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Abstract

Three-dimensional (3D) image acquisition technology has experienced intense develop-

ment during the last few decades. Use of these images is becoming increasingly popular

in the field of medicine for tasks including disease diagnosis, progress monitoring and

treatment planning. An image analysis task may involve multiple images that may be

acquired using the same or different sensors, obtained at different times or from different

viewpoints. In order to make the most informative judgments, medical practitioners often

need to align these images and analyse those in one coordinate reference. The task of

finding a one-to-one mapping between the coordinates of one image to the other such that

the corresponding structures overlap is called image registration and provides a basis for

most image analysis tasks. The task of registering medical images can be challenging, es-

pecially for three-dimensional medical images, due to large data volume, low resolution

of images compared to the structures of interest, complex motions, and image artefacts.

Due to the complex nature of the motions involved, medical image registration is also

often approached as a non-rigid registration problem.

While the problem of non-rigid registration has been studied extensively in the recent

past, due to the constant improvements in acquisition technology and ever-increasing ap-

plications in medicine, there is a need to find better solutions in terms of both robustness

and computational efficiency. This research involves a study of the fundamental problems

of motion estimation and automatic registration of volumetric medical images to find how

to improve the performance of registration in terms of both accuracy and efficiency.

Firstly, motion estimation using optical flow is considered, which requires some smooth-

ing due to its ill-posed nature. Here, the relationship between the estimation accuracy and

the required amount of smoothness for a general solution from a robust statistics perspec-

tive is theorized. Surprisingly small amount of local smoothing is required to satisfy both

the necessary and sufficient conditions for accurate optic flow estimation. The theoreti-

cal predictions were tested by observing the accuracy of motion estimation in dynamic

lung CT image (both synthetic and actual images) sequences using a robust 3D optic flow
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method with quantized local smoothing. In line with theoretical predictions, the results

showed that only a very small amount of local smoothing is required to achieve high ac-

curacy and its proper implementation has a profound effect on the preservation of local

information.

Next, a fast and accurate non-rigid registration method for intra-modality volumetric

images is proposed. Non-rigid image registration techniques using intensity-based simi-

larity measures have high computational complexities, particularly for volumetric images.

The proposed method exploits the information provided by an order statistics-based seg-

mentation method, to find the important regions for registration and use an appropriate

sampling scheme to target those areas and reduce computation time. The experiments

on registration of end-inhale to end-exhale lung CT scan pairs, with expert annotated

landmarks, show that the new method is both faster and more accurate than the state-

of-the-art sampling-based techniques, particularly for registration of images with large

deformations.

Next, a new algorithm for modelling visual data using robust thin plate splines (TPS)

is proposed. Non-rigid registration algorithms use robust TPS-based data modelling tech-

niques to model transformation in feature-based image registrations, smoothing of motion

fields and interpolating intensity field. However, these tend to be inaccurate, especially

when the data contain outliers. The proposed fitting algorithm uses a variant of the least

k-th order statistics fitting approach with a novel iterative method for performing the in-

lier/outlier segmentation. The proposed method is tested on synthetic and real data and

is shown to be effective, even when numerous structured outliers (pseudo-outliers) are

present.

Finally, a new method that improves the model fitting accuracy and efficiency using

higher than minimal subset sampling is proposed. Identifying local structures or model-

fitting is a fundamental task in many applications, such as motion estimation, segmen-

tation, visual tracking and medical image analysis. The method uses a direct approach

similar to Newton’s method that starts from a random parameter set and moves towards

a dense cluster using the local information. The extended experiments conducted on

line/plane fitting and motion segmentation showed that the proposed method is both effi-

cient and accurate compared to the state-of-the-art techniques.
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Chapter 1

Introduction

Three dimensional (3D) medical image acquisition technology has experienced intense

development during the last few decades and the use of these images is becoming in-

creasingly popular in the field of medicine for tasks including disease diagnosis, progress

monitoring and treatment planning. A 3D image here refers to a collection of scalar inten-

sity values, depicting internal organs or structures of a patient, sampled over a 3D spatial

grid. It is important to note that the term 3D image is used in some instances to describe

range images, where the depth information of a scene is sampled in a 2D grid, which is

different to its use here. A variety of physical principles are used to generate the inten-

sity information regarding objects of interest and based on these principles, images are

categorized into different modalities including: Computer tomography (CT), Magnetic

resonance (MRI), Positron emission tomography (PET), Single proton emission tomog-

raphy (SPECT) and Ultra sound (US). Each of these modalities provides a different type

of information. For example, a CT image provides better information on the hard (bone)

structures, whereas an MRI image contains better information about soft tissues.

An image analysis task may involve more than one image and in order to make the

most informed decisions, medical practitioners often need to study two or several im-

ages in the same coordinate system. Normally, the coordinates of a medical image are

set out by the acquisition device. However, due to the positioning of the patient, internal

organ motions, anatomical changes in the patient (e.g. sequential images taken at large

intervals) and device characteristics, the object coordinate space may vary even for the

same machine. The task associated with this spatial mapping of images from one coor-

dinate system to another such that the corresponding structures overlap is called image
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registration and a formal definition of registration is as follows (Maurer Jr. & Fitzpatrick

1993):

Definition 1.1. Image Registration is the determination of a one-to-one mapping between

the coordinates in one space and those in another, such that points in the two spaces that

correspond to the same anatomical point are mapped to each other.

In medical applications, registration is required to be performed on images captured

using different techniques, acquired in different times, from different viewpoints or of

different subjects (Zitova & Flusser 2003). The registration may also be performed on

images with partial or complete overlap. 3D image registration or motion estimation does

not involve some of the problems associated with conventional 2D image analysis such

as occlusions, etc. However, it poses a new set of problems, such as increasing volume of

data due to the continuous advancements in acquisition technologies (a typical CT image

usually contains around 512× 512× 128 voxels ), relatively low resolution compared to

the structures of interest, especially for low dose images (voxel spacing along the some

axis around 1 − 2.5 mm), complex organ motions (for example in a thoracic CT image

the motion of the lungs is affected by the respiratory cycle, the motion of the heart, and

the fixed nature of the spine and rib cage (Tustison et al. 2011)) and the high level of

image artifacts caused by limitations in the physical principles of acquisition, limitations

in current technology and patient motion/anatomical changes (Hsieh 2009).

There are many applications of image registration in the medical imaging field, some

of which are listed below. A detailed description of those applications is outside the scope

of this exposition and but be found in Holden (2008), Oliveira & Tavares (2014), Rueckert

& Aljabar (2010).

Disease Diagnosis Early detection is the most effective way to reduce mortality for many

diseases. Computer-aided diagnosis (CAD) systems are developed to enhance the capa-

bilities of medical practitioners by attracting attention to certain areas in images, pro-

viding better comparisons and enabling medical practitioners to measure tumor sizes

effectively. These systems can speed up the diagnostic process, reduce errors or misses

and improve quantitative evaluation. Image registration plays a major role in CAD by

enabling the combination of information from multiple views, previous times, and mul-

tiple modalities (Giger et al. 2008). CAD is used to diagnose breast cancer (Wei et al.
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2009), lung cancer (Guo et al. 2012, Shiraishi et al. 2006, Van Ginneken et al. 2001),

Parkinson’s (Illán et al. 2012), emphysema (Sluimer et al. 2006), brain tumors (Jaya &

Thanushkodi 2011) and many other common diseases.

Progress monitoring Detecting and measuring changes in an anomalous region over

time is vital to evaluate the success and to plan the future course of medication. However,

due to orientation changes, organ motions and anatomical changes during successive im-

age acquisitions, direct comparisons are not possible. Image registration helps to reduce

the effects of these deformations in order to make a realistic comparison (Arzhaeva et al.

2010, Hua et al. 2013, Ko & Betke 2001, Liang et al. 2013, Timp et al. 2007, Yuanjie

et al. 2009).

Image-guided surgery Image guidance provides valuable information about the target

position and optimal probe manipulations in minimally invasive treatment procedures,

such as neurosurgery (Archip et al. 2007, Huang et al. 2012, Mostayed et al. 2013),

endoscopy (Burschka et al. 2004, Mirota et al. 2012), interventional cardiology (Linte

et al. 2010, Xishi et al. 2009), minimally invasive lung surgery (Sadeghi Naini et al.

2010, Uneri et al. 2013) and robotic microsurgery (Gerber et al. 2013) . Here registra-

tion plays an essential role in combining and augmenting the high quality pre-operative

images (CT, MRI, PET) with the intra-operative images of the patient on the operating

table (X-ray, US, interventional corn beam CT). A comprehensive review of registration

techniques that are applied specifically for minimal invasive therapy can be found in Rui

et al. (2013).

Image-guided radiotherapy In radiotherapy, generous safety margins have to be set

around the target due to organ movements and target localization errors. These mar-

gins lead to a compromise in the dose delivered to the tumor. As a result, accurately

targeted localization (defining the tumor volume) and alignment is very important in

order to maximize the radiation dose to the target while minimizing the effects on the

surrounding organs. Image-guided radiotherapy techniques use on-line or off-line im-

age registration. Off-line registration of images from different modalities (CT/MRI,

CT/PET) can improve target localization, whereas organ motion can be determined by

on-line registration of repeatedly acquired images. This information is then used to adapt

the treatment (patient positioning, directing radiation beam) (Robertson et al. 2013, van
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Herk 2007, Worm et al. 2010).

Atlas building & comparison Image atlases are used to compare individual images to

an average image constructed by combining a large number of images. Image registra-

tion is used in both atlas building steps as well as in the comparison step (D’Agostino

et al. 2004, Ehrhardt et al. 2011, Zhang et al. 2013).

Generally, a registration task is carried out by first establishing a goodness measure

that quantifies the alignment between images (also called similarity measure) and a trans-

formation model that can capture the deformation between the relevant images with ade-

quate accuracy. Next, this information is used to establish an objective function, reflecting

both the similarity and prior knowledge of the model, which is maximized (or minimized)

using a suitable optimization method to find the parameters of the transformation model.

Finally, the second image is warped to match the reference image using the estimated

transformation model.

The spatial transformation needed to align one image to another depends on the type of

motions involved between the images and can be modelled using rigid, affine or non-rigid

transformations. Rigid transformations have limited degrees of freedom that only allow

rotation and translation. They are used in registering objects that are rigid in nature, such

as teeth and skulls. Affine transformations, on the other hand, allow for scaling and shear

in addition to translation and rotation and are commonly used as a pre-registration step for

non-rigid registration algorithms. The limited degrees of freedom allowed by these simple

transformations are not adequate to model the motions involved in medical images and

most applications use more sophisticated models called non-rigid models (Tustison et al.

2011). While the additional degrees of freedom in a non-rigid model helps capture com-

plex motions, it also increases susceptibility to image/motion artifacts and computational

complexity. To mitigate these effects, non-rigid models typically use some sort of regu-

larization (based on prior knowledge of the motions and anatomical structures involved)

that limit the solution domain, making the overall model robust. A given transformation

model can also be viewed as either a global or a local transformation. A global transfor-

mation affects the entire image while a local transformation affects only a sub-region of

the image domain.

Similarity measures used in typical registration algorithms either use only a specific

part of the information extracted from the image called features (e.g. edges, anatomical
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landmarks) or they use the voxel information directly. The features used can be either

intrinsic or extrinsic. Extrinsic methods use artificial markers attached to the patient prior

to being imaged, whereas intrinsic methods rely only on readily available information in

the image. The intrinsic features can be either picked by a human expert or automatically

computed using a technique such as SIFT (Lowe 1999). However, this feature extraction

presents an additional step which can introduce errors to the registration algorithm and

the estimates become inaccurate further away from the extracted feature points. For these

reasons voxel information based registration methods are becoming more popular (Soti-

ras et al. 2013). The complexity of deriving a voxel information based similarity measure

may depend on the type of images involved. If the images are from the same modality,

simple measures such as sum of squared intensity differences can be used, but when the

images are from different modalities, more complex measures are needed. Accordingly,

information theory-based similarity measures have attracted attention for multi-modal im-

age registration (Pluim et al. 2003).

The similarity measure and the transformation model established are then used to build

an objective function, which in most non-rigid registration problems is highly non-linear.

Hence, iterative optimization techniques have to be used. These optimization techniques

can be either continuous or discrete depending on the nature of the objective function. The

complexity of the optimisation task in a medical image registration problem is governed

by both the volume of information and the complexity of the deformation model.

While the problem of non-rigid registration has been studied extensively in the recent

past, due to the constant improvements in acquisition technology and ever increasing ap-

plications in medicine, there is the need to find better solutions in terms of both robustness

and computational efficiency. This research involves studying the fundamental problems

of automatic registration and motion estimation of volumetric medical images and finding

how to improve the performance of registration in terms of both accuracy and efficiency.

The main contributions of this research are as follows:

• Establishment of a theoretical relationship between the estimation accuracy and

the amount of smoothness required for a general solution of the motion estimation

problem from a robust statistics perspective.

• Development of a robust registration method for volumetric CT images in cases

where the images are affected by significant organ motion and artifacts, that also
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significantly improves computational efficiency.

• Exploration of the use of statistical methods to improve robustness in modeling

data using splines, which are commonly used in non-rigid registration algorithms

for feature matching, smoothing of motion fields and intensity interpolation.

• Development of a new method that improves parametric model fitting accuracy and

efficiency by using higher than minimal subsets to generate hypotheses.

The thesis is organized as follows. Chapter 2 provides an overview of non-rigid reg-

istration techniques used for medical image analysis applications. Here, the image reg-

istration problem is segmented into three key sections (transformation model, objective

function, optimization) and the techniques used in each of those sections are analysed in

detail.

Optical flow is a technique that is used to approximate the motions between mono-

modal images and is capable of recovering fairly local motions. Due to the well-known

aperture problem, optical flow is ill-posed and requires some smoothing. Chapter 3 exam-

ines the relationship between the estimation accuracy and amount of smoothness required

for a general solution from a robust statistics perspective. We show that a surprisingly

small amount of local smoothing is required to satisfy both the necessary and sufficient

conditions for accurate optic flow estimation. This notion is called “just enough” smooth-

ing and its implementation has a profound effect on the preservation of local information

in processing 3D dynamic scans. To demonstrate the effect of “just enough” smoothing,

a robust 3D optic flow method with quantized local smoothing is presented and the ef-

fect of local smoothing on the accuracy of motion estimation in dynamic lung CT images

examined using both synthetic and real image sequences with ground truth.

Non-rigid image registration techniques using intensity-based similarity measures are

widely used in medical imaging applications. Due to the high computational complexities

of these techniques, particularly for volumetric images, finding appropriate registration

methods to both reduce the computation burden and increase the registration accuracy has

become an intensive area of research. In Chapter 4, a fast and accurate non-rigid regis-

tration method for intra-modality volumetric images is proposed. This approach exploits

the information provided by an order statistics-based segmentation method, to find the

important regions for registration and use an appropriate sampling scheme to target those
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areas and reduce the registration computation time. A unique advantage of the proposed

method is its ability to identify the point of diminishing returns and stop the registration

process. Experiments on registration of end-inhale to end-exhale lung CT scan pairs, with

expert annotated landmarks, show that the new method is both faster and more accurate

than the state-of-the-art sampling based techniques, particularly for registration of images

with large deformations.

Using splines to model spatio-temporal data is one of the most common methods of

data fitting used in a variety of computer vision applications. Despite its ubiquitous ap-

plications, particularly for volumetric image registration and interpolation, the existing

estimation methods are still sensitive to the existence of noise and outliers. In Chapter 5 a

method of robust data modelling using thin plate splines, based upon the well-known least

K-th order statistical model fitting, is proposed and compared with the best available ro-

bust spline fitting techniques. Our experiments show that existing methods are not suitable

for typical computer vision applications where outliers are structured (pseudo-outliers),

while the proposed method performs well even when there are numerous pseudo-outliers.

Identifying the underlying model in a set of data contaminated with both noise and

outliers is a fundamental task in computer vision and the cost function associated with

such tasks is often highly complex. Commonly, an approximate solution is obtained by

evaluating the cost function on discrete locations in the parameter space (hypothesis).

However, To be successful at least one hypothesis has to be in the vicinity of the solu-

tion. Due to noise, the hypothesis generated using minimal subsets can still be far from

the underlying model, even when the samples are from the said structure. Chapter 6

investigates the feasibility of using higher than minimal subset sampling for hypothesis

generation. The synthetic experiments conducted showed that higher than minimal sub-

sets sampling will increase the probability of generating a hypothesis closer to the true

model, given that the subset is selected from inliers. However, the probability of selecting

an all inlier sample decreases with the sample size, making direct extension of existing

methods unfeasible. Hence, we propose an efficient method for robust model fitting that

uses higher than minimal subsets. The method starts from an arbitrary hypothesis (which

does not need to be in the vicinity of the solution) and moves towards a structure in data

using the local information available at each iteration. The method also has the ability

to identify when the algorithm has reached a hypothesis with adequate accuracy and stop
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appropriately, thereby saving computational time. The experimental analysis carried out

using synthetic and real data shows that the proposed method is both accurate and efficient

compared to the state-of-the-art model fitting techniques.
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Chapter 2

Non-rigid Image Registration

2.1 Introduction
Image registration is the task of finding a spatial transformation that aligns the objects

in two or more images capturing the same or related scene. The registration can be per-

formed on images from different times, captured using different sensors or from different

viewpoints (Zitova & Flusser 2003). The registration may also be performed on images

with partial or complete overlap. Registration is one of the most crucial problems of com-

puter vision and has been studied for over three decades. The underlying task is very

general and has a wide range of applications in the fields of medical imaging (Oliveira &

Tavares 2014, Sotiras et al. 2013), computer vision (Peng & Chia-Hsiang 2013), remote

sensing (Le Moigne et al. 2011, Richards 2012) and others. In this chapter we focus on

the application of image registration in the field of medical imaging.

Although registration can involve two or more images, a typical medical image regis-

tration problem comprises two images:

Fixed image This image is used as the reference in the registration and is not changed

during the process. It is also called the target or the reference image. In this docu-

ment it is denoted by IF (x).

Moving Image This is the image to be transformed into the reference coordinate system

and is also called the source, template or test image. In this document its denoted

by IM(x).

Mathematically the problem of image registration can be expressed as finding a spatial
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Fixed Image Moving Image

Figure 2.1: In this illustration the moving image needs to be both translated and rotated

to align with the fixed image.

mapping

T : ΩF → ΩM (2.1.1)

such that the following correspondence holds:

IF (x) ↔ IM(x) (2.1.2)

where ΩF is the fixed image domain with dimensionality d and ΩM the moving image

domain. The image dimensionality d can either be two (2D) or three (3D). Hence, the

transformation function can be a mapping from 2D → 2D, 3D → 2D or 3D → 3D.

Figure 2.1 shows an example of two images with overlap that can be registered in one

coordinate system by translating and rotating one image (moving) to be aligned with the

other (fixed) image.

Medical imaging consists of many modalities which differ on the physical principles

used to capture the images. The common modalities are X-ray, computed tomography

(CT), magnetic resonant imaging (MRI), positron emission tomography (PET), single

proton emission tomography (SPECT) and ultrasound (US) imaging. These modalities

can be categorized into two main groups according to the purpose of the images (Oliveira

& Tavares 2014): anatomical images and functional images. CT, MRI, US and X-ray

fall into the first category, where the purpose of the image is to study the anatomy, while

functional MRI (fMRI), PET and SPECT fall in to the second category, where the purpose

is to study the functions performed by the imaged organ. Figure 2.2 shows brain images
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from the same subject captured using three different techniques (CT, MIT and PET). We

can observe that each modality provides a specific type of information. For example, MRI

captures the soft tissue in detail, whereas the bone structures are clearer in the CT image.

