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Abstract
Cloud computing provides services on demand and has led to the establishment

of large scale Cloud systems. Large scale Cloud systems entail energy concerns,

which include drawbacks on the system and the environment. In a private Cloud,

in particular, energy efficiency relates to the cost of providing Cloud services.

First the impact of energy consumption on a private Cloud is explained. Then

energy-efficient resource hyper-visioning policies and mechanisms are proposed

and evaluated.

Energy consumption by Cloud systems contributes to a substantial level of

energy consumption worldwide. High level of energy consumption, on one hand,

adds to the cost of running the Cloud system (by adding to the energy bill), and the

cost of running cooling devices because of the effect of energy consumption on

thermal state. High energy consumption, on the other hand, contributes to carbon

dioxide emission worldwide.

To address energy concerns in private Clouds, the resource hyper-visioning

software, that arbitrates the virtualization of resources in terms of Virtual Ma-

chines (VMs), should make energy-efficient decisions. Hyper-visioning decisions

include the mapping of VMs to hosts for execution and VM migration if needed.

To deploy energy-efficient hyper-visioning, a set of hypotheses are made. These

hypotheses relate to the development of adaptive energy-efficient mechanisms for

VM mapping and VM migration using macro and micro level observation records

to adaptively reduce energy consumption.

In this thesis, first an adaptive energy-efficient VM mapping mechanism is

developed. The mechanism uses Bayesian Inference (BI) to associate the de-

ployment of a VM mapping policies at a given state of the system and workload

properties with VM mapping policy’s total energy consumption, which is a macro

level observation record. The proposed BI indicates which VM mapping policy

v
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is more likely to result in less energy consumption given the current state of the

system and workload pr operties. The mechanism adaptively switches between

VM mapping policies according to the latest observation records for each VM

mapping policy. The results proved that our proposed adaptive energy-efficient

mechanism has total energy consumption level close to the best performing VM

mapping policy, where the best VM mapping policy for the given state of the

system and workload properties were not known beforehand.

VM mapping is about the initial assignment of VMs to hosts. Changes in

resource requirements from VMs throughout their execution might change the

state of hosts. As a result, hosts might encounter an imbalance problem, being

either over-loaded (high utilization level) or under-loaded (low utilization level).

Imbalance problem can be solved by migrating VMs from the imbalanced host

to another. In this thesis, VM migration policies are developed that are based

on micro level records (e.g. current hosts’ utilization level, VM resource requests,

VM memory size) to achieve energy efficiency. The results of the inclusion of VM

migration proved to be effective in reducing total energy consumption compared

to the situation where no migration was performed. Moreover, the proposed VM

migration policies outperformed state-of-the-art VM migration policies.

VM migration can become adaptive in reducing energy consumption. We pro-

posed VM migration mechanisms that base their inference on the latest micro

level observation records, e.g. hosts’ utilization level, VMs’ memory size. The

proposed mechanisms outperformed state-of-the-art migration heuristics in terms

of total energy consumption while mean execution time was also significantly

shortened.

In summary, energy concerns have driven the research into addressing the im-

portant issue of reducing energy consumption in private Clouds. Energy efficiency

in private Clouds is achieved through hyper-visioning resources. The proposed
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adaptive hyper-visioning mechanisms include Bayesian Inference to adaptively

learn and update their decisions. The results indicated significant reduction of

energy consumption while execution time was also improved.
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Chapter 1

INTRODUCTION

THIS thesis proposes dynamic, Bayesian based resource hyper-visioning mech-

anisms to address the issue of high energy consumption in private Clouds

without imposing further delays on execution time. The mechanisms proposed

investigate the reduction of total energy consumption through switching between

available hyper-visioning policies and moving Virtual Machines (VMs) between

hosts. A set of innovative mechanisms are designed and evaluated to adaptively

hyper-vise resources to reduce total energy consumption. Simulations are done

to evaluate the outcome of our proposed adaptive mechanisms in reducing energy

consumption. The results indicate that our proposed mechanisms significantly

improve total energy consumption in private Clouds.

This chapter provides a short background, problem analysis and key elements

of this research. It is organized as follows. Section 1.1 covers an introduction

to the energy-efficient resource hyper-visioning. Section 1.2 presents the energy

problem analysis in the context of private Clouds. Section 1.3 outlines the key

elements of this research: research scope, questions, hypotheses, methodology

and contributions. Then, Section 1.4 gives an overview of the remainder of this

thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1 Energy-efficient Hyper-visioning in Private Clouds

U.S. National Institute of Standards and Technology (NIST) has defined Cloud

computing as follows [69]: "Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable comput-

ing resources (e.g., networks, servers, storage, application and services) that can

be rapidly provisioned and released with minimal management effort or service

provider interaction."

Four deployment models have been presumed for Cloud computing: Public,

Private, Community and Hybrid Cloud.

Public Cloud

The cloud services are owned and provisioned by a cloud provider orga-

nization and users are public individuals and organizations. Services that

Amazoon and Force.com provide are examples of a public cloud.

Private Cloud

The cloud is provisioned by an organization to provide services for multiple

users such as its own business units. The cloud computing infrastructure

can be owned and managed by the organization or a third party.

Community Cloud

A group of organization with common concerns, mission or requirements

share cloud services. Cloud can be owned by a third party, one of the com-

munity members or a group of members.

Hybrid Cloud

If the cloud is not in a pure form of any mentioned deployments and a

combination of two or three, it is called a hybrid cloud. For example, an
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organization provides cloud for its business units (private cloud). It also

provides cloud services for other businesses in a same industry to decrease

the maintenance and technology cost (community cloud).

Private Clouds have relatively limited resources compared with public Clouds.

An energy efficient utilization of resources in a business’s private Cloud has direct

impacts on the financial trade-offs.

In private Clouds, total energy consumption can be reduced via energy-efficient

resource hyper-visioning. First the importance of energy-efficient approaches

should be explained. Then the factors contributing to total energy consumption are

identified. Later, the effect of resource hyper-visioning on total energy consump-

tion is explained. Resource hyper-visioning can be based on macro and micro

level observation records in order to reduce total energy consumption in private

Clouds.

The importance of reducing energy consumption by Cloud systems is noted

as more and more Cloud systems are established. The growth of Cloud systems

has resulted in the establishment of large scale data centers. Data centers are re-

sponsible for a considerable amount of energy consumption, 1.1 - 1.5% of global

energy consumption in 2011 [56]. Given the continuous growth of data centers,

more Cloud systems have emerged since the above mentioned report was pub-

lished in 2011. In just two years, in 2013, in the United States alone, data centers

were accounted for almost 91 billion kilowatt-hours of electricity usage [23] and

it is estimated to reach 140 billion kilowatt-hours by 2020 [23]. High energy con-

sumption leads to a high energy cost for the system and also a large carbon dioxide

footprint. These have driven research into energy-efficient Cloud resource hyper-

visioning in order to reduce energy consumption.

Total energy consumption can be calculated by adding the energy consumed

by all resources in the system. Resources include: processor, memory, network
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and storage. CPU utilization was previously used to relate CPU utilization to en-

ergy consumption [45, 51, 84]. Chen et al. [16] reported the energy consumption

by processors (host’s CPU utilization) as the main contributor to energy consump-

tion in Cloud systems. Deelman et al. [22] also confirmed this hypothesis by re-

porting the cost of running a scientific workload in 2008. They outlined that the

computational cost (CPU utilization) outweighed the storage cost.

Energy consumption by processor has two parts: static and dynamic. Static en-

ergy consumption depends on the hardware (the processor). Dynamic energy con-

sumption, however, is based on the frequency of the processor. Dynamic energy

consumption by processor, Ed , is formulated by Kim, Beloglazov and Buyya [51]

as equation 1.1. This formulation is then used in related studies [104, 9, 83, 19].

In equation 1.1 Ed represents the dynamic energy consumption, t is the time and

f is the frequency of the CPU.

Ed =
∫ t
( f/ fmax)

0
C× fmax× f 2× t (1.1)

Equation 1.1 represents the relation between the frequency of the processor,

f , and the time, t. f and t are the main factors in calculating dynamic energy

consumption, Ed , while fmax is the maximum frequency and C is a hardware de-

pendent constant. The frequency of CPU is the CPU utilization indicator.

Frequency of the processor or CPU utilization is determined by the CPU cycles

that are requested from a host. Because the resources in a host are virtualized,

in terms of Virtual Machines (VMs), the resource requests from tasks on VMs

determine the frequency of the processor or CPU utilization. The assignment of

VMs to hosts is administrated by a software layer called resource hyper-visor.

Resource hyper-visioning software is a software layer responsible for assign-

ing tasks to VMs and VMs to hosts. Resource hyper-visor controls the source

sharing between VMs. Among resources, processor contributes to a major por-
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tion of energy consumption. Therefore, efficient utilization of resources, proces-

sor in particular, has become an active area of research since the advent of Cloud

systems. In a private Cloud, resource hyper-visioning warrants further attention

due to the relatively limited resources in private Clouds. Therefore, efficient uti-

lization of the limited resources will have a high impact on reducing total energy

consumption.

Energy-efficient VMs to hosts mapping has been researched in the field of

Cloud computing [9, 30, 44, 51, 91]. Energy-aware mapping policies are evalu-

ated against other policies on multiple simulation settings, workload and based on

various measures. Nevertheless, the change of simulation settings and workload

might lead to conflicting outcomes for each policy as each is expected to exhibit

its strength in certain settings. So it is worth investigating the differences in the

outcomes when simulation settings and workload properties are arbitrarily altered.

The outcomes can be then measured in terms of energy consumption. Inclusion

of other related measures can also provide a more detailed understanding of each

mapping policy’s outcome.

After recording the energy consumption of VM mapping policies in different

states of the system, in terms of total energy consumption values (which are macro

level observation records), the system can decide when to apply each policy to re-

duce energy consumption. That is, macro level observation records can be used to

adaptively switch between the existing mapping policies based on what is learned

from the outcome of each policy. It is to guarantee that each policy is used when

it has previously shown strength in terms of reducing energy consumption.

Energy-efficient mapping policies aim to reduce energy consumption accord-

ing to the information available about resources on the hosts and resource requests

from VMs at the time of mapping. However, the VMs’ resource requests can

change throughout their lifetime, therefore changing available resources on hosts.
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So, the mapping policies, that base their decision on the initial resource requests,

might cause the system to become imbalanced.

An imbalanced problem refers to the system which has hosts that are either

over-loaded or under-loaded. A host is over-loaded when it receives resource

requests from its VMs that are more than what it can provide. An overloaded

host’s utilization is mostly in its highest level which according to the experiments

on energy measurement [38, 39], even proportionally, evidences a high level of

energy consumption. In addition, a high level of resource utilization in an over-

loaded host is shown to increase the likelihood of hardware failures [25]. An

under-loaded host, on the other hand, is kept in its active state where it serves

a low level of resource requests from its VMs. An under-loaded host does not

have issues serving its VMs. However, the energy it consumes is high, relatively

to the resources it provides. Both over-loaded or under-loaded hosts convey an

imbalanced problem in the system.

A solution to the imbalance problem is to migrate VMs from the imbalanced

host to another. VM migration refers to the process of moving a VM from a host

to another. When VM migration is done without stopping the execution in source

and destination hosts (apart from a short time transferring the VM status), it is

termed live migration [18]. VM migration and VM live migration are commonly

used interchangeably.

VM migration consists of two steps: VM selection and VM re-mapping (map-

ping). There exist policies to select VMs for migration. They commonly use

micro level record to select VMs for migration. Micro level observation records

include the current details of the VMs and hosts (VMs’ current resource requests,

memory size and hosts’ available resources) to decide about VM migration. Be-

loglazov and Buyya [8, 9] proposed three VM selection policies based on micro

level observation records: Minimum Migration Time (MMT), Random Selection
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(RS) and Maximum Correlation (MC). More energy-efficient VM selection poli-

cies can be proposed to compete with these VM selection policies to reduce total

energy consumption.

Energy-efficiency can also be addressed by applying other VM migration ap-

proaches. Sallam and Li [83] proposed a five objective Bayesian game based

heuristic for migrating VMs: load volume, energy consumption, thermal state, re-

source wastage and migration cost. They aim to find the most optimal VM to host

assignment option to perform VM migration.

VM migration can be carried out adaptively, when micro level observation

records set the deciding variables. Micro level observation records provide in-

sight into the current utilization level of VMs and hosts. An adaptive VM migra-

tion is expected to outperform the existing policies. An adaptive resource hyper-

visioning mechanism has the ability to learn. It updates its decision making pro-

cess based on the observed outcomes of the resource hyper-visioning decisions.

The resource hyper-visioning decisions are expected to tackle the high energy

consumption issue in the context of private Clouds.

1.2 Problem Analysis

High energy consumption has its drawbacks on the system and environment. The

reduction of total energy consumption in private Clouds can be achieved through

energy-efficient resource hyper-visioning mechanisms. First, problems driven

from high energy consumption should be described. Then potential resource

hyper-visioning solutions can be explained, according to either macro or micro

level observation records for mapping and migration. Later, the advantages of

adaptive mechanisms need to be explained.

Problems are driven by high energy consumption in Cloud. Problems include
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the increase in running costs due to the cost of energy required to run the system

and the necessary cooling devices; and the impact on the environment by adding

to the carbon dioxide emission level. Addressing these problems requires energy-

efficient resource hyper-visioning mechanisms.

Energy-efficient resource hyper-visioning is a way to reduce energy consump-

tion. One approach can be to switch between available resource mapping policies.

Resource mapping policies assign VMs to hosts, therefore determining the utiliza-

tion level on hosts. The utilization level then makes up the majority of the energy

consumption. Macro level observation records can be defined as observing the

outcome of a deployed mapping policy to decide upon the switch between them,

based on the system and workload states. This approach proposes the selection

of a mapping policy when it has previously presented strong reduction of energy

consumption.

Reduction of energy consumption can also be achieved via resource hyper-

visioning based on micro level observation records. It can be applied when the

system encounters imbalance. An imbalanced system has hosts that are either

over-loaded or under-loaded. An over-loaded host receives a high level of resource

requests that it cannot provide. An under-loaded host, on the other hand, has low

resource requests and is mostly idle. VMs can be migrated from an over-loaded

host to ease the imbalance problem. Also, migrating VMs from an under-loaded

host provides the system with the opportunity to switch the host off and save

energy. The resource hyper-visioning approach is to select VMs for migration in

a way that the imbalance problem is solved. Given that each migration instance

needs to copy a VM from source host to destination host, it is desirable to solve the

imbalance problem with fewer migration instances. To select a VM for migration,

the decision can be made according to micro level observation records where the

utilization level of VMs and hosts are the deciding factors in selecting VMs for
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migration.

The resource hyper-visioning solution for energy-efficiency, via either energy-

efficient VM mapping or VM migration, can also be conducted based on micro

level observation records of hosts’ and VMs’ utilization levels. Hosts’ and VMs’

utilization levels provide insight into the energy consumption in the system. By

basing the decision making process on micro level observation records and incor-

porating both VM mapping and VM migrating, total energy consumption can be

reduced significantly.

The reduction of energy consumption via resource hyper-visioning mecha-

nisms can benefit significantly from becoming adaptive. Advantages of adaptive

resource hyper-visioning mechanisms evolves around the volatility of the system

state and resource requirements of VMs in private Clouds. VMs receive tasks

from different units within a business or businesses. Diverse types of tasks, with

relatively different behavior in their lifetime, are submitted to VMs. For example,

an accounting unit sends tasks that have high processing requests followed by I/O

requests for recording and reporting. Tasks from a control unit need a high level

of I/O through its sensors, followed by recording and computations. It is then

expected to respond to the sensed indicators quickly which requires a high com-

putation and response generation. The Research & Development (R&D) units

might deploy tasks of any nature, given their potential resources requirements.

Although the resource requirements of some types of tasks might somehow be

predictable there are other tasks which can have unexpected resource requests.

Given the unpredictability of the resource requirements, energy-efficient mecha-

nisms can benefit from becoming adaptive. Adaptivity enables them to respond to

the changes in the state of the system and resource requests as they emerge, thus

contributing to a reduction of total energy consumption.

Energy consumption can be reduced by deploying energy-efficient adaptive
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resource hyper-visioning mechanisms, either based on macro or micro level ob-

servation records. By reducing total energy consumption the drawbacks of high

energy consumption on the system and the environment will be limited. The re-

duction of energy consumption can be achieved adaptively, based on macro and

micro level observation records.

1.3 Key Elements of This Research

Resource hyper-visioning in private Clouds requires detailed decision making

mechanisms to cater for the volatile resource state and VMs’ resource requests.

Resource hyper-visor is responsible for mapping VMs to hosts. This assignment

is based on the current available information about the system state. A change

in its status or VMs’ resource requirements might make the outcome of the VM

mapping policy unpredictable and/or unacceptable. The results of a deployment

of a VM mapping policy can be an imbalanced system. VM migration can be an

option for alleviating a potentially troublesome state when a system encounters an

imbalance problem. Nonetheless, either mapping VMs to hosts or VM migration

can benefit from the application of adaptive, feedback based mechanisms. It pro-

vides the hyper-visor with the chance to learn from the observed results - at macro

and micro levels - and be able to respond to the changes as they emerge.

1.3.1 Research Scope

This thesis focuses on the problem of energy-efficient resource hyper-visioning in

private Clouds. The scopes of this study are summarized in Table 1.1.

The aim is to reduce energy consumption in a heterogeneous private Cloud.

To do so, resource hyper-visioning policies and mechanisms should be developed

to administer virtualized resources (virtual machines). Resource hyper-visioning
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Items Scope

Target system Heterogeneous private Cloud

Objective Reduction of energy consumption

Energy saving

techniques

Articulating the energy related indicators of certain system

states and VMs’ resource requirements, switching hosts

on/off

Architecture Adaptive resource provisioning using macro and micro

level observation records

Table 1.1: Research Scope

includes both the VM mapping and VM migration, if needed; and switching hosts

on/off to save energy. Such energy-efficient resource hyper-visioning is intended

to be adaptive in responding to changes in the system and workload properties,

using macro or micro level observation records.

1.3.2 Research Questions

Within the scopes of the research, the research questions can be summarized as

follows:

1. How do VM mapping policies perform, in terms of energy consumption,

when workload properties are arbitrarily altered? The energy consumption

level of deploying multiple VM mapping policies might be substantially

different when the simulation settings and/or workload properties (VM re-



12 CHAPTER 1. INTRODUCTION

source requests and/or task arrival rate) are changed. That is, an optimal

VM mapping policy might not exist or be a practical approach within an

acceptable time frame. This can be because each policy has its strengths

and weaknesses in certain settings of system and workload properties.

2. How can energy-efficient resource hyper-visor in private Clouds adaptively

switch between VM mapping policies based on macro level observation

records? When different mapping policies demonstrate optimal results (in

a macro level, in terms of energy consumption) when certain conditions (of

the system and workload) are met, then there is a possibility to switch be-

tween policies and utilize their potential when they have previously had a

strong outcome.

