Hou et al. 2005).

An early-responsive to dehydration stress (ERD4) homolog, known as late embryogenesis 

abundant  (LEA),  is  strongly up-regulated by acute  salinity  in  this  dataset  and  has been 

investigated in maize (Liu et al. 2009), wherein this gene is  not only induced upon salinity 

stress, but its  over-expression in Arabidopsis leads to enhanced tolerance to drought and 

salinity.  In barley, this gene is shown to confer tolerance to osmotic stresses (Xu et al. 1996).  

Other  strongly  upregulated  candidates  for  future  functional  work  could  include  the 

chloroplast localised lipoxygenase 2.1, a plasma membrane bound ATPase, an ODORANT1 

homologue, as well as a protein phosphatase 2C. A highly expressed aquaporin was among 

the most decreased in expression (ranked 121 highest  in  control,  down to 3,016 in salt), 

indicating water transport processes within the leaf could be strongly reduced under acute salt 

stress.

Comparison of this mRNA-Seq dataset to previously described array experiments (Walia et 

al. 2007) yielded a moderate  correlation of fold change, with 5,334 of the 15,000 highest 

expressed transcripts showing contradictory fold changes (data not shown).  Many factors 

could explain this disparity, including the different lines of barley used, different regimens of 

salt stress and different analysis chemistries.  Investigation of 11 transcripts with sqRT-PCR 

shows general  agreement  between the  two techniques  (Fig.  S1).   While the direction of 
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expression changes was largely  consistent between both methods, the magnitude of fold 

change found with sqRT-PCR was generally smaller than that of mRNA-Seq (Table S1). 

The data demonstrate that mRNA-Seq is an excellent high-throughput methodology for gene 

expression, which will be crucial to revealing the scale of variations in barley germ-plasm 

and accurate mapping of quantitative trait loci.  As next-generation sequencing technologies 

and  associated  bioinformatics  methods  continue  to  improve,  these  will  become  more 

commonplace in plant biology will result in a comprehensive high quality annotation of the 

barley and wheat genomes.  Until then, this study provides a valuable dataset containing 

thousands of  novel transcripts and a snapshot  of differential expression due to acute  salt 

stress.  The  outcomes serve  as a useful reference for future hypothesis-driven studies in 

barley and the closely  related and most important  cereal, wheat. Reverse genetic studies of 

these salinity responsive genes could uncover genes which contribute to salinity tolerance.
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Figure Legends

Fig. 1 Study design. 

mRNA-Seq is performed on material derived from control and salt-stressed barley leaves. 

Reads unaligned to current databases are assembled to discover novel sequences. These 

sequences are blasted to rice and barley databases to determine novelty. The final contig set is 

analysed for differential gene expression.

Fig. 2 Process of identifying novel sequences from mRNA-Seq data. 

(a) The schematic consolidation of data by assembly of reads, merging of overlapping 

contigs, filtering by Blast ratio.  (b) The number of identified contigs ≥100bp in phase one 

assembly using k-mer 27 to 63.  (c) Phase 1- average contig length.  (d) Phase 1 - N50 length. 

(e) Phase 2 - number of contigs ≥100bp.  (f) Phase 2- average contig length. (g) Phase 2- N50 

length.  (h) Length distribution for final assembly using k55, as a k-mer of 55 was selected 

for further analysis. (i)  Blast  ratio filtering: the Blast bit  score of the best  hit  in the rice 

database (y-axis) is plotted against the bit score of the best hit in the barley database (x-axis), 

with points in red denoting contigs passing filtering (NTCs) and those in black  being 

discarded.

Fig. 3 Differential gene expression of NTCs and known transcripts. 

A smear plot (a) showing the base mean expression versus the Log2 of fold change for NTCs 

shown in red and known contigs shown in black. Large points indicate those considered 

significantly differentially regulated by salt stress (adj p-value < 0.05).  A distribution of p-

values for NTCs and known transcripts (b).
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            Table 1 mRNA-Seq data yields from Genome Analyzer IIx sequencing
Control 
dataset

Salt stress 
dataset

Original read length (bp) 76 76
Original number of reads (million) 23.7 26.7
Original sequence yield (Gbp) 1.80 2.03
Sequence yield after artifact filtering (Gbp) 1.80 2.03
Number of reads after Q30 quality filtering (million) 23.4 26.1
Sequence yield after Q30 quality filtering (bp) 1.70 1.86
Number of reads aligning to Unigene DB (million) 16.6 16.4
% Reads aligned 70.9 63.0
Number of unaligned reads (million) 6.79 9.64
Unaligned sequence (Gbp) 0.496 0.698



      Table 2 Results from the two-phase assembly using AbySS

Phase1 of Assembly
Number of unmerged contigs from k27-k63 
assembly 5,723,131
Number of unmerged contigs ≥100bp 954,420
Average length (bp) 235
N50 Length (bp) 256
Longest contig (bp) 12,314
Phase2 of Assembly (k-mer =55)
Number of merged contigs 50,499
Number of merged contigs ≥100bp 39,707
Average length (bp) 344
N50 Length (bp) 518
Longest contig (bp) 13,710
Assembly size (bp) 13,696,077
Contigs with Rice/Barley Blast Ratio ≥2 3,828



              Table 3 Alignment results post-assembly

Parameter
Control 
sample

Salt stress 
sample

Post-process read length (bp) 36 36
Post-process number of reads (million) 23.4 26.1
Number of reads aligning to Improved DB (million) 19.9 22.1
% Improvement on first alignment 20.1 34.4



Table 4 Top 20 up-regulated and down-regulated transcripts ranked by p-value

Accession
Reads 
Control

Reads 
Salt

Log2 
Fold 
Change

P-value 
(FDR 
adjusted) Nearest rice blast hit* Rice_annotation

Hv.29838 20 827 5.3 1.12E-5 LOC_Os07g36750 CSLF3 - cellulose synthase-like family F; beta1,3;1,4 glucan synthase, expressed