A registration task may involve images from the same modality or different modalities.

Depending on the number of modalities involved, the registration task can be classified

as either mono-modal or multi-modal. In mono-modal registration, both images are from

the same modality (e.g. time series CT image registration for change detection). In multi-

modal registration, the images are from two different modalities (e.g. fusion of CT with

MRI images for image-guided radiotherapy).

(a) (b) (c)

Figure 2.2: (a) CT (b) MRI (c) PET images of the same subject.Images are from the

RIRE dataset (http: //www.insight-journal.org/rire).

The solution to the registration problem generally consists of three main parts: trans-

formation model, objective function and the optimization procedure (Oliveira & Tavares

2014, Sotiras et al. 2013). The techniques used in each module of a given algorithm

depend on the specific requirements of the given registration problem.

Transformation model The transformation model defines the nature of the geometric

transformation between the two images. The selection of the model depends on the

expected deformations in the imaged object and this selection critically affects the

accuracy of the final registration outcome.

Objective function The objective function measures the quality of the registration. Typ-

ically an objective function consists of two parts: The (dis-)similarity measure

M, which quantifies the alignment between images and the regularization term
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R, which constrains the solution domain. A typical objective function can be ex-

pressed as follows:

M (IF (x) , IM (T (x))) + λR (T ) (2.1.3)

where λ represents the trade-off between similarity and regularization. The choice

of appropriate measure in the objective function depends on the modalities involved

in the given registration task as well as the image quality, texture and the amount of

deformation between the fixed and moving images.

Optimization algorithm The optimization tries to find the parameters of the transforma-

tion model that maximize (or minimize) the similarity (or dis-similarity) measure.

In rare cases where landmark associations are available the optimal parameters of

the transformation model can be directly calculated, but in general more sophisti-

cated optimization algorithms are needed to find the optimal transformation model.

In addition to the three key parts described above, there are several support modules in-

volved in registration, such as image interpolation, hierarchical strategies and pre-processing.

Interpolation The mapped point from one image domain to the other is unlikely to coin-

cide exactly with its grid positions. Hence, interpolation has to be used to calculate

the image values of the non-grid positions using grid values. The most common in-

terpolation functions used in medical image registration are nearest neighbor, linear

and B-spline interpolators.

Hierarchical strategies The complex and nonlinear objective functions in image reg-

istration lead to many local minima. In order to avoid being trapped by one of

these local minima, most registration algorithms use hierarchical approaches. These

techniques can be classified into three main categories (Lester & Arridge 1999): in-

creasing data complexity, increasing warp complexity and increasing model com-

plexity.

Image preprocessing In order to obtain the best performance, the images for registra-

tion may need to be preprocessed before feeding them to the registration algorithm.

Smoothing, motion correction, segmentation of the relevant organ and normaliza-

tion are some of the preprocessing steps that can be performed.
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Although the registration algorithms vary widely, in general the flow of an image

information based registration algorithm can be summarized by the flowchart shown in

Figure 2.3.

Fixed

Image

Moving

Image

Multi-resolution

Pyramid

Multi-resolution

Pyramid

Objective Function Interpolator

Optimization
Transformation

Model

Figure 2.3: Flow of a typical intensity (voxel information) based registration algorithm

(Klein & Staring 2011).

The deformations between images involved in medical imaging applications are often

non-rigid and the relationships between measured values of the same structure in two

different images can be nonlinear (especially for multi-modal registration). For these

reasons, the resulting optimization becomes highly nonlinear. Several broad reviews of

non-rigid registration techniques have appeared in the literature (Holden 2008, Oliveira

& Tavares 2014, Rueckert & Aljabar 2010, Sotiras et al. 2013, Tustison et al. 2011).

This chapter explores the non-rigid techniques used in different registration methods of

common medical imaging applications.

The rest of this chapter is organized as follows. Section 2.2 explores the nonlinear

similarity measures used in medical image registration, while Section 2.3 investigates

the transformation models and Section 2.4 the methods used in nonlinear registration

problem. Finally Section 2.5 concludes the chapter.

2.2 Similarity Measures
A similarity measure is part of the objective function which quantifies the alignment

between the images be sing registered. Registration algorithms can be broadly classified
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into two main groups, depending on the nature of the information used to calculate the

similarity measure: extrinsic ot intrinsic. Extrinsic methods use artificial markers attached

to the patient, prior to being imaged. These markers are visible in all imaged modalities

and will lead to efficient registration methods where parameters can be calculated explic-

itly. However, due to the invasiveness of attaching markers, restrictions on the number

of markers that can be attached and the difficulty in capturing non-rigid motions, these

methods are limited to rigid registration and pose estimation (Maintz & Viergever 1998).

In contrast, Intrinsic methods rely only on information readily available in the image. De-

pending on the feature space used in the similarity measure, registration algorithms are

broadly classified into three main categories (Sotiras et al. 2013): voxel information-based

methods, image feature-based methods and hybrid methods. Feature-based methods use

landmarks or features extracted from the images in the registration process, while voxel

information based methods use the voxel information (intensity) directly. Hybrid methods

are a combination of the above two techniques. These methods will be further analyzed

in this chapter.

2.2.1 Voxel information-based similarity measures
In voxel information based registration, the similarity measure takes the intensity in-

formation of the two images as input and outputs a value that relates to how well the

two images are aligned. Images for registration can be from the same modality (mono-

modal registration) or from different modalities (multi-model registration) and the type of

similarity measure that best matches the given set of images has to be carefully chosen.

Mono-modal registration

Firstly, we consider the mono-model registration case where the images are acquired

using the same imaging technique. An example of this type of registration would be the

registration of a time-series CT or MRI images in change detection applications. The

simplest similarity measure for mono-modal registration is the sum of square difference

(SSD), which is based on the assumption that corresponding anatomical structures in

two images have similar voxel values, except for Gaussian noise. This measure can be

mathematically represented as follows:

MSSD (θ) =
1

N

∑
x∈ΩF∩ΩM

(IF (x)− IM(T (x)))2 (2.2.1)
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where N is the number of voxels in the overlapping region of these images. SSD would

fail in cases when the images contain some voxels with large errors (outliers), as these

high error values skew the objective function. Outliers can commonly occur in medical

imaging due to the injection of contrasting agents or position changes of the patient in

two time-lapse images (Hill et al. 2001). This problem can be mitigated by using the

sum of absolute difference (SAD) similarity measure, which is more robust to outliers.

However, it should be noted that unlike SSD, SAD is not generally differentiable, which

complicates the optimization part of the registration process.

MSAD (θ) =
1

N

∑
x∈ΩF∩ΩM

|IF (x)− IM(T (x))| (2.2.2)

The assumption that the voxel values are similar except for Gaussian noise is very re-

strictive and a more realistic assumption would be to hypothesize a linear relationship be-

tween intensities. For this assumption the optimal similarity measure is cross-correlation

or normalized cross-correlation of image intensities, which can be represented as:

MCC (θ) =

∑
x(IF (x)− μF )(IM(T (x))− μM)∑

x

√∑
x(IF (x)− μF )2

∑
x(IM(T (x))− μM)2

; x ∈ (ΩF ∩ΩM). (2.2.3)

In the above measure, μF and μM are the mean intensities of the fixed and moving images,

respectively. It is important to note here that, even though the relationship between the

intensity values of the two images is assumed to be linear, the resulting cost functions will

be nonlinear.

The assumption of linear relationships between corresponding voxels becomes unre-

alistic in some mono-modal medical image registration applications where the organ of

interest is made up of soft tissue and undergoes elastic deformations. An example of this

scenario would be the registration of lung CT images acquired at different states of the

respiratory cycle. The density of tissue, which is measured by CT, may vary depending

on the volume of the air inside the lung. Hence, the intensity of the same anatomical

structure would change during the breathing cycle. In order to overcome this problem

specifically in lung image registration, there have been methods developed that assume

a nonlinear relationship between voxel values, using the conservation of mass principle.

Gorbunova et al. (2012) assumed that the mass of parenchyma remains constant and the

density of the lung tissue is inversely proportional to the amount of air. The change in
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volume was calculated using the determinant of the Jacobian (Yin et al. 2009) and this

was integrated into the SSD model to obtain the following cost function:

MMP (θ) =
1

N

∑
x∈ΩF∩ΩM

(If (x)− |JT (x)| .IM(T (x)))2 (2.2.4)

where |JT (x)| is the determinant of the Jacobian of the transform model.

Castillo et al. (2012) and Castillo, Castillo, Zhang & Guerrero (2009) also used the

principle of mass preservation but in an optical flow framework. They modeled the mass

preservation assumption (
∫
Ω
IF (x)dx =

∫
Ω
IM(x)dx) using the following optical flow

equation:

IF (x) +�IM(x).v + IM(x).div(v) = 0 (2.2.5)

where v is the velocity field in the image. The above model is equivalent to the normal

optical flow model (IF (x) +�IM(x).v = 0) when the flow field divergence is zero or in

other words the object is incompressible. The integrated form of Equation 2.2.5 (Corpetti

et al. 2002) leads to the following compressible flow similarity measure:

MCF =
1

N

∑
x∈N(x)

(ln (IF (x))− ln (IM(T (x))) + div(T (x)− x))2 . (2.2.6)

It is important to note that most similarity measures such as SSD and SAD assume

independence between intensities from voxel to voxel and do not incorporate any spatial

information. This means that if the same permutation of voxel indices is applied to both

images the resulting similarity measure will be unchanged. To account for the spatially

varying intensity distortions, Myronenko & Xubo (2010) developed a new similarity mea-

sure named residual complexity. To arrive at the correct form of this measure, they first

introduced an intensity correction field that represents the differences of intensities of the

registered images. By analytically solving for this correction field and using adaptive

regularization, they derived the following similarity measure:

MRC =
N∑

n=1

log

(
(qTn r)

2

α
+ 1

)
(2.2.7)

where r = (IF (x)− IM(T (x))) and qi is an eigenvector of Q where QΛQT is the spectral
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decomposition of P TP . P is the regularization operator of the correlation field.

Multi-modal registration

Secondly, we will consider the similarity measures for multi-modal image registration

where the voxel intensities of the images to be registered are generated through different

acquisition methods (physical processes). In this type of application, the relationships be-

tween the voxel intensities of the same structure are generally complex and information

theory measures such as Mutual Information (MI) proposed by Viola & Wells III (1997)

and Collignon et al. (1995) have attracted much attention. These MI-based methods only

assume a probabilistic relationship between the voxel values belonging to the same struc-

ture. It is important to note that, although these methods are specifically developed for

multi-modal registration, they can also be directly applied to mono-modal applications.

Mutual information is a measure of how well one image explains the other image. If

the images are well registered, the knowledge of one image will significantly reduce the

uncertainty about the other image. This reduction of uncertainty can be quantified using

conditional entropy, which measures how well the intensity of a voxel in one image pre-

dicts the intensity of the corresponding voxel in the other image. The resulting similarity

measure can be written as:

MMI = H(ITM)−H(ITM | IF ) (2.2.8)

where H(I) is the Shannon entropy of the image intensities and H(ITM |IF ) is the condi-

tional entropy of image ITM given IF . MI can also be represented in two alternative forms

using the joint entropy and Kullback-Leibler distance as follows (Pluim et al. 2003):

MMI = H(IF ) +H(ITM)−H(IF , I
T
M) (2.2.9)

=
∑

x∈IF ,y∈ITM

p(x, y) log
p(x, y)

p(x).p(y)
(2.2.10)

Figure 2.4 shows the joint histograms between a brain MRI image and a rotated ver-

sion of itself. These plots show that when the images are perfectly registered the joint

histogram is concentrated, whereas when the misalignment increases the joint histogram

becomes dispersed. The mutual information value for each case is also shown in this fig-

ure and we can see that the more the images are aligned, the larger the mutual information
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values.

Mutual Information = 1.4361 Mutual Information = 0.99471

Mutual Information = 4.8373

Figure 2.4: Joint histograms between the original image (top-left) and rotated versions

of it. (top-right) no rotation, (bottom-left) rotated by 2 degrees (bottom-right) rotated by

15 degrees.

The above MI measure is sensitive to the overlap between the images i.e. it is not over-

lap invariant. To address this problem, Studholme et al. (1999) proposed the normalized

mutual information (NMI) similarity measure given in Equation 2.2.11.

MNMI =
H(IF ) +H(ITM)

H(IM , ITM)
(2.2.11)

Cahill et al. (2008) further analyzed the overlap invariance of several information theory-

based similarity measures including NMI and found that in some cases those methods

would still fail. To make the NMI measure overlap invariant, they introduced a modified

form of NMI.

Another drawback of mutual-information based methods is that they do not consider

the relevant spatial information. As a result, MI-based similarity measures may face prob-

lems in the presence of local structures or spatially-varying intensity distortions. Various

techniques have been proposed that integrate spatial information in the MI cost function.

For instance, Pluim et al. (2000) proposed a new measure that combined mutual infor-

mation with spatial information given by gradient magnitude and orientation. The new

measure was constructed by simply multiplying the NMI cost function with a proposed
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gradient measure. In contrast, Rueckert et al. (2000) incorporated the spatial information

using the second order entropy and joint entropy in the calculation of NMI.

Another approach to include spatial information in the MI cost function is to use

local estimation of the mutual information by progressively subdividing the images (An-

dronache et al. 2006, Likar & Pernu 2001). Studholme et al. (2006) combined these

regional terms into one global cost function called Regional Mutual Information (RMI).

RMI incorporates the regional information describing the global relationship between in-

tensities as a third channel of information (in addition to the two intensity channels) in the

MI calculation. Using additional channels in MI calculation is computationally expensive

and Klein et al. (2008) proposed to reduce the computational complexity by using random

sampling. Loeckx et al. (2010) also incorporated a third spatial dimension to create the

conditional mutual information (cMI) similarity measure.

Local structural information can also be added to MI computation using graph-based

α-MI techniques (Hero et al. 2002, Staring et al. 2009). Recently, Rivaz et al. (2014) and

Rivaz & Collins (2012) used self-similarity, which measures the similarity of one image

patch to another patch in the same image in a weighted graph based α-MI implementation

for non-rigid image registration.

Calculation of mutual information involves some nontrivial and sensitive smooth-

ing parameters for density approximations and the resulting cost function is highly non-

convex and contains many local minima. In order to overcome these limitations, Haber

& Modersitzki (2006) and Modersitzki (2009) proposed the use of Normalized Gradient

Fields (NGF). The rationale behind this is that if the images are mis-registered, the angle

between the two gradient fields at a given point will be non-zero. The resulting similarity

measure can be expressed as:

MNGF =
1

2

∑
x∈Ω

‖nε(IF , x)× nε(IM , T (x))‖ (2.2.12)

where

nε(I, x) =
�I(x)√

�I(x)′�I(x) + ε2
(2.2.13)

Ruhaak et al. (2013) have used this similarity measure in registration of full-body CT and

PET images.
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2.2.2 Image feature based similarity measures
The next class of image registration algorithms is based on matching image features.

These methods first identify anatomically important points, curves or surface landmarks

of the images. Once the correspondences are established between the landmarks, a sim-

ilarity measure (SSD) that minimizes the Euclidean distance between points can be used

to calculate the model parameters. A detailed review of feature-based registration meth-

ods was provided by Audette et al. (2000). The interest in the use of pure feature-based

methods has gradually diminished, since the landmark or feature extraction processes

introduce some errors that propagate through the algorithm. Moreover, the need for ex-

trapolation/interpolation from a sparse set of landmarks to recover the dense deformation

field means that the estimation of those fields away from the landmarks will be unreliable

(Sotiras et al. 2013).

Intensity-based methods only account for intensity patterns and do not take into ac-

count the structure, while feature-based methods only use sparse landmarks. The hybrid

algorithms combine the two in order to achieve more robust registration results (Rueckert

& Aljabar 2010).

2.3 Transformation Model
The transformation model in the image registration context is a spatial mapping from

one image domain to another. The transformation model that best matches a given regis-

tration application depends on the underlying deformations that are to be recovered. For

example, if the object of interest is rigid in nature (skull, teeth), a transformation model

with few parameters can be used to model the deformations involved. On the other hand,

if the object of interest is made up of soft tissue (lung, heart) more complex models with

high degrees of freedom are needed. Many transformation models are used in medical

image processing and these can be either linear or nonlinear. The definition of a linear

transformation function is as follows:

Definition 2.1. Let V and W be two vector spaces over the same scalar field F . A

function

T : V → W (2.3.1)

is said to be a linear transformation if the following two properties hold for any two points
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x, y ∈ V and scalar λ ∈ F (Rynne & Youngson 2008):

T (x+ y) = T (x) + T (y) (2.3.2)

T (λx) = λT (x). (2.3.3)

In general, linear transformations map a line to a line or a point. In contrast, nonlinear

transformations map lines to curves. In most cases of medical image registration the

nature of the deformations is nonlinear due to the non-rigid nature of organs and muscles.

Hence, transformation functions that are used are mostly nonlinear.

The objective of image registration is generally to map the moving image to the co-

ordinate system of the fixed image, which is called the forward transformation. How-

ever, most algorithms due to the practical advantages calculate the inverse transformation

(transformation from fixed image to moving image). The rationale behind this choice

(Sotiras et al. 2013) is that if a forward transformation is calculated, in order to generate

the transformed image each grid point in ΩM needs to be transformed using the calcu-

lated transformation function followed by a scattered data interpolation. Due to the large

number of points, the computational cost of the interpolation would be huge. On the other

hand, if the inverse transformation is calculated, the values of the transformed image can

be calculated by transforming each point in the new grid to ΩM and picking the relevant

value from the moving image (when the transformation leads to a non-grid position in the

moving image, intensity interpolation can be done using neighboring voxels), which has

far less computational workload. Figure 2.5 further elaborates this point.

Transformation models can be grouped into two main categories: rigid and non-rigid.

Rigid transformation, which is the simplest type of transformation function used in medi-

cal imaging, can be used to match images that are of bone structures or enclosed by bone

structures. Rigid transformation is a combination of a rotation and a translation, which

in three dimensions can be represented by three rotation and three translation parameters.

The rigid transformation falls within the broader category of affine transformations that

can be expressed using the following equation:

x
′
[d×1] = A[d×d] · x[d×1] + b[d×1] (2.3.4)

Affine transformation consists of a linear transformation (A·x) representing rotation, scal-
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(a) Inverse Transform

(b) Forward Transform

Figure 2.5: Inverse transformation vs.forward transformation.The figure shows that us-

ing inverse transform is computationally advantageous.

ing and shear and a translation vector (b). Except for the special case where the translation

part is zero, the affine transformation in general is nonlinear, contrary to its appearance

which has caused some authors to classify it as a linear transform (Glocker et al. 2011,

Lester & Arridge 1999). Due to the scaling and shear components, the general affine

transformation is also categorized as non-rigid. Affine registration is sometimes used in

cases where images are distorted due to the physical characteristics of the acquisition sys-

tem. It is also extensively used as a pre-registration technique in complex registration

algorithms with large degrees of freedom.

The limited degrees of freedom allowed by affine or rigid transformation is not ad-



CHAPTER 2. NON-RIGID IMAGE REGISTRATION 23

(c) (d)

(a) (b)

Figure 2.6: Original image and the image after an affine transform. The transformation

of both the grid and the intensities are shown.

equate to represent the complex deformations involved in medical image registration.

Hence, non-rigid registration models with much higher degrees of freedom have been

introduced. Holden (2008) and Sotiras et al. (2013) categorized those non-rigid registra-

tion algorithms into three main groups: transformations derived from physical models,

transformations derived from interpolation theory and constraints on transformation.