3. How is resource hyper-visioning extended to VM migration, if energy-efficient

mapping decisions caused imbalance, to reduce energy consumption in pri-

vate Clouds? A System experiences an imbalance when some hosts are

either over-loaded with high resource requests or under-loaded with low re-

source requests. VMs should be selected from a host with an imbalance

problem to be migrated. The process of selecting a VM for migration can

be according to micro level observation records available at the time of mi-

gration. Thus the existing VM selection policies can be improved to reduce

energy consumption.

4. How can the micro level observation records be used to enhance the VM

migration process to adaptively select a VM with the highest likelihood of

reducing energy consumption in private Clouds? When there is an imbal-

ance problem in the system, VM migration can use micro level observation

records to decide upon the energy efficient VM migration option. This pro-

cess can be adaptive to the changes in the state of VMs and hosts.
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5. How can the micro level observation records about the state of hosts’ re-

sources and VMs’ current requests can be used to adaptively map and mi-

grate VMs, to reduce energy consumption? Resource hyper-visioning deci-

sions in private Clouds, either VM mapping or VM migration, can be based

on an adaptive approach that learns from observing the outcome of its de-

cisions given the state of hosts’ resources and VMs’ requests. That is, such

adaptive resource hyper-visor relates the state of the system and its VMs to

the expected outcome.

1.3.3 Research Hypotheses

The following hypotheses are expected from research questions:

1. Mapping policies demonstrate their strengths and weaknesses (in terms of

energy consumption as a macro level observation) in different states of sys-

tem and workload properties.

2. Adaptively switching between mapping policies (based on macro level ob-

servation records) will demonstrate a low level of total energy consumption

in comparison to individual policies when system and workload conditions

are dynamically altered. The switching can become representative of the

latest outcomes because of being adaptive.

3. When a VM migration needs to be carried out, VM migration policies can

be improved to reduce energy consumption. The improved policies should

outperform the existing policies in terms of total energy consumption.

4. How VM migration is enhanced to adaptively migrate a VM with the highest

likelihood of reducing energy consumption in private Clouds?.
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5. The process of VM mapping and VM migration can be incorporated in an

adaptive and integrated mechanism. The adaptive mechanism will have

the ability to relate (learn) the outcome of its decisions in terms of energy

consumption given the state of system and its VMs for its VM mapping and

VM migration mechanisms.

1.3.4 Research Methodology

To answer the research questions, the following needs to be done.

1. Simulations of the outcome of multiple mapping policies when system set-

tings and workload properties are changed. The results can provide insight

into the outcome for each mapping policy. Mapping policies show their

strengths and weaknesses given the state of the system and workload prop-

erties. Detecting the strength of each policy can help the system to use them

when they are the most likely policy to reduce total energy consumption.

2. When the conditions in which a mapping policy is outperforming the other

policies are met, there can be an adaptive mapping mechanism that utilizes

this macro level observation records to switch between mapping policies

and reduce total energy consumption. The overall result of such a mecha-

nism needs to be close to the best performing VM mapping policy available

to make the overhead of switches meaningful.

3. VM migration policies should be developed when there is an imbalanced

problem in the system and VMs should be migrated from hosts with an

imbalance problem. VM migration policies can be developed for energy-

efficiency that utilize the current micro level observation records for VM

migration decision. Such policies need to outperform the existing VM mi-

gration policies.
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4. VM migration should become adaptive and respond to the potential changes

in the system and workload properties. A VM migration mechanism can be

developed that selects a VM with the highest likelihood of reducing energy

consumption according to the micro level observation records.

5. Mapping and migrating VMs in an adaptive way, using micro level observa-

tion records, can be achieved through the development of a mechanism that

is inclusive of VM mapping and VM migration. When VM mapping and

VM migration are performed in a single mechanism, as a resource hyper-

visioning mechanism, it becomes representative of both VM mapping and

VM migration. Also, it will benefit from being adaptive as it will enable the

resource hyper-vising mechanism to respond to the changes as they emerge,

based on available micro level observation records.

1.3.5 Contributions

The contributions of this thesis can be divided into five categories: analysis and

categorization of the related area of research, novel introduction of adaptive switch-

ing approach between VM mapping policies, optimization of VM migration pro-

cess, and adaptive resource hyper-visioning inclusive of both VM mapping and

VM migration. More specifically, the key contributions are:

1. A review of the energy-efficient resource hyper-visioning techniques, inclu-

sive of both VM mapping and VM migration, in Cloud computing.

2. Invention of an adaptive mechanism that switches between available map-

ping policies:

• Simulation of the outcome for multiple mapping policies when system

settings and workload properties are changed.
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• Detection of the conditions in which mapping policies demonstrate

strength in reducing energy consumption.

• Development of an adaptive resource hyper-visioning mechanism that

switches between mapping policies when previously detected condi-

tions are met.

• Evaluation of the adaptive mechanism against individual mapping poli-

cies.

3. Optimization of the VM migration process to solve the imbalance problem

in private Clouds:

• development of VM migration policies that utilize available micro

level observation records about VMs for VM migration decisions.

• Comparison between the proposed policies and the state-of-the-art

policies.

4. Enhancement of the VM migration process to adaptively migrate the VM

most likely to reduce energy consumption:

• Formation of an inference to represent the relationships between the

micro level observation records on VMs and hosts with observed en-

ergy consumption.

• Simulation of the formed inference as an adaptive VM migration mech-

anism to adaptively migrate VMs to reduce energy consumption.

• Evaluation of the proposed mechanism against state-of-the-art heuris-

tics.

5. Invention of a novel adaptive resource hyper-visioning mechanism, inclu-

sive of VM mapping and VM migration:
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• Establishment of an inference to relate the micro level observation

records about system resources and VMs’ resource requests to the en-

ergy consumption in the system.

• Application of the established inference in order to reduce total energy

consumption as an adaptive energy-efficient resource hyper-visioning

mechanism.

• Evaluation of the proposed hyper-visioning mechanism against state-

of-the-art VM mapping and VM migration heuristics.

1.4 Overview of This Thesis

This thesis covers the development and evaluation of an energy-efficient adaptive

resource hyper-visioning mechanism. It includes a set of new concepts and in-

novative mechanisms derived from papers published in international conferences

and journals. An overview of the thesis chapters is as follows:

• Chapter 2 provides a review of the related work in the field of energy-

efficient resource hyper-visioning inclusive of VM mapping and VM mi-

gration.

• Chapter 3 studies the motivation and the design of adaptive mapping mech-

anism by simulating the outcome of six basic mapping policies when the

system settings and workload properties are altered. Then an adaptive map-

ping mechanism is proposed to switch between mapping policies according

to the system and workload conditions based on macro level observation

records. The proposed adaptive mechanism is then evaluated against indi-

vidual mapping policies.
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• Chapter 4 details the migration process and the proposal of two energy-

efficient VM migration policies. The proposed policies are evaluated against

an state-of-the-art policy.

• Chapter 5 presents an adaptive, Bayesian based VM migration mechanism

and an adaptive energy-efficient mechanism, inclusive of both VM mapping

and VM migration, to reduce energy consumption in private Clouds, based

on micro level observation records. The proposed adaptive mechanisms are

evaluated against a state-of-the-art heuristics.

• Chapter 6 summarizes the thesis main findings, analyzes the future research

directions, and includes final remarks.



Chapter 2

LITERATURE REVIEW

INCREASING level of energy consumption by Cloud systems has instigated con-

cerns related to the high cost of running the system and the associated high

carbon dioxide footprint. These concerns have motivated research in developing

resource utilizing approaches that seek energy efficiency in the Cloud system. Re-

source utilization is determined by resource hyper-visors. To identify challenges

in energy-efficient resource hyper-visioning and to provide context for further ad-

vancements, it is essential to summarize and classify related research.

This chapter reviews the existing research related to energy-efficient resource

hyper-visioning and provides a taxonomy and survey of the energy-efficient re-

source hyper-visioning in Cloud computing. A more general review of energy-

efficient studies in the context of Cloud computing is provided in our survey pa-

per [88].

This chapter is organized as follows. Section 2.1 gives a general introduction

to the research objectives in the context of Cloud computing, and energy concerns,

contributors and measures. It establishes the background for achieving energy

efficiency through resource hyper-visioning. Resource hyper-visioning covering

VM mapping and VM migration is reviewed in Section 2.3 and Section 2.4 re-

19
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spectively. Then a short discussion on the overall related literature and identified

challenges are detailed in Section 2.5. Section 2.6 summarizes this chapter.
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2.1 Optimization, Energy and Related Problems

Researchers choose criteria to be optimized in the context of Cloud computing.

These objectives are reviewed and the relationships between the objectives are

explained. As part of the objectives, the importance of energy consumption in

Cloud systems should be explained. To achieve energy efficiency, contributors to

the total energy consumption in the Cloud should be identified. By detailing these

contributors, energy-efficient resource hyper-visioning decisions can be made.

2.1.1 Objectives in Cloud Related Studies

A range of objectives has driven research in Cloud computing. Studies have in-

vestigated the Cloud from the point of view of these objectives.

• Energy/Power consumption: Energy consumption is measured in terms of

total energy consumed where power represents the energy used in an inter-

val.

• Resource utilization/wastage: Resource utilization represents utilization level

of all resources in the system.

• Execution/turnaround time: Execution time is the length of time taken for

executing tasks. Turnaround time, however, is the time it takes from the sub-

mission of task to completion, which is the execution time and the waiting

time.

• Temperature: Temperature of hosts in a Cloud system needs to be kept

within a range to prevent burn-outs of hosts.

• Cost: In addition to the cost of hardware, its maintenance, software updates,

staff and similar contributors, the cost of running a Cloud system needs to



22 CHAPTER 2. LITERATURE REVIEW

Resource

Utilization/

Wastage

Energy

Consumption

Execution/

Turnaround

Time

Cost

Temperature

SLA/QoS

Performance

Figure 2.1: The relation between energy/power consumption and other potential

objectives

include its energy bill.

• Service Level Agreement(SLA) or Quality of Service (QoS): SLA and QoS

are defined according to a range of constraints including utilization level,

execution/turnaround time and cost.

• Performance: The definition of performance varies in the literature. It is

sometimes reported as the number of finished tasks or the utilization of a

resource per unit of time.

Figure 2.1 depicts the relationships between these objectives. Energy/power

consumption is directly related to resource utilization. Resource utilization, also,

determines the execution/turnaround time. A given resource utilization level last-

ing a particular length of time indicates the energy consumed for execution. The
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higher the resource utilization or longer the execution time, the more the energy

consumption.

In turn, high resource utilization and, therefore high energy consumption level

increases the temperature. A rise in the temperature entails the need for more

cooling devices that then adds to the total energy consumption and consequently

the cost. To address the drawbacks of cooling devices’ energy consumption, Tang,

Gupta and Varsamopoulos [96] minimized energy consumption of cooling devices

by developing heuristics that aimed at lowering the temperature. They reported

20 to 30 % energy saving. A similar approach is taken by Moore et al. [72].

Based on Figure 2.1, resource utilization determines execution/turnaround

time. Shorter execution/turnaround time improves performance, when perfor-

mance is defined as the number of finished tasks. Depending on the definition of

SLA/QoS, either execution/turnaround time or cost affects SLA/QoS measures.

Nonetheless, other objectives such as performance are also related to QoS in the

literature, which itself relates to the execution time. A recent survey covers the

broad range of QoS approaches in the literature [2].

As a result, the resource utilization level affects the energy consumption and

execution time. In turn, resource utilization influences other objectives. There-

fore, resource utilization is the major element affecting research objectives. Ad-

ministering resource utilization enables the system to move towards optimal en-

ergy consumption and execution time. In this research, the objective is defined as

a reduction in total energy consumption via resource hyper-visioning mechanisms

where execution time is guaranteed not to be sacrificed.

Energy efficiency gains its importance from another aspect in Cloud comput-

ing which covers the problems caused by high energy consumption in Cloud data

centers.
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2.1.2 High Energy Consumption Problems

High level of energy consumption by Cloud systems gives rise to major problems

within the Cloud system and for the environment. Problems within the Cloud

system relate to the cost of running the Cloud system. In addition, problems for

the environment are from the effect of Cloud’s high energy consumption level on

the environment in terms of carbon dioxide emission, when non-renewable energy

sources are supplied 1.

The energy consumption by Cloud data centers accounted for 0.8% energy

consumption worldwide in 2000 and 1.5% in 2005 [59]. In a report published in

2006, U.S. data centers alone accounted for 61 billion kilowatt-hours of energy

consumption. This amount of energy was approximately 1.5% of the total power

consumption in the U.S in that year. In 2007, Koomey [57] estimated the energy

consumption by data centers was as high as 26 Giga Watts. In 2011, Koomey [56]

reported that Cloud data centers were responsible for 1.1% - 1.5% of worldwide

energy consumption.

Such high levels of energy consumption and the rapid growth in total energy

consumption level mean higher energy bills for Cloud service providers. Accord-

ing to a university report [98], a medium-size data center pays an annual energy

bill of about £1 million.

Moreover, the energy consumption directly impacts on the thermal state of

hosts within the system. According to Sallam and Li [83], thermal state, T , for

a host is proportional to Power, P, and the ambient temperature, Tamb as equa-

1Despite growth in generating energy from renewable sources, from 18% in 2007 to 21% in

2012, only 22% of energy generated worldwide was from renewable sources in 2013 [40]. One

of the major energy consuming economies, China, still relies on oil as their primary source of

energy [41].
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tion 2.1, where R represents thermal resistance.

T = P.R+Tamb (2.1)

Based on equation 2.1, a high energy consumption increases the thermal state

of hosts. A high energy consumption level requires more cooling devices to keep

hosts’ temperature within an acceptable range. Running cooling devices adds to

the total energy consumption, and further increases the energy bill.

In a private Cloud in particular, the cost of running the Cloud is one of the

business expenses. A high level of energy consumption might prompt a business

to question the viability of the provided services. Therefore, a business objective

may be to reduce the energy consumption of its Cloud system to decrease total

costs. Private Clouds are also responsible for the environmental effects resulting

from their energy consumption level.

The high level of energy consumption has an impact on the environment. In

a report published in 2006 [11], Cloud data centers were accounted for 116.2

million metric tons of carbon dioxide emission. Google data centers alone were

responsible for 1.46 million metric tons of carbon dioxide emission in 2010 [71].

To tackle the problems caused by the high energy consumption level, energy-

efficient approaches should be put into practice. Firstly, high impact energy con-

tributors should be first identified. Then, energy estimation models and energy

measurement approaches need to be investigated. With this information, energy-

efficient approaches can be developed to reduce energy consumption in the Cloud,

specifically in private Clouds with their relatively limited resources.

2.1.3 Contributors, Measurements and Models

Given the impact and the problems of high energy consumption in a private Cloud,

it is essential to articulate the energy contributing factors within a private Cloud.
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Then the energy measures and estimation models should be explained and the

differences identified.

2.1.3.1 Energy Contributors

Total energy consumption in a Cloud system is the sum of energy consumed by

hosts - based on their processing, memory, network and storage utilization level.

Processing utilization level represents the frequency with which the processor

is executing instructions per second. The processing utilization level also includes

the processor’s activities regarding memory and network input/output.

The memory utilization level gets highlighted in specific scientific areas such

as astronomy [20] and bio-informatics [74] where scientists need to store and ana-

lyze a large volume of data. Scientific memory needs to generate a large amount of

data during the analyzing process [21]. Memory management (data/storage man-

agement) strategies are developed to optimize utilization of the available mem-

ory [112, 113]. Hence, such a level of memory utilization necessitates executing

instructions by the processor.

Network traffic, also, adds to the total energy consumption in a Cloud system.

Network transits involve copying the data through the network and that adds to

memory and processing utilization level.

Nevertheless, research by Chen et al. [16] indicated that hosts’ processing

utilization is the main contributor to total energy consumption. The majority of

energy is used by processors where memory, network and storage energy account

for the majority of the remainder. Deelman et al. [22] reported that for running a

scientific workload, computational cost (CPU utilization) outweighed the storage

cost. As a result, the processor utilization level is commonly used to relate CPU

frequency to energy consumption [45, 51, 84].
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2.1.3.2 Energy Measurements and Models

One of the factors in energy related studies is the way energy consumption of

processors is modeled or measured. Two main ways are used in research for

calculating energy consumption:

• Power meters

• Energy estimation models

Power meters are attached to the hardware. They read energy consumption in

intervals. The use of power meters has drawbacks including the following. First,

the values read depend on the type of power meter used. Second, where the power

meter is attached to the hardware affects the values read. A power meter connected

to the motherboard adds a marginal energy consumption because of the reading

process. Third, depending on how often the power values are read (big/small

reading intervals), the power meters provide a discrete set of continuous energy

consumption values.

Energy estimation models are required to provide a common basis for com-

paring the energy consumption in different studies. Such energy estimation mod-

els can then be adapted by power-aware simulation packages such as Green-

Cloud [54, 55], MDCSim [66], GSSIM [6, 61] and CloudSim [13, 14]. In 2013, a

survey paper published by Kaur studied the different characteristics of MDCSim,

CloudSim and GreenCloud [46]. CloudSim is one of the commonly used energy-

aware simulation packages in Cloud computing. A review of CloudSim and its

various versions can be found in research by Goyal, Singh, and Agrawal [33].

An energy-aware simulation package requires a formulae/model for calculat-

ing the energy consumption associated with a specific resource utilization level.

Some of the energy consumption models are driven from the values measured on

a hardware and provide an approximation of energy consumption [38, 39]. Hsu et
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al. [39] provided a set of rules that determines the energy consumption for V Mi,

at the time t using α , the idle energy consumption and β = α as in equation 2.2

in Watts (W).

Et(V Mi) =



α i f idle

β +α i f 0% <CPUutil.≤ 20%

3β +α i f 20% <CPUutil.≤ 50%

5β +α i f 50% <CPUutil.≤ 70%

8β +α i f 70% <CPUutil.≤ 80%

11β +α i f 80% <CPUutil.≤ 90%

12β +α i f 90% <CPUutil.≤ 100%

(2.2)

Energy consumption by processors can be divided into constant and dynamic

consumption [51]. Constant energy consumption, Ec, is hardware dependent. Dy-

namic energy consumption, Ed , on the other hand, is based on the frequency of

the processor and time as in equation 2.3.

Ed =
∫ t

( f/ fmax)

0
C× fmax× f 2× t (2.3)

where Ed is the dynamic energy consumption, t is the time, f is the frequency of

the processor, and C is a constant. This is one of the widely used energy models

and is adopted by CloudSim [13, 14] and is used in related studies [104, 83, 19].

CloudSim [13, 14] also includes the energy consumption values for utilization

ranges of certain host types and is used for evaluation of the proposed heuristics [8,

9].