Hv.5008 125 3701 4.9 7.76E-5 - unclassified transcript

Hv.31363 4 224 5.8 2.82E-4 LOC_Os12g37260 lipoxygenase 2.1, chloroplast precursor, putative, expressed

Hv.8934 29 640 4.4 3.40E-4 LOC_Os04g40990 malate synthase, glyoxysomal, putative, expressed

Hv.17368 44 843 4.2 0.001 LOC_Os05g46040 protein phosphatase 2C, putative, expressed

Hv.2654 9 261 4.8 0.001 LOC_Os07g44060 haloacid dehalogenase-like hydrolase family protein, putative, expressed

Hv.29473 10 264 4.7 0.002 - unclassified transcript

Hv.3400 2 137 6.1 0.002 LOC_Os01g12580 late embryogenesis abundant protein, putative, expressed

Hv.30848 3 149 5.6 0.002 LOC_Os03g48310 plasma membrane ATPase, putative, expressed

Hv.32578 4 164 5.3 0.002 LOC_Os04g02000 zinc finger family protein, putative, expressed

Hv.17120 40 603 3.9 0.003 LOC_Os10g41490 CAMK_CAMK_like.41 - CAMK includes calcium/calmodulin dependent protein kinases, expressed

Hv.15443 41 566 3.8 0.004 LOC_Os04g47700 expressed protein
NTC2548
2 58 754 3.7 0.004 LOC_Os02g42110 wall-associated receptor kinase-like 22 precursor, putative, expressed

Hv.32190 6 172 4.8 0.004 LOC_Os03g19600 retrotransposon protein, putative, unclassified, expressed

Hv.5085 11 229 4.4 0.005 LOC_Os07g05365 photosystem II 10 kDa polypeptide, chloroplast precursor, putative, expressed

Hv.30861 2 104 5.7 0.007 LOC_Os03g48310 plasma membrane ATPase, putative, expressed

Hv.10528 234 2825 3.6 0.008 LOC_Os09g35880 B-box zinc finger family protein, putative, expressed

Hv.5729 1 56 4.8 0.008 LOC_Os06g38294 peptide transporter PTR2, putative, expressed
NTC2618
5 3 230 4 0.009 LOC_Os09g25700 TsetseEP precursor, putative, expressed

Hv.12388 89 976 3.4 0.009 LOC_Os09g02180 expressed protein

Accession
Reads 
Control

Reads 
Salt

Log2 
Fold 
Change

P-value 
(FDR 
adjusted) Nearest rice blast hit* Rice_annotation

Hv.16656 5229 25 -7.7 2.65E-9 LOC_Os12g31000 pumilio-family RNA binding repeat domain containing protein, expressed

Hv.2383 1413 10 -7.2 6.16E-9 LOC_Os10g25060 expressed protein

Hv.6975 798 5 -7.3 8.44E-9 LOC_Os04g47140 expressed protein

Hv.33010 382 2 -7.6 2.52E-7 LOC_Os09g31380 jmjC domain-containing protein 5, putative, expressed

Hv.13882 771 10 -6.3 2.52E-7 LOC_Os04g02880 expressed protein

Hv.10251 950 14 -6.1 2.52E-7 LOC_Os03g58300 indole-3-glycerol phosphate lyase, chloroplast precursor, putative, expressed

Hv.34103 230 1 -7.9 1.13E-5 LOC_Os03g08580 expressed protein

Hv.37409 1475 43 -5.1 1.13E-5 LOC_Os04g57880 heat shock protein DnaJ, putative, expressed

Hv.20312 1873 57 -5.1 1.73E-5 LOC_Os01g74020 MYB family transcription factor, putative, expressed

Hv.30597 712 22 -4.8 6.27E-5 LOC_Os01g05060 mitochondrial glycoprotein, putative, expressed

Hv.13356 234 3 -6.3 6.30E-5 LOC_Os04g49450 MYB family transcription factor, putative, expressed



Hv.19411 4919 160 -5 7.65E-5 LOC_Os06g19444 CCT/B-box zinc finger protein, putative, expressed

Hv.9005 1081 51 -4.4 2.31E-4 LOC_Os03g55280 semialdehyde dehydrogenase, NAD binding domain containing protein, putative, expressed

Hv.8557 391 14 -4.8 2.82E-4 LOC_Os03g16780 ankyrin repeat family protein, putative, expressed

Hv.20948 7350 295 -4.6 3.49E-4 LOC_Os05g37520 expressed protein

Hv.19979 934 50 -4.2 4.90E-4 LOC_Os07g42650 expressed protein

Hv.19759 1439 82 -4.2 0.001 LOC_Os02g40510 response regulator receiver domain containing protein, expressed

Hv.30983 2304 135 -4.1 0.001 LOC_Os03g63910 PPR repeat domain containing protein, putative, expressed

Hv.8625 214 5 -5 0.001 LOC_Os07g48050 peroxidase precursor, putative, expressed

Hv.21993 270 11 -4.6 0.002 LOC_Os12g43600 RNA recognition motif containing protein, expressed

*Annotations were mined from best Blastn hits in the Rice database using an e-value threshold of <0.1
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Figure 2. Process of identifying novel sequences from mRNA-Seq data. 
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Figure 2(c) 
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Figure 2(d) 
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Figure 2(e) 
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Figure 2(f) 
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Figure 2(g)
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Figure 2(h) 
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Figure 2(i) 
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Figure 3. Differential gene expression of NTCs and known transcripts. 
Figure 3(a) Comparison of control and salt gene expression
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Figure 3(b) Distribution of p-values
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