2.3.1 Transformations derived from physical models

These models use the characteristics of physical phenomena such as elastic material

and viscous fluid flows to model the deformations in medical images.

Elastic models

Elastic models assume that the images behave similar to elastic bodies under defor-

mation. Here, the external forces due to the mismatch in images (driving forces in regis-

tration are calculated using the similarity measure) are balanced with the internal forces

that impose smoothness in the deformation field. The elastic deformations of an object
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can be represented using Navier-Cauchy equation:

μ∇2u(x) + (λ+ μ)∇(∇Tu(x)) + f(x) = 0 (2.3.5)

where, f(x) is the external force that drives the registration, which is the similarity mea-

sure, u(x) is the deformation at point x, μ quantifies the stiffness of the material and λ is

the Lamés first coefficient.

This Navier-Cauchy partial differential equation leads to an optimization problem

which can be solved in many ways, including variational, finite difference, finite ele-

ment, basis function expansions and Fourier transform methods (Broit 1981, Christensen

et al. 1994, Gee et al. 1994, Modersitzki 2004).

One of the drawbacks in using this model is that the resulting transformation is not

inversely consistent. This can be corrected, either by adding a constraint that penalizes

the inverse inconsistency (after calculating forward and backward transformations), or

by coupling the forward and backward transformations in deriving the final transforma-

tion. A detailed description of this is provided later when constraint on transformation is

explained.

In the linear elastic model explained above, the second order terms of the displacement

field gradients are ignored. This means that the relationship between stress and strain is

assumed to be linear, which makes this model incapable of handling large deformations.

To overcome these issues, nonlinear elastic models are developed. These models were

based on hyper-elastic material properties (Rabbitt et al. 1995) and St Venant-Kirchoff

elasticity energy (Pennec et al. 2005).

Fluid flow

In fluid flow models the images are assumed to behave as viscous fluids under defor-

mation. Since these models do not assume small deformations, they can be used to model

images that have undergone large non-rigid deformations.

The fluid flow transformation model can be represented by the following Navier-

Stokes partial differential equation.

μ∇2v(x) + (λ+ μ)∇(∇Tv(x)) + f(x, u) = 0 (2.3.6)
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This equation is very similar to the elastic model equation in the previous section. The

only difference is that in the fluid flow model a velocity field is used instead of the de-

formation field. In the above equation, the first term imposes spatial smoothness of the

velocity field while the second term allows for expansions and contractions. λ and μ are

the viscosity coefficients.

Finding the solution to fluid flow models involves solving a large set of partial dif-

ferential equations. The earliest implementations used successive over-relaxation, which

is computationally expensive (Christensen et al. 1994). Christensen et al. (1996) used

parallel computations to reduce the computational time. Some faster ways of solving dif-

ferential equations such as scale-space convolution with a filter (impulse response of the

regularization operator) (Bro-Nielsen & Gramkow 1996) have also been proposed.

2.3.2 Transformations derived from interpolation theory

In the transformation models that belong to this category the displacement field is

modeled using functions derived from interpolation and approximation theories. The

requirement to intercept sample values is relaxed in approximation, assuming errors in

sample values (Holden 2008). In these methods firstly the basis function centre points (or

control points) are selected, and then the parameters of each basis function are adjusted

(or calculated) to fit the deformation field.

Radial basis functions

Radial basis functions are the most commonly-used interpolation theory-based trans-

formation models in landmark-based image registration. The value of a radial basis func-

tion (RBF) depends only on the distance from its control point. Several such basis func-

tions placed on the spatial domain of the image can be used to model the deformation

field of the image effectively. The transformation function based on RBF can be defined

as follows:

T (x) = x+
N∑
k=1

θkR(‖x− xk‖) (2.3.7)

where θk are the parameters that control the shape of the deformation field, xk, k ∈
[1 . . . N ] are the RBF control points and R(·) is the radial basis function kernel. One

of the advantages of radial basis functions is the ability to place the control points in an
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irregular grid, which enables modeling non-uniform deformations with fewer parameters

than a grid-based control point placement scheme.

In landmark-based registration, the radial basis function is combined with a polyno-

mial basis. The polynomial basis φ(x) is added to account for the more global deforma-

tions while the RBF part highlights the local changes. This transformation function can

be expressed as follows:

T (x) = x+
N∑
k=1

θkR(‖x− xk‖) +
m∑
j=1

θ(N+j)φj(x) (2.3.8)

Once the problem is in this setting, if the landmarks and their correspondences are

available, a closed form solution can be found as the RBFs are positive definite. Some of

the radial basis functions commonly used in the literature are given in Table 2.1.

Table 2.1: Commonly used radial basis function kernels where r = ||x− xk||

Thin-plate spline r2i logri

Multi-quadratic
√
r2i + d2

Inverse multi-quadratic (r2i + d2)−1/2

Genaralized multi-quadratic (ri + c21)
c2

Gaussian e−(ri/c1)
2

The radial basis function described above has a global support region, or in other

words a given control point affects the entire deformation field. This property has adverse

affects when there are outliers or the desired deformation field is local.

In medical image registration a given image may contain several local motions due to

the presence of different anatomical structures. In order to recover these types of local

motions RBFs that have compact spatial support are proposed. Examples of these func-

tions are the Wendland Function and Wu‘s compact support RBF (Rohde et al. 2003).

Free-form deformation (FFD)

The main idea behind free-form deformation (FFD)-based image registration is to

match two images by deforming one image by manipulating a grid of control points su-

perimposed over that image. FFD is the most widely used transformation model in medi-

cal image registration. Typically, the control point grid is a rectangular grid with arbitrary

resolution which is coarser than that of the image. The control points are moved in such
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a way that a similarity measure is maximized and the deformation at each voxel is then

calculated by interpolation using locally supported kernels such as B-splines.

A B-spline function is a compact support kernel which makes it suitable for modeling

deformation fields with local motions.The B-spline kernel of order zero is a rectangle

function and the higher order kernels are calculated by convolution of the zero order

kernel with itself N times (N is the degree of the kernel).The first four B-spline kernels

are shown in Figure 2.7.
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Figure 2.7: B-spline kernels.

These spline kernels are stitched together over the image domain in a rectangular grid

in order to model the deformations of the image. Given the compact support of the B-

spline kernel, the deformation of a particular point represented by a B-spline would only

depend on several control points in the immediate neighborhood of that point. Using this

property, for a 3D control point grid with spacing [δx, δy, δz] the multivariate extension of

a cubic B-splines-based FFD transformation model can be written as follows (Rueckert

et al. 1999):

T (x) = x+
3∑

l=0

3∑
m=0

3∑
n=0

Bl,3(u)Bm,3(v)Bn,3(w)di+l,j+m,k+n (2.3.9)

where i = 	x/δx
 − 1, j = 	y/δy
 − 1, k = 	z/δz
 − 1, u = x/δx − 	x/δx
, v =

y/δy − 	y/δy
 and w = z/δz − 	z/δz
.

The cubic B-spline functions in the above equation are:
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B0,3(u) =
(1− u)3

6
(2.3.10)

B1,3(u) =
3u3 + 6u2 + 4

6
(2.3.11)

B2,3(u) =
−3u3 + 3u2 + 3u+ 1

6
(2.3.12)

B3,3(u) =
u3

6
(2.3.13)

The B-spline kernels are also C2 smooth at the control points which provides continu-

ity when the control points are moved. This enables the B-spline transformation model

to generate smooth deformations. An example of a B-spline transformation is shown in

Figure 2.8 where the control points are placed in a regular grid.

Rueckert et al. (1999) used the B-spline motion model after an affine pre-registration

step for non-rigid registration of contrast-enhanced breast MRI images. In their work,

NMI was used as the similarity measure. Kybic & Unser (2003) used the B-spline de-

formation modal coupled with a SSD similarity measure to register images from MRI,

SPECT, CT and ultrasound modalities. Their method also included a soft landmark-based

constraint to guide registration in difficult scenarios.

(a)

(c)

(b)

(d)

Figure 2.8: Original image and the image after a B-spline transform.The transformation

of both the grid and the intensities are shown together with the control point locations.
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The control node displacements act as parameters in a FFD. Hence, the details cap-

tured by the deformation field depend on the resolution of the control point grid. Large

spacing enables the modeling of global deformations, whereas small spacing represents

highly local deformations. The number of control points also directly affects the compu-

tational complexity of the resulting optimization problem. The optimal control point grid

is decided based on the model’s flexibility and computational complexity.

The B-spline-based FFD framework does not guarantee the preservation of topology

and there are several methods that can be employed to rectify this issue. Noblet et al.

(2005) enforced topology preservation by controlling the Jacobian of the transformation

and Kim (2004) suggested a sufficient condition for local invariability. Chun & Fessler

(2008) extended this and proposed a new penalty-based approach for topology preserva-

tion B-spline transformation.

Although in the basic implementation of B-spline-based FFD the control point grid is

uniform, there has been some work that employs a non-uniform grid (Jacobson & Murphy

2011, Wang & Jiang 2007).

Wavelet and Fourier

Fourier series and wavelet functions are extensively used to represent signals. In

Fourier representation the signal is characterized as a combination of sinusoidal signals

which localize the signal in the frequency domain. On the other hand the wavelet rep-

resentation localizes the signal in both frequency and spatial domains, making it ideal to

represent localized deformations (Wu et al. 2000).

One of the major attractions of these techniques in modeling deformation fields is

their ability to decompose into multi-resolution.

Local affine

In locally affine transformation models, the image domain is partitioned into indepen-

dent blocks and for each block a rigid or affine transformation is calculated by maximizing

a voxel-based similarity measure (Pitiot et al. 2003). An issue with this local transforma-

tion is that it may not be continuous at the block edges. In order to overcome this issue,

regularization can be performed using either nonlinear interpolation or filtering. Another

possible solution is to use fuzzy regions instead of the definitive independent blocks (Ar-

signy et al. 2005).
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One of the parameters which needs to be selected is the size of the block. This param-

eter controls the degrees of freedom in the registration. If a small block size is selected

there will be inadequate information inside the block to find the registration, while a large

block size may not capture local deformations. Several algorithms are proposed in the

literature that can automatically calculate the appropriate block size using image infor-

mation such as structural information, residual error and motion.

2.3.3 Constraints on transformation
Constraints on transformation models limit the available solution space by imposing

constraints based on prior knowledge of the physical properties of the objects in the reg-

istration problem.

Inverse consistency

Given two images IF and IM to be registered, a basic assumption would be that the

transformations that map moving to fixed images TMF : (IM ← IF ) and fixed to moving

images TFM : (IF ← IM) are directly related:

TMF = T−1
FM (2.3.14)

However, most of the existing algorithms are asymmetric, which violate the above

condition. Hence, the accuracy of these algorithms may vary, depending on which image

is selected as the fixed image.

One option in overcoming this issue is to add an additional term to the objective func-

tion that penalizes the difference between the forward and reverse transformation (Chris-

tensen & He 2001).

RIC =
∑
x∈Ω

(
TMF (x)− T−1

FM(x)
)

(2.3.15)

Another solution is to transform both images to the same domain and construct the

final transform by taking the inverse of one part and adding it to the other.

Topology preservation

The aim of topology preservation is to keep the connected structures together and

maintain the neighborhood relationship between structures. This will prevent the disap-
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pearance of existing structures and the appearance of new structures in the image (Musse

et al. 2001). In order to preserve topology, the transformation function must be continu-

ous, bijective and the determinant of the Jacobian must be positive.

Diffeomorphic transformation

A diffeomorphic transformation maps a differentiable manifold to another differen-

tiable manifold such that both the function and its inverse are differentiable. This means

that a diffeomorphic transformation has a unique inverse which maps that fixed image

back to the moving image. The diffeomorphic assumption is violated in some cases

such as images before a surgery and after, where some anatomical structures are changed

(Christensen 1999). Diffeomorphic mapping also guarantees topology preservation.

Continuum mechanical methods such as linear elasticity and viscous fluid were used

to enforce diffeomorphism by Christensen (1999) and Christensen et al. (1996).

Vercauteren et al. (2007) used the demons algorithm combined with the Lie group

framework on diffeomorphism and an optimization procedure on Lie groups to provide

non-parametric free-form diffeomorphic transformation.

2.4 Optimization

The optimization procedure tries to find the transformation model that best aligns the

images according to an objective function.The objective function Ψ employed by most

image registration scenarios is nonlinear as well as non-convex.

Ψ(θ) = M(IF (x), IM(T (x))) +R(Tθ) (2.4.1)

Here M is the similarity measure which quantifies the alignment between the two images

and R is a regularization term that incorporates a prior known property of the deformation.

The similarity form for most problems is organized such that when the alignment is at the

highest, the value of the similarity measure is the minimum (used like a dissimilarity

measure). This leads to a nonlinear optimization problem of the form:

θ̂ = arg min
θ

[Ψ(θ)] (2.4.2)
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where θ represents the parameters of the transformation and θ̂ stands for the optimal

parameters that best align the images.

In some cases the parameters of the registration can be calculated directly by solving

a set of linear equations. An example of such a scenario is landmark (with correspon-

dences) based registration using radial basis function. Other than these specific cases,

most registration problems need an iterative approach to find the optimum transformation

model. These optimization algorithms can be categorized into two main parts: continuous

optimization and discrete optimization.

2.4.1 Continuous optimization
Continuous optimization methods can be used in problems where the parameters are

real valued and the objective function is differentiable. Generally, these methods update

the parameters using an iterative method that follows the equation:

θn+1 = θn + αngn(θn) (2.4.3)

where θ are the model parameters, n is the index of the current iteration, αn is the step

length and gn(θn) is the search direction. There are several methods that belong to this

category and they differ based on the method used to calculate step length and search

direction.

In gradient descent (or steepest descent) the cost function gradient at the current po-

sition is selected as the search direction. Once the direction is set, a line search method

or a gradually decreasing function can be used as the step length (Klein et al. 2007). The

gradient descent has a low convergence rate and a better method in terms of convergence

is the nonlinear conjugate gradient method, where the search direction is along the gra-

dient component from which the previous gradient direction is excluded. In both of the

above algorithms the knowledge of a mathematical model is needed in order to calculate

the gradients. However, in Powell’s conjugate gradient method no such information is

needed as it does not calculate gradients.

In quasi-Newton methods, the Hessian of the objective function is set as the step

length. Because the calculation and inversion of the Hessian are computationally expen-

sive, an approximation of the Hessian is commonly used. Some well-known methods to

approximate the Hessian are Symmetric-Rank-1, Davidon-Fletcher-Powell and Broyden-
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Fletcher-Goldfarb-Shanno.

The Gauss-Newton method is a gradient-based optimization method that can be em-

ployed when the objective function is in the form of sum of squares. Calculation of the

Hessian, which is computationally expensive, is not needed for this method. Here Hessian

is approximated using the Jacobian and the search direction is given by (JT (θ)J(θ))−1∇θ.

The Levenberg-Marquardt method is also used to optimize a function defined as the sum

of squares but here the parameter updates are adaptively changed between gradient de-

scent update and Gauss-Newton update. The search direction is given by JT (θ)J(θ) +

λdiag(JT (θ)J(θ))−1∇θ. The advantage of this method is that it can converge to the so-

lution starting from a location far away from the final solution.

Another very popular method in medical imaging is the stochastic optimization, where

an approximation of the gradient is used as the search direction together with a dimin-

ishing step size. The gradient approximation can be calculated using either analytical

gradients or only a subsample of points, the Kiefer-Wolfowitz method or simultaneous

perturbation. Klein et al. (2007) showed that of the above methods, analytical gradients

calculated using only a subset of points selected by uniform sampling is the most efficient.

Uniform sampling gives equal significance to all the voxels in an image and since the true

function in this case is not distributed uniformly, using only a subset of voxels produces

a biased estimate of the gradients. To reduce the sampling bias, they proposed renewing

the set of chosen samples at every iteration of the optimization routine, giving equal sig-

nificance to all the voxels. To improve the registration accuracy, Bhagalia et al. (2009)

introduced the idea of using the importance sampling (IS) technique to select a subset of

voxels. Tennakoon et al. (2014) proposed the use of rank ordered statistics-based robust

segmentation technique on the intensity difference image to identify the relevant voxels

for registration and used these in calculating the gradients.

2.4.2 Discrete optimization

Discrete optimization schemes are used when the parameters of the optimization prob-

lem are in discrete forms. For instance, the image registration problem can be seen as a

discrete optimization problem when posed as a metric labeling problem. However, gener-

ally this will result in a non-convex energy with many local minima and the optimization

would involve a large set of parameters in which finding a solution is computationally
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expensive. Kleinberg & Tardos (2002) have shown that the original registration problem

when posed as a metric labeling problem is equivalent to a discrete Markov random fields

(MRF) minimization problem, where the aim is to assign each node (voxel or parameter)

a label l ∈ L (where L is a discrete label set) which minimizes an energy function E(l)

of the following form:

E(l) =
∑
p∈P

Dp(lp)︸ ︷︷ ︸
Data Term

+λ
∑

{p,q}∈N
Vp,q(lp, lq)

︸ ︷︷ ︸
Smoothness Term

(2.4.4)

In this equation, Dp(lp) is the cost of assigning label lp to node p and V(p, q)(lp, lq) is

the cost of assigning labels lp, lq to neighboring pixels p, q. Recently many techniques

have emerged that can solve this problem efficiently and these methods can be segmented

into three main groups (Glocker et al. 2011): graph-cut based methods, message passing

methods and linear programming methods.

Graph cut-based methods use the max-flow min-cut principle (Ford & Fulkerson

2010). Here a graph is constructed where each node is connected to its neighbours and

two special nodes called the source and the sink. Once the graph is constructed, the mini-

mum cut that segments this graph into two partitions is given by the saturated edges at the

maximum flow from source to sink. Boykov et al. (2001) extended this idea to multiple

labels. They introduced two algorithms: the α − β-swap and α-expansion for energies

where V(p, q)(·) is semi-metric and metric, respectively. These methods use large moves

compared to standard algorithms making them computationally efficient and there is also

a theoretical guarantee of convergence within a known factor (vicinity) of the global mini-

mum. So & Chung (2009) and So et al. (2011) formulated the image registration problem

as a discrete labeling problem and assigned each voxel a discrete displacement label.

They used an energy function which comprised of SAD as the data term and a smooth-

ness term that penalizes the difference in displacement in adjacent voxels. They used the

α-expansion algorithm to derive the optimal labeling.

Graph cut methods can only be applied to a limited set of energy functions (Kol-

mogorov & Zabin 2004). However, the Markov random fields problem discussed above

can be at least approximately solved using the max-product belief propagation (BP) tech-

nique introduced by Pearl (1988). BP uses local messages passed along the edges of a

graphical model to derive the solution. The solution will only be exact in the case when
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the graph is a tree, but if the graph contains loops only an approximate solution can be

found. The generalized BP algorithm proposed by Yedidia et al. (2000) achieves better

convergence than the ordinary BP. Max-product tree-reweighed message passing (TRW)

introduced by Wainwright et al. (2005) is a more generalized version that efficiently finds

the solution to any type of graph and this approach was further modified by Kolmogorov

(2006). A detailed description of the BP algorithm is provided in Kschischang et al.

(2001), Szeliski et al. (2008).

Shekhovtsov et al. (2008) and Lee et al. (2008) used the TRW algorithm in 2D and 3D

intensity-based image registration respectively. They decomposed the graph into single

dimensional graphs in order to reduce the computations. Kwon et al. (2011) used TRW

to optimize an energy that contains a dense local descriptor as data term and higher order

smoothness prior.