Given the effect of resource utilization levels, with processors in particular,

resource hyper-visors should be reviewed to identify potential energy reduction

opportunities.
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2.1.4 Resource Hyper-visioning Software

In a Cloud system, resources on hosts are virtualized and Virtual Machines (VMs)

are defined to accommodate tasks in the workload. The concept of a Virtual Ma-

chine (VM) was introduced by Intel during the 1960s, to provide interactive access

to the mainframes to improve the utilization of the system resources [32]. Vir-

tualization is defined [17] as "a technology that combines or divides computing

resources to present one or many operating environments". Virtualizing resources

enables sharing them between multiple VMs and therefore tasks.

VMs share the resources on the host that they are deployed on. Each task

is assigned to a VM. Then the VM is mapped to a host along with potentially

other VMs, all sharing resources on the host. VM mapping decisions are made by

a software layer, Virtual Machine Monitoring software or resource hyper-visor,

that administers workload isolation, workload consolidation and workload migra-

tion [100, 105].

Workload isolation is the process of assigning tasks to VMs. Workload con-

solidation refers to the process of mapping VMs to hosts. Workload migration,

live migration or application mobility [7] refers to the action of migrating a VM

from one host to another. In this research, workload consolidation and workload

migration are addressed. The reason for leaving out the workload isolation is the

fact that this research bases its mechanisms on resource requests and utilization

level of VMs, regardless of the number of tasks deployed on them. Therefore,

we address VM mapping and VM migration as VM monitoring/resource hyper-

visioning.

Common VM monitoring softwares (resource hyper-visors) are: VMware [42],

Denali [109], Xen [7], Kernel-based Virtual Machine (KVM) [53] and Virtual

PC [37].
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VMware

VMware is a software company that provides virtualization software and

Cloud services. It has VMware Workstation software that runs on Microsoft

Windows, Linux, and Mac OS X. It also has VMware GSX Server and

VMware ESX Server that are embedded hyper-visors and run directly on

server hardware without requiring an additional underlying operating sys-

tem [42].

Denali

The University of Washington’s Denali project came up with a technique,

which is called paravirtualization [109]. paravirtualization tries to increase

the scalability and performance of Virtual Machines. It also modifies the

traditional virtualization architecture for new customized guest operating

systems in order to obtain extra performance. Denali is designed to support

thousands of virtual machines running network services. Its VMs are de-

signed with the aim of hosting a single task, single-user unprotected guest

OS and thus does not have support for virtual memory which is a common

feature in most OSes.

Xen

Researchers at the University of Cambridge proposed an architecture for

virtualization, called Xen [7]. Xen aims to maximize performance and re-

source isolation using a paravirtualized architecture.

Kernel-based Virtual Machine (KVM)

The Kernel-based Virtual Machine (KVM) is a Linux virtualization subsys-

tem. KVM, a hardware-assisted virtualization, improves performance and

allows the system to support unmodified guest operating systems [53]. The

cooperative Linux (COLinux) is an example of it, which is a variation of
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user-mode Linux. User-mode Linux resides on top of the OS and works in

user-space, while cooperative Linux might run some specific kind of VMs

in kernel-mode.

Virtual PC

Microsoft Virtual PC is similar to VMWare. It provides the facility of hav-

ing multiple operating systems and multiple VMs. It supports two features:

undoing disk and binary translation [37]. The option of undoing disk lets

user undo some previous operations on the hard disks of a VM. Binary

translation, provides x86 machines on Macintosh-based machines.

The VM monitoring software, namely resource hyper-visor, arbitrates the ac-

cess to the physical resources so that different operating systems in VMs can share

the host infrastructure. Resource hyper-visor decides about the tasks to VMs as-

signment. It then maps VMs to hosts. It is also responsible for migrating VMs if

needed.

Achieving energy efficiency via resource hyper-visioning is a challenge be-

cause of the heterogeneity of resource types, the unpredictability of the future

resource requests and the nonlinearity of energy consumption based on resource

utilization.

The resource requests from the task assigned to a VM are sent to the host that

has the VM running on it. It is the effect of the resource hyper-visor’s decisions

on the hosts’ resource utilization. Its VM to host mapping decisions and VM

migration decisions can become energy aware so that total energy consumption

for running a given workload is reduced. Energy-efficient VM mapping and VM

migration heuristics are developed to achieve this.



32 CHAPTER 2. LITERATURE REVIEW

2.2 Energy-aware Resource Hyper-visioning Approaches

Energy-aware resource hyper-visioning is achieved via different approaches in

the context of Cloud computing, including the formulation of resource hyper-

visioning as a Backpack problem or Trade-off.

Resource hyper-visioning in Cloud is formulated as a Backpack problem by

some studies where available resources indicate the capacity/capacities (consider-

ing dimension to serve processing, memory and network capacities). Examples of

a Backpack formulation approach include: Aydin et al. [5] proposed an energy-

aware task execution where tasks’ deadlines are met; Raghavendra et al. [78]

mapped VMs to hosts based on hosts’ remaining capacity and the constraints

where they switch hosts on and off as required; Srikantaiah, Kansal and Zhao [93]

mapped as many tasks to a host as possible and measured the energy consumption

and reported a result close to optimal energy consumption.

Resource hyper-visioning in Cloud is also formulated as a trade-off between

objectives. Salehi and Buyya [82] experimented with cost and time trade-offs

when dealing with the problem of executing tasks on available public Clouds,

given the budget and time constraints. Ghosh et al. [31] quantified power (energy

per time) and performance trade-offs.

To address the energy consumption problem, whichever way it is formulated,

different strategies are applied, including a variety of optimization approaches,

e.g. Genetic Algorithm (GA) by Lee et al. [106], Yu and Buyya [111]; Ant Colony

Optimization (ACO) by Zhu, Li and He [115], Feller, Rilling and Morin [24], Gao

et al. [29]; and Honey Bee heuristic by Krishna [60].

A review of the closely related papers addressing energy-efficient VM map-

ping and VM migration strategies is provided in the next two following sections.



2.3. ENERGY-AWARE VM MAPPING 33

2.3 Energy-aware VM Mapping

Energy-efficient VM mapping heuristics aim at optimizing energy consumption.

Energy optimization can be achieved by applying energy-efficient heuristics on

hardware or at the resource hyper-visioning level. It can be achieved by adjusting

the frequency of the processor, Dynamic Voltage and Frequency Scaling (DVFS),

or switching hosts on/off when needed.

At the hardware level and to adjust the frequency of the processors, Ren et

al. [80] proposed three DVFS-based VM mapping heuristics: Least performance

Loss Scheduling (LLS), No performance Loss Scheduling (NLS) and Best Fre-

quency Mach scheduling (BFM) policies. These policies were invented to tackle

the drawback of Xen [7] of adjusting the frequencies fast, which leads to per-

formance degradation. They evaluated the proposed policies on single-core and

multi-core processors and reported a reduction in energy consumption. Cardosa

et al. [15] utilized Xen [7] hyper-visioning software’s property, of determining

min, max and CPU proportion allocated to a VM, to devise a power-efficient VM

mapping heuristic.

In this study, however, the focus is on the resource hyper-visioning level when

either DVFS or host switches are applied.

Kim, Cho and Seo [52] estimated the energy consumption of a VM based

on the in-processor events. They proposed a VM mapping policy, Energy-Credit

Scheduler (ECS), which regulates the energy consumed by a VM of a certain

budget. This approach is suitable for a public Cloud where users are given access

to VMs for a certain time and at a given price.

Plaxton et al. [77] designed a resource to request mapping policy that reduces

the resources required for executing the requests. Irani et al. [43] mathematically

proved that their proposed probabilistic mapping approach outperforms the de-
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terministic approach by a substantial margin. Kim, Buyya and Kim [51] used a

DVFS technique in a way that aims to meet tasks’ deadline. They evaluated their

energy saving heuristics against space sharing and time sharing policies (without

DVFS) and reported significant energy reduction. Executing tasks with deadlines

in private Clouds is then extended by Kim, Beloglazov and Buyya [49, 50] to im-

prove energy efficiency and tasks acceptance rates; and meet tasks’ deadlines. Lin

et al. [67] proposed an algorithm for mapping requests to hosts so that hosts are

switched off when there is low level of resource requests.

Verma et al. [101] developed an algorithm to minimize power consumption. In

their recent papers [102, 103], bi-criteria (deadline and budget) algorithms are pro-

posed where they applied Particle Swarm Optimization (PSO) for VM mapping.

They compared their algorithms with BHEFT proposed by Zheng and Sakellar-

iou [114], which itself is an alteration of HEFT [97]. PSO is also used by Xiong

and Wu [110], and Sridhar and Babu [92] for mapping. Another VM mapping pol-

icy is proposed by Kaur and Challa [47] where energy consumption and execution

time are the objectives to be optimized.

The above mentioned studies are static approaches where a set of rules is put

in place to optimize the corresponding objectives. However, they do not take

into account the potential and frequent changes in the resource requirements and

available resources at run-time.

Back-filling refers to the process of selecting the next task to assign to the re-

sources. Mu’alem and Feitelson [73] used back-filling on IBM servers. Variations

of back-filling are applied by Tsafrir, Etsion and Feitelson [99] and Suresh and

Vijayakarthick [94] for VM mapping in the context of Cloud computing. Back-

filling relies on information or estimations of resource requirements. Such infor-

mation might not be available and estimations might manifest an error rate that

jeopardizes the viability of the mechanism.
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Reguri, Kogatam and Moh [79] designed improved VM mapping heuristics

that clustered VMs based on their resource requirements. They evaluated their

heuristics on CloudSim [13, 14] and compared them against heuristics without

clustering. The results demonstrated significant energy reduction when Best Fit

VM (BFV) and Best Fit Host (BFH) policies are enhanced by the proposed clus-

tering approach. They, however, presume prior knowledge about resource require-

ments which might not be available or accurate.

Gaggero and Caviglione [27] proposed a VM mapping heuristic to minimize

energy consumption. They aimed at maintaining a certain level of SLA/QoS. They

evaluated their heuristic against First Fit Decreasing (FFD) and an improved FFD

heuristic developed by Panigrahy et al. [75]. They reported reduction of energy

consumption. However, they set a static rule for performing VM mapping based

on the available information. It does not adapt to potential changes in the state of

the system and VMs’ resource requirements after VMs are mapped.

Gandhi et al. [28] analyzed the effect of task arrival rate on resource utilization

levels and consequently response time and power consumption. They set utiliza-

tion levels and a power cap. They, then, directed the future work towards switch-

ing between utilization levels to achieve shorter response time and power caps.

However, the presumed switching approach bases its decisions on the utilization

level only where it could benefit from a feed back loop.

One of the common approaches to define the VM mapping problem is to for-

mulate it as a bin-packing problem. Srikantaiah et al. [93] studied the minimiza-

tion of energy consumption while meeting performance requirements when re-

source requests are to be mapped to bags of resources. The authors illustrated

performance degradation due to high utilization level. They reported an optimal

resource utilization level in terms of performance. However, reported results are

validated on specific workloads and task types.
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Aydin et al. [5] proposed a mapping heuristic to map VMs to hosts while meet-

ing their deadlines and saving energy. They assume that the best-case and worst-

case resource requirements of each VM is known to the VM mapper. Raghavendra

et al. [78] explored energy management and utilized a bin-packing algorithm for

VM mapping that works with available information regarding VMs’ resource re-

quirements and the remaining capacities on hosts. Ghosh et al. [31] described

a trade-off between power and performance when mapping VMs to hosts. They

assumed the availability of information regarding the average resource utilization

by each VM.

Lee et al. [106] mapped tasks to hosts based on their resource requirements,

using GA. Although in the context of Grid computing, Yu and Buyya [111] pro-

posed a mapping policy based on deadline and budget constraints using GA.

Ant Colony Optimization (ACO) is applied by Zhu, Li and He [115] to map

tasks (their VMs) to hosts when the resource requirements are known to the map-

per. ACO is also used by Feller, Rilling and Morin [24] to map VMs to hosts when

formulating the problem as a multi-dimensional bin-packing problem. They con-

sider the presence of knowledge about all resource requirements. Gao et al. [29]

utilized ACO for VM mapping as well. The proposed heuristic works based on

the idea that the resource requirements of VMs are known and a VM is mapped

to a host only if the host can provide the resources.

In these studies, the request to resource matching problem is investigated.

They considered prior knowledge about tasks’ resource requests. These studies

did not consider the potential changes in resource requests after the VM to host

mapping heuristics are applied. They also do not include feedback from the pre-

vious mapping decisions to guide the heuristic in the next phase. Therefore, they

do not represent an adaptive VM mapping strategy with the ability to learn from

its previous decision and outcome scenarios.
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Beloglazov and Buyya [8, 9] proposed threshold based mapping policies: Thr,

IQR, MAD, LRR and LR. In a recent study by Sharma and Saini [85] a median

based threshold policy is evaluated against Beloglazov and Buyya’s policies and

is proven to outperform THR, IQR and MAD. However, prescribing a threshold

for the utilization level on hosts might impose non necessary pressure on hosts

and keep more hosts than needed in their active state. Such threshold levels can

also show deficiency when dealing with a volatile resource requests.

This research, however, keeps an overall view of the system state and VMs’

resource requests throughout the execution. The reason is to cater for ever chang-

ing state of system resources and resource requests from VMs. It is emphasized

in private Clouds where tasks come from a broad range of business units with

relatively different resource request profiles in their life-time.

Caglar and Altilar [12] proposed a VM mapping heuristic that predicts the

number of required hosts to avoid hosts being over-loaded. They avoid VM mi-

gration because of the VM migration cost, in terms of energy and time required for

copying VMs. They evaluated their heuristic on CloudSim [13, 14]. They com-

pared the results of the proposed heuristic with VM mapping and VM migration

policy proposed by Beloglazov and Buyya [8, 9]. The results of the comparison

indicated that the proposed VM mapping heuristic [12] keeps less hosts in their

active state and imposes no migration. The results of energy consumption by the

heuristic that includes migration [8, 9] was significantly lower. The authors ar-

gued that their heuristic imposed less host switches and therefore less switching

energy overhead. Nevertheless, energy consumption (switching energy overhead

included) is not reported or compared with heuristics from VM migration.

Despite available VM mapping heuristics aiming at minimizing energy con-

sumption in the Cloud, they have limitations achieving this aim. First they com-

monly rely on historical information on resource requests or an estimation of
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them. Second, they do not include a feedback loop or a learning capability. A

method with such an ability can potentially help the VM mapping heuristics to

reflect on the latest outcome.

Most machine learning methodologies learn from data and aim to predict an

outcome, e.g. Regression and Logistic Regression, Decision Tree, Random For-

est. Among these methodologies, some have a relatively high cost of learning

where the model should be repeatedly run for every change in the data, so that

the model is representative of the newly added data. The cost of such re-runs are

different for different methods. Bayesian Inference (BI) is based on the likelihood

of an event according to other contributing factors. Therefore, it is relatively fast

in reflecting on newly added data because it only requires the re-calculation of

some probabilities. It suggests BI is a suitable candidate in response to problems

with high volatility level.

With the goal of guaranteed execution of tasks in case of hardware failure,

Wang et al. [107] fairly distributed the load in the system using the concept of trust

and Bayesian cognitive. The degree of trust in each host is described as the node’s

(host’s) performance and the feedback about its performance in cooperation with

other hosts. The proposed framework is an extended version of a framework pre-

sented by Harrison [36] in 1975. The data from a study by Calheiros et al. [14]

are used for evaluation and shows their approach can reduce tasks’ failure ratio.

In one of our publications [86], Bayesian Inference is used to learn from the

outcome of six VM mapping policies where the proposed adaptive VM mapping

mechanism switches between available VM mapping policies based on the current

state of the system and previous results of deploying a given VM mapping policy.

The proposed adaptive VM mapping mechanism is evaluated against individual

VM mapping policies. The results indicate the adaptive VM mapping mechanism

outperformed all policies in terms of energy consumption as well as execution
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time.

Although the optimization of energy consumption is the paramount reason for

inventing energy-efficient VMs to hosts mapping policies, the unpredictability of

resource requests and changes in available resources in the system might make the

initial mapping of VMs to hosts less efficient throughout the execution. One of

the major issues can be an imbalance problem. A solution to solving imbalance

problem is to migrate VMs.

2.4 Energy-aware Migration

Since the advent of Cloud technologies researchers have devised VM mapping

algorithms to achieve energy efficiency. However, VM mapping policies can lead

to imbalance in the system as the resource requirements from VMs and available

resources on hosts change throughout execution. The imbalance problem occurs

when there are hosts that are either over-loaded or under-loaded. VM migration

is a potential solution for easing an imbalance problem. Few research efforts have

been directed at the problem of migrating VMs when they are running on imbal-

anced hosts, either over-loaded or under-loaded. Nevertheless, an energy-efficient

VM migration process can reduce energy consumption and has the potential to

improve execution time by solving the imbalance problem.

VM migration is used by Khanna et al. [48] with the incentive to prevent

performance degradation. They aim at fitting as many VMs on a host as possible

without sacrificing the performance.

A Honey Bee Behavior-Load Balancing (HBB-LB) strategy is devised by Kr-

ishna [60] where VMs are mapped and migrated between hosts when needed.

The initial VM mapping strategies covered in the study include experiments with

FIFO and WRR (Weighted Round Robin). Then, the honey bee foraging strategy
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divides the processors into three groups: overloaded, underloaded and balanced.

This strategy migrates VMs from overloaded hosts to a host in the underloaded

group. The previously overloaded host will be added to the balanced group, if,

after the migration the host is no longer overloaded. Throughout the migration

process, overloaded hosts and VMs running on them are not prioritized in order to

minimize energy consumption. The host from the underloaded group is selected

randomly without considering energy consumption.

Bobroff, Kochut and Beaty [10] perform VM migration to reduce the num-

ber of active hosts in a way that SLA threshold is not violated. They evaluated

their heuristic against static VM mapping (absence of VM migration) and reported

up to 50% reduction in resource utilization (consequently energy consumption).

However, the proposed heuristic sets static rules for VM migration and relies on

forecasting resource requests which might not be available or accurate.

In a recent paper by Mazumdar and Pranzo [68] VMs are migrated to switch

hosts off when possible in order to reduce energy consumption. They compared

their approach with Best Fit heuristics and reported 6 to 15 percent improvement.

Kusic et al. [63] minimized energy consumption in virtualized environment

using Limited Lookahead Control (LLC) [3]. The proposed optimization heuristic

aimed at maximizing the Cloud provider’s benefit by reducing energy consump-

tion and avoiding SLA violation. They estimated future resource requests using

the Kalman filter in order to migrate virtualized resources if needed and switch

hosts off to achieve lower energy consumption. Nevertheless, the complexity of

the estimations and optimization processes imposes a potential increase in the ex-

ecution time.

Gaggero and Caviglione [26] proposed a VM migration heuristic to minimize

energy consumption while maintaining SLA/QoS. They evaluated their heuristic

on a small data center - with 50 hosts - and a maximum of 5 VMs per host. The
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evaluation was conducted based on different scenarios and reported that frequent

migrations leads to minimization of total energy consumption as more hosts are

switched off. They also reported higher SLA violation because of migrations. The

trade-off between energy consumption and SLA violation was outlined.