Linear programming-based methods try to improve efficiency by solving a linear pro-

gramming relaxation of the original labeling problem. These methods are generally faster

than graph cut-based methods and the regularization term does not have to be metric as

in α-expansion. Glocker et al. (2008) used the free-form deformation model with B-

splines to reduce the dimensionality of the problem and used an energy function that is

projected onto the control points (which comprised of an arbitrary similarity measure and

a smoothness measure that penalizes the difference in adjacent parameter labels). Then

the problem is modeled as an equivalent integer program which was subjected to linear

program relaxation. The optimal labeling is then found by using the fast primal-dual al-

gorithm (Komodakis et al. 2007). Additionally, they used a hierarchical warping scheme

to account for the large deformation and imposed a hard constraint to preserve the dif-

feomorphism. In Glocker et al. (2011) the authors extended this work to integrate both

iconic and geometric registration into a unified formulation and proposed two algorithms.

The first is a computationally-efficient implementation while the second uses a tight re-

laxation.

2.4.3 Hierarchical methods

The hyper surface that represents the objective function in medical imaging is com-

plex and may contain many local minima and the gradient-based approaches explained

earlier may be trapped in these local minima and return a sub-optimum solution. Hi-
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erarchical strategies are often used to overcome the above problem in the optimization

process. These methods can be broadly categorized into three main parts: increasing data

complexity, Gaussian scale space and increasing model complexity.

In increasing data complexity, the image is down-sampled and a coarser version is

used in the initial registration levels and gradually finer images are used in subsequent

levels. In Gaussian scale space the initial levels use an image convolved with a Gaussian

kernel with large standard deviation and the standard deviation is gradually reduced in

subsequent steps. In most practical implementations these two methods are combined.

In the increasing model complexity method, the initial registration is performed using

a transformation model that has low degrees of freedom such as the affine or rigid motion

and then the degrees of freedom are increased in subsequent steps.

2.5 Summary
Image registration of medical images is a fundamental task in image processing and

it has been studied for over three decades. Due to the nonrigid motions associated with

soft tissue, the different types of modalities involved in capturing these images and the

large number of parameters needed to model the associated deformation image registra-

tion problem, the associated objective function, transformation models and optimization

procedures are highly nonlinear.This chapter has outlined the nonlinear methods used in

the key stages of solving the medical image registration problem.



37

Chapter 3

Quantification of Smoothing

Requirement for 3D Optic Flow

Calculation

3.1 Introduction
Motion estimation is one of the most crucial and well-studied problems of computer

vision. The underlying task is very general and has a wide range of applications. In the

context of medical imaging, the estimation of motion has received substantial attention.

With the advance of 3D dynamic imaging by MR, CT and ultrasound, motion estimation

has become important in diagnostics, for instance, to assess localized abnormalities in

heart wall motion or vessel distensibility, as well as in radiation therapy planning and to

compensate for soft tissue motion during image-guided interventions.

From the beginning, two distinct approaches to the estimation of apparent motion (or

optic flow) have emerged. The first approach, described by Horn & Schunck (1981),

views estimation as a global optimization problem and attempts to find globally smooth

warping regimes that relate sequential images to each other. The second approach, pre-

sented by Lucas & Kanade (1981), views the problem as a local correspondence problem.

In both of the above approaches, smoothing plays a crucial role. The optic flow, due to

the well-known aperture problem, is ill-posed and cannot be solved for a single data point

(a pixel in 2D or a voxel in 3D). Therefore, some degree of smoothing or regularization

is always required.



CHAPTER 3. QUANTIFICATION OF SMOOTHING REQUIREMENT FOR 3D OPTIC

FLOW CALCULATION 38

From a historical perspective, the global and local approaches were conceptually

much closer at the beginning (in the late 1970s and early 1980s) than they are now. A

typical test image sequence of the time consisted mostly of a few thousand gray level

pixels (small digitized TV signal) of usually a single flat moving object (see the Results

section of Horn & Schunck (1981)). Therefore, it is important to interpret their asser-

tion that apparent velocity “varies smoothly almost everywhere in the image” (Horn &

Schunck 1981) in its context, which is very different to today’s concept of an image se-

quence typically containing a large amount of detail including several motions.

It is also important to note here that, although some excellent results have been pro-

duced by refining global methods (Bruhn, Weickert, Kohlberger & Schnörr 2005, Moder-

sitzki 2008, Papenberg et al. 2006) and the accuracy of optical flow estimation, as mea-

sured by the Middlebury benchmark (Baker et al. 2011), has been improving, the effect of

local smoothing on the estimation accuracy is yet to be fully understood. To examine the

underlying cause of the success of those methods, a baseline method similar to Horn &

Schunck (1981) was used in Sun et al. (2010) to study the influence of different choices of

how to model an appropriate objective function and its approximation (for computational

tractability) and optimization on the overall accuracy. Their comparisons showed that ap-

plying a median filter to optical flow estimates in different iterations of those algorithms

produced the most significant improvements. Although this is a form of local smoothing,

a theory of how much spatial smoothing is required, at a given scale, is yet to be devel-

oped. In particular, the above study does not consider the effect of smoothing imposed

by the Lucas & Kanade (1981) formulation of the optical flow problem. This chapter is

an attempt to address this important question by examining how much smoothing would

be sufficient from a local perspective. In this context, Bruhn, Weickert & Schnörr (2005)

address the question of how to merge global and local approaches, while we aim to an-

swer the question of where the meeting should take place. In other words, the desire is

to study the concept of just enough smoothing: the least amount of smoothing that both

overcomes the ill-posed nature of this problem and ensures the desired accuracy of the

estimation process.

In 2D optical flow estimation, the work of Xu et al. (2012) has shown that the im-

position of global smoothing can be partial toward global changes and highlights those

changes (motions) at the expense of localized variations. In volumetric images, where
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there is no 3D to 2D projection, the bias introduced by imposing more than just enough

smoothness is particularly undesirable. For example, in 4D chest CT scans the lungs dis-

play a complex deformation pattern during the respiratory cycle, with motion boundaries

where the lungs slide along the rib cage and the lung lobes move relative to each other.

The elastic characteristics of airways and large blood vessels differ from those of lung

parenchyma, and pathologic tissue such as pulmonary nodules can be expected to deform

differently from its surroundings. Global smoothing may lead to errors in the estimation

of tumor motion, and thus to inaccuracies in derived treatment plans.

In cases where some prior knowledge does exist, this can simply be included in the

motion models. However, the analysis presented here is based on the distribution of

residuals near a motion boundary and the result does not depend upon the type of model

used.

The concept of just enough smoothing has, in the past, been considered in the context

of scale space theory and in particular, for finding the appropriate scale to terminate a

multiscale hierarchical algorithm (Lindeberg 1998). However, the scale space approach

differs from the robust statistics approach presented in this chapter in a fundamental way.

In the scale space approach, the discontinuities (motion boundaries) are modeled by tran-

sitions toward higher scales, in which small discontinuities, with the exception of the main

motion, are smooth enough to be considered continuous. The problem is then solved at

that scale and the solution is then propagated to the finer scales to recover smaller mo-

tions. The question of just enough smoothing therefore refers to finding the scale at which

the estimation is most reliable.

In robust statistics, the discontinuities are explicitly modeled as separate instances of

a single model (or a finite set of plausible models) and the scale of each instance and the

shape of the smoothing window are estimated concurrently with the model parameters

(Meer 2004). In this context, just enough smoothing refers to the size of the locality (size

of population, bandwidth, etc. depending on the type of estimator) on which the estima-

tion is based. To our knowledge, the relationship between the amount of smoothing and

accuracy of the estimation has thus far not been quantified either by analysis or experi-

ment, and more importantly, no specific link between the amount of sufficient smoothing

and the accuracy of estimation has yet been established.

Comparison of existing results for the calculation of 2D optic flow reveals that for



CHAPTER 3. QUANTIFICATION OF SMOOTHING REQUIREMENT FOR 3D OPTIC

FLOW CALCULATION 40

real images with discontinuous flow (like the Otte image sequence (Otte & Nagel 1994)

in contrast to synthetic images like the Yosemite sequence with fairly smooth flow), local

robust approaches perform as well as global approaches (for instance, compare the results

presented in Table 4 of Bab-Hadiashar & Suter (1998) with those presented in Table 8 of

Papenberg et al. (2006) and Table 5 of Bruhn, Weickert & Schnörr (2005)) and the best

available result thus far (Bruhn, Weickert & Schnörr 2005) is achieved by modeling the

local discontinuities using a robust estimator. Therefore, the question of what should be

the extent of local smoothing is also important in fine-tuning hybrid (combining local and

global) methods.

3.1.1 3D Optic flow estimation

In contrast to 2D optic flow calculation, the use of 3D methods, particularly for dy-

namic CT images, has only started to attract the attention of practitioners in recent years

(Boldea et al. 2008, Yang et al. 2008, Zhang et al. 2008) and its issues and potential are yet

to be fully analyzed. In the biomedical imaging area, 3D optic flow calculation was first

used to capture heart 3D motion using CT (Song & Leahy 1991) and MRI (Andreopoulos

& Tsotsos 2008) images. The pioneering work of Song & Leahy (1991) assumes that

the image is conserved and incompressible and therefore the velocity field satisfies the

divergence-free and the incompressibility constraints. However, the computation of the

flow using these two constraints is an ill-posed problem and the solution was found by

adding a smoothness term to regularize the penalty function of the weighted sum of the

two constraining terms. The velocity field was then calculated by minimizing this penalty

function using variational calculus (the minimizing solution generally satisfies the Euler-

Lagrange equations) and the solution was found by solving a set of simultaneous coupled

elliptic partial differential equations. The differential equations were further discretized,

resulting in a system of linear equations where the solution is an approximation of the

velocity field. This method, in essence, is very similar to some of the contemporary

approaches for both calculating the 2D optic flow (Bruhn et al. 2003, Bruhn, Weickert,

Kohlberger & Schnörr 2005, Bruhn, Weickert & Schnörr 2005, Weickert & Schnörr 2001)

and energy minimization based image registration (Fischer & Modersitzki 2003, Haber &

Modersitzki 2007, Modersitzki 2008) techniques.

With the exception of the 3D generalizations of the original version of the Lucas &
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Kanade optic flow method (Barron & Thacker 2005, Castillo, Castillo, Zhang & Guerrero

2009), to our knowledge, no other Lucas & Kanade-based 3D optic flow method has yet

appeared in the computer vision literature and the potentials and difficulties associated

with using such methods on dynamic 3D data such as 4D CT are yet to be explored. The

Lucas & Kanade optic flow based method, in contrast to variational-based methods, is of

particular interest here because it allows the effect of smoothing to be directly controlled

and measured.

In this chapter, we first examine the theoretical relationship between the estimation ac-

curacy and the amount of smoothness required for a general solution from a robust statis-

tics perspective. The analysis leads to a guideline for the sufficient amount of smoothing

for the 3D optic flow estimation.

A robust 3D optic flow in which the imposition of smoothing can be locally quan-

tized is then devised to test the proposed hypothesis on the smoothing requirement. The

hypothesis is then tested using a geometrically-realistic synthetic CT image sequence of

the breathing lung and five cases of real 4D CT lung images with extensive sets of ex-

pert annotated landmarks. We further examine, both quantitatively and qualitatively, the

suitability of imposing “just enough” smoothing on real 4D CT scans in calculating mo-

tions near fissures (borders of lobes) and show the deteriorating effect of unnecessary

smoothing on the estimation of motion, particularly in those areas.

3.2 How Much Smoothing is “Just Enough”?
To answer the above question, we first need to establish an explicit relationship be-

tween the smoothing requirement and the estimation accuracy. To ascertain this relation-

ship, we first consider the 3D optic flow estimation problem. The optic flow constraint in

3D is generally written as (Song & Leahy 1991):

Ixu+ Iyv + Izw + It = 0 (3.2.1)

where Ix, Iy and Iz are the spatial derivatives and It is the temporal derivative of the image

brightness function I and u, v and w are unknown components of the local flow along x,

y and z axes respectively. The imposition of this constraint implies that for every voxel,

there is only one equation for three unknowns and therefore it is not possible to solve this
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without adding the extra assumption that is generally referred to as smoothing.

The simplest form of smoothing is imposed by assuming the flow to be constant in

a local neighborhood and therefore, the above equation is turned into a system of linear

equations that can be solved for the unknown components of the flow. In this context, the

question of how much smoothing is imposed directly relates to the size of this neighbor-

hood and the number of voxels included in the calculation of velocity components. We

use this scenario as the basis of our analysis.

To measure the effect of smoothing on accuracy, we then need to examine how the

estimation is performed. We already know that in the absence of noise one needs to apply

the smoothing assumption to only three voxels to be able to calculate the flow in 3D (this

is the necessary condition). However, noise is always present and therefore substantially

more voxels need to be included. The extra smoothing assumption is therefore required

solely for the sake of accuracy. More importantly, as the motion boundaries and unmod-

eled data are unavoidable, some form of outlier rejection (robust statistics) is also required

to ensure accuracy. It is worth noting here that assuming other models of motion (for ex-

ample affine) only affects the amount of necessary smoothing (would be 12 voxels for full

3D affine). Regardless of the chosen model, one would need to include significantly more

points than the necessary number in order to obtain an accurate estimate and therefore the

sufficiency requirement is not directly affected by the type of motion model.

Having formulated the problem in this setting, for a given level of noise, the amount of

smoothing required now directly relates to the number of included voxels and in turn, the

number of included voxels directly relates to the accuracy of estimation that is expressed

by a measure called finite sample bias. Following Hoseinnezhad et al. (2010), the finite

sample bias of a robust estimator is defined as:

λ(n; Θ�, H) ≡ |E [σ̂2
n; Θ

�, H]− σ2|
σ2

(3.2.2)

where σ is the true scale and E [σ̂2
n; Θ

�, H] is the statistical mean of the square of an

estimated scale for a given hypothesized fit Θ� and a specific data distribution H . The

arguments n, Θ� and H are to show that this is a scale-invariant definition of bias and the

above measure only depends on the number of data samples, the hypothesized fit and the

data population, but not on the scale σ.

Using the above definition, we propose an approach that generates a straightforward
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relationship between the required smoothing and the estimation accuracy by which the

minimum sufficient smoothing requirement can be evaluated based on the desired level of

accuracy. The analysis here does not include the relationship between the estimation bias

and the level of noise, as the latter is fixed in a given set of data. Interested readers are

referred to Hoseinnezhad et al. (2010) for a detailed discussion of that relationship.

For the sake of quantifying the amount of “just enough” smoothing, we also need to

choose the estimator. Based on the analysis of Hoseinnezhad & Bab-Hadiashar (2007),

we implemented the Modified Selective Statistical Estimator (MSSE) (Bab-Hadiashar &

Suter 1999), as the most consistent1 robust estimator for the estimation task. The anal-

ysis presented in Hoseinnezhad et al. (2010) shows that all estimators, including MSSE,

are heavily biased when the distance between the two parallel structures (e.g. two very

similar motions in a selected region), μ, is less than 5σ. In this scenario, structures in the

data are too close to be separated from each other and existence of one structure heavily

biases the estimation of the other structure. The analysis also showed that the estimation

accuracy would not improve by increasing the amount of data. However, for μ ≥ 5σ,

the MSSE finite sample bias is always less than 20%, and the finite sample bias does not

change with the inlier percentage or the distance between the two structures (μ). Impor-

tantly, the finite sample bias of the MSSE as well as a number of other robust estimators

analyzed in Hoseinnezhad et al. (2010) do not significantly change as the number of data

samples increases beyond a relatively small sample size of around 100. Therefore, the

minimum amount of required smoothing would not be significantly different if any other

high breakdown estimators were used instead.

We also assume that the smoothing support is a cube (as the data is discretized in a

Cartesian grid) centered on the voxel of interest. In the absence of any prior information,

the cube is to be constructed symmetrically around the target. Having specified the es-

timation parameters, we are now able to hypothesize the minimum size requirement of

the Gaussian window by analyzing the finite sample bias of the estimator in cases where

there are multiple motions in the region of interest. Since we use a locally constant veloc-

ity model, the motion boundary is modeled by a step edge in the velocity space.

The finite sample bias of various robust estimators, including MSSE, for segmenting a

step edge structure, as the worst-case scenario, has already been analyzed (Hoseinnezhad

1An estimator is said to be consistent if its estimated value approaches the true value as the number of

data approaches infinity.
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et al. 2010). The regression framework used in Hoseinnezhad et al. (2010), as shown

in Section 3.4.4, is identical to the flow estimation presented here. Part of the results

presented in Figure 9 of Hoseinnezhad et al. (2010) are reproduced here and shown in

Figure 3.1. The above results show that for cases where the estimator is consistent, less

Figure 3.1: Finite sample bias of MSSE in the segmentation of a step edge discontinuity

with height of either 4 or 6 times the scale of noise in the measured data with 30% inliers.

It is important to note here that as shown in Hoseinnezhad et al. (2010), for μ > 5σ the

amount of finite sample bias is not affected by either the μ or the inlier ratio.

than 100 data points are required to minimize the effect of the finite sample bias of the

robust estimator. Therefore, a cube with sides as small as 5 or 7 voxels should provide the

minimum required smoothing, even in cases where the target voxel is in the vicinity of a

motion boundary and only a fraction of voxels actually belong to the motion of interest.

The minimum requirement in 3D data is therefore delightfully small (a CT scan typically

has more than 10 million voxels). This means that very localized changes should be

directly observable. We examine this hypothesis both in terms of the average accuracy

using synthetic and real data (with known ground truth) and its implication for segmenting

lung motion based on known anatomical features in real 4D CT data.

3.3 Estimation of 3D Optic Flow
To examine the full implications of the smoothing requirements in the context of

robust optic flow calculation, we present a straightforward optic flow method. In this

method, we estimate the 3D flow by assuming that the majority of voxels in a local cube

can be explained by velocity perturbations around a constant value (inlier group). Voxels
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with motions that cannot be explained by the above model (based on the MSSE criteria)

would be considered outliers and would not be included in the estimation process. The

velocity of the inlier group is calculated using the least square method.

We have implemented the above regularization approach and solved the estimation

(MSSE (Bab-Hadiashar & Suter 1999)) step using random sampling. The spatial and

temporal derivatives are calculated as prescribed by Barron & Thacker (2005) using either

Simoncelli’s (Simoncelli 1994) or Gaussian derivative masks.

The implementation of MSSE, as described in Algorithm1, is very straightforward and

only involves taking N number of random samples of 3 voxels from within the support

volume. The 3D flow is then calculated for each 3-tuple by solving the system of three lin-

ear equations for the three unknown components of the flow at that point. The flow vectors

for all samples are then used to calculate square residuals (the algebraic distance between

voxels’ optic flow constraints and the calculated flow of a given 3-tuple) of all voxels

inside the support window. The sample that has the minimum sorted square residuals at

the Kth order index of those residuals is selected as the best estimate (in our experiments

we set K = 0.5 which gives the median). By starting from the Kth residual of this best

estimate, the point where the condition: |ri+1| < Tσi based on σ2
i = Σi

j=1r
2
j/(i− 3) is no

longer true is found and voxels up to this index are considered as inliers. In the above, r is

the residual and is given by: r2 = (Ixu+Iyv+Izw+It)
2 where i is the sorted index, T is

a constant threshold and numbers around 1.5-2.5 is usually used to indicate an inclusion

of around 93-99% of inliers based on a normal distribution for noise. For a general noise

distribution Chebyshevs inequality2 states that no more than 1
T 2 points can be more than

Tσ distance away from the mean. This indicates an inclusion of around 40-66% for the

above range of T values. The least squares solution of all the inlier voxels is considered

as the final estimate. Since the final scale estimate is calculated by using least squares and

including all inliers, the variation of T has little effect on the final results (Bab-Hadiashar

& Suter 1999).

2For a random variable X with expected value μ and a variance σ2, Pr(|X − μ| ≥ Tσ) ≤ 1
T 2 where T

is a constant real number.
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Algorithm 1 The Step-by-Step Algorithm for MSSE

Inputs: Spatial and Temporal Derivatives, Number of repetitive epochs N
1: Repeat steps 2-6 N times:

2: Choose an elemental subset(3-tuple) by random sampling;

3: Compute the corresponding velocity vector using⎡
⎣uv
w

⎤
⎦ = −

⎡
⎣Ix1 Iy1 Iz1
Ix2 Iy2 Iz2
Ix3 Iy3 Iz3

⎤
⎦−1 ⎡⎣It1It2

It3

⎤
⎦

4: Calculate the square residuals r2 = (Ixu+ Iyv + Izw + It)
2;

5: Sort the square residuals in ascending order;

6: Find the sample with the least Kth square residuals;

7: Recalculate the square residuals using the velocity vector with the least median square

residual and sort them;

8: Find the first point starting from the median where |ri+1| > 2.5σi. The data up to this

point are considered inliers;

9: Calculate the final velocity vector using all the inlier points.

3.4 Experimental Results
To investigate the effect of local smoothing on the accuracy of optic flow, we created

a sequence of synthetic 3D images with a variety of known motions. The sequence is

designed to mimic typical changes in lung CT sequences with several objects having

different motions and irregularly-shaped motion boundaries. The geometry of lungs is

generated from the segmentation of a real human lung CT image and the textures are

created by superimposing three 3D sinusoidal patterns similar to those used in Barron

et al. (1992).

In this sequence, the lungs have affine motions while the background has constant 3D

motion. A small stationary column between two lungs has also been included to simulate

the motionless parts of a real image. A sample 2D slice (axial view) and its associated

flow field are shown in Figure 3.2. Although the texture in this sequence is synthetic,

the geometry and types of motions are quite realistic and exhibit issues similar to those

encountered in real images, including issues associated with the existence of quantization

noise and deterioration of the estimation of derivatives near the motion boundaries. How-

ever the lungs are not segmented into different lobes (with different motions) because the

analysis is based on using a spatially small area and therefore having different segments

does not improve the relevance of the experiment.

For error measurement, we have extended and used the Fleet & Jepson (1990) angular
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measure of error. In the extension of this scheme to 3D, the flow at every voxel is repre-

sented by a 4D vector of its Cartesian components in a homogeneous coordinate system

(u,v,w,1) and the error is measured as an angular deviation of the calculated flow from

the true velocity. The error is therefore calculated by finding the inverse cosine of the

dot product of two vectors in the above 4D homogeneous coordinate system. A detailed

analysis of this measure is provided in Barron et al. (1992) and will not be repeated here.

Figure 3.2: Sample of axial view of the sinusoidal image (top) and its flow field (bottom).

The white arrow identifies the stationary column area.

3.4.1 Effect of smoothing on accuracy
To demonstrate the effect of the size of the Gaussian window on estimation accuracy,

we varied the size from 3× 3× 3 to 11× 11× 11 voxels. The results shown in Table 3.1

are in full agreement with our predictions based on the finite sample bias (see the last

part of Section 3.2). The accuracy is significantly enhanced when the size of the window

increases from 3× 3× 3 to 5× 5× 5 (which is only around 0.00028% of the whole data).

However, any more increases in the amount of smoothing result in only small changes to

the final accuracy.
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Table 3.1: Estimation accuracy of calculating 3D optic flow using different sizes of

smoothing windows

Size of Average Error Standard Deviation

Smoothing Window (degrees) (degrees)

3x3x3 4.49 16.04

5x5x5 2.74 11.10

7x7x7 2.07 8.88

9x9x9 1.84 8.24

11x11x11 1.75 8.12

3.4.2 Optic flow estimation using real 4D CT images

Both cardiac and respiratory motions severely affect the quality of lung CT images.

Four-dimensional CT images are developed to facilitate the analysis of respiratory mo-

tion by using spirometer signals to align and synchronize data acquired during different

breathing cycles. However the data contain a large amount of noise owing to the low-dose

protocols used in dynamic CT imaging as well as various types of artifacts due to the fact

that lung deformation is not exactly the same in each respiratory cycle (4D CT is typically

acquired during several cycles) and cardiac motion is out of sync with the breathing cycle.

However, 4D CT data is increasingly used for tracking lung motion and helps clinicians

minimize and better target radiation in oncology treatments.

Currently there are two commonly used and openly available thoracic 4D CT data

sets with ground truth in terms of landmark motions (Castillo, Castillo, Guerra, John-

son, McPhail, Garg & Guerrero 2009, Vandemeulebroucke et al. 2011) that can be used

to validate the accuracy of dense flow calculations. In our experiments, we used both

datasets to show real data applications of the proposed theory. The data provided by the

University of Texas M.D. Anderson Cancer Center (Castillo, Castillo, Guerra, Johnson,

McPhail, Garg & Guerrero 2009) contains 300 manually-identified landmark points per

case. The results of nine deformable registration algorithms using these data have also

been provided in Castillo et al. (2010), Castillo, Castillo, Guerra, Johnson, McPhail, Garg

& Guerrero (2009) and Gu et al. (2010). To provide context, results of similar approaches

have also been included here. The dataset provided by the Léon Bérard Cancer Center

& CREATIS laboratory, Lyon, France (Vandemeulebroucke et al. 2011) has three images

with 100 manually annotated landmarks in all frames.
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The first five cases of Castillo, Castillo, Guerra, Johnson, McPhail, Garg & Guerrero

(2009) are used here to study the effect of the size of the smoothing window on estimation

accuracy. We varied the size from 3 × 3 × 3 to 13 × 13 × 13 voxels and the results are

shown in Table 3.2.

Table 3.2: Average error of calculating 3D optic flow using different sizes of smoothing

window for real 4D CT data

Gaussian Case 1 Case 2 Case 3 Case 4 Case 5

Window Av. Error Av. Error Av. Error Av. Error Av. Error

size (SE)a (SE) (SE) (SE) (SE)

Average 4.01 4.65 9.42 6.73 7.10

Disp. (2.91) (4.09) (4.81) (4.21) (5.14)

Maximum 12.65 17.8 21.0 18.46 24.78

Displacement

3x3x3 5.028 4.496 6.383 9.193 9.018

(0.416) (0.371) (0.374) (0.450) (0.853)

5x5x5 2.945 2.916 4.349 6.062 5.986

(0.221) (0.192) (0.205) (0.257) (0.381)

7x7x7 2.269 2.315 3.528 4.773 5.387

(0.138) (0.141) (0.176) (0.207) (0.314)

9x9x9 1.936 1.897 3.353 4.188 4.969

(0.119) (0.114) (0.160) (0.181) (0.288)

11x11x11 1.710 1.828 3.156 3.949 4.742

(0.097) (0.109) (0.150) (0.165) (0.261)

13x13x13 1.661 1.641 3.187 3.785 4.536

(0.099) (0.098) (0.150) (0.158) (0.252)

a Standard error as defined in Castillo, Castillo, Guerra, Johnson, McPhail,

Garg & Guerrero (2009).

The above results, similar to those obtained using synthetic data, show that the in-

crease in overall accuracy due to the increase in the size of the smoothing window plateaus

when window sizes are larger. To illustrate this further, average errors are plotted against

smoothing window size in Figure 3.3. To bring all the results to the same scale, the aver-

age errors are divided by the average error of 13× 13× 13 window size for each case.

To show that slight improvements in the mean accuracy of larger window sizes are

not statistically significant, a paired t-test was conducted and the results are shown in

Table 3.3. For a given set of images, we calculated the p-value using the landmark regis-
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Figure 3.3: Change in average error when the smoothing window size is varied, σ = 2.0.

tration errors of two adjacent smoothing window sizes. These results were then used to

compare the mean errors against a null hypothesis (results are not significantly different)

based on a confidence interval of 99%. A p-value < 1% means that the null hypothesis

is rejected (H = 1) and the difference between the two results is statistically significant.

As expected we can see that in all cases the results improve when the smoothing size

increases from 3× 3× 3 to 5× 5× 5, but increases beyond 7× 7× 7 are not statistically

significant.
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Figure 3.4: Average registration errors of our method are shown for each case. Corre-

sponding average errors from Castillo et al. (2010), Castillo, Castillo, Guerra, Johnson,

McPhail, Garg & Guerrero (2009) are also shown for comparison.

The average errors of our method for all these cases were also compared with the
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Table 3.3: P-values and hypothesis test results (with confidence interval of 99%) of

paired t-tests conducted to test the significance of improvements achieved by increasing

the size of the smoothing window. H = 1 means that the differences are statistically

significant.

3x3x3 5x5x5 7x7x7 9x9x9 11x11x11

↓ ↓ ↓ ↓ ↓
5x5x5 7x7x7 9x9x9 11x11x11 13x13x13

Case 1
P 9.56E-06 0.008 0.068 0.142 0.722

H 1 1 0 0 0

Case 2
P 2.00E-04 0.012 0.021 0.660 0.201

H 1 0 0 0 0

Case 3
P 2.35E-06 0.003 0.460 0.370 0.738

H 1 1 0 0 0

Case 4
P 2.77E-09 1.00E-04 0.033 0.330 0.473

H 1 1 0 0 0

Case 5
P 1.20E-03 0.226 0.328 0.560 0.570

H 1 0 0 0 0

results in Castillo et al. (2010), Castillo, Castillo, Guerra, Johnson, McPhail, Garg &

Guerrero (2009) 3 and the results are shown in Figure 3.4. In particular, the optical flow

method (OFM) in this figure (from Castillo, Castillo, Guerra, Johnson, McPhail, Garg

& Guerrero (2009)) represents the results of the Horn & Schunck-based flow calculation

method, which is a global method. The average error in landmark registration across all

five cases for OFM is 7.3mm, whereas for our method with σ = 0.5 it is 4.051mm and

with σ = 2.0 the average error is 2.962mm.

The moving least-square (MLS) in Figure 3.4 (from Castillo, Castillo, Guerra, John-

son, McPhail, Garg & Guerrero (2009)) is a landmark-based registration algorithm which

uses external information (expert knowledge) to identify the landmarks. MLS achieved

an average error of 2.074mm across all five cases. The difference between the average

errors of our method (σ = 2.0) and the MLS is less than the intra-observer error (this is

the error in identifying the landmark points by an expert in repeated experiments) for the

first 3 cases. This shows that for small displacements, the local optic flow-based method

can achieve similar results to those of hand-tuned registration methods.

3The mean errors for our method is calculated using the publicly available landmark set (containing 300

landmarks per image) which is a subset of the full landmarks set used to calculate the results in Castillo

et al. (2010), Castillo, Castillo, Guerra, Johnson, McPhail, Garg & Guerrero (2009)
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It is important to note that a hierarchical approach would have yielded more accurate

results for the last two cases which have higher displacements. We have not implemented

this because improving accuracy by itself is not the aim here. In addition, the landmark

dataset used in evaluating our method consists of 300 publicly available landmarks.

In the next set of experiments, we used the Popi model dataset provided by Vande-

meulebroucke et al. (2011) to demonstrate the effect of smoothing window size on the

accuracy of optic flow calculations. The flow field was calculated using two adjacent

frames in each 4D CT dataset. All landmarks were used to calculate the mean landmark

error for each time step and the results are shown in Figure 3.5. In this figure, each time

frame of the 4D CT image is identified by a frame number (T00, T10, T20, etc.) and the

mean landmark errors of all landmarks at each time step are averaged over the three cases.

These results, similar those achieved for DIR data, are consistent with our theoretical pre-

dictions.

Figure 3.5: Effect of varying the size of smoothing window on average landmark errors

in images of Popi model dataset (Vandemeulebroucke et al. 2011).

3.4.3 Side effects of smoothing increases
A lung contains separate lobes with different deformation patterns and the motion at

the lobes boundaries (fissure) is discontinuous. The juxtaposition of lobes in a typical

lung is shown in Figure 3.6.

To see the effect of the size of the smoothing window on the accuracy of estimation

near the fissure, we compared the estimated error for different smoothing window sizes for

a small selection of points near the fissure and points in the same image, but further away
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(a) (b)

(c) (d)

(e)

Figure 3.6: The above slices are chosen to depict the position of different landmark

points used in our calculations (P1 to P9). Where possible, the fissure is also highlighted

in these images.

from the fissure. The results for the estimation error for different smoothing window sizes

are shown in Figure 3.7. As predicted, the results show that the increase in smoothing

window can indeed reduce the overall accuracy.
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Four points (P6, P7 ,P8 & P9) were selected from cases 1 and 2, where P6 is in the

same sagittal slice as P1 and P7 & P8 are in the same axial slice as P2, but are further apart

from the fissure than P1 and P2. The errors are plotted against the smoothing window size

in Figure 3.8.
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Figure 3.7: Variation in estimation error with smoothing window size for landmark

points near a fissure.
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Figure 3.8: Variation in estimation error with smoothing window size for landmark

points not near a fissure.

3.4.4 Detection of local variations in flow fields
To highlight the importance of controlling the size of the smoothing window, we con-

centrate on the detection of anatomically-induced variation in flow field. We first intro-
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duce a novel way of visualizing the variations of 3D flow fields in 3D space and use

that method to show the detectability of anatomical variation of flow fields on both syn-

thetic and real 4D CT images. To visualize the variation, we rewrite the 3D optic flow

constraints (Equation 3.2.1) as:

Ix
It
u+

Iy
It
v +

Iz
It
w = −1 (3.4.1)

The optic flow constraint is commonly viewed as a plane in the velocity space of

(u, v, w). However, using the duality of points and planes in perspective geometry, we

can view the above equation as a point in the derivative space (Ix/It, Iy/It, Iz/It) and

therefore all the points with the same (constant) velocity will form a 3D plane parameter-

ized by (u, v, w). The importance of this transformation stems from the fact that, while it

is very difficult to visualize a number of 3D planes crossing each other around the vicinity

of a single point, we can easily visualize a set of points scattering around a plane in a 3D

Cartesian space.

To demonstrate the effectiveness of the above transformation to visualize the existence

of different motions in a local area, we consider a cubic region in the synthetic lung image

introduced earlier. The cubic region is shown in the top part of Figure 3.9 by a white

rectangle in the axial view and includes voxels with two different motions: constant and

affine. A regular subset (one in nine) of voxels from this area is plotted in the derivative

space and the points are segmented by applying MSSE sequentially (i.e. a fit and remove

application of MSSE, as explained in Bab-Hadiashar & Suter (1999)).

The resulting planes are shown in the bottom part of Figure 3.9, while the plot is

rotated to show the spread of points around one of those planes. As expected, voxels

with constant underlying motion fit well to a plane in the derivative space and therefore

form a very thin scatter of points around a plane. The voxels with affine motions, on

the other hand, are scattered wider while they still generally spread near a plane as long

as they are spatially close to each other in the actual image. These results support our

earlier hypothesis that good estimates of motion can be achieved using localized small

smoothing area.

We can now apply the same transformation to real 4D CT images and examine the

possibility of detecting anatomical motion boundaries. We examined the possibility of

detecting the differences in motion between individual lung lobes by considering two
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Figure 3.9: Top image is an axial view of the sinusoidal image where the cubic region

with two distinct motions is marked by a white rectangle. Bottom image plots the asso-

ciated voxels in the derivative space (red dots and green asterisks are used for moving

voxels while black crosses represent the outliers). The points are segmented by fitting

planes using MSSE. Bottom picture is rotated to show how the points are aligned with

respect to the affine plane. Since a plane in the derivative space represents constant mo-

tion, the points with constant underlying motion (red dots) fit a plane better than the

points with affine underlying motion (green asterisks).

small (local) cubic areas in a 4D CT image. As shown in the top part of Figure 3.10, one

of these cubes (shown by a white rectangle in the axial view) is entirely within a lobe and

the other straddles two different lobes (where the fissure - highlighted by a white line - is

located).

We have plotted all the points associated with the voxels in these areas and applied the

MSSE (Bab-Hadiashar & Suter 1999) (with 30% minimum ratio and T=2) to segment the

motions. The segmentation results for both areas are shown in the middle and bottom parts

of Figure 3.10. While only one motion is detected in the upper area, the one straddling

two lobes includes two distinct motions. This evidence again shows that the imposition

of “just enough” smoothing is important in preserving the local flow information.
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3.5 Conclusion
A new approach to quantifying the minimum required smoothing based on the con-

cept of the finite sample bias of a robust estimator has been presented. The proposed

approach is very general and makes predictions about the amount of smoothness required

to satisfy the sufficiency condition for a broad range of visual estimation tasks such as

optic flow calculation. We particularly showed that smoothing over a cubic area as small

as 5 to 7 voxels wide is sufficient to achieve the highest practical accuracy. This is a

significant observation, as it proves that very localized changes in motion in 3D data are

directly observable. The predictions were tested for 3D optic flow estimation of 4D lung

CT images and consistent with the theoretical predictions the results showed that only a

very small amount of local smoothing is required to achieve high accuracy and observe

local anatomically-induced motion variations. In some cases, increasing the amount of

smoothing reduce the quality of the results.
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Figure 3.10: Top image is an axial view of a 4D CT image where the two cubic areas

with either one (the top rectangle placed entirely on one lobe) or two (the lower rectangle

straddles two lobes separated by the fissure - shown by a white line) distinct motions

are marked by white rectangles. Middle and bottom images plot the associated voxels

in the derivative space (red dots and green asterisks are used for moving voxels while

black crosses represent the outliers). The points in both areas are segmented by fitting

planes using MSSE. Middle and bottom pictures are rotated to show how the points are

aligned with respect to every plane. The bottom picture clearly shows that the difference

between the motions of two lobes on different sides of a fissure is detectable using a local

approach.
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Chapter 4

Image Registration Using Ranked

Order Statistics

4.1 Introduction
Non-rigid image registration is the task of finding a transformation that spatially aligns

two images with globally non-uniform differences. The non-rigid registration problem

has received substantial attention in previous years and several methods to solve this prob-

lem have been proposed. Non-rigid registration methods are broadly classified into three

categories based on their transformation models (Holden 2008): physical models, basis

function expansions and constraints on transformation. Physical models are based on

physical phenomena such as viscous fluids or elasticity and are described using partial

differential equations (Christensen et al. 1994, Thirion 1998). Basis function expansions

use parametric models such as B-splines (Rueckert et al. 1999), radial basis functions

(Buhmann 2003) and wavelets (Wu 1995) to represent the transformation (Holden 2008).

Among all these models, the B-spline transformation model is commonly used for non-

rigid registration, largely due to its lower computational complexity compared to physical

models.

Although the implementation of non-rigid intensity-based registration varies in prac-

tice, the intensity-based registration framework can generally be segregated into three

modules (Damas et al. 2011): transformation space, similarity measure and optimization

algorithm, to find a parametrized transformation by minimizing an intensity-based cost

function. This is essentially a nonlinear optimization problem: Given the intensity values
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of two images, namely fixed (If (x)) and moving (Im(x)) images, the transform parame-

ters vector θ is found by solving the following minimization problem (Klein et al. 2007):

θ̂ = argmin
θ

[Ψ(θ)] (4.1.1)

where Ψ is the cost function (or dissimilarity measure) and θ̂ is the optimized vector of

the transformation parameters.