To choose an optimal VM to host migration candidate, Sallam and Li [83] pro-

posed a multi-objective Bayesian game approach. The objectives of load volume,

energy consumption, thermal state, resource wastage and migration cost are being

minimized. They compared their multi-objective heuristic against heuristics with

one of the five objectives at a time. However, their approach aims at minimizing

the load volume, and this might cause the system to keep more hosts in their ac-

tive state than are needed. Energy consumption and thermal state are related. The

impact of selecting both energy consumption and thermal state as two of the five

objectives makes the optimization algorithm skewed.

Among approaches that tackle the imbalance problem by migrating VMs, Mi

et al. [70] applied Genetic Algorithm (GA) to adjust the data center to the dy-

namically changing demands with the goal of minimizing energy consumption.

Resource requirement prediction is used that its affects the outcome of such ap-

proaches.

Tang et al. [95] used a peer-to-peer infrastructure to poll many hosts at the

same time for available resources by estimating the tasks’ resource requirements

according to the previous resource utilization of the same tasks. However, pre-

vious utilization levels might not represent the actual future requests. Moreover,

their approach is focused on enterprise data centers where, the managing software

continuously checks all loaded hosts, switching off redundant VMs and hosts, or

shifting VMs if necessary.

Kusic et al. [62] proposed SLA insuring algorithms for small server clusters -

termed as Gold and Silver - while minimizing energy consumption. The algorithm
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projected the expected demand/request to prevent frequent switches and dynami-

cally decides upon the number of VMs and hosts. The accuracy of the expected

demand/request plays a role in the effectiveness of the algorithm.

Beloglazov and Buyya developed three energy-aware VM migration policies

and reported Minimum Migration Time (MMT) as the most energy optimal mi-

gration policy [9]. MMT selects a VM that is the fastest to be transferred through

the network. The transfer/migration time is calculated based on the VM’s mem-

ory size of the VM and the available bandwidth between hosts. Where a host with

low bandwidth is imbalanced, VMs from that host will be the last to be chosen by

MMT.

We developed VM selection policies [87] called MedianMT and MaxUtil. Me-

dianMT and MaxUtil are evaluated against MMT. Both MedianMT and MaxUtil

outperformed MMT in terms of energy consumption as well as mean execution

time. MaxUtil manifested the best outcome among the three in terms of both

energy consumption and mean execution time.

However, in the Cloud, with its volatile resource status, an adaptive mecha-

nism can benefit from selecting the best VM from the imbalanced host to migrate,

given the current state of resources and VMs in order to reduce energy consump-

tion. It can be achieved by developing a Bayesian Inference that relates the current

state of the system with the outcome of a VM migration in terms of energy con-

sumption. Such adaptive mechanism will learn and respond to changes in the

resource state.

So we invented an adaptive VM migration mechanism [89], and an adaptive

resource hyper-visioning mechanism, inclusive of both VM mapping and VM mi-

gration, and evaluated them against state-of-the-art heuristics. The result showed

substantial reduction in energy consumption as well as a shorter mean execution

time.
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2.5 Discussion

Existing VM mapping and VM migration heuristics either rely on information

about VMs’ resource requirements or an approximation of future resource re-

quirements. They commonly recommend a definite set of rules to apply in order

to minimize energy consumption. However, future resource requests are not al-

ways known to the hyper-visor. Moreover, setting rules without the flexibility of

learning might result in failure to respond to changes in either the system state or

VMs’ resource requirements. Adaptive VM mapping and VM migration mecha-

nisms are needed to seek energy reductions without relying on prior information

about VMs’ resource requirements. An adaptive mechanism has the learning abil-

ity to respond to changes as they occur.

One approach for developing adaptive VM mapping and VM migration mech-

anisms is the application of probabilistic methods. Probabilistic methods have

their foundation in their decision on the expected probability of an event according

to the recorded values, i.e. a specific input is related to an output. The adaptability

emerges from the ability to update the probabilities based on the observed values.

One of the widely used probabilistic approaches is Bayesian Inference (BI). BI

has shown strength when dealing with problems of high volatility levels. Problems

cover a range of research areas including but not limited to embedded software

optimization [4], failure management [34, 35] and mobile Cloud computing [108].

BI has its potential in statistically estimating the likelihood of reduction in

energy consumption given the state of the system. BI updates its probabilities

according to the results. Such methodology can enable the resource hyper-visor

to learn and adapt to the changes as they emerge. It provides the Cloud hyper-visor

with the versatility and adaptivity it requires.

A VM mapping policy equipped with Bayesian learning technique is expected
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to provide a better system outcome for Cloud computing systems and private

Cloud in particular, because of its ability to efficiently utilize its limited resources.

To investigate the impact and the significance of an adaptive VM mapping mech-

anism, we developed a dynamic energy-efficient VM mapping mechanism using

BI [86]. The mechanism switches between available VM mapping policies, when-

ever the proposed BI indicates a likely reduction of energy consumption by a pol-

icy. The outcome indicated significant reduction of energy consumption. It also

resulted in shortened execution time.

We, then, proposed two VM selection policies for migration [87] called Medi-

anMigration Time (MedianMT) and Maximum Utilization (MaxUtil). Both poli-

cies outperformed, what was at the time, the best VM selection policies reported

by Beloglazov and Buyya [9], MMT when combined with multiple VM mapping

policies included in CloudSim simulation package [13, 14]. Later, we designed

an adaptive VM selection for migration mechanism [89], based on BI, that further

reduced total energy consumption and shortened mean execution time.

Despite the proposal of adaptive VM mapping mechanism and adaptive VM

mapping mechanism using BI, these mechanisms used records of different levels

in the corresponding BI. That means, two sets of information log and Bayesian

probability calculations, one for VM mapping and another for VM migration.

In addition, VM mapping decisions are unaware of their outcome in terms of

the imposed VM migrations. And VM migration decisions are only based on

selecting the best VM for migration. The required dual log and lack of relation

between VM mapping and VM migration decisions motivated this research to

design an energy-efficient dynamic VM hyper-visioning mechanism. By applying

the proposed mechanism, the total energy consumption is significantly reduced,

while the mean execution time is substantially shortened.
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2.6 Summary

In this chapter, Cloud resource hyper-visioning and its objectives are explained.

The problems caused by high energy consumption level are analyzed. The im-

portance of energy consumption and its relation with resource hyper-visioning

is then described. Studies related to resource hyper-visioning, either VM map-

ping or VM migration, are reviewed. Furthermore, the literature review provided

the background and necessity of adaptive resource hyper-visioning mechanisms.

A survey of the energy-efficient resource hyper-visioning in Cloud computing is

provided.
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Chapter 3

ADAPTIVE ENERGY-EFFICIENT

SWITCHING BETWEEN VM

MAPPING POLICIES IN PRIVATE

CLOUDS

RESOURCE hyper-visioning includes mapping VMs to hosts. The first step in

answering research question 1) How do VM mapping policies perform, in

terms of energy consumption, when workload properties are arbitrarily altered? -

is to study the changes in the results of different VM mapping policies in terms of

energy consumption, given arbitrary alterations in workload properties. Because

reducing energy consumption should not entail an increase in execution time, total

execution time should also be reported.

Based on the results of VM mapping policies, and to answer the research ques-

tion 2) How can energy-efficient resource hyper-visor in private Clouds adaptively

switch between VM mapping policies based on macro level observation records?,

a novel adaptive mechanism is proposed to switch between VM mapping poli-

47
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cies at run-time. The aim is to reduce energy consumption by learning from the

observed outcome of each policy using Bayesian Inference (BI). The outcome is

measured in terms of total energy consumption, a macro level observation record.

Based on the observation records an adaptive mechanism is invented that switches

between available mapping policies according to system state and workload prop-

erties.

The proposed mechanism is evaluated against individual VM mapping policies

and resulted in a total energy consumption level close to the best performing VM

mapping policy. It also had similar execution time to the best performing VM

mapping policy. The results are published as a paper [86].

This chapter is organized as follows. Section 3.1 reports the simulations that

motivated switching between VM mapping policies. Section 3.2 details the BI

introduced, comprising: Bayesian Network, its components and algorithms for

calculating Bayesian probabilities. Our Adaptive Switching Mechanism (ASM)

is then evaluated in Section 3.3. It is followed by a discussion in Section 3.4 and

a summary of this chapter in Section 3.5.
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3.1 Motivational Simulations

The propagation of Cloud data centers has radically changed the IT industry by

providing services for businesses and individuals per demand. Private Clouds

in particular aim to serve the internal units within a business. Private Clouds, in

comparison to public Clouds, have less resources available. The way these limited

resources are utilized affects total energy consumed for serving business units. It

also affects the execution time. Resource utilization is determined by resource

hyper-visor. Resource hyper-visioning includes mapping VMs to hosts.

Among available VM mapping policies, six basic VM mapping policies which

do not rely on information about future resource requests for mapping, are se-

lected. The results of deploying these VM mapping policies are to be simulated,

in terms of energy consumption, when task arrival rate and resource requests are

arbitrarily altered. The incentive for these alterations is to identify the strength of

each VM mapping policy given the state of system and workload properties.

3.1.1 Six Basic VM Mapping Policies

Among existing VM mapping policies, six basic policies are selected. The reason

for this selection was that these policies do not rely on information about future

resource requests. Policies are as follows.

• Maximum Utilization (MU) [64]: It maps VMs based on the utilization

level of available hosts. It tries to maximize the utilization level (processor)

on a host before switching another host on. In other words, it focuses on

consolidating as many tasks onto fewer hosts, in order to reduce the number

of active hosts.

• Intensity Based (IB): It follows the elementary idea of mapping the VM of
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an intensive task (processing-intensive, memory-intensive, network-intensive)

to a host with the most available capacity on that resource. A non-intensive

task is randomly mapped.

• Greedy Deadline (GD): It aims to improve execution time by mapping VMs

on hosts with the least (processing) utilization level. It does not turn on a

new host unless the active hosts cannot accommodate any new VMs.

• Intensity-aware Greedy Deadline (IGD): IGD is similar to GD with the dif-

ference being how it deals with intensive tasks. If the host with minimum

utilization on resource A (intensity is defined on the following resources:

CPU and memory) is running an A-intensive task, the host with the second

minimum utilization on resource A will be selected, unless all hosts have

the same number of A-intensive tasks.

• Equal Load (EL) [65]: It is a VM mapping strategy that tries to balance the

load in the system. EL keeps the number of VMs on each host as equal as

possible.

• Intensity-aware Equal Load (IEL): IEL behaves like EL but takes into ac-

count the intensity of the tasks as described in IGD. If the host selected by

EL is running an A-intensive task, another host will be chosen, unless all

hosts are running the same number of A-intensive tasks.

3.1.2 Simulation Attributes

To observe the results of deploying VM mapping policies when workload prop-

erties are altered, resource requests in 100 workload sets are generated using dif-

ferent statistical random number generators. The mean arrival rate is also altered

within a range.



3.1. MOTIVATIONAL SIMULATIONS 51

3.1.2.1 Workload Property, Resource Requirements

To cover a diverse set of workloads, resource requirements are generated ran-

domly following a diverse set of statistical distributions (with the same mean

value). Each workload consists of 1000 tasks. There is the same number of tasks

from CPU-intensive, memory-intensive, network-intensive and non-intensive tasks

which translates to 250 each with no specific order of arrival.

To generate tasks that are intensive on a resource, the mean value for the ran-

dom number generator is set higher which increases the chance of generating a

larger number. To obtain a diverse set of random number generators the following

discrete distributions are used for generating workload sets: Uniform, Bionomial

and Zipf. These distributions are to represent the statistically different workloads.

Each distribution is used to generate 100 workload sets which makes the total of

300 workload sets, each with 1000 tasks.

3.1.2.2 Workload Property, Arrival Rate

The tasks’ arrival intervals are generated according to the Poisson distribution.

Random numbers generated by Poisson distribution are unrelated to their preced-

ing or succeeding number. It makes Poisson distribution a suitable option for

generating task arrival rates. The Poisson distribution’s mean value varies from

one to seven units of time to cover the circumstances where the tasks arrive rel-

atively fast (1) to slow (7). The alterations are to represent the changes in the

system’s behavior when it is under more pressure or relaxed. For each case the

simulation is repeated 100 times.

3.1.2.3 Simulation Settings

A system with 20 homogeneous hosts is simulated. The assumption of homoge-

neous hosts was made to eliminate the impact of differences in host capacities on
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the outcome of VM mapping policies. The initial available bandwidth to each host

is set to 1000 Hertz.

3.1.3 Analysis of VM Mapping Policies’ Results

VM mapping policies in Section 3.1.1 are deployed when mapping VMs with

initial resource requirements of workloads provided in CloudSim [14, 13] which

are from PlanetLab [76].

The results of deploying these VM mapping policies are illustrated in Fig-

ures 3.1 and 3.2 in terms of total energy consumption (Watt) and total execution

time respectively, when task mean arrival rates range from 1 to 7 time units.

As in Figure 3.1a EL and IEL mapping policies demonstrated a high level

of energy consumption compared to other policies. IB, GD, on the other hand,

resulted in a relatively - to other VM mapping policies - low energy consumption

level. As the mean arrival interval increases as shown in Figures 3.1b to 3.1g

the outcome of VM mapping policies changes considerably. In Figure 3.1g VM

mapping policies of low energy consumption level, including IB, GD and MU,

have higher energy consumption than the worst performing VM mapping policies,

EL and IEL, when the mean arrival rate is smaller/shorter.
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Figure 3.1: Total energy consumption of the selected VM mapping policies run-

ning PlanetLab workloads for ten days, when mean arrival intervals range from 1

to 7 seconds

In terms of total execution time of VM mapping policies, when the mean ar-

rival rate ranges from 1 to 7, the same pattern of total energy consumption is

observed. Based on Figures 3.2a to 3.2g, EL and IEL that had the longest exe-

cution time for most workloads, had the shortest execution time when the mean

arrival rate was larger/longer. Moreover, VM mapping policies with relatively

short execution time (when the mean arrival interval is short) have a relatively

longer execution time when the mean arrival interval is larger/longer.

When the mean arrival interval is relatively short, the system is under pres-

sure to map VMs that arrive in relatively short intervals (for instance 1 time unit,

every time unit). In such circumstances, IB had the lowest energy consumption

and shortest execution time compared to other VM mapping policies. IB is then

followed by IGD, GD and MU in both energy consumption and execution time.
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Figure 3.2: Total execution time of the selected VM mapping policies running

PlanetLab workloads for ten days, when mean arrival intervals range from 1 to 7

seconds

Although execution times for IEL and EL were close to other policies, their en-

ergy consumption was significantly high. Overall, in a pressurized system, IB

represented itself as a desirable option compared to other VM mapping policies in

terms of total energy consumption and total execution time. Albeit, EL and IEL

were the worst in both energy consumption and execution time.

As the task arrival rate increases, the system receives in a relatively slow speed

(for instance every 7 time units), EL and IEL showed substantial improvements in

terms of total energy consumption and total execution time. The best performing

VM mapping policies in a pressurized system, however, represented a high level

of total energy consumption and long total execution time, compared to other VM

mapping policies.
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3.1.4 Problem Analysis

The results suggested that there might not be a single optimal VM mapping policy

that results in an optimal outcome in all circumstances. The alteration on task

arrival rate made the system under pressure or relaxed. This changed the outcome

of each VM mapping policy. The state of the system, i.e. average utilization

level, is another indication of the system being under pressure or relaxed. So

the pressure/relaxed state of the system affects the outcome of each VM mapping

policy.

To reduce total energy consumption in the system, a VM mapping mechanism

can be deployed that switches between available VM mapping policies by choos-

ing a policy that is more likely to reduce total energy consumption given the task

arrival rate and the state of the system.

3.2 Adaptive Mechanism for Switching Between VM

Mapping Policies

The sub-optimality of VM mapping policies brought up the need for an adaptive

VM mapping mechanism that switches between available VM mapping policies

according to the information available. Such information includes the mean arrival

rate of VMs and the system’s current state of resources.

The switching mechanism, between VM mapping policies, can be adaptive.

So that the switching decisions correspond to the workload property (arrival rate),

current resource state and observed energy consumption records of each VM map-

ping policy.

Such an adaptive mechanism needs to have a feedback loop to enable learn-

ing from the results of its decisions. Therefore, it is given the ability to learn
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and respond to potential changes in the workload and the system. One of the

approaches that can be applied for adaptively switching between VM mapping

policies is Bayesian Inference (BI).

3.2.1 Notations

Given H = {h1,h2, · · · ,hn} being the list of hosts in the system, each host, hi,

has the following: a list of VMs running on hi as V Mi and HUi shows the host’s

CPU utilization. V Mi = {vm1,vm2, · · · ,vmm} is the set of VMs on hi. Every VM

mapping decision, mapping vmp to hq, adds vmp to V Mq.

3.2.2 Constraints

Let C = {cmaxV Ms} denote the constraint set. Based on the virtualization software

used, the number of VMs that can be assigned to a host is limited as this constraint

is termed as cmaxV Ms.

3.2.3 Proposed Bayesian Inference

Bayesian inference is based on Bayesian Theorem. Bayesian Theorem and its in-

ference can be graphically presented in a Bayesian Network. First the Bayesian

theorem is described. Then the graphical model of our proposed BI for switching

between VM policies, its Bayesian Network (BN), is detailed. Then, its compo-

nents are explained. Later, Bayesian probabilities are calculated according to the

training instances, macro level observation records of total energy consumption

by VM mapping policies.
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3.2.3.1 Bayesian Theorem

Bayesian theorem is a restatement of the conditional probability formula [81].

Bayesian theorem provides a way of updating the probabilities of unobserved out-

comes, given that other conditions are met. Nevertheless, the joint probability of

conditions must be zero [58].

In Bayesian theorem, there exists the prior probability of the outcome that will

be updated (posterior probabilities will be calculated) given the occurrence of the

conditions.

The probability of A conditional to B is called posterior probability and is

calculated based on Bayesian theorem as equation 3.1.

p(A|B) = p(B|A).p(A)
p(B)

(3.1)

where the probability of A given B, p(A|B), is based on prior probabilities of A,

p(A), and B, p(B), and the likelihood of B given A, p(B|A).

To graphically illustrate Bayesian theorem, Bayesian Networks (BNs) are used.

3.2.3.2 Proposed Bayesian Network

A Bayesian Network (BN) represents the conditions and the outcome, and illus-

trates the relationship between the two. For adaptively switching between avail-

able VM mapping policies, BN in Figure 3.3 is proposed.

3.2.3.3 Bayesian Network Components

In Figure 3.3 the proposed Bayesian Network has four nodes, three of which are

inputs, AR, CU and policy, and one output, EC. First the Bayesian Network hy-

pothesis should be tested where there should not be dependencies between the

contributing factors (AR, CU and Policy). It can be explained that the arrival
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AR CU Policy

EC

Figure 3.3: Proposed Bayesian Network for switching between mapping policies

rate is one of the workload properties and is not, in any way dependent on either

current utilization or the VM mapping policy deployed. The current utilization

level is also independent from the arrival rate and the deployed VM mapping pol-

icy. And, policy is independent of the other factors. That is, the BN’s hypothesis

holds for the context of the proposed Bayesian network.

All four nodes in the proposed BN are to be explained and their value ranges

specified.

• Input Nodes:

X Arrival Rate (AR): AR is the mean arrival rate so far into the execution.

Its values are set according to the earlier set of simulations where AR

is categorized into five ranges. AR1 is when mean AR is 2 or less units

of time. AR2 is observing mean AR of 3. AR3 and AR4 show the AR

of 4 and 5, respectively. AR5 is when AR is 6 or more units of time.

X Current Utilization (CU): Current Utilization level, CU is the average

HU level of all hosts in H. In other words, CU =

n
∑

i=1
HUi

n
. CU level is

divided into three ranges as: CU1, CU2 and CU3. CU1 means that the

average current utilization level is less than 33% of the full capacity

of hosts. CU2 is when the average current utilization level is between
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34% and 66%. CU3 is when the average current utilization level is

67% and above.

X Policy: Policy shows the VM mapping policy deployed. According to

our earlier simulations, Pol1,Pol2,Pol3,Pol4,Pol5,Pol6 represent MU,

IB, GD, IGD, EL and IEL, respectively.

• Output Node:

X Energy Consumption (EC): The values observed in our earlier simula-

tions are divided into three sections and labeled as EC1, EC2 and EC3

to denote low, medium and high energy consumption levels, respec-

tively. The division is based on values only and does not guarantee the

same number of instances in each section.

Directed arcs in the proposed BN, Figure 3.3, represent the likelihood of ob-

serving a certain level of energy consumption given the arrival rate mean value,

AR, and current average utilization level, CU, when a specific VM mapping policy

is deployed.

Bayesian probabilities, prior probabilities and likelihoods, should be calcu-

lated to be used in equation 3.1 to calculate posterior probabilities. Prior probabil-

ities for each arrival rate, utilization level and VM mapping policies are illustrated

in Figure 3.4.

The likelihood of observing certain levels of energy consumption given each

possible combination of arrival rate, utilization level and VM mapping policy is

shown in Figure 3.5.

Each component (node) in the proposed Bayesian network should be explained.

Their value ranges are to be specified.
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Figure 3.4: Bayesian prior probabilities
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Figure 3.5: Likelihood of observing a certain level of energy consumption - low,

medium or high - given the observed arrival rate, average CPU utilization and

deployed VM mapping policy from the training instances
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3.2.3.4 Calculating Probabilities

In Figure 3.4a, p(ARi) is prior probability for ARi. Accordingly, p(CU j) in Fig-

ure 3.4b and p(Polk) in Figure 3.4c are prior probabilities for observing average

utilization levels of CU j and deployment of polk. Prior probabilities are calculated

based on the training set, comprising training instances. Prior probability are the

number of instances from the presumed element. For instance, prior probability

for AR1 is the number of training instances with their arrival rate of 2 or less, di-

vided by the total number of instances. If in a training set of 500 instances there

are 126 instances where the mean arrival rate was 2 or less, the prior probability

for AR1, p(AR1) will be
126
500

= 0.252.

According to the Bayesian theorem in Section 3.2.3.1, probability of a certain

energy consumption level, ECp, conditional to ARi, CU j and Polk will be calcu-

lated according to equation 3.2.

p(ECp|ARi,CU j,Polk) =
(p(ARi,CU j,Polk|ECp)).(p(ECp))

p(ARi,CU j,Polk)
(3.2)

p(ARi,CU j,Polk) and p(ECp) are prior probabilities. p(ECp) is the number

of training instances with an energy consumption level within ECp range divided

by the total number of training instances. To calculate prior probability for each

ARi,CU j,Polk combination in Figure 3.4, p(ARi,CU j,Polk), algorithm 3.1 can be

used.

Prior probabilities for each energy consumption level, EC1, EC2 and EC3, can

be calculated as the number of training instances with energy consumption level

of that range divided by total number of training instances.

Equation 3.2 also needs the likelihood of observing ARi,CU j,Polk combina-

tion when the result was an energy consumption level within ECp range, p((ARi,

CU j,Polk)|ECp). Algorithm 3.2 calculates p((ARi,CU j,Polk)|ECp).

After calculating prior probabilities for each possible combination of AR, CU
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Algorithm 3.1 Prior probability for (ARi,CU j,Polk) combination,

p(ARi,CU j,Polk)

1: for each instance do

2: if Arrival rate is within ARi range then

3: if Current utilization is within CU j range then

4: if Deployed policy is Polk then increase counter

5: p(ARi,CU j,Polk) =
counter

total number o f instances
6:

Algorithm 3.2 Calculating likelihoods, p(ARi,CU j,Polk|ECp)

1: for each instance do

2: if Arrival rate is within ARi range then

3: if Current utilization is within CU j range then

4: if Deployed policy is Polk then {

5: increase counteri jk

6: if Energy consumption level is within ECp range then

7: increase counteri jkp

8: }

9: p(ARi,CU j,Polk|ECp) =
counteri jkp

counteri jk
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and Pol; and the likelihood of each combination of these combinations leading to

certain energy consumption levels, posterior probabilities can be calculated based

on equation 3.2.

Bayesian inference is meant to seek energy efficiency. Therefore, the first de-

sirable EC option is EC = low. In other words, the probability of achieving EC =

low, the third column in the bottom in Figure 3.3, is the first point of decision.

Among possible combinations in the corresponding column, a combination of

ARi, CU j and Polp with the highest probability is the chosen option for selecting

a VM mapping policy.

3.3 Evaluation

Our proposed adaptive switching mechanism, between VM mapping policies, is

evaluated against individual VM mapping policies. In this section, experimental

settings, simulation constraints and the results are explained.

3.3.1 Experimental Settings

To evaluate our adaptive switching mechanism, resource requests of workloads

from PlanetLab [76] project are used. Selected days are the days included in

the CloudSim simulation package [14, 13] 1. We base our evaluation on these

days to facilitate the reproduction of the results. However, the workloads do not

belong to a private Cloud, and tasks do not have a deadline 2. Uniformly random

numbers are associated to tasks as deadlines. The intensity of tasks is determined

by processor to memory request ratios. if the processor to memory request is

1CloudSim could not be used for evaluating our switching mechanism as it does not support

the change in VM mapping policy at run time.
2GD and IGD mapping policies use tasks’ deadlines to decide the mapping of the correspond-

ing VM.
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above 10, it is labeled as processing-intensive and if the memory to processor

request is 10 or above it is memory-intense. Otherwise tasks are considered as

non-intensive.

There are 20 homogeneous hosts. This eliminates the effect of different host

capacities on the outcome. The initial available bandwidth to each host is set to

1000 Hertz. The experiments are conducted on an Intel Core i7 CPU machine,

running Windows 10.

Our adaptive policy switching mechanism starts with equal probabilities for all

combinations of arrival rate (AR), current utilization (CU) and policies (Pol) until

the first 100 training instances are collected. The simulation is run with 100, 300

and all training instances for Bayesian probabilities are calculated. Including all

instances made the calculation of mechanism a lengthy process and was not more

effective than smaller training sets. The results for 100 and 300 instances were

consistent. Thus, the results of simulation for updating Bayesian probabilities

with 300 latest instances are reported as a representative.

Energy consumption is calculated based on the latest energy model proposed

by Hsu [39] that models the energy consumed by a VM based on its utilization

level as equation 2.2.

3.3.2 Constraints

Our simulation puts constraints on the maximum number of VMs that can be

mapped to a host. If the set of constraints is C, cMaxV Ms ∈C is the constraint on

the maximum number of VMs on a host. In our simulations cMaxV Ms = 10.

3.3.3 Results

Our Adaptive Switching Mechanism (ASM) is compared with individual map-

ping policies in Figure 3.6 when normalized values for energy consumption and
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execution time are added and are box plotted.
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Figure 3.6: Average normalized energy consumption and execution time values

Figure 3.7 illustrates the results in terms of total energy consumption and ex-

ecution time separately and respectively.

According to Figure 3.7a and Figure 3.7b, ASM had results close to the best

performing VM mapping policies. Because the best VM mapping policies for the

given workload and arrival rate are unknown, ASM achieved a result, in terms of

both total energy consumption and total execution time, that is close to the best

performing VM mapping policies.

In order to statistically compare the results, first descriptive statistics of ob-

served total energy consumption and total execution times are presented in Ta-

bles 3.1 and 3.2.

According to Tables 3.1 and 3.2 ASM had results close to other VM mapping

policies. To compare the policies with ASM in greater depth, Wilcoxon Sign

Ranked Test is used that compares the paired values of ASM and a competing VM

mapping policy. It also shows the significance differences between the results of

VM mapping policies compared to ASM. Wilcoxon Ranked Test of the results
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Figure 3.7: Energy consumption and execution time by ASM compared to indi-

vidual VM mapping policies
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Mean St. Deviation Minimum Maximum

MU 1429312.80 102338.628 1277019 1577763

IB 793068.60 91531.454 734724 1041399

GD 715263.30 243964.272 600960 1398795

IGD 721486.80 187233.004 615459 1233519

EL 678611.10 148607.858 597390 1088202

IEL 701596.20 137015.943 615459 1069503

ASM 721486.80 187233.004 615459 1233519

Table 3.1: Statistical description of total energy consumption by VM mapping

policies and ASM

Mean St. Deviation Minimum Maximum

MU 45036915.50 12378588.52 32873471 73648825

IB 12826670.30 4696699.442 9914866 25726635

GD 11801678.50 18185274.35 5186810 63425053

IGD 10825896.80 11773617.94 5397144 43846947

EL 7947805.40 6818366.759 5122930 27174030

IEL 9023479.50 6570381.675 5397144 27035076

ASM 10825896.80 11773617.94 5397144 43846947

Table 3.2: Statistical description of total execution time by VM mapping policies

and ASM
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of paired comparisons are reported in Table 3.3 for total energy consumption and

total execution time.

Asympt. Sig. (2-tailed), total

energy consumption

Asympt. Sig. (2-tailed), total

execution time

MU - ASM .005 (< .05) .005 (< .05)

IB - ASM .074 (> .05) .074 (> .05)

GD - ASM .074 (> .05) .074 (> .05)

IGD - ASM 1.000 (> .05) 1.000 (> .05)

EL - ASM .005 (< .05) .005 (< .05)

IEL - ASM .109 (> .05) .109 (> .05)

Table 3.3: Results of the Wilcoxon Signed Ranks test for total energy consumption

(kW) and total execution time

An asymptotic significance value of less than .05 rejects the null hypothesis,

that the compared pairs are statistically similar. Therefore, the results of ASM

are statistically (based on paired value comparison of all workloads and mean

arrival intervals) not different from IB, GD, IGD and IEL in terms of total energy

consumption and total execution time. However, ASM is statistically different

from MU and EL because of the asymptotic significance value of less than .05.

The results of the statistical test show that ASM is significantly better statis-

tically than MU, but has no statistically different results than IB, GD, IGD and

IEL, and is worse than EL in terms of energy consumption and execution time.

It is important to note that ASM has closer results to the best performing policy,

EL. EL on average has only 5% lower energy consumption than ASM. And these

results are achieved in the absence of prior knowledge about the performance of

each VM mapping policy and its switching overhead. The switching overhead

makes it difficult for ASM to outperform all individual policies. However, the
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switching capability facilitates the application of such methodology when there is

not prior knowledge about the effectiveness of the existing policies.

To further understand the underlying reasons for the observed results, Fig-

ure 3.8 illustrates the number of host switches in our proposed VM mapping

mechanism and all individual VM mapping policies.
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Figure 3.8: Number of host shutdowns by ASM in comparison to all individual

VM mapping policies

Given that VMs are not moved/migrated between hosts after their mapping is

done, a host can only be switched off if it has finished the execution of all its VMs.

Based on the number of host shutdowns reported in Figure 3.8 it can be concluded

that MU performs the fewest host shutdowns, seemingly keeping a large number

of hosts in their active state. EL and GD on the other hand perform a relatively

high number of host shutdowns. Despite host start-ups (after a shutdown) adding

to the total energy consumption, EL is proved to make energy efficient decisions

so that compensates for the energy drawback of the host switches compared to

other policies. ASM exhibits a similar number of host shutdowns as GD but has

a lower energy consumption level than GD. In summary, the number of host shut-

downs (when no VM is moved/migrated between hosts) correlates neither directly
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with the deployed VM mapping policy’s energy consumption nor execution time.

3.4 Discussion

In the absence of knowledge about the best VM mapping policy for the given

state of the system and workload properties, our Adaptive Switching Mechanism

(ASM) had results close to the best performing VM mapping policies on ten work-

loads when mean arrival interval ranged from 1 to 7 time units.

ASM had statistically similar results to IB, GD, IGD and IEL in terms of both

total energy consumption and total execution time. ASM was statistically differ-

ent from MU and EL. On average, MU had close to 198% higher total energy

consumption and took 412% longer to execute the workloads than ASM. EL, on

average, had a slightly lower energy consumption (5%) and shorter (26%) execu-

tion time than ASM.

Based on Figure 3.6 that reported the accumulated normalized values of total

energy consumption and total execution time, the best performing VM mapping

policy, on average, was GD. And based on the statistical analysis performed, the

results of ASM is not statistically different from GD. Moreover, ASM represented

closeness to the best performing VM mapping policies in the absence of prior

knowledge about the mean arrival interval.

However, in some cases, ASM has slightly higher total energy consumption

and longer total execution time than some VM mapping policies. The reason can

be tracked back to the time observations are recorded. Bayesian inference used in

AMS records a macro level observation, total energy consumption, as its deciding

factor. It means our Bayesian probabilities are updated after finishing execution

of a workload and recording total energy consumption given the conditions, in

terms of arrival rate, average utilization and the deployed VM mapping policy. It
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delays the act of updating Bayesian probabilities, therefore seemingly extending

the effect of the observed outcome being reflected on in the short term decision

making phase.

A faster and more efficient way of updating our Bayesian probabilities can

further improve the result in terms of both total energy consumption and total

execution time. One way is to have run-time measures such as changes in the

average utilization level throughout the execution period (instead of at the end

of executing a workload). This can boost the ability of the system to respond to

changes in a faster pace. This approach is followed in the following chapters.
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3.5 Summary

In this chapter, a novel mechanism is presented that adaptively switches between

available VM mapping policies to reduce total energy consumption. It also short-

ened the execution time. In the absence of knowledge about the best VM mapping

policy, given the state of the system and workload properties, our proposed adap-

tive switching mechanism illustrated results close to the optimal VM mapping

policy.

Our proposed Bayesian inference records total energy consumption, macro

level observation records, and updates its probabilities accordingly. A faster up-

date of Bayesian probabilities based on observed changes in the system state at

run-time can further improve the adaptability as well as total energy consumption

and execution time.

This chapter detailed the invention of an adaptive mechanism that switches be-

tween available mapping policies to reduce energy consumption in private Clouds.
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Chapter 4

ENERGY-EFFICIENT VM

MIGRATION POLICIES IN PRIVATE

CLOUDS

MAPPING policies determine the way VMs (and their tasks) are mapped to

hosts. Based on the observed results of multiple VM mapping policies

in the previous chapter, it can be concluded that each VM mapping policy has its

strengths and weaknesses in a given state of the system and workload properties.

In the last chapter we proposed a dynamic switching mechanism that switches be-

tween VM mapping policies when they are likely to reduce energy consumption.

In the absence of prior knowledge about the outcome of available VM mapping

policy, in terms of energy consumption, our proposed mechanism demonstrated

results close to the policy with lowest energy consumption and shortest execution

time.

Despite the VM mapping mechanism having close results to the policy with

the lowest energy consumption and shortest execution time, the results were not

promising in terms of a guaranteed energy efficiency for every given system set-

81
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ting and workload properties. To further improve energy efficiency, VMs can be

migrated between hosts when there is a potential for energy reduction. By mi-

grating VMs, the utilization of the running hosts can be increased (given it does

not exceed their resource capacity). Performing VM migration can facilitate the

process of switching some hosts off to save energy.

VM migration policies should be developed to answer the research question

3) How is resource hyper-visioning extended to VM migration, if energy-efficient

mapping decisions caused imbalance, to reduce energy consumption in private

Clouds?. We propose VM migration policies where they utilize micro level ob-

servations e.g. VMs’ memory size and utilization level.

In this chapter, VM migration policies are proposed that select VMs to mi-

grate. Our proposed VM migration policies outperformed state-of-the-art poli-

cies. The proposed policies use micro level observation records, in contrast to our

VM mapping switching mechanism that used macro level observation records of

total energy consumption.

Proposed VM migration policies are evaluated against a state-of-the-art VM

migration policy and are proved to outperform it significantly in terms of energy

consumption and execution time. The results are reported in our paper [87].

This chapter is organized as follows. Section 4.1 reviews the VM migration

concept. Proposed VM migration policies are detailed in Section 4.2 and evalu-

ated in Section 4.3 including the results in terms of energy consumption and mean

execution time in comparison to state-of-the-art policies. It is then followed by a

discussion on the results in Section 4.4. A summary of the chapter is presented in

Section 4.5.



4.1. VM MIGRATION 83

4.1 VM Migration

VM migration is described as the process of moving or migrating a VM from

one host to another. When VM migration is performed without interupting the

execution in hosts (either source or destination hosts), except the short time for

transferring the VM status, it is called live migration [18]. In this study VM

migration refers to VM live migration.

VM migration is a solution to managing imbalance problems in the system.

An imbalance problem refers to the state of system where some hosts are either

over-loaded or under-loaded.

An over-loaded host is shown to be more likely to face hardware failure [25].

VM migration eases the imbalance problem by migrating VMs from over-loaded

hosts. VM migration, also, migrates VMs from an under-loaded host in order

to switch this host into idle mode. In a system with under-loaded hosts, VM

migration provides the system with the option of migrating the VMs from the

under-loaded host and switching them off to save energy.

4.1.1 Notations

Given H = {h1,h2, · · · ,hn} being the list of hosts in the system, V Mi represents

the VMs running on hi and V M j is the VMs running on h j. When migrating

vmp ∈V Mi from host hi to host h j, VM migration removes vmP from V Mi set and

adds it to V M j, if vmp is a migratable VM. A complete set of notations is provided

in Appendix A.

If MV M represents the set of migratable VMs from the hosts with imbalance

problem, VM migration can be defined as Mig = {mig|mig : MV M→ H}, where

Mig is a set of combinations of mvmq and h j where mvmq is removed from the set

of its host’s VMs and added to V M j.
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Because MV M and H are finite sets, Mig is also a finite set. A migration map

can be Mig = {(mvm1,h4),(mvm1,h7), ,(mvm2,h4), · · · ,(mvmr,hk)}. A host, e.g.

hk, might appear more than once, if it is a suitable destination host for multiple

mvms.