To determine the optimal set of parameters that satisfies the above equation, gradient-

based iterative optimization strategies are commonly used (Klein et al. 2007). However,

for non-rigid registration of medical images with large numbers of voxels and transfor-

mation parameters, calculation of the cost function gradient (∇θΨ(θ)) takes a significant

amount of time (Bhagalia et al. 2009). There are two commonly-used techniques to re-

duce the computational complexity of this task. The first technique, based on the stochas-

tic sub-sampling method introduced by Robbins & Monro (1951), uses only a subset of

voxels to estimate the model parameters (Bhagalia et al. 2009, Klein et al. 2010), while the

second technique reduces the number of registration parameters by carrying out registra-

tion only on selected regions of the image (Rohde et al. 2003) which affect the registration

outcome most.

In this chapter we propose a fast and accurate non-rigid registration method for im-

ages of the same modality that combines the properties of the above two techniques using

a robust statistical approach. Our approach exploits the information available in the dif-

ference image, by using an order statistics-based segmentation method (Bab-Hadiashar &

Suter 1999), to find the important regions for registration and use an intricate sampling

scheme to target those areas and reduce the registration computation time. Our com-

parative experiments on registration of end-inhale end-exhale lung CT scan pairs, with

expert annotated landmarks, show that the new method is faster and more accurate than

the state-of-the-art sampling based techniques (Bhagalia et al. 2009, Rohde et al. 2003),

particularly for registration of images with large deformations.

The rest of this chapter is organized as follows. Section 4.2 provides a brief description

of previous research in this area. Section 4.3 explains the proposed registration scheme.

The experimental setup and the comparative registration results of the proposed methods

are presented in Section 4.4. The performance of the proposed methods in comparison

with the best available techniques and the advantages and drawbacks of those techniques
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are discussed in Section 4.5. Section 4.6 concludes the chapter.

4.2 Previous Research
There are two commonly-used techniques to reduce the computational cost of para-

metric non-rigid image registration. Rohde et al. (2003) first introduced the idea of carry-

ing out the registration only on the regions that are not so well registered. Their method,

called adaptive registration (AR), uses a hierarchical framework, where at each level a set

of radial basis functions are placed on an irregular grid. The nodes of the irregular grid

are the centres of the misregistered regions in the image at a particular level. Using such

an irregular grid reduces the number of parameters compared to a fixed grid registration

method, leading to a reduction in the computational cost. In order to identify the mis-

registered regions, the AR method uses an additional step, in which another set of basis

functions are placed on a fixed grid and the gradient magnitudes of the cost function with

respect to the parameters of the fixed grid are evaluated. The locations of the remaining

grid points after eliminating those with low gradients are then considered as centres of the

regions of misregistration (nodes of the irregular grid at that level).

A careful analysis of the above method reveals that it is necessary to recalculate the

cost function derivatives, involving all the voxels, at the beginning of each registration step

to determine misregistered regions. Since this calculation is computationally expensive,

the overall registration process takes a relatively long time to complete. Our inspiration

for the proposed method stems from the fact that the registration time will be significantly

reduced if the misregistered regions are identified more efficiently.

The second technique to reduce computational time is to use only a subset of voxels

to estimate the parameters on a fixed grid. Klein et al. (2010) were the first to advocate

the use of uniform sampling for non-rigid medical image registration. Uniform sampling

gives equal significance to all the voxels in an image and since the true function in this

case is not distributed uniformly, using only a subset of voxels produces a biased estimate

of the gradients. To reduce the sampling bias, they proposed to renew the set of chosen

samples at every iteration of the optimization routine, giving equal significance to all the

voxels. To improve registration accuracy Bhagalia et al. (2009) introduced the idea of

using the importance sampling (IS) technique to select a subset of voxels. Importance

sampling is a way of obtaining the properties of the desired distribution using another but
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related distribution. In their method, they used the properties of the edge magnitude to

approximate the probability distribution of the gradients.

Here we propose a new method that combines the benefits of both techniques men-

tioned above. Although our method focuses on misregistered parts in the image, the

method used for finding them is completely different to that of the method used by AR.

Here, we move away from trying to define the misregistered regions based on cost func-

tion gradients and directly use the information carried by the misregistered points to im-

prove the optimization outcome.

We propose a new approach for the identification of misregistered points, in which

the square intensity differences of fixed and transformed moving image voxels guide the

identification process using a rank ordered statistics-based robust segmentation technique.

In addition to improve the accuracy of registration, our method provides a computation-

ally efficient means of stopping the registration process once the improvements become

small. In practice it is very important to know precisely when to end the registration

process (Damas et al. 2011). Our proposed method is described in the following section.

4.3 The Proposed Method

4.3.1 How to sample efficiently?
The main idea of our proposed method is to turn the registration focus to the regions

of the image which are not so well registered. The challenge is to efficiently identify the

regions of misregistration at each step of the registration process. Our contribution here is

to devise an efficient method that exploits the information available in the difference im-

age (the image intensity difference between the fixed image and the transformed moving

image) to identify the regions of misregistration. We note that the sum of square differ-

ence (SSD) cost function is not significantly influenced by the small intensity differences.

A very small difference between two corresponding voxels means that the voxels are

either almost registered or they are both in a low textured region. Therefore, the signifi-

cance of these voxels to the registration process is minimal (these voxels are referred to as

group one voxels). On the other hand, very high variations are often caused by occasional

differences such as misregistered vessels, organ boundaries or gross measurement errors

(outliers). Although these are almost always present in every image and may be relevant

for registration, their inclusion has the potential to skew the optimization and bias the
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final results (those are referred to as group three voxels). To visualize how the intensity

differences are distributed for a given image, the joint histogram between the fixed image

and the transformed moving image during a registration process is shown in Figure 4.1.

The joint histogram shows that a large number of voxels are clustered around the centre

line. These are the voxels that correspond to an almost registered group of voxels (group

one).

Figure 4.1: The joint histogram of the fixed image (If (x)) and the transformed moving

image (Im(T (x))) for case 5 of DIR-dataset at the 10th iteration.

The challenge is to find computationally efficient ways of excluding the group one

and three voxels and use only the voxels in the middle group (group two) for registration

at every step. This is, to an extent, similar to multi-structural data segmentation and

many different methods to dichotomize data based on the distribution of residuals have

been developed. The emphasis of these methods is to group data points that are most

similar and the analysis presented in Hoseinnezhad et al. (2010) showed that most of

these methods have similar performance. Following recommendations of Hoseinnezhad

et al. (2010), we used the modified selective statistical estimator (MSSE) (Bab-Hadiashar

& Suter 1999) to segment voxels. The implementation of MSSE is very straightforward

(computationally efficient), the estimator has nice asymptotic properties (Hoseinnezhad

& Bab-Hadiashar 2007) and the value of its required parameter (i.e. the minimum size of

an acceptable group) is known in this case. Having said this, we expect the use of other

similar robust estimators to produce comparable results.

In our implementation of MSSE, the members of the first group are found by using

the following criterion starting from the median of absolute residuals (Bab-Hadiashar &
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Suter 1999):

|ri+1| < Tσi (4.3.1)

here i is the index after sorting, |ri+1| is the absolute image intensity difference (residual)

at index i + 1, T is a constant threshold (2.5 is used to include 99% of inliers based on

a normal distribution (Bab-Hadiashar & Suter 1999)) and σ(i) is the standard deviation

of sorted residuals up to index i. Figure 4.2 shows the classification of different voxels

based on their absolute residuals using the MSSE constraint (4.3.1).
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Figure 4.2: Classification of different voxels based on their absolute residuals using the

MSSE constraint. The arrows show the boundaries between groups in a sample data set.

As mentioned earlier, voxels with very large differences have the potential to bias

the registration process. Therefore, the last five per cent of the largest residuals are also

discarded from the group identified as outliers by the MSSE. Once the voxels that belong

to the second group are identified, we modify the sum of squared differences (SSD) cost

function to include only voxels that belong to this group at every iteration. Since the

group memberships are decided at every iteration, voxels with large differences that have

the potential to improve their registration will eventually be included in the second group.

The proposed cost function is written as:

Ψ(θ) =
1

(i2 − i1)

i2∑
n=i1

r2θ(xi) (4.3.2)
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where i1 and i2 are the first and last sorted indices of the squared residuals that belong to

the middle group and r2θ(xi) = (If (xi)− Im(Tθ(xi)))
2. Tθ(xi) is the B-spline transforma-

tion with parameter θ.

Having defined the cost function, the next step is to estimate the gradient of the

cost function. The estimation of the gradient using all the chosen points would still be

computationally expensive. Adopting sampling-based stochastic optimization techniques

(Robbins & Monro 1951) enables us to perform the registration using a computationally

cheaper estimate of the cost function gradients. To estimate the gradients using this ap-

proach we can either use random sampling or importance sampling techniques (Bhagalia

et al. 2009). We have developed registration algorithms using both techniques and these

are named robust random sampling (RRS) and robust importance sampling (RIS), respec-

tively. Importance sampling is way of obtaining the properties of the desired distribution

using another but related distribution (Hesterberg 2003). For example if X is a random

variable with distribution f and θ(X) is a function of x (Hesterberg 2003):

Ef (θ(X)) =

∫
θ(X)f(x)dx (4.3.3)

=

∫
θ(X)

f(x)

g(x)
g(x)dx (4.3.4)

Assuming Y = θ(X)f(x)/g(x), we have:

Ef (θ(X)) = Eg(Y (X)) (4.3.5)

The above shows that sampling θ(X) with distribution f gives the same expected value

as sampling Y (X) with distribution g. If the shape of the new sampling distribution g(x)

is relatively similar to the original function, the variance of the approximation will be

reduced Bhagalia et al. (2009).

In the importance sampling algorithm, the gradient magnitudes of both the fixed

(|∇If (x)|) and the transformed moving (
∣∣∇Iθm(x)

∣∣) images are first used to compute the

following probability distribution function (PDF):

P θ
s (i) =

eθi∑n
j=1 e

θ
i

; i = 1....n (4.3.6)
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where eθi =
|∇If (i)|

∑N
j=1 |∇If (j)| +

|∇Iθm(i)|
∑N

j=1 |∇Iθm(j)| . The inverse cumulative distribution function

(CDF) sampling (Devroye 1986) is then used to choose the appropriate voxels for gradi-

ent estimation. To explain how the above method works, we first note that when a random

variable X has a cumulative distribution function F , then the values of F (X) are uni-

formly distributed in the range [0, 1]. As a result, a set of uniformly distributed samples of

the calculated probabilities can be used to generate samples of the fixed image that have

the desired distribution P .

4.3.2 Convergence criterion
Another important challenge in successful implementation of stochastic optimization

schemes is to find an appropriate stopping criteria. Simple criterion used for gradient

descent algorithms such as the magnitude of the gradient or the change in cost function

are inappropriate for stochastic optimization, as the gradient approximate is noisy and

may not vanish near the optimal solution. To overcome this limitation, most practical

algorithms simply use a fixed number of iterations (Bhagalia et al. 2009, Klein et al.

2007, Rohde et al. 2003). In practice this is not an appropriate solution and the required

number of iterations is not known a priori. Fixed numbers of iterations for all cases would

either lead to inadequate accuracy or waste of computation resources.

An important advantage of the proposed algorithm is that the degree of convergence

of the registration can be directly measured by looking at the number of voxels identified

by the MSSE as inliers (the voxels that are almost registered). The increase of voxels in

this group at every iteration is proportional to the increase in the registration accuracy.

To take advantage of this characteristic, we devised a stopping criterion by developing a

normalized measure of this attribute. The measure defined is as follows:

Ck =
Nk −Nk−1

Nk−1

× 100% (4.3.7)

where Nk denotes the number of voxels in the inlier group at iteration k. The registration

is then deemed successful once Ck is less than a specific threshold (0.1% in all of our

experiments).

An added advantage of this approach is that the computational cost associated with

calculating this criterion is negligible. A complete description of the proposed registration

algorithms is provided in Algorithm 2.
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Algorithm 2 Step-by-Step Algorithm of Proposed Methods

Inputs: Fixed image, moving image, transform parameters

1: Apply the transform to the moving image and recalculate the intensity values at grid

points (transformed image).

2: Calculate the absolute differences between the fixed and the transformed images (|r|).
3: Sort the |r| values and keep their orders (ascending).

4: Find K, K is the first index of the sorted residuals where |ri+1| < Tσi is not satisfied

.

5: Find KL = 0.95 × Total number of voxels.

6: if sampling scheme = RRS then
7: Randomly select N voxels starting from the Kth position in the sorted array up to

the Kth
L position as the samples .

8: else if sampling scheme = RIS then
9: Select N voxels starting from the Kth position in the sorted array up to the Kth

L

position using inverse CDF (CDF of the edge magnitudes of the fixed and trans-

formed moving images) sampling, as the samples.

10: end if
11: if (Ck ≤ THRESHOLD) then Stop Optimization

4.4 Analysis of the Proposed Algorithms

4.4.1 Experimental set-up

To compare the performance of the proposed registration methods with the best avail-

able techniques, an extensive set of experiments using lung CT images were conducted.

The elastix registration toolbox (Klein et al. 2010) based on the Insight Segmentation and

Registration Toolkit (ITK) was used as the basis of the registration framework that was

developed to implement both the importance sampling and the proposed robust sampling

methods. The code provided by the first author of Rohde et al. (2003) was used to ob-

tain the results for the AR method. All experiments were conducted using an HP Z400

workstation with a single Intel Xeon W3550 3.06GHz processor.

Two CT datasets were used to estimate the registration accuracy of the two proposed

methods and to compare these with the state-of-the-art methods. The first was the CT

dataset used by Bhagalia et al. (2009) (referred to as the IS-dataset). This dataset consists

of 8 pairs (breath-hold) of maximum inhale to maximum exhale CT images with 1.87 ×
1.87×5.0mm3 voxels (Coselmon et al. 2004). The second data set, referred to as the DIR-

dataset, was provided by the University of Texas MD Anderson Cancer Center (Castillo,

Castillo, Guerra, Johnson, McPhail, Garg & Guerrero 2009). This dataset consists of

4D-CT images of ten different patients each consisting of a sequence of images taken
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through a full respiratory cycle. In our experiments we registered the maximum inhale

and maximum exhale images in each case. Every case of the 4D-CT dataset has 300

expert identified landmarks and their associations at full inhale and exhale images. In

our experiments all images were cropped and segmented to include only the lungs. The

segmentation was done automatically using ITK-SNAP (Yushkevich et al. 2006) software.

4.4.2 Implementation

The first step in our registration framework is to implement an appropriate hierarchical

scheme to ensure that the registration process is not trapped in a local minimum. To make

our results comparable with those published in Bhagalia et al. (2009), we also imple-

mented a two-level Gaussian pyramid scheme (Lester & Arridge 1999). In this scheme,

the amount of data in the initial level of the registration process is down-sampled by a

factor of two and smoothed using a Gaussian kernel N (0, 1), while in the second level,

the original image is used.

For the transformation model the cubic B-spline described by the following equation

(Kybic & Unser 2003) was used:

Tθ(x) = x+
∑

xk∈Nx

θkβ
3(
x− xk

s
) (4.4.1)

where θk is the kth parameter, β3(x) is the 3rd order B-spline polynomial given by Unser

(1999):

β3(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3
− |x|2 + |x|3

3
0 ≤ |x| ≤ 1

(2−|x|)3
6

1 ≤ |x| ≤ 2

0 2 ≤ |x|
(4.4.2)

and Nx is the set of all control points (xk) within the compact support of the B-spline

at point x. The control points for each level were organized in a fixed grid with voxel

spacing of 16 × 16 × 8 for the first level and 8 × 8 × 4 for the second level. In order

to optimize the cost function, the stochastic gradient descent described by the following

equation was used:

θk+1 = θk + akĝ(θk) (4.4.3)

where ak is a vector that controls the step size in different directions at every iteration

of the algorithm and ĝ(θk) is an appropriate estimate of the gradient. For the stochastic
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optimization solution to converge, the step size ak should satisfy the following conditions:

ak ≥ 0 ; ak → 0 as k → ∞ ;
∑∞

k=0 ak = ∞ ;
∑∞

k=0 a
2
k < ∞ . A common way to ensure

that the step size satisfies the above criterion is to use the following step size formula

(Spall 1998):

ak =
a0

(A+ k)α
(4.4.4)

where k is the iteration number and a0 and A are empirically determined constants. How-

ever, for problems with large numbers of parameters, the optimal step size for every pa-

rameter may vary widely and therefore a specific step size for each parameter needs to be

calculated. In this case, to ensure convergence, the following equation is commonly used

to calculate the step size for each parameter (Kesten 1958):

aik =
a0

(A+Qi
k)

(4.4.5)

where Qi
k is the number of sign changes in the ith parameter up to the kth iteration.

Another commonly used method to ensure convergence in stochastic approximations

is to increase the sample size progressively during the iterations (Dupuis & Simha 1991).

In our work we have adopted a combination of these two methods, as advocated by Bha-

galia et al. (2009). Using the combination scheme not only ensures the convergence of

our proposed methods but also makes the final results directly comparable with Bhagalia

et al. (2009). There are four key parameters to be selected in this optimization scheme:

number of iterations, A, a0 and number of samples in each iteration.

All competing registration methods, in contrast to those proposed here, need a prede-

fined measure to stop the registration process. For these methods the maximum number

of iterations at each level of hierarchy was set to 60 and 100, respectively. These rep-

resent the best case scenario (in terms of timely registration with the best accuracy) for

those methods determined by manual inspection of mean landmark errors in registered

test images. In practice, this information is not known for each image and can signifi-

cantly increase the overall computation time required for those registration methods. To

make all the results comparable, in all our experiments involving sampling-based meth-

ods, we used 4096 and 8192 samples at the sequential registration levels. We observed

that the registration accuracy does not change significantly with small variations of the

number of samples. The parameters A and a0 are manually tuned to achieve the overall



CHAPTER 4. IMAGE REGISTRATION USING RANKED ORDER STATISTICS 70

best registration outcomes. Following Bhagalia et al. (2009), the value of A was set to

10 and the mean landmark errors for different values of a0 were calculated. Overall, the

a0 = 500 appeared to be the most suitable, and this value was kept constant for all the

registration methods in order to make the results comparable. Our experiments showed

that the overall result is not significantly affected by the small variations of a0 (increased

or decreased by two or three times).

In MSSE implementation the basic quick-sort algorithm was used in our experiments

and the timing of different runs showed that on average around 15% of the total compu-

tation time was spent on the sorting step.

4.4.3 Analysis with synthetic images

To demonstrate the effectiveness of the proposed algorithm in identifying the mis-

registered regions, a simulation study involving a pair of synthetic images (constructed

by deforming a lung CT image with known deformations and adding normal noise) was

conducted. The second image was designed to exhibit localized motions: changes are

confined to two specific regions of the image.

The above images were then registered using the proposed method and the voxels

classified as the second group (used in the actual registration process) were separated and

plotted in Figure 4.3(b) together with the surface rendering of the lung. To show the cor-

respondence between actual motion and identified voxels, the actual motion field together

with the surface rendering of the lung image is shown in Figure 4.3(a). These images show

that the proposed method is able to correctly identify misregistered voxels. The proposed

methods will in turn place more emphasis on these voxels during the registration process.