4.1.2 VM Migration Process

To ease the imbalance problem on a host, a VM from the imbalanced host can be

migrated to another host that does not have an imbalance problem. To migrate

a VM from a host to another, first a VM migration policy should be applied to

select one VM (migratable VM) from the list of migratable VMs running on the

hosts with imbalance problem. VM migration policy affects energy consumption

by the number of VM migrations that need to be performed to solve the imbalance

problem.

VM migration policy can utilize the information available to the system when

aiming to reduce total energy consumption. Available information includes mi-

cro level observation records of VMs’ current utilization level, memory size and

available bandwidth between source and potential destination host.

Basing VM migration decisions on these micro level observation records fa-

cilitates the move toward energy reduction while migrating VMs to ease the im-

balance problem in the system. The number of VM migrations performed to ease

imbalance affects total energy consumption and execution time because of each

VM migration’s energy and time drawbacks.

4.1.3 VM Migration Drawbacks

A VM migration entails time and energy drawbacks. These drawbacks relate

to the time it takes to copy VM memory and VM’s computation status from its

current (source) host to the destination host.
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VM migration time is calculated by Beloglazov and Buyya [9] as VM’s mem-

ory size divided by available bandwidth between source and destination hosts.

The energy drawback of a VM migration is due to the required action of copying

the VM memory from the source host to destination host through network links.

Moreover, frequent migration of VMs on an under-loaded hosts might entail fre-

quent host switches (on/off) that itself adds to total energy consumption because

of start-up energy peaks.

VM migration eases the imbalance problem in the system, however, each VM

migration adds to the execution time and energy consumption. As a result, ef-

ficient VM migration policies are required to solve imbalance problems where

the migration drawbacks of energy peaks and extended execution (due to copying

VMs through network) are compensated by a reduction in total energy reduction

and the shortening of the total execution time.

4.2 VM Migration Policies

In this section two VM migration policies are introduced. These policies aim at

migrating VMs to as fewer hosts as possible to potentially switch some hosts off

and reduce total energy consumption. These policies utilize micro level observa-

tions from the VMs and intend to minimize the number of VM migrations required

for solving the imbalance problem in the system.

Every VM migration entails potential energy and time drawbacks. To reduce

energy consumption, number of VM migrations can be minimized while easing

the imbalance problem. It is expected to improve total energy consumption and

execution time.

Two VM migration policies are proposed in order to reduce total energy con-

sumption and shorten the execution time. Section 4.2.1 explains the details of one
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of the proposed VM migration policies, namely MedianMT. MedianMT bases its

decisions on the memory size of VMs and available network bandwidth to hosts

to select a VM for migration.

In Section 4.2.2 we propose another VM migration policy, namely MaxUtil

that decides upon the selection of a VM for migration according to its current

utilization (processing) level.

4.2.1 Median of Migration Times (MedianMT)

Once an imbalance problem is detected, a set of migratable VMs, MV M, from

hosts with imbalance problems should be gathered. To estimate the time it will

take to migrate a given VM, migration time, MT , can be calculated for VMs in

MV M using equation 4.1, where Mi is the memory size of vmi and NBhost is the

network bandwidth available to the host.

MT =
Mi

NBhost
[9] (4.1)

After calculating the migration times for VMs in MV M, the list of VMs’ mi-

gration times is sorted. The middle element in the list has the median value for

migration time. MedianMT VM migration policy selects the VM with median

migration time to be moved/migrated.

4.2.2 Maximum Utilization (MaxUtil)

In order to ease the imbalance by performing fewer migrations, we propose a VM

migration policy that selects a VM with the highest utilization level to be migrated

(selected from MV M). MaxUtil works based on the assumption that migrating a

VM with a high current utilization level will ease the imbalance problem by fewer

migrations, therefore minimizing the need for more migrations.
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Minimization of the number of migrations is expected to lead to the reduction

in energy consumption and execution time by avoiding frequent VM migrations.

Avoiding frequent VM migrations minimizes the drawbacks associated with VM

migration in terms of energy consumption and execution time.

4.3 Evaluation

Our proposed VM migration policies, MedianMT and MaxUtil, are evaluated

against the best VM migration policy developed by Beloglazov and Buyya [9],

namely Minimum Migration Time (MMT) when combined with Threshold based

VM mapping policy, Thr [9].

4.3.1 Experimental Settings

We simulated a Cloud system with 800 heterogeneous hosts. Half of the hosts

are HP ProLiant ML110 G4 hosts, while the other half consists of HP ProLiant

ML110 G5 hosts. Each host is assumed to have 1 GB network bandwidth.

The characteristics of the VM types correspond to Amazon EC2 instance types

with the only exception that all the VMs are single-core, which is explained by

the fact that the workload data used for the simulations comes from single-core

VMs.

The proposed VM migration policies are compared with the best policy pro-

posed by Beloglazov and Buyya [9], Minimum Migration Time, MMT. Each VM

migration policy, MedianMT, MaxUtil and MMT, is combined with VM mapping

policy Thr. Thr is a threshold based VM mapping policy. Its threshold values are

set to 0.6, 0.7, 0.8, 0.9 or 1 as in the original paper [9].

All VM migration policies are deployed when the same VM mapping policy,

Thr [9], is deployed. It is to represent the effects of VM migration policies on
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energy consumption level, regardless of the VM mapping policy.

Workload sets are from PlanetLab [76] project. We use the workloads of the

selected ten days included in CloudSim [14, 13] to enable the reproduction of the

results.

4.3.2 Constraints

During the simulation there is a constraint on the hosts that should receive the

migrating VM.

If C represents the set of simulation constraints, C = {cExcludedHosts}. cExcludedHosts

denotes the set of hosts that should not receive the migrating VMs because they

are in an imbalanced state themselves. That is, a host that has imbalance problem

is not a suitable candidate to receive a migrating VM.

4.3.3 Results

The results of our proposed VM migration policies are compared with 1, no VM

migration is performed to highlight the impact of VM migration on total energy

consumption, 2, the best VM migration policies proposed by Beloglazov and

Buyya [9], Minimum Migration Time (MMT) in terms of their total energy con-

sumption, mean execution time as well as the number of host shutdowns and the

number of VM migrations.

Figure 4.1 illustrates total energy consumption by VM mapping policy Thr [9]

when no migration is performed and when competing VM migration policies

(MMT, MedianMT and MaxUtil) are applied after the VM mapping by Thr [9].

The result of VM mapping policy, in the absence of VM migration, is illustrated

to accentuate the impact of including VM migration in resource hyper-visioning.

The results are reported when the VM mapping policy threshold value ranges from

0.6 to 1 (portion of total host capacity).
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Figure 4.1: Total energy consumption (kW) for VM mapping policy Thr (in the

absence of VM migration) and when VM migration policies MMT, MedianMT

and MaxUtil are deployed

Figure 4.1 clearly demonstrates the significant improvement made by perform-

ing VM migration after VM mapping in terms of total energy consumption.

Mean execution time for Thr [9] VM mapping policy and when VM mapping

policies MMT [9], MedianMT and MaxUtil are deployed is reported in Figure 4.2.

According to Figure 4.2 performing VM migration led to significant shorten-

ing of mean execution time in the system.

However, the scale of the box plots in Figures 4.1 and 4.2 does not enable the

comparison between the VM migration policies.

The result of total energy consumption for VM migration policies MMT [9],

MedianMT and MaxUtil are reported in Figure 4.3 where Figure 4.3a represents

the results based on the threshold values and Figure 4.3b is the box plots of all

total energy consumption values by each VM migration policy.

According to Figure 4.3 MedianMT outperforms MMT [9] both on every

threshold value and as depicted in box plots. MaxUtil outperforms MMT while
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Figure 4.2: Mean execution time (seconds) for VM mapping policy Thr (in the

absence of VM migration) and when VM migration policies MMT, MedianMT

and MaxUtil are deployed

also outperforming MedianMT.

Mean execution time for VM migration policies MMT [9], MedianMT and

MaxUtil are illustrated in Figure 4.4 for each VM mapping threshold value rang-

ing from 0.6 to 1 and their box plots.
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(a) Energy consumption (kW) by MMT, MedianMT and MaxUtil when VM mapping

threshold value ranges from 0.6 to 1 (portion of hosts capacity).
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(b) Box plots of total energy consumption (kW) values by MMT, MedianMT and MaxUtil.

Figure 4.3: Energy consumption by Thr, MedianMT, MaxUtil and MMT
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(a) Mean execution time (seconds) by MMT, MedianMT and MaxUtil when VM mapping

threshold value ranges from 0.6 to 1 (portion of hosts capacity).
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(b) Box plots of mean execution time (seconds) values by MMT, MedianMT and MaxUtil.

Figure 4.4: Mean execution time by Thr, MedianMT, MaxUtil and MMT

Tables 4.1 and 4.2 present the statistical descriptions of total energy consump-

tion and mean execution time of VM migration policies, respectively.

According to Tables 4.1 and 4.2, MaxUtil has the least total energy consump-
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Mean St. Deviation Minimum Maximum

MMT 189.1982 37.99089 123.15 301.60

MedianMT 172.1864 38.39878 103.36 284.47

MaxUtil 157.5686 38.59788 90.28 269.25

Table 4.1: Statistical description of total energy consumption of VM migration

policies: MMT, MedianMT and MaxUtil

Mean St. Deviation Minimum Maximum

MMT .07256140 .027134476 .037800 .156340

MedianMT .05489600 .020151246 .026240 .142200

MaxUtil .04020220 .017879943 .015220 .109140

Table 4.2: Statistical description of mean execution time of VM migration poli-

cies: MMT, MedianMT and MaxUtil

tion, on average, and the shortest mean execution time, on average, compared to

MedianMT and MMT [9]. On average, MedianMT represented less total energy

consumption and shorter mean execution time than MMT [9]. However, Medi-

anMT’s total energy consumption and mean execution time values were higher

than MaxUtil’s.

To demonstrate the magnitude and significance of the differences between VM

migration policies should the null hypothesis be tested. Null hypothesis tests

whether the results of the VM migration policies are statistically different. To

verify this, the non-parametric Wilcoxon Signed Ranks Test is done. This test es-

sentially looks at pairs of data values from paired groups and counts the numbers

each group of values ranks higher/lower than the value of the other group.

Table 4.3 represents Wilcoxon Signed Ranks test for paired comparison of

total energy consumption (kW) and mean execution time (seconds) of competing
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VM migration policies.

Asympt. Sig. (2-tailed),

total energy consumption

Asympt. Sig. (2-tailed),

total execution time

MedianMT - MMT .000 (< .05) .000 (< .05)

MaxUtil - MMT .000 (< .05) .000 (< .05)

MaxUtil - MedianMT .000 (< .05) .000 (< .05)

Table 4.3: Results of the Wilcoxon Signed Ranks test for energy consumption

(kW) and mean execution time (seconds)

Table 4.3 represents the statistical significance of the difference between the

paired VM migration policies in its "Asympt. Sig." columns for total energy con-

sumption and mean execution time. A significance value of less than 0.05 means

the difference between the paired values is significant. That is, statistically, Medi-

anMT has significantly less energy consumption than MMT [9] and MaxUtil has

statistically significantly less energy consumption than MMT [9] and MedianMT.

According to Table 4.3 paired comparisons of mean execution time by com-

peting VM migration policies have are statistically different when the asymptotic

significance (Asympt. Sig.) is less than 0.05 which represents their statistical dif-

ference. MedianMT proved to have statistically significant shorter mean execution

time compared to MMT [9] while MaxUtil demonstrated statistically significant

shorter mean execution time than MMT [9] and MedianMT.

In order to further investigate the reasons for energy reduction and shorten-

ing of mean execution time, the number of host shutdowns and VM migrations

relevant results are provided in Figures 4.5 and 4.6.

According to Figures 4.5 and 4.6 MaxUtil has the fewest VM migrations and

host shutdowns. That is, MaxUtil resolves the imbalance problem by performing

few VM migrations and causing few host switches. It explains the MaxUtil’s
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Figure 4.5: Number of hosts shutdowns when MMT, MedianMT and MaxUtil

VM migration policies are deployed
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Figure 4.6: Number of VM migrations when MMT, MedianMT and MaxUtil VM

migration policies are deployed
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energy and time dominance given that each VM migration and host switch has

time and energy drawbacks.

4.4 Discussion

VM migration proved to be an effective approach to reduce total energy consump-

tion and to shorten mean execution time when it is deployed after VM mapping,

compared to a VM mapping policy without performing VM migrations.

On average, the given VM mapping policy resulted in 5.88, 6.36 and 7 times

more energy consumption than when it was enabled to perform VM migration

by MMT [9], MedianMT and MaxUtil in terms of total energy consumption, re-

spectively. In terms of mean execution time, on average, the VM mapping policy

(in the absence of VM migration) resulted in 72, 93 and 126 times longer mean

execution time compared with when it performed VM migrations by MMT [9],

MedianMT and MaxUtil policies, respectively.

It demonstrates the impact of VM migration on reducing total energy con-

sumption and shortening mean execution time on a given VM mapping heuristic,

despite VM migration’s energy and time drawbacks. Albeit, the VM migration

policy performing fewer VM migrations and having fewer host switches can re-

duce the energy and time overhead and outperform other policies.

The comparison between the VM migration policies demonstrated that MaxU-

til which selects VMs with the highest utilization level outperformed both MMT [9]

and MedianMT that select VMs based on their migration time. This can be at-

tributed to the fact that migrating VMs with high utilization levels is faster in

solving the imbalance problem therefore performing fewer VM migrations. More-

over, frequent host switches negatively contribute to total energy consumption and

execution time. Given that each VM migration and host switch entail energy and
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time drawbacks, fewer migrations and host switches can be the influencing factors

in the reduction of energy consumption and the shortening of mean execution time

by MaxUtil.

As a result, on average, MMT has more than 19% higher energy consumption

and more than 75% longer mean execution time than MaxUtil. On average, Medi-

anMT also has 10% and 35% more energy consumption and mean execution time

than MaxUtil, respectively.
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4.5 Summary

In this chapter, two VM migration policies are introduced, namely: MaxUtil and

MedianMT. They are evaluated when only the VM mapping is carried out (without

VM migration) and proved to lead to a substantial reduction in energy consump-

tion and shortening mean execution time. Our proposed VM migration policies

were also evaluated against a state-of-the-art VM migration policy. Both policies

statistically outperformed the state-of-the-art policy significantly in terms of both

total energy consumption and mean execution time.

The proposed VM migration policies optimized the VM migration process,

so that the imbalance problem is handled while energy consumption is reduced

and mean execution time is shortened. The proposed VM migration policies used

micro level observation records, i.e. VM memory size or utilization level, as a

deciding factor.

This chapter explained two VM migration policies to solve the imbalance

problem in private Clouds while energy consumption and execution time are im-

proved.



Chapter 5

ADAPTIVE ENERGY-EFFICIENT

MAPPING AND MIGRATION

MECHANISM FOR PRIVATE

CLOUDS

VIRTUAL machine migration policies proposed in the previous chapter demon-

strated the significant positive effects of VM migrations in reducing energy

consumption and shortening mean execution time. In the previous chapter, we

evaluated our proposed VM migration policies and proved that they outperform

a state-of-the-art VM migration policy. Our proposed policies used micro level

observation records, VM memory size or utilization level, as a contributing factor

to seek energy efficiency.

An energy-efficient resource hyper-visor, however, can benefit from adaptivly

responding to the changes in the system and resource requests based on micro

level observation records. This adaptivity can be deployed when VM migration is

being carried out. It enables the hyper-visor to respond to the potential changes in

99
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the system state and workload properties. In this chapter we answer two research

questions. Research question 4) How can the micro level observation records

be used to enhance the VM migration process to adaptively select a VM with the

highest likelihood of reducing energy consumption in private Clouds? is answered

by developing an adaptive VM migration mechanism. Our proposed mechanism

includes a Bayesian inference based on micro level observation records to dy-

namically calculate the likelihood of a VM migration decision reducing energy

consumption. The proposed migration mechanism is presented in a paper [89].

Resource hyper-visioning, however, includes both VM mapping and VM mi-

gration. In Chapter 3 the VM mapping is made adaptive using macro level obser-

vation records of total energy consumption by available VM mapping policies. In

Chapter 4 the impact of VM migration on reducing total energy consumption and

shortening mean execution time is presented. In order to have an adaptive energy-

efficient hyper-visioning mechanism and answer research question 5) How can

the micro level observation records about the state of hosts’ resources and VMs’

current requests can be used to adaptively map and migrate VMs, to reduce en-

ergy consumption?, VM mapping and VM migration should be modelled in a way

that they reflect on the results of each other.

This chapter details the invention of a novel adaptive VM migration mecha-

nism and an adaptive energy-efficient resource hyper-visioning mechanism, inclu-

sive of both VM mapping and VM migration, based on micro level observation

records. The proposed adaptive mechanisms establish a Bayesian based inference

to seek energy reduction while not sacrificing the execution time. The Bayesian

inference is based on micro level observation records, e.g. utilization levels, and

adaptively makes VM migration and resource hyper-visioning decisions with the

objective of reducing energy consumption while shortening execution time. The

proposed mechanisms are evaluated against state-of-the-art heuristics. The pro-
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posed adaptive VM migration mechanism is published as a paper [89]. The results

of the proposed adaptive resource hyper-visor, "Energy-efficient Adaptive Virtual

Machine Migration Mechanism for Private Clouds", is published in the journal of

Concurrency and Computation: Practice and Experience (CCPE) [90].

This chapter is organized as follows. Section 5.1 details our proposed adap-

tive migration mechanism. Then Section 5.2 describes our energy-efficient hyper-

visioning mechanism inclusive of both VM mapping and VM migration. The

evaluation of our proposed mechanisms against state-of-the-art heuristics is re-

ported in Section 5.3. It is then followed by a discussion in Section 5.4 and a

summary of this chapter in Section 5.5.
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5.1 Adaptive VM Migration Mechanism

In order to respond to the changes in the system adaptively, a learning mechanism

is needed to make the VM migration process adaptive. We propose a Bayesian in-

ference that learns which VMs should be migrated according to the current VMs’

utilization and the observed micro level records of similar migrations.

We first propose a Bayesian based heuristic that distinguishes between VMs

based on their utilization (processing) level. The conditional probabilities of mi-

grating a VM with a certain utilization level, a micro level observation, are main-

tained based on feedback drawn from the difference in hosts’ utilization level that

were involved in the migration (source and destination hosts).

The details of the proposed adaptive VM migration mechanism is explained

in the following sections.

5.1.1 Notations

For every host in the system, hi ∈ H, hi, and VMs running on them, set of VM as

V Mi running on hi, V Mi = {vm1,vm2, · · · ,vmm}. Each vmq ∈V Mi has processing

share (in terms of Million Instruction Per Second: MIPS) as PS. VM migration

is Mig = {(vmq,h j)|vmq ∈ V Mi,h j ∈ H, i 6= j}, where Mig is a set of possible

combinations of vmq taken from hi to host h j. Mig is a finite set because V Mi (set

of VMs on host hi), V M j (set of VMs on host h j) and H are finite sets.