4.4.4 Performance variation with noise

The impact of noise on the proposed registration algorithm was studied by creating

images with known deformations and additive normal noise. In those simulations a lung

CT image was first deformed using a predefined B-spline transform that was calculated in

a real image experiment using the DIR dataset. The intensities of both fixed and deformed

images were normalized between zero and one. Zero mean normally-distributed noise

with standard deviation ranging from 0.0001 to 0.05 was added to both images. It is

important to note that, since the lung densities cover only around 25% of the entire range
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(a)

(b)

Figure 4.3: The results of the simulation demonstrate the effectiveness of the proposed

algorithm in identifying the misregistered regions (a) The predefined motion field to-

gether with the surface rendering of the lung. (b) Plot of all voxels classified as the

second group in the simulation.
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of Hounsfield values in the CT images, the maximum noise of 0.05, which is added to

the entire range of normalized density values of both images, represents a substantial

amount of actual noise in the lung regions. The noisy images were then registered with

the proposed algorithms. Finally, registration errors for each image pair were calculated

using a set of randomly-distributed points and averaged over five repeated experiments.

The results of those experiments are shown in Figure 4.4. To show the actual amount

of added noise, the registration errors are plotted in terms of the variance of added noise

in Hounsfield units. The figure shows that for relatively large amounts of additive noise

(compared to image intensities), the registration error remains unaffected.
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Figure 4.4: Performance variation of registration error of the proposed algorithms versus

the variance of manually added normal noise. The RS method is also included for the

sake of comparison.

4.4.5 Experimental results
The first set of experiments was conducted using the IS-dataset. The registration accu-

racy of the proposed methods in comparison with the competing methods using the above

dataset is shown in Table 4.1. The result shows that the proposed RIS method always

achieves better results than the IS and AR. Following the recommendations by Dems̆ar

(2006) on statistical comparisons of classifiers over multiple datasets, the final mean reg-

istration errors achieved using different algorithms were compared with the RIS method
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using the Wilcoxon rank-sum test (Wilcoxon 1945). The p-values, after Holms’ (Holm

1979) correction, are given in Table 4.3. The results show that RIS produces significantly

better results than the competing methods.

Table 4.1: Comparison of mean landmark error (Euclidean distance) for IS-dataset measured

using expertly identified landmark points.

IE1 AR2 RS3 IS4 RRS5 RIS6

IS-C1

Mean 15.1 4.5 4.39 3.69 3.61 3.39

Std 2.32 1.28 2.04 2.10 2.14

Min/Max 4.39/4.86 3.55/3.81 3.37/3.79 2.98/3.88

IS-C2

Mean 14.52 6.49 4.53 2.56 2.27 2.51

Std 9.81 3.64 3.00 2.67 2.38

Min/Max 4.34/4.65 2.11/3.05 1.59/2.79 2.48/2.58

IS-C3

Mean 13.31 4.57 2.74 2.62 2.31 1.77

Std 3.50 1.47 2.60 1.94 2.33

Min/Max 2.38/3.30 2.45/2.76 1.90/2.94 1.64/2.03

IS-C4

Mean 11.73 1.69 3.21 2.46 2.01 1.73

Std 0.89 2.70 2.02 1.46 1.10

Min/Max 2.52/3.96 2.26/2.81 1.69/2.39 1.38/2.00

IS-C5

Mean 9.13 2.66 3.46 3.24 2.14 1.62

Std 2.08 2.30 2.29 1.70 2.02

Min/Max 3.35/3.60 3.18/3.29 1.77/2.45 1.20/1.82

IS-C6

Mean 8.62 3.18 1.16 0.94 0.96 0.86

Std 2.23 1.30 0.99 1.17 1.19

Min/Max 1.06/1.20 0.62/1.25 0.62/1.19 0.75/1.06

IS-C7

Mean 7.77 1.82 2.43 1.86 1.86 1.39

Std 1.95 2.10 2.05 2.05 1.61

Min/Max 1.51/3.18 1.46/2.35 1.46/2.35 0.94/1.77

IS-C8

Mean 6.89 3.29 2.34 2.70 2.73 2.32

Std 2.35 1.93 2.17 2.33 1.96

Min/Max 2.08/2.79 2.53/2.79 2.48/2.92 2.15/2.47

Overall Mean 10.88 3.53 3.03 2.51 2.24 1.95

1 Initial error without any registration
2 Adaptive registration
3 Random sampling
4 Importance sampling
5 Robust random sampling
6 Robust importance sampling

The limitation of the IS-dataset is that it has only six annotated landmarks. To pro-

vide more compelling evidence, we also conducted experiments using the DIR-dataset

(Castillo, Castillo, Guerra, Johnson, McPhail, Garg & Guerrero 2009), which has 300 an-

notated landmarks. Those landmarks were used to evaluate the registration performance

of all methods based on their mean landmark errors. The results of these experiments



CHAPTER 4. IMAGE REGISTRATION USING RANKED ORDER STATISTICS 74

are shown in Table 4.2. The table also includes the standard deviation of the landmark

errors and the maximum/minimum of the mean errors of ten repeated experiments. A

Wilcoxon-based statistical analysis similar to the IS-dataset was performed on these re-

sults as well and the results are given in Table 4.3. The results show that the proposed

RIS algorithm performs significantly better than the competing algorithms. Table 4.3 also

shows the results for the Wilcoxon test using all 18 test images, which are consistent with

the previous results.

To compare the performance of RIS in comparison with the competing algorithms for

each image of the DIR-dataset, a Wilcoxon rank-sum test (Wilcoxon 1945) was used (this

test uses the error at each landmark point averaged over ten repeated runs). The p-values

after correcting for multiplicity using Holms’ procedure are given in Table 4.4. These

results show that the proposed RIS method in comparison to all competing methods (AR,

RS, IS) produces significantly better results in cases with large deformations (DIR-C4 to

C8). It is important to note that the first few cases include very small motions and all

methods achieve very good registration results.

To compare the computational complexity of these methods, the average computation

times of all competing methods for registration of all images in both datasets were mea-

sured and the results are shown in Table 4.3. We note that both the RS and IS methods

use a fixed number of iterations as the stopping criterion and their computation times

are heavily dependent on the number of required iterations, which is considered an in-

put. The experiments showed that the computation times of our methods are significantly

lower than those of the competing methods. The registration time for the AR method is

significantly higher than other competing methods. This point is shown in Table 4.3 and

Figure 4.5 (a), where the mean errors of all the algorithms (RS, IS , RIS, RRS and AR)

are compared against the time taken to achieve that level of accuracy for a sample image

(case 1). We also note that the proposed RRS method is more than twice as fast as the IS

in both datasets.

Figure 4.5 (b)-(d) show the mean errors of all the sampling-based algorithms with

the number of iterations taken to achieve that level of accuracy. These figures show that

both proposed methods reduce the mean error faster than RS and IS. We also observed

in our experiments that there are fewer sign changes in the RIS estimated gradient of the

cost function compared to RS and IS. This implies that the step-size reductions in RIS



CHAPTER 4. IMAGE REGISTRATION USING RANKED ORDER STATISTICS 75

Table 4.2: Registration performance for images in DIR-dataset measured using expertly

identified landmark points. Each algorithm is repeated 10 times to account for the ran-

domness.

IE OE AR RS IS RRS RIS

DIR-C1

Mean 4.01 0.85 0.98 1.11 1.03 1.00 0.94
Std 2.91 1.24 1.51 1.01 1.00 0.99 0.96

Min 1.06 0.99 0.96 0.90

Max 1.14 1.12 1.03 0.99

DIR-C2

Mean 4.65 0.70 1.10 1.15 0.97 0.92 0.88
Std 4.09 0.99 1.87 1.23 1.06 0.97 0.97

Min 1.11 0.9 0.85 0.84

Max 1.25 1.00 0.98 0.96

DIR-C3

Mean 6.73 0.77 1.26 1.39 1.16 1.08 1.03
Std 4.21 1.01 1.68 1.25 1.15 1.10 1.08

Min 1.32 1.11 1.04 0.96

Max 1.48 1.21 1.12 1.10

DIR-C4

Mean 9.42 1.13 1.93 1.84 1.68 1.64 1.55
Std 4.81 1.27 2.24 1.51 1.32 1.33 1.26

Min 1.77 1.62 1.61 1.48

Max 1.89 1.74 1.69 1.64

DIR-C5

Mean 7.10 0.92 3.06 2.91 2.38 2.12 1.70
Std 5.14 1.16 4.50 3.03 2.66 2.29 1.68

Min 2.70 2.26 2.02 1.59

Max 3.09 2.56 2.23 1.84

DIR-C6

Mean 11.10 0.97 5.27 2.05 1.73 1.65 1.58
Std 6.98 1.38 8.29 1.70 1.26 1.21 1.19

Min 1.95 1.66 1.54 1.48

Max 2.22 1.85 1.70 1.71

DIR-C7

Mean 11.59 0.81 4.16 3.31 2.31 2.16 1.71
Std 7.87 1.32 6.03 3.40 2.35 2.08 1.27

Min 3.03 2.14 1.95 1.63

Max 3.55 2.58 2.58 1.81

DIR-C8

Mean 15.16 1.03 5.93 3.79 2.42 2.21 1.76
Std 9.11 2.19 7.12 4.54 2.74 2.55 1.74

Min 3.33 2.27 1.96 1.64

Max 4.05 2.62 2.49 1.86

DIR-C9

Mean 7.82 0.75 2.85 1.51 1.48 1.47 1.43
Std 3.99 1.09 2.64 1.22 1.23 1.17 1.09

Min 1.47 1.42 1.41 1.34

Max 1.57 1.51 1.54 1.53

DIR-C10

Mean 7.63 0.86 3.26 1.89 1.64 1.65 1.74

Std 6.54 1.45 5.40 1.84 1.46 1.55 2.03

Min 1.79 1.53 1.5 1.54

Max 1.93 1.71 1.73 2.13
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Table 4.3: Average running time for each algorithm and the Holms’ corrected p-values

of Wilcoxon rank-sum test that compare the final mean registration error of competing

methods with the RIS method.

IS-dataset DIR-dataset Combined
Time (s) p-value Time (s) p-value p-values

AR 348.0 0.03 1,757.0 7.81E-03 7.00E-04
RS 55.0 0.03 24.8 7.81E-03 7.86E-04
IS 112.0 0.03 100.0 0.03 1.07E-03

RRS 43.0 0.04 41.5 0.03 2.47E-03
RIS 65.0 - 86.5 - -

Table 4.4: Holms’ adjusted p-values for the Wilcoxon rank-sum test conducted between

the landmark error of RIS and other competing methods.

AR RS IS RRS
DIR-C1 0.34 1.36E-04 0.04 0.39

DIR-C2 0.07 1.64E-05 0.10 0.14

DIR-C3 0.10 9.54E-09 4.00E-04 0.03

DIR-C4 0.05 1.56E-04 1.37E-03 0.04

DIR-C5 1.46E-05 5.41E-16 7.61E-08 2.43E-04

DIR-C6 8.48E-09 1.09E-07 3.00E-04 0.17

DIR-C7 3.66E-08 7.65E-20 3.35E-08 1.09E-09

DIR-C8 2.47E-19 1.64E-08 1.37E-04 0.01

DIR-C9 3.67E-14 0.50 0.65 0.61

DIR-C10 2.27E-04 0.18 0.73 0.26
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are slower, which contributes to its faster convergence. The graphs also show that the

convergence criterion described in Section 4.3.2 is successful in stopping the registration

process at appropriate points (stable results).

To further analyse the performance of the proposed convergence criterion, we com-

pared the accuracy and computation time of the proposed RIS method with and without

the proposed convergence criterion. Here, without convergence criterion refers to RIS

registration with a fixed number of iterations (similar to IS and RS registrations). The

results are shown in Table 4.5. The p-values (Holms corrected) of Table 4.5 are the re-

sults of a two one-sided test (TOST) between the final landmark errors achieved with and

without the convergence criterion. These numbers show that the mean landmark errors

achieved with and without the proposed convergence criterion are equivalent (within a

margin of 5% of the initial landmark error). Calculating the average of the last column

of Table 4.5 shows that an average time saving of around 44% is achieved by using the

proposed convergence criterion.

Table 4.5: The improvement of the registration time due to the use of convergence crite-

rion and the results of the TOST (low p-values mean the results are statistically equal).

Mean Mean TOST Time Time
LM Error LM Error p-value Without saved
With CC Without CC %

CC
DIR-C1 0.94 0.96 5.6E-04 85.3 13.4

DIR-C2 0.88 0.93 1.3E-03 123.6 43.9

DIR-C3 1.03 1.11 2.3E-04 119.2 64.7

DIR-C4 1.55 1.60 2.4E-07 115.4 34.0

DIR-C5 1.70 1.62 6.7E-04 124.3 62.1

DIR-C6 1.58 1.66 5.1E-10 142.7 64.0

DIR-C7 1.71 1.79 5.1E-10 138.7 87.7

DIR-C8 1.88 1.85 5.3E-14 153.4 20.9

DIR-C9 1.43 1.45 9.8E-07 99.23 40.6

DIR-C10 1.74 1.74 4.4E-05 124 12.3

To show that there is a linear correlation between the proposed convergence crite-

rion Ck and the registration accuracy throughout the registration process, the Pearson’s

correlation coefficients between the actual registration accuracy measured using mean

landmark error and Ck at the end of each iteration for the top level are enumerated in

Table 4.6. The results show that there is a strong linear correlation between the measure

for the convergence criterion and the actual registration error.
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Table 4.6: The measure of correlation between the proposed convergence criterion and

the actual registration error measured using expert identified landmarks. A value in ex-

cess of 0.5 for Pearson’s correlation indicates a strong linear correlation. Images from

the DIR dataset are used.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

0.93 0.96 0.76 0.86 0.8 0.89 0.7 0.9 0.87 0.82

To visualize the registration quality of the proposed methods, the intensity difference

image of three slices before and after RIS registration are shown in Figure 4.6. These

slices show that the registration errors reduce significantly after the registration with the

proposed method.
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(c) DIR-Case 7
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Figure 4.5: (a) Rate of the mean landmark error reduction over time for different regis-

tration methods for Case 1. (b)-(d) Rate of decrease of mean landmark error vs number of

required iterations for different methods in cases where registration involves significant

deformations.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Axial, sagittal and coronal slices of the intensity difference image between

fixed and moving images (DIR-Case 5) before registration are shown in (a),(b),(c), re-

spectively. (d),(e) and (f) show the axial, sagittal and coronal slices of intensity differ-

ences between fixed and transformed moving images after RIS registration.

4.5 Discussion
This chapter has presented a new approach to focus the registration on misregistered

points identified using a rank-ordered statistics-based robust segmentation technique. Ex-

periments using lung CT images showed that the proposed method achieved high regis-

tration accuracies compared to similar methods. The registration time for the proposed

method was also significantly reduced using a new convergence criterion.

It is not surprising to see that the RS method, due to its simplicity, is computation-

ally more efficient than all of the above methods. However, the accuracy of the random

sampling method is poor. Our experiments showed that running the RS with more itera-
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tions would not improve its registration accuracy. To provide an example, the mean errors

of Case five using the random sampling algorithm with significantly higher numbers of

iterations (100 and 400 for two registration levels compared to 60 and 100 originally)

are shown in Figure 4.7. This figure shows that the accuracy of the RS method does not

increase by increasing the number of iterations. This is due to the fact that in stochastic

optimization, to ensure convergence, the step sizes are incrementally reduced and when

the step size is very small, no significant improvement is gained from additional iterations.

A two one-sided test (TOST) was conducted with the null hypothesis: mean registration

errors of RS with low and high numbers of iterations are not equal (the margin is set to

5% of the error before registration). The p-values after correcting for multiplicity using

Holms’ procedure were also calculated and the results showed that the accuracy of the RS

does not improve significantly as the number of iterations increases. The RS algorithm

was also tested with three times more samples per iteration. Again, the RS final mean

error did not significantly change by increasing the sample size.
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Figure 4.7: Mean error of each iteration for algorithms RIS, RRS and RS. The maximum

number of iterations for RS has been increased to 100 and 400 in the two registration

levels respectively. The image used is DIR-Case 5.

To show the effect of using rank-order statistics-based segmentation during registra-

tion, joint histograms of fixed and moving images before and after the application of

MSSE are shown in Figure 4.8. The figure shows that the segmentation strategy has been

successful in removing the high density clusters that appeared in the joint histogram and

focusing the optimization on the target voxels.
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(a) (b)

Figure 4.8: The joint histogram of the fixed image (If (x)) and the transformed moving

image (Im(T (x))) for Case 5 of DIR-dataset at the 10th iteration (a) contains all the

voxels. (b) contains only the voxels identified as the middle group by the MSSE.

To test the hypothesis that misregistered regions can be identified using robust seg-

mentation of voxels in the intensity difference image, the median landmark errors were

calculated for the landmarks that either belong to inliers (Group one) or outliers (Groups

two and three). The median is robust to the influence of outliers and presents a rigorous

performance measure. The median landmark errors, presented in Table 4.7, show that

landmark errors of Group one are significantly lower than those of Groups two and three.

Table 4.7: Median of the landmark errors belonging to Group one and Groups two and

three.

Median Inlier Median Outlier
Error Error

DIR-C1 1.94 2.68

DIR-C2 2.76 4.12

DIR-C3 2.98 3.45

DIR-C4 3.39 5.13

DIR-C5 3.33 5.18

DIR-C6 4.00 13.12

DIR-C7 5.01 12.50

DIR-C8 6.40 7.93

DIR-C9 3.71 5.09

DIR-C10 2.85 4.62

Registration results for images in the DIR-dataset are reported at www.dir-lab.com

and according to these results the best registration is achieved with least median of square

filtered compressible flow (LFC) (Castillo et al. 2012) and 4-dimensional local trajectory

modeling (4DLTM) (Castillo et al. 2010). Comparison of these results shows that the
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above methods achieved accuracies comparable to or better than the proposed methods.

It should however be noted that the errors of LFC and 4DLTM cannot be directly com-

pared with the errors we computed for RIS and RRS, as those reported in the chapter were

on 1200 landmarks per image, while a subset of 300 landmarks per image was available

publicly. It is important to mention that the 4DLTM method uses all the images from the

4D-CT dataset, whereas the proposed methods use only the two images corresponding

to the extremes of the respiratory cycle. The use of intermediate images by the 4DLTM

method means that the algorithm has to process significantly more data than methods us-

ing only two extreme images. The execution time of the LFC method (reported in Castillo

et al. (2012)) is an indication of the large amount of computation required in this method.

The above methods were specifically developed to register lung CT images and use more

information than the proposed methods, making them computationally expensive.

A drawback of the proposed methods is that, since these methods rely on the intensity

difference for sample selection, the change of intensity with a change in inspiration level

in case of large deformations can affect the performance of these methods. Other authors

have shown the benefit of using a mass-preserving intensity model that adjusts intensity

according to volume changes (Gorbunova et al. 2012). Such a model can be incorporated

in the proposed approach and may improve results over those presented here. However,

extension to multimodal registration is less straightforward. In such cases, one would

need to find appropriate clustering schemes to remove the almost registered data from the

images of different modality for the application of the proposed registration methods.

Several recent registration algorithms have been implemented using graphics process-

ing units (GPUs) to accelerate computation (Castillo et al. 2012, Eklund et al. 2013, Fluck

et al. 2011, Gu et al. 2010). An algorithm has to be parallelizable in order to take ad-

vantage of these computers. In our implementation we use a B-spline transformation to

represent the deformation field and the optimization is performed using analytical gradi-

ents of the SSD cost function with respect to the B-spline coefficients. In our approach

the computation time is reduced by using only a carefully selected subset of voxels in the

calculations. Another method to decrease the computation time would be to use a GPU

to calculate the gradients. This is because the B-spline coefficients have only a compact

support and the memory on the GPU is shared by all the cores. The derivative calculation

step can therefore be easily parallelized, as illustrated by Rohlfing & Maurer Jr (2003).
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An issue for the GPU implementation of this method is that the sorting step of the pro-

posed methods cannot be easily parallelized. Having said this, we have observed that

the sorting step on average takes only around 15% of the overall computation time, even

when the basic “qsort” algorithm is used for sorting. The total computation time and the

time for sorting for each image in DIR-dataset are shown in Table 4.8.