5.1.2 Bayesian Network and the Components of the Proposed

VM Migration Mechanism

We propose a Bayesian based VM migration mechanism, termed as Bayesian Mi-

gration Heuristic (BMH). BMH has a Bayesian based inference and a Bayesian



5.1. ADAPTIVE VM MIGRATION MECHANISM 103

network to represent its inference. BMH estimates the impact of migrating a VM

of a certain type (based on VM’s utilization level) on the source and destina-

tion hosts’ utilization level. The proposed Bayesian inference and its Bayesian

network aim at reducing energy consumption and shortening execution time via

arbitration of hosts’ utilization levels.

The proposed Bayesian inference is illustrated by its network in Figure 5.1.

The BN’s hypothesis hold because there is only one contributing factor that guar-

antees no dependencies between factors. In Figure 5.3 the nodes labeled as R1,R2,R3

and R4 represent the possible VM utilization ranges. In the proposed Bayesian

network, the ranges are defined based on the quartiles of the observed utilization

values, R = {R1,R2,R3,R4}, where R1 is a range from minimum to first quartile,

R2 is from first quartile to second quartile, R3 is from second quartile to third

quartile and R4 is third quartile to maximum.

The probabilities related to each node - p(R1), p(R2), p(R3), p(R4) - are the

likelihoods that a VM from the corresponding utilization range, Ri, is migrated.

Directed arcs connecting the nodes demonstrate dependencies between them.

The strength of the dependency is quantified by conditional probabilities.

The probability of A conditional to B can be calculated as:

p(A|B) = p(B∩A)
p(B)

(5.1)

where p(B) is the prior probability for B, modelled as p(Ri), and p(B∩A) is

the joint probability of the two variables, p(∆+∩Ri).

We measure the impact of a VM migration decision on energy consumption

by the changes in the computational resources provided to VMs. Changes in the

computational resources is modeled as the node labeled ∆PU in Figure 5.1. We

termed the hosts in which the VM is being migrated from and to as the source

and destination hosts respectively. If, supposedly, the source host, hi, is already

running n VMs and the destination host, h j, is running m VMs, the total processing
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Ranges

Utilization ranges

R1 : R2 : R3 : R4 :

min < R≤ 1stQ 1stQ < R≤ 2ndQ 2ndQ < R≤ 3rdQ 3rdQ < R≤ max

p(R1) p(R2) p(R3) p(R4)

∆PU

Differences in the utilization level

∆ = (HUi +HU j)postMig− (HUi +HU j)preMig

Ranges ∆+ : ∆≥ 0 ∆− : ∆ < 0

R1 p(∆+|R1) p(∆−|R1)

R2 p(∆+|R2) p(∆−|R2)

R3 p(∆+|R3) p(∆−|R3)

R4 p(∆+|R4) p(∆−|R4)

Figure 5.1: Proposed Bayesian network for VM migration
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units (computational resources) provided to the VMs on source and destination

hosts is equal to equation 5.2.

PUPre =
n

∑
i=1

PSi +
m

∑
j=1

PS j (5.2)

where PUPre is the processing units provided to the VMs on source and destination

hosts before migration.

After the VM migration is carried out, the total processing units (computa-

tional resources) provided for VMs on hi and h j is equal to equation 5.3 when a

VM is migrated from hi to h j.

PUPost =
n−1

∑
i=1

PSi +
m+1

∑
j=1

PS j (5.3)

The difference between the processing units (computational resources) pro-

vided for VMs before and after migration is

∆PU = PUPost−PUPre (5.4)

which is measured in MIPS (Million Instructions Per Second). ∆PU values greater

than or equal to zero, indicate that the VM migration has solved the imbalance

problem and provided VMs with more or the same processing units. If ∆ repre-

sents the outcome for Bayesian, ∆PU greater than zero is termed ∆+. The con-

ditional probability p(∆+|Ri) estimates the probability of ∆+ given a VM with

utilization level in the Ri range is migrated. Migrating a VM from a certain uti-

lization range affects the frequency of the processor and VMs’ execution time that

contribute to total energy consumption.

5.1.3 Calculating Bayesian Probabilities

To calculate the Bayesian probabilities for our proposed Bayesian network, prior

probabilities of P(∆+) and P(Ri) should be calculated. P(∆+) is the number of
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instances of ∆+ per total number of migration instances. P(Ri) is the number

of migration instances where the migrated VM was from Ri divided by the total

number of instances.

P(Ri|∆+) is the likelihood of observing ∆+ if the selected VM was from range

Ri. P(Ri|∆+) is calculated according to algorithm 5.1.

Algorithm 5.1 Calculating likelihoods, P(Ri|∆+)

1: for each instance of VM migration do

2: if VM belongs to Ri then Increment counteri

3: if this instance has a positive ∆ value then increase counteri,∆+

4: P(Ri|∆+) =
counteri,∆+

counteri
5:

After calculating Bayesian probabilities, they are used for calculating the like-

lihood of observing ∆+ for each VM utilization range, R1 to R4 as the middle

column in the ∆ table in Figure 5.1 based on Bayesian theorem 5.1. These like-

lihoods (posterior probabilities) are then used to select VMs for migration. The

following section describes the flow of the VM selection for the migration process

based on the calculated Bayesian probabilities.

5.1.4 Flowchart of VM Migration Mechanism

The proposed VM selection for migration, Bayesian Migration Heuristic (BMH),

follows a flowchart as Figure 5.2.

Our VM selection for migration heuristic, BMH, starts by finding a host with

an imbalance problem. Note that this flowchart is a loop where it continually

looks for imbalance in the system.

BMH selects a VM for migration based on the Bayesian probabilities calcu-

lated, i.e. posterior probabilities. Based on the Bayesian probabilities, a VM of a
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Select a
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Figure 5.2: Bayesian based VM selection for migration, BMH, flowchart
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utilization range with the highest probability of improving the utilization level on

source and destination hosts is selected for migration. The outcome of this migra-

tion is then recorded in terms of VM’s utilization level (before migration) and the

difference in the hosts’ (source and destination hosts) utilization level. These are

then used to update Bayesian probabilities.

5.2 Adaptive Hyper-visioning Mechanism

In this section, our Bayesian based hyper-visioning mechanism, inclusive of both

VM mapping and VM migration, is explained. Our Energy-efficient Adaptive

Migration (EAM) mechanism extends our BMH, as detailed in Section 5.1, by

incorporating an adaptive VM mapping mechanism using micro level observation

records. This incorporation is not a joint effort of previously reported works but

rather the integration of VM mapping and VM migration mechanisms in one adap-

tive model. It means that one adaptive process is developed that serves both VM

mapping and VM migration. The reasons for the integration are the minimization

of information log volume and deduction of computational complexity.

If VM mapping and VM migration processes were set to be separated, two

information logs had to be kept, one for the learning phase of the mapping stage

and another for the learning phase of the VM migration stage. That means two

batches of computations have to be carried out, one for VM mapping and the other

for VM migration. By incorporating both in a single mechanism the information

log volume and computational complexity can be reduced.

Such incorporation is also expected to result in further optimization of energy

consumption as the VM mapping and VM migration sections are representative

of each other’s decisions and reflect on each other’s outcome as an overall hyper-

visor.
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Our (EAM) mechanism adaptively maps and migrates VMs to minimize en-

ergy consumption. The Bayesian Network and Bayesian Inference of EAM mech-

anism are detailed when they address both VM mapping and VM migration. EAM

mechanism’s flowchart and algorithm are then explained.

5.2.1 Proposed Hyper-visioning Bayesian Network

We use Bayesian inference to make adaptive energy-efficient hyper-visioning de-

cisions. To do so, we illustrate the relationship between the contributing factors

in our Bayesian inference in a Bayesian network. The proposed Bayesian net-

work presents the conditional dependencies between the factors and quantifies

the likelihood of the contributing factors affecting the output measure. We term

our Energy-efficient Adaptive hyper-visioning Mechanism as EAM. The Bayesian

network of EAM is presented in Figure 5.3 to explain the relation between the

contributing factors (host utilization and type of VM) and the output measure

(changes on the hosts’ utilizations).

Directed arcs between nodes in Figure 5.3 represent dependencies between the

contributing factors and the output measure. Conditional probabilities, shown in

the table on the bottom, is a quantification of the level of dependencies associated

with each combination of the contributing factors’ values.

The notion behind choosing VM type and current host utilization as contribut-

ing factors lies in the facts that, one, VM type determines the maximum resource

requests and, two, current host utilization indicates the remaining resource capac-

ity on the host. The difference in utilization in the system after a resource hyper-

visioning decision is made, is chosen as the output measure because of the effect

it has on energy consumption through the changes it entails on the frequency of

the processors in hosts.

The BN’s hypothesis of not having conditional dependencies between the con-



110 CHAPTER 5. ADAPTIVE HYPER-VISIONING MECHANISM

Host Util

Utilization

difference

VM type

host utilization level (L)

l1 : HU ≤ 50% l2 : HU > 50%

p(l1) p(l2)

VM Type

t1 t2 t3 t4

p(t1) p(t2) p(t3) p(t4)

∆ = (HUi +HU j)postMig− (HUi +HU j)preMig

L VMType ∆+ : ∆≥ 0 ∆− : ∆ < 0

l1 t1 p(∆+|l1, t1) p(∆−|l1, t1)

l1 t2 p(∆+|l1, t2) p(∆−|l1, t2)

l1 t3 p(∆+|l1, t3) p(∆−|l1, t3)

l1 t4 p(∆+|l1, t4) p(∆−|l1, t4)

l2 t1 p(∆+|l2, t1) p(∆−|l2, t1)

l2 t2 p(∆+|l2, t2) p(∆−|l2, t2)

l2 t3 p(∆+|l2, t3) p(∆−|l2, t3)

l2 t4 p(∆+|l2, t4) p(∆−|l2, t4)

Figure 5.3: Bayesian network for VM mapping and VM migration when a VM is

moved between hi and h j
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tributing factors should be checked before proceeding with the proposed method.

Given that host utilization and the type of the VMs are independent from each

other, there exists no dependencies between them. Therefore, BN’s hypothesis

holds in this context.

Four VM types and two host utilization levels are considered as the values each

contributing factor can be assigned to. The VM types and utilization levels can

be extended to include other existing VM types. However, the deciding threshold

of 50% for host utilization is driven from the idea of differentiating hosts where

at least half of their resources are in use compared to those that serve their VMs

with less than half their capacity. Bayesian probabilities related to p(∆+|li, t j) is

the likelihood of selecting a VM from type t j from a host with utilization level of

li either improves the utilization level on source and destination hosts or keeps it

the same.

When a VM from a certain type is selected to be migrated or a specific host

is chosen for a VM to be mapped on the hosts contribute to the changes in total

utilization. Any change on utilization level in the system should be recorded after

each hyper-visioning decision is made, either VM mapping or VM migration.

What is of interest is to seek decisions that are more likely to lead to an increase

in total utilization or at least no change.

5.2.2 Calculating Bayesian Probabilities

The proposed mechanism works with probabilities for ∆+, an increase/ no change

in utilization of hosts after a hyper-visioning decision is completed. These proba-

bilities are in the column under ∆+ in Figure 5.3 at the bottom of the table under

the "Utilization difference" node.

According to equation 5.1 the probability of a increase/unchanged level of

utilization conditional to selecting a VM from type t j and a host with utilization
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level in li is:

p(∆+|li, t j) =
p(li, t j|∆+).p(∆+)

p(li, t j)
(5.5)

To calculate Bayesian probabilities, p(∆+|li, t j) for every i and j combina-

tion conditional probabilities of p(li, t j|∆+) and prior probabilities of p(∆+) and

p(li, t j), should be calculated. p(∆+) can be calculated by dividing the number of

hyper-visioning decision instances that have positive ∆ value by the total number

of instances. Prior probabilities of p(li, t j) are calculated by dividing the number

of hyper-visioning decision instances where HU is of level (li) and VM is from

type t j, by total number of instances.

p(li, t j|∆+) is the likelihood of observing ∆+ conditional to VM type t j and

host of utilization level li being involved in the hyper-visioning decision. These

probabilities quantify the likelihood of observing ∆+ when li and t j are involved

in the hyper-visioning process. That is, if a VM from type t j is migrated from or

mapped to a host with utilization level of li, how likely it is that this combination

results in a positive ∆ value? The probabilities of p(li, t j|∆+), likelihoods, should

be calculated for every t j and li combination according to algorithm 5.2. Likeli-

hoods are then used to calculate Bayesian probabilities (posterior probabilities).

Algorithm 5.2 Calculating likelihoods, p(li, t j|∆+)

1: for eachmapping/migration instance do

2: if HU is li and VM belongs to t j then increase counteri j

3: if this instance has ∆+ then increase counteri j,∆+ ;

p(li, t j|∆+) =
counteri j,∆+

counteri j

Posterior probabilities, p(∆+|li, t j), are then calculated according to equa-

tion 5.5. Posterior probabilities provide a basis for selecting VMs for migration

and all the mapping/re-mapping of VMs to hosts. For instance, when a host of



5.2. ADAPTIVE HYPER-VISIONING MECHANISM 113

utilization level lp encounters imbalance, a VM of type t j is selected that has the

highest p(∆+|lp, t j) probability. It is then mapped to a host of level lq if the high-

est posterior probability for ∆+ combined with VM type, t j belongs to lq, that is,

p(∆+|lq, t j) is the highest Bayesian probability for t j combination.

5.2.3 Flowchart of Hyper-visioning Mechanism

The flowchart of our proposed Bayesian based migration mechanism, Energy-

efficient Adaptive Migration (EAM) mechanism is presented in Figure 5.4 to il-

lustrate the steps.

Figure 5.4 has six processes, two conditional point and a data node. Solid lines

represent control flows and dashed lines are data flows. EAM hyper-visioning pro-

cess starts when the system first commences and it continuously looks to make the

required hyper-visioning decisions. It waits for new VMs to arrive for mapping.

It also goes into a loop that constantly looks for an imbalanced host in the system.

The loop is to guarantee that any potential imbalance is detected. Because the act

of hyper-visioning resources is continuous the flowchart does not have a "Stop"

node.

The flowchart starts with scanning the system for potential new VMs and hosts

that are imbalanced (either over-loaded or under-loaded). If there are new VMs

to map, they will be mapped based on the Bayesian probabilities for the VM type

that needs to be mapped and the utilization level of hosts. If the highest proba-

bility for a given VM type is a host with less than 50% utilization level, a host

of the utilization level is selected. Note that the mechanism does not differentiate

the hosts that have utilization levels of the same category, li. EAM also looks for

imbalance in the system. If there is a host that is imbalanced, either over-loaded

or under-loaded, a VM from the host should be selected for migration. To se-

lect a VM from an imbalanced host, Bayesian probabilities for the host should be
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Figure 5.4: Bayesian-based VM mapping and VM migration flowchart
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looked at, so that a VM with minimum probability of ∆+ for the imbalanced host

will be selected for migration. Then the selected VM will be mapped based on the

Bayesian probabilities of this VM will lead to ∆+ on a host with the highest prob-

ability, as is done for new VMs. The proposed Bayesian Inference differentiates

hosts and VMs according to their level of utilization and type, respectively.

It is worth noting that the initial Bayesian probabilities are equal for all VM

type and host utilization levels. The probabilities are then updated after a prede-

termined number of migration instances, n, is gathered. Bayesian probabilities

are then reflective of the latest n instances. Therefore, the outcome of each hyper-

visioning decision, either mapping new VMs or selecting VMs for migration and

re-mapping them, should be recorded in terms of ∆ value. It should then be used

to update Bayesian probabilities. EAm then follows by scanning the system for

required hyper-visioning decisions.

In addition to the difference in the Bayesian network of EAM mechanism and

BMH, their flowcharts differ in the node highlighted in EAM’s flowchart. The

highlighted node in EAM’s flowchart means that the selected VM will be mapped

to a host of a certain utilization level that, based on Bayesian probabilities, is

more likely to result in ∆+. A host will be chosen that has the highest probability

of ∆+ for the type of the selected VM. So, for mapping a VM of type tx, a host

of utilization l j is chosen if p(∆+|l j, tx) is the highest Bayesian probability among

combinations that include tx.

5.3 Evaluation

The proposed mechanism is evaluated on an energy-aware simulation package.

The following sections detail the simulation settings and the results of the simula-

tion.
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5.3.1 Experimental Settings

Our Energy-efficient Adaptive Migration (EAM) mechanism is evaluated on the

CloudSim simulation package [14, 13], an energy-aware simulation package. The

evaluation workloads are included in CloudSim and are from CoMon project

which is a monitoring infrastructure for PlanetLab [76]. Ten days (in April and

March 2011) are selected by the Cloud Lab team [1] at University of Melbourne

to be included in Cloudsim and are previously used as a benchmark in the litera-

ture [9, 87, 86, 89]. Using the same chosen dates for our evaluation enables the

reproduction of the results.

Evaluation workloads describe resource requests from tasks that are being ex-

ecuted on real hardware, reported in intervals of five minutes in a 24 hour time

frame. These workloads demonstrate the fluctuations in resource requests from

VMs throughout their executions. It is an important characteristic for evaluat-

ing our adaptive mechanism as it is expected to make adaptive energy-efficient

decisions especially when resource request fluctuations occur.

We consider a system with 800 hosts (heterogeneous: 400 HP ProLiant ML110

G4 and 400 HP ProLiant ML110 G5). The types and the number of hosts are set

to the same numbers as [9] for fair comparison.

BMH and EAM start with equal Bayesian probabilities for every possible

combination. They update their Bayesian probabilities when the first 300 in-

stances (migration instances for BMH and hyper-visioning decisions, either map-

ping or migration, instances for EAM) are recorded. The simulation is run with

100, 300 and 600 migration instances for Bayesian probabilities to be calculated.

The results for variations in the number of instances were consistent. Thus, the

results of simulation for updating Bayesian probabilities with 300 latest migration

instances are reported as a representative.
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BMH determines the type of VMs based on their utilization level. For EAM,

however, four VM types are considered as: 2.5 EC2 Compute Units, 0.85 GB;

2 EC2 Compute Units, 3.75 GB; 1 EC2 Compute Unit, 1.7 GB and; 0.5 EC2

Compute Unit, 0.633 GB.

The experiments are conducted on an Intel Core i7-6500 CPU machine with

2.50 GHz, 8GB of memory running Windows 10.

BMH and EAM are evaluated against a heuristic with VM mapping policy

Thr, and the VM selection policy MMT [9] that is called MMT. Thr is based on

threshold and it is set to the following values as in the original paper [9]: 0.6, 0.7,

0.8, 0.9 or 1. MMT, Minimum Migration Time (MMT) is reported as the best VM

selection policy by Beloglazov and Buyya [9]. Our earlier VM selection policy,

MaxUtil [87] with VM mapping policy Thr is reported and termed as MaxUtil.

Our proposed mechanisms are also compared with a Multi-Objective migra-

tion Heuristic (MOH) [83] with five objectives: load volume, energy consump-

tion, thermal status, resource wastage and migration cost. In this heuristic a Static

Bayesian Game - Multi-objective Genetic Algorithm is applied when objectives

are in turn considered to be a player that optimizes their payoff function. The eval-

uation of their proposed heuristic is done when the scale of VM migrations is as

big as 60000 GB of instances for the first generation of GA to be generated. How-

ever, in the actual workload of the selected benchmark the number of migratable

VMs is smaller and GA section is not applicable.

EAM and BMH [89] are compared to represent the potential improvements,

in terms of energy consumption and mean execution time, when adaptive energy-

efficient VM mapping and VM selection for migration mechanisms are incorpo-

rated.
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5.3.2 Constraints

In this set of simulations a set of constraints is applied as C = {cmaxV Ms,cmigratable,

cexcludedHosts}. Because the virtualization software used, i.e. Xen [7], the maxi-

mum number of VMs that can be mapped to a host is limited to 75 [83], cmaxV Ms =

75. cmigratable denotes that not all VMs are migratable. When migrating VMs, only

migratable VMs will be chosen. cexcludedHosts is to exclude hosts that cannot be a

destination host. A host cannot be a destination host if it is already overloaded.

5.3.3 Results

The objective is to minimize energy consumption through the arbitration of hosts’

utilization. Nevertheless, the execution time is also reported to guarantee that the

energy efficiency has not imposed a longer execution time.

Figure 5.5 shows the results of MMT [9], MOH [83], MaxUtil [87], BMH and

EAM in terms of energy consumption.
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Figure 5.5: The box plots for total energy consumption (kilo Watts) of MMT,

MOH, MaxUtil, BMH and EAM
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According to Figure 5.5 EAM has the lowest energy consumption compared

to other heuristics. To observe the performance of EAM in a greater depth, EAM

is compared with a theoretically ideal case in Figure 5.6.
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Figure 5.6: The comparison with ideal case in terms of total energy consumption

(kilo Watts) for every workload set (labeled by date)

The ideal case represents a scenario where there are no resources wasted, all

resources are optimally utilized, and no imbalance has occurred. Such an ideal

scenario is unlikely to be achievable. However, the comparison shows how close

our proposed mechanism is to the ideal, though not necessarily achievable, case.

The average result of the comparison suggests that energy consumption by

EAM is relatively close to the ideal case by having only 44% more energy con-

sumption on average. It is worth noting that the energy consumption by MMT [9]

is 213% more than the ideal case.

To make sure that minimizing energy consumption has not imposed longer ex-

ecution time, Figure 5.7 shows the mean time (in seconds) it took for each heuris-
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Figure 5.7: The box plots for mean execution time (in seconds) of MMT, MOH,

MaxUtil, BMH and EAM

tic to execute the workloads. It is inclusive of the VM selection and VM mapping

(heuristic’s) time. It enables the comparison to represent any increase in the com-

plexity of VM selection and VM mapping because of the required computations

for calculating and updating Bayesian probabilities in our proposed heuristic.

Tables 5.1 and 5.2 represent statistical description of total energy consumption

and mean execution time of the competing heuristics, respectively.

Mean St. Deviation Minimum Maximum

MMT 189.1982 37.99089 123.15 301.60

MOH 188.7884 42.74991 109.40 310.26

MaxUtil 157.5686 38.59788 90.28 269.25

BMH 162.2480 38.84498 92.23 274.57

EAM 86.5630 16.04903 67.53 120.31

Table 5.1: Statistical description of total energy consumption
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Mean St. Deviation Minimum Maximum

MMT .0725614 .02713448 .03780 .15634

MOH .0620034 .02126852 .02965 .13176

MaxUtil .0402022 .01787994 .01522 .10914

BMH .0404848 .01386231 .01687 .08215

EAM .0130658 .00418710 .00867 .02784

Table 5.2: Statistical description of mean execution time

To test the significance of difference between the competing heuristics, Ta-

ble 5.3 presents the results of Wilcoxon Signed Ranks test and in the cases of

energy consumption and execution time.

Asympt. Sig. (2-tailed),

total energy consumption

Asympt. Sig. (2-tailed),

total execution time

EAM - MMT .000 (< .05) .000 (< .05)

EAM - MOH .000 (< .05) .000 (< .05)

EAM - MaxUtil .000 (< .05) .000 (< .05)

EAM - BMH .000 (< .05) .000 (< .05)

BMH - MMT .000 (< .05) .000 (< .05)

BMH - MOH .000 (< .05) .000 (< .05)

BMH - MaxUtil .228 (> .05) .357 (> .05)

Table 5.3: Results of the Wilcoxon Signed Ranks test for energy consumption

(kW) and mean execution time (seconds)

Based on Table 5.3, almost all pairwise comparisons concluded in favour of

EAM over MMT [9], MOH [83], MaxU [87] and BMH [89]. The only exception

is the comparison between BMH and MaxUtil where they are not statistically
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different.

To investigate the underlying elements of our proposed mechanisms’ domi-

nance, the number of host shutdowns and VM migrations are reported in Fig-

ures 5.8 and 5.9. EAM performs the fewest number of VM migrations and host

shutdowns compared to other heuristics. Given the energy and time drawbacks of

VM migration and host shutdowns, it can be inferred that EAM’s energy reduc-

tion and shortening of mean execution time are related to its fewer VM migration

and host shutdowns. That is, efficient hyper-visioning decisions by EAM migrates

VMs that will solve the imbalance problem relatively fast and causing fewer host

shutdowns.
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Figure 5.8: The box plots for the number of host shutdowns by MMT, MOH,

MaxUtil, BMH and EAM

5.4 Discussion

The difference is significant as the average energy consumption by MMT is more

than 116% higher than EAM. On average, EAM has 98.92 kiloWatt less energy
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Figure 5.9: The box plots for the number of VM migrations by MMT, MOH,

MaxUtil, BMH and EAM

consumption than MMT [9], which can be translated into the deduction of more

than 38 metric tons carbon emission annually 1. This level of energy saving is on

a system with only 800 hosts. For systems with more hosts this can add up to a

substantial energy saving and Carbon emission deduction. Moreover, on average,

MMT takes 5.39 times longer than our proposed EAM mechanism to execute

VMs.

On average, MOH [83], MaxUtil [87] and BMH [89] have 118%, 81% and

88% higher energy consumption than EAM and take 3.7, 2 and 1.9 times longer

than EAM to execute the workloads (mean execution time), respectively.

BMH and EAM both present an adaptive approach in response to the changes

in resource requirements and available resources using micro level observation

records of VMs and hosts. EAM demonstrated strong dominance over competing

strategies by minimizing energy consumption and execution time simultaneously.

1According to the ratio reported in [23].
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Such dominance can be associated with the inclusiveness of both VM mapping

and VM migration where they are modelled in a single Bayesian network. A

single integrated Bayesian network enables resource hyper-visioning decisions,

either VM mapping or VM migration, to reflect on previous hyper-visioning deci-

sions, VM mapping or VM migration, for its decision process. As a result, EAM

showed closeness to theoretical optimal energy consumption. It also shortened

mean execution time significantly compared to the competing heuristics.
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5.5 Summary

In this chapter, an adaptive energy efficient resource hyper-visioning mechanism

is proposed, inclusive of both VM mapping and VM migration, based on micro

level observation records of VM types and utilization levels. The proposed novel

adaptive energy-efficient resource hyper-visor works by establishing an inference

to relate the micro level observation records of VM types and utilization levels to

the effect they have on hosts’ utilization and consequently the energy consump-

tion.

Our novel adaptive energy-efficient hyper-visor is evaluated against state-of-

the-art heuristics from the literature and heuristics proposed in the earlier chapters

where micro level observations were used. It represented a statistically significant

reduction in energy consumption and shortening of mean execution time.

This chapter described the enhancement of the VM migration process to adap-

tively migrate a VM that is the most likely VM to reduce energy consumption. It

also presented the invention of a novel adaptive resource hyper-visioning mecha-

nism, inclusive of VM mapping and VM migration that significantly reduced total

energy consumption and shortened mean execution time.
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Chapter 6

CONCLUSIONS AND FUTURE

RESEARCH DIRECTIONS

THE technical details of our proposed hyper-visioning strategies are explained

in previous chapters. This chapter summarizes the research done on energy-

efficient resource hyper-visioning in private Cloud proposed in this thesis and

highlights the main findings. It then reviews open research problems in the area

and outlines potential future research directions.

This chapter is organized as follows. Section 6.1 presents an overview of the

proposed energy-efficient policies and mechanisms in private Clouds. The main

contributions of this thesis is summarized in Section 6.2. Section 6.3 explains the

limitations of the research. It is then followed by future research directions in

Section 6.4 and final remarks in Section 6.5.

127
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6.1 Overview of Thesis

The research aimed at answering five research questions regarding energy-efficient

resource hyper-visioning in private Cloud. To answer the research questions,

energy-efficient resource hyper-visioning policies and adaptive mechanisms are

proposed using macro and micro level observation records. The overview of the

thesis is as follows:

• Chapter 1 introduced energy-efficient resource hyper-visioning in private

Cloud. The problems associated with high level of energy consumption is

discussed. Chapter 1 also detailed the key elements of this research: scope

of the research, research questions, hypotheses, methodology and contribu-

tions.

• Chapter 2 reviewed the related literature on resource hyper-visioning in

Cloud, in general. First common research objectives are noted and their

relationship explained. Then their association with energy consumption is

clarified. Later energy contributors, measures and models are discussed.

Research conducted in reducing energy consumption by arbitrating the avail-

able resources are reviewed. Reviewed resource hyper-visioning studies are

inclusive of VM mapping and VM migration related studies.

• Chapter 3 investigated the outcome of six VM mapping policies, in terms

of energy consumption, when workload properties are arbitrarily altered. It

is then proven that a single VM mapping policy has its strengths and weak-

nesses based on the state of the system and workload properties. Therefore,

a dominating VM mapping policy might be dominated by other VM map-

ping policy when the settings are changed. Chapter 3 then presented a novel

Bayesian based VM mapping mechanism that adaptively switches between
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available VM mapping policies in order to reduce total energy consump-

tion using the macro level observation records of energy consumption lev-

els. The presented Bayesian inference relates the system’s current state, in

terms of average utilization; workload property (average arrival rate); and

the deployed VM mapping policy to the observed energy consumption level.

The results indicated that our adaptive VM mapping mechanism has similar

results to the best performing VM mapping policy, on average.

• Chapter 4 covered the introduction of two VM migration policies for when

the system encounters an imbalance problem. The outcome proved a sig-

nificant reduction of total energy consumption and shortening of mean exe-

cution time in comparison with a situation where no migration was carried

out. The evaluation against state-of-the-art policies demonstrated statisti-

cally significant improvements in terms of total energy consumption and

mean execution time.

• Chapter 5 proposed two adaptive mechanisms: adaptive VM migration

mechanism and adaptive resource hyper-visioning mechanism (inclusive of

both VM mapping and VM migration). Both mechanisms used micro level

observation records in their Bayesian inference. However, Bayesian infer-

ences are made based on different observations from the system. And the

adaptive energy-efficient resource hyper-visor is inclusive of both VM map-

ping and VM migration in its inference. The results strongly support the

improvement made by the mechanisms. Nevertheless, our adaptive energy-

efficient resource hyper-visioning mechanism demonstrated strong domi-

nance over state-of-the-art heuristics from the literature and our proposed

VM migration policy and adaptive mechanisms.
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6.2 Contributions

The significance of this study can be categorized into the three areas where we

suggest a different perspective in the field of energy-efficient resource hyper-

visioning. These categories are as follows:

• Sub-optimality of the policies. Simulation of the deployment of multiple

VM mapping policies in a small scale private Cloud proved that changes

in the resource requirements by VMs and alteration of average arrival rate

changes the outcome, in terms of energy consumption. A dominant result by

a VM mapping policy is significantly dominated by another VM mapping

policy when the settings, in terms of system and workload, are changed.

We suggested that a well performing VM mapping policy might not be the

optimal VM mapping policy in all settings of the system and workload.

• The need for adaptability and learning. Because of the dynamic nature of a

Cloud system, private Cloud included, it is essential for an energy-efficient

resource hyper-visor to be adaptive and be able to learn from the observed

records of the system and the outcome of hyper-visioning decisions. A re-

source hyper-visioning mechanism that is adaptive and has a learning ability

is more likely to serve the system in an energy-efficient manner. Our pro-

posed adaptive mechanisms on VM mapping, VM migration and resource

hyper-visioning (inclusive of both VM mapping and VM migration in a sin-

gle adaptive learning phase) proved that the adaptability and learning can

improve the outcome of resource hyper-visioning decisions significantly.

• Importance of inclusion of VM mapping and VM migration in a single mech-

anism. In this research we proposed adaptive energy-efficient mechanisms

for VM mapping and VM migration, separately. However, the results, in
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terms of energy consumption and mean execution time, were substantially

improved when VM mapping and VM migration are modelled as an inte-

grated adaptive energy-efficient resource hyper-visioning mechanism. The

reason lies in the idea that modelling VM mapping and VM migration in

a single mechanism allows the model to reflect on any resource hyper-

visioning decision, either VM mapping and VM migration.

6.3 Limitations

This thesis has the following limitations:

• The results are simulated values for energy consumption and mean execu-

tion time. Although the simulated values are driven from the actual energy

consumption level by the presumed types of hosts, actual implementation

of the proposed policies and mechanisms could provide a more accurate set

of values.

• Because of some limitations on the simulation packages (not allowing change

of VM mapping policy at run-time in one simulation package and not sup-

porting VM migration in the other simulation package), two packages are

used for simulation purposes. They use similar values for energy and exe-

cution time estimations but slight variations are possible.

• Proposed VM mapping, VM migration and hyper-visioning mechanisms are

centralized. They are evaluated when there are a certain number of hosts.

It has not been tested whether a dramatic increase in the number of hosts

might add to the required calculation in mechanisms’ learning phase.
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6.4 Future Research Directions

Despite contributions of the research in the field of energy-efficient resource hyper-

visioning in private Clouds, there are open challenges for future research to further

advance the field of study.

6.4.1 Learning Methodologies

In this research Bayesian inference is used to provide the system with learning

ability to adaptively respond to the changes in the system and workload. However,

there are other methodologies than can be utilized and their strength in efficiently

reducing energy consumption level tested in the field of study.

6.4.2 Adaptive and Distributed

Proposed policies and mechanisms are centralized approaches where a focal de-

cision making point is in charge of resource hyper-visioning. It has its potential

complications in the case of a large scale system. Although private Clouds do not

necessarily exhibit very large scale systems, a distributed resource hyper-visioning

can potentially reduce the computations, in the focal point, and further improve

energy consumption as well as execution time.

6.4.3 Inclusion of Network Topology

In this research, the network bandwidth available to hosts was one of the deciding

factors when VMs were migrated between the hosts. However, the network topol-

ogy determines the physical connections and distance between the hosts. Multiple

combinations of hosts can have the same network bandwidth available between

them but the actual cost of the migration depends on how far the hosts are in
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terms of the nodes in the network and the physical distance between them.

6.5 Final Remarks

Clouds have transformed the IT industry by providing platforms, in different lev-

els and by providing services for science, business and personal applications. The

energy-efficient hyper-visioning of resources in a private Cloud, in particular the

adaptive resource hyper-visioning, investigated in this thesis, will enable private

Clouds to adaptively provide resources for the workloads assigned to them with

low energy consumption and therefore low costs and carbon dioxide emissions.

Research, such as that presented in this thesis, will motivate further investigation

and innovation in the context of adaptive energy-efficient resource hyper-visioning

in private Cloud.
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Appendix A

NOTATIONS

Notation Definition

AR set of average arrival rates, AR = {AR1,AR2, · · · ,ARi}

C set of constraints

cexcludedHosts constraint on excluding hosts as candidate hosts to receive the

migrating virtual machine

cmaxV Ms constraint on the maximum number of virtual machines on a

host

cmigratable constraint on selecting only the virtual machines that can be

moved (migrated)

CU current utilization level

H set of available hosts, H = {h1,h2, · · · ,hn}, n ∈ N

hi host i

HUi CPU utilization of hi

L set of possible host utilization levels, L = {l1, l2}

li host utilization in li level

Mi memory share of virtual machine i, vmi

MCi memory capacity of hi
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154 APPENDIX A. NOTATIONS

Mig set of possible virtual machine and hosts combinations for

migration. Mig = {mig1,mig2, · · · ,migp}, p ∈ N

mig a possible combination of virtual machine and hosts for

migration. mig = (vmq,h j),vmq ∈V Mi,V Mi set of virtual

machines on hi, hi ∈ H, h j ∈ H and i 6= j

MT the migration time of a VM

NBi network bandwidth available to hi

p(∆+) the probability of ∆+

p(li) probability of li

p(ti) probability of ti

p(li, t j) probability of migrating a VM from type t j from/to a host with li

utilization level

p(li, t j|∆+) probability of ∆+ given li and t j

p(∆+|li, t j) probability of li and t j resulting in ∆+

p(ARi) probability of ARi

p(CUi) probability of CUi

p(poli) probability of poli

p(ARi,CU j,Polk) probability of observing average arrival rate of ARi, current

utilization level of CU j when VM mapping policy poli was

deployed

p(ARi,CU j,Polk|ECl) probability of average arrival rate of ARi, current utilization

level of CU j when VM mapping policy poli was deployed given

the observed energy consumption level was in EC1 range

p(ECl|ARi,CU j,Polk) Probability of observing an energy consumption level of EC1

given average arrival rate of ARi, current utilization level of CU j

when VM mapping policy poli was deployed
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p(Ri) probability of VMs having a utilization level in Ri range

poli a VM mapping policy

PS processing share of a virtual machine

Ri a utilization range for VMs

ti type of a VM

V Mi set of virtual machines, V M = {vm1,vm2, · · · ,vmm}, m ∈ N on

host hi

vmi virtual machine i

V MType set of available virtual machine types, V MType = {t1, t2, t3, t4}

∆ ∆ = (HUi +HU j)postMigration− (HUi +HU j)preMigration. The

difference between host utilizations of the source and

destination hosts in the migration process. If vmq is migrated

from hi (meaning: hi had imbalanced problem and vmq ∈V Mi

before migration) to h j (vmq is added to V M j after migration)

∆+ ∆≥ 0

∆− ∆ < 0



Appendix B

ABBREVIATIONS

Abbreviation Meaning

BI Bayesian Inference

BN Bayesian Network

ASM Adaptive Switching Mechanism

MU Maximum Utilization VM mapping policy

IB Intensity Based VM mapping policy

GD Greedy Deadline VM mapping policy

IGD Intensity-based Greedy Deadline VM mapping policy

EL Equal Load VM mapping policy

IEL Intensity-based Equal Load VM mapping policy

AR task Arrival Rate

CU current CPU Utilization

EC Energy Consumption

MMT Minimum Migration Time VM migration policy

MedianMT Median Migration Time VM migration policy

MaxUtil Maximum Utilization VM migration policy

Asympt. Sig. asymptotic significance
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