Table 4.8: The total computation time and the time for sorting for each image in DIR-

dataset.

Total Mean Time Mean Sort Time Sort Time /
Per Iteration (ms) Per Iteration (ms) Total Time) %
Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

DIR-C1 201.78 732.46 17.53 73.96 8.69 10.1

DIR-C2 330.63 1037.56 28.08 220.77 8.49 21.28

DIR-C3 225.52 1056.83 21.52 178.75 9.54 16.91

DIR-C4 279.3 987.03 15.5 124.82 5.55 12.65

DIR-C5 293.92 1066.75 19.47 154.29 6.62 14.46

DIR-C6 361.05 1210.64 20.4 157.13 5.65 12.98

DIR-C7 351.27 1176.73 27.25 213.24 7.76 18.12

DIR-C8 384.02 1304.08 39.2 311 10.21 23.85

DIR-C9 254.45 840.86 15.75 125.72 6.19 14.95

DIR-C10 278.9 1072.36 24.47 191.92 8.77 17.9

Average 296.08 1048.53 22.92 175.16 7.75 16.32

4.6 Conclusion
This chapter has presented a new approach to the non-rigid registration of medical im-

ages based on using robust segmentation of squared intensity differences to intelligently

guide the sampling part of the stochastic optimization. The performance of the proposed

approach in terms of registration accuracy and computation time was compared with sev-

eral existing methods via an extensive set of experiments on images with ground truth.

The experiments showed that the proposed method substantially improves both the ac-

curacy and the computational complexity of the registration task. More importantly, the

method incorporates a computationally-efficient means of measuring the quality of regis-

tration. Since the registration schemes are all iterative, this measure is highly useful for

deciding when to stop the registration process.
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Chapter 5

Robust Data Modelling Using Thin

Plate Splines

5.1 Introduction
Fitting a model to a set of data contaminated with noise is a well-studied problem

and has many applications in the field of computer vision. These applications include:

interpolation of missing data, smoothing of motion fields and estimation of derivatives.

Modelling using thin plate splines (TPSs) is one of the most common methods of scat-

tered data fitting. TPSs are commonly used in image registration applications to model

transformation in feature-based registration algorithms (Bookstein 1999, Coselmon et al.

2004, Johnson & Christensen 2001, Zhang et al. 2014) and in smoothing of motion fields

(Ehrhardt & Lorenz 2013). It is also used in motion estimation in tomographic recon-

struction (Muller et al. 2013).

TPS modeling, as formulated by Meinguet (1979) and Wahba (1979), involves the

minimisation of the following cost function (Stals & Roberts 2006):

1

n

n∑
i=1

(‖f(xi)− yi‖)2 + λ

∫
Ω

∑
|v|=2

⎛
⎝2

v

⎞
⎠ (Dvf(x))2 dx (5.1.1)

where xi ∈ Rd is the location of the ith data point in the d-dimensional space, yi is the

corresponding data, n is the number of data points and v is a d-dimensional multi-index.

The first term in this equation is referred to as the data fidelity term and the second

term as the smoothness term. The smoothing parameter λ controls the trade-off between
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data fidelity and smoothness. When λ is very small, the resultant function tends to go

through all the data points and is highly sensitive to noise. On the other hand, when

λ is high, the result will be very smooth and may not follow the curves of the under-

lying data. The selection of an appropriate smoothing parameter is not a trivial prob-

lem. However, solutions based on cross-validation (Wahba 1990) or generalized cross-

validation (Hutchinson 1995) principles have been proposed.

The function f(xi) of the above equation can be any radial basis function (RBF) and

several commonly used RBFs are discussed in Karri et al. (2009). For thin plate splines

(TPSs), the spline function is as follows:

f (x) =
n∑

i=1

θiKi(x) +
m∑
j=1

θn+jφj(x) (5.1.2)

where

Ki(x) =
1

16π
‖x− xi‖2 ln

(‖x− xi‖2
)

(5.1.3)

is the TPS radial basis function, θi is the ith parameter and φj(x) is a polynomial basis.

The parameters a of the resulting system can be calculated by solving the following linear

set of simultaneous equations1 (Wang 2011):

Aθ = y (5.1.4)

where

A =

⎡
⎣K − nλIn×n P

P T 0m×m

⎤
⎦ (5.1.5)

θ = [θ1, θ2 . . . , θn+m]
T ; y = [y1, y2, . . . , 01×m]

T (5.1.6)

K =

⎡
⎢⎢⎢⎣
K1(x1) · · · Kn(x1)

...
. . .

...

K1(xn) · · · Kn(xn)

⎤
⎥⎥⎥⎦ ;P =

⎡
⎢⎢⎢⎣
1 x1 · · ·
...

...

1 xn · · ·

⎤
⎥⎥⎥⎦ (5.1.7)

and P T denotes the transpose of P .

One of the major problems associated with TPS smoothing is its high sensitivity to

outliers. In computer vision problems, the data are often contaminated with both the

gross outliers and/or pseudo-outliers (Stewart 1997). The gross outliers are produced by

1The dimensionality is assumed to be two.
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errors in the data generation process, while pseudo-outliers are correct measurements of

another structure away from the structure of interest in a multi-structure scenario.

In the computer vision literature, many methods for fitting parametric models to data

contaminated with noise and outliers have been proposed (Meer 2004). Some well-known

robust statistical methods that can tolerate relatively high number of outliers include ran-

dom sample consensus (RANSAC) (Fischler & Bolles 1981), least median of squares

(LMS) (Rousseeuw & Leroy 2005) and many variations of these techniques (Chin et al.

2012). These methods perform efficiently when the number of parameters in the model

is both low (below 10) and known a priori. In Tran et al. (2012), it is even shown that

RANSAC based approaches can be used for outlier rejections in nonlinear fitting prob-

lems (such as deformable registration applications) when the errors associated with out-

liers are significantly less than the error associated with ignoring the curvature of the

underlying function or manifold. However, in applications where the data contain more

than one manifold, the scale of pseudo-outliers (outliers associated with other structures),

would be similar to the scale of errors associated with linearisation of underlying mani-

folds. In such applications (e.g. motion field smoothing, 3D modelling using range data),

the use of RANSAC-based methods for spline type data fitting will encounter the follow-

ing two hurdles.

1. In a general case the number of parameters needed for spline representation of a

structure of interest (n) is not known a priori and likely to vary even within different

parts of a single dataset (e.g. an image). Using a smaller value than needed may

lead to a suboptimal fitting of the data, whereas using a higher number will increase

the probability of including outliers in the calculation, leading to an incorrect fit.

2. In the robust fitting algorithms mentioned above, the optimization is conducted us-

ing random sampling by selecting a finite number of subsets of data, with the hope

that at least one of the selected subsets will be outlier-free. For a spline represen-

tation with large number of parameters on useful data with a high percentage of

outliers (multi-structural scenarios), the probability of picking such a subset is ex-

tremely small. This would make these algorithms computationally intractable, even

for off-line applications.

In recent years, there has been growing interest in addressing the above issues. A
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method based on orthogonal least squares (OLS) was proposed by Chen & Li (2012) to

select a suitable set of knots (parameters) that is adequate to represent a function with

sufficient accuracy. However, this method fails in the presence of outliers as it gives high

significance to outliers. The same authors later developed a robust method for multi-

quadratic spline fitting to address the issue of the existence of outliers (Chen & Li 2013).

This method first selects a subset of points as knot points using a space-filling design

and then minimizes the L1 norm of the cost function instead of the L2 norm to provide

robustness2. The method was tested for data with gross outliers and the results showed

significant improvements compared to non-robust methods. However, our experiments,

detailed in Section 5.3, showed that this method performs poorly where the data contains

pseudo-outliers. The method also does not include a scheme to automatically calculate

the number of knots required to give the best accuracy and the required number of knots

has been chosen empirically in their experiments. Again, our examples will show that the

performance of this method is very sensitive to the choice of this number.

In the present study, a computationally-tractable robust method for fitting TPSs to con-

taminated data (including large numbers of gross and pseudo-outliers) is presented. Sim-

ilar to the FLkOS (Bab-Hadiashar & Hoseinnezhad 2008), we use the k-th order square

of residual as the cost function and its derivatives to minimise this function, and find an

initial fit to the data and employ MSSE (Bab-Hadiashar & Suter 1999) to dichotomise the

data and separate inliers from outliers. Finally, the resulting TPS is calculated using all

the inliers. The results of the proposed method are compared with the performance of the

robust spline fitting method using L1-Norm (Chen & Li 2013).

The rest of the chapter is organized as follows. Section 5.2 provides a detailed de-

scription of the proposed method while Section 5.3 presents the results achieved with the

proposed method and compares them with those using competing methods. Section 5.4

concludes the chapter.

5.2 Robust Spline Fitting
To solve the TPS fitting problem in the presence of outliers, we propose an iterative

two-step approach. In this method, the data is iteratively classified into inliers and outliers

and the TPS fitting is performed using only inliers to improve the earlier classification.

2For a vector x with n elements Lp norm is defined as: ‖x‖p = (
∑n

i=1 |xi|p)1/p
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The first challenge in this approach is the selection of a suitable method to dichotomise

inliers and outliers. RANSAC and its variants are the most popular high-breakdown

model fitting techniques used in computer vision applications. Notwithstanding the fact

that these methods need the knowledge of inlier noise to perform segmentation, the main

issue with using them to solve the spline fitting problem is that in order to guarantee

correct inlier/outlier dichotomisation, at least one candidate model (selected using ran-

dom sampling) has to be outlier free. Due to the relatively large size of the parameter

space involved in TPS fitting, selecting a subset that contains inliers alone (from a set of

data that is contaminated by a relatively high percentage of outliers) is extremely time-

consuming. To overcome this issue, we propose the use of fast least k-th order statistics

(FLkOS) (Bab-Hadiashar & Hoseinnezhad 2008) for finding a good fit and MSSE (Bab-

Hadiashar & Suter 1999) to perform the segmentation. FLkOS uses the derivatives of a

modified least k-th order statistics cost function in a Newton-based optimisation scheme

to derive the model parameters. MSSE uses a putative fit and iteratively identifies inliers

using the following criterion (Bab-Hadiashar & Suter 1999):

r2(i+1) < T 2σ2
i (5.2.1)

where i is the index after sorting, ri+1 is the squared residual at index i+1, T is a constant

threshold (T = 2.5 is used to include 99% of inliers based on a normal distribution (Bab-

Hadiashar & Suter 1999)) and σ(i) is the standard deviation of sorted residuals up to index

i calculated as σ2
i = 1

i

∑i
j=1 r

2
(j).

The spline fitting problem in Equation (5.1.4) can be set up as a standard regression

model as shown below:

ri = Aiθ − yi (5.2.2)

where Ai is the ith row of the matrix A in (5.1.4) and yi is the ith element of y. For this

representation the least k-th order statistics cost function would be a single term given by:

r2k =
(
Akθ̂ − yk

)2
. (5.2.3)

Since using this single term cost function in Newton-type optimisation would lead to a

non-invertible Hessian, the FLkOS algorithm uses a modified form of this cost function,
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as shown below (Bab-Hadiashar & Hoseinnezhad 2008).

J(θ̂) =

	 p−1
2 
∑

m=−� p−1
2 �

r2k+m (5.2.4)

Assuming that there is a small neighbourhood where the index of sorted residuals would

not change due to the change in parameters, the derivatives of the above cost function are

as follows:

∇J(θ̂)|θ̂=θ̂l
= 2

	 p−1
2 
∑

m=−� p−1
2 �

Ak+m

(
AT

k+mθ̂l − yk+m

)
(5.2.5)

∇2J(θ̂)|θ̂=θ̂l
= 2

	 p−1
2 
∑

m=−� p−1
2 �

Ak+m (Ak+m)
T

(5.2.6)

and using the above calculated derivatives in a Newton optimisation scheme would lead

to the following iterative solution:

θ̂l+1 =

⎡
⎢⎢⎢⎣
A[k−(p−1)/2]

...

A[k+(p−1)/2]

⎤
⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎣
y[k−(p−1)/2]

...

y[k+(p−1)/2]

⎤
⎥⎥⎥⎦ . (5.2.7)

This shows that the next parameter estimate is given by the solution to the TPS equation

using only the p data points that correspond to the p sorted residuals around the r2k. The

complete implementation of FLkOS for TPS fitting is provided in Algorithm 3. In order to

minimise the chance of converging to a local minimum, the FLkOS algorithm is initialized

at several random starting points. It is important to note here that this random initialisation

does not require all the points to be from a group of inliers.

One of the parameters needing to be initialized is the index value of the k-th residual

(k− th). Ideally, in TPS fitting, this value should be the number of inliers in the structure

of interest in the given data. Since this value is not known in advance, selecting a suitable

value can be a challenge. Using a value larger than the ideal value would lead to a fitting

that always includes some outliers and using a smaller value may lead to a suboptimal fit.

To demonstrate the effect of K-th value on the final segmentation outcome, we present

a simulation that uses a set of contaminated data with 70% inliers. In this study, first the

K-th parameter is set to a lower value (35%) than the actual number of inliers and the
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Algorithm 3 Pseudo-code for FLkOS Implementation

Inputs: Data, p, k, k-th

1: repeat
2: Randomly Select a set of p data points.

3: Compute the TPS parameters (θ̂l) using the p points and calculate the residuals for

all data points.

4: Sort the Residuals (|r|).
5: calculate MAD = 1.4826×median(|r −median(r)|)
6: Set Jtresh = 10−5 ×MAD, Jprev = r2k−th, Jmin = 107.
7: repeat
8: Select p points corresponding to the p sorted residuals centred around k.

9: Compute the TPS parameters (θ̂l+1) using (5.2.7).

10: Calculate the Residuals and Sort (r).

11: Set J = r2
Kth , ΔJ = |J − Jprev|

12: if Jmin > J then
13: Jmin ← J
14: θ∗ ← θ̂l+1.

15: end if
16: until ΔJ < Jtresh or maximum number of iterations

17: if Jmin < J∗
min then

18: J∗
min ← Jmin

19: θ∗final ← θ∗

20: end if
21: until maximum number of iterations

results are shown in Figure 5.1(a). This figure shows that the direct application of the

FLkOS and MSSE is sensitive to the choice of the k value and can underfit the data.
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Figure 5.1: Fitting a TPS model to a dataset with 70% inliers. (a) When initial number of

inliers is set to 35% and FLkOS and MSSE are directly applied. (b) When initial number

of inliers is set to 35% and a spline is fitted using the proposed iterative method.

To overcome this problem, we use an iterative scheme in which we start with a lower
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Algorithm 4 Pseudo-code for proposed method

Inputs: Data, N init
inlier

1: n = length(Data).
2: Nin = N init

inlier

3: repeat
4: p ← Nin/5
5: k ← Nin/2
6: Kth ← Nin

7: Compute FLkOS Model parameters θ̂ using p, k,Kth.

8: Calculate the residuals for TPS with parameters θ̂
9: Sort the residuals

10: for i = n/2 → n do
11: calculate σ2

i−1 =
1

i−2

∑i−1
j=1 r

2
j

12: if r2i > T 2 × σ2
i−1 then

13: N∗
in = i

14: Break
15: end if
16: end for
17: ΔN = |Nin −N∗

in|
18: Nin ← N∗

in

19: until ΔN < Treshold

value for variable k-th and compute the best estimate using the FLkOS algorithm. Next,

this estimate is used as the candidate model and the number of inliers for this model

candidate is identified using the MSSE criterion (5.2.1). After the inliers are identified,

a new set of TPS parameters is calculated by using the FLkOS algorithm with k-th equal

to the number of inliers, as calculated in the first step. This process is repeated several

times until the number of inliers does not change. The proposed method is described in

Algorithm 4. The result of applying the proposed scheme to the above data is shown in

Figure 5.1(b). The figure shows that the proposed iterative scheme is able to correctly fit a

TPS, even when the initial value for k-th is much lower than the actual number of inliers.

It is important to note that the proposed method always returns the largest structure

in the given data first. However, the largest structure does not necessarily have to have

the absolute majority of data points. In our implementation, we have assumed that the

underlying signal can be represented by around 20% of the data points.

5.3 Experimental Results
The proposed method was implemented using MATLAB and the results are compared

with the non-robust TPS (L2-Norm) and robust L1-Norm TPS (Chen & Li 2013) methods
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using both synthetic and read data experiments.

5.3.1 Synthetic data simulations
In order to visualise how the proposed method works, we have used one-dimensional

signals first followed by some two-dimensional results. To analyse the performance of

different spline fitting methods, the following one-dimensional functions are commonly

used:

g1(x) = sin(x) + ε ; −5 < x < 5 (5.3.1)

g2(x) = sin(π(1− x)2) + ε ; −2 < x < 2 (5.3.2)

where ε is the inlier noise and in our experiments is set to: ε ∼ N(0, 0.12) and data values

are normalised between [−1, 1]. In addition to points generated by these functions, some

outliers (either unstructured or structured) were also added to the data. Mean error values

for every fit were calculated as follows (Chen & Li 2013):

Mean Error =

√∑n
i=1 (f(xi)− ȳi)

2

n
(5.3.3)

where ȳi are the true values of the underlying function.

In the first simulation, following Chen & Li (2013), we conducted experiments with

sets of data that had only gross outliers from the distribution N(0, 52). The percentage

of gross outliers was changed from 10 to 40 and the results are shown in Figure 5.2.

These results show that the proposed method achieved best results across all percentages

of outliers followed by the L1-Norm method. For this type of outliers the advantage of

using the proposed method is limited, because methods using L1-Norm also perform well

on this type of data.

In the second simulation, we introduced some pseudo-outliers (evenly distributed data

around a constant value away from the signal) in place of normally-distributed gross out-

liers. The results are shown in Figure 5.3. These results show that for lower levels of

outliers the L1-Norm method also achieves good results. However, when the outlier per-

centage is increased the performance of the L1-Norm method degrades, while the pro-

posed method still performs well. It is not surprising to note that the results of L1-Norm

degrade even faster when the second structure is moved farther apart, while the proposed

method is not affected by the location of distant structures. When the structures are very
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Figure 5.2: The variation of the mean error of various spline estimation methods for

different percentages of gross outliers. The data in this simulation is created using (5.3.2)

and gross outliers are generated using a zero mean normal distribution with standard

deviation of 5.

close or are overlapping, both methods had similar results with some visible errors.

The performance variation of the L1-Norm algorithm with different numbers of knot

points is shown in Figure 5.4. These results show that the performance of the L1-Norm

method is highly dependent on the number of knot points chosen. For instance, for the

function (5.3.1), ten knot points would give the best results. However, as shown in Fig-

ure 5.5, the same number of knot points results in a poor representation of function (5.3.2).

This indicates that the optimum number of knots is dependent on the shape of the struc-

ture of interest, and it would be difficult to choose an appropriate value without some

knowledge of the underlying shape.

Even for smaller amounts of pseudo-outliers, if the data is locally (spatially) con-

centrated, the L1-Norm would fail, whereas the proposed method performed well. An

example of such a scenario is shown in Figure 5.6. The case of having spatially localised

outliers is commonly encountered in many computer vision applications, particularly in

parametric segmentation tasks such as range and motion segmentation.

To demonstrate and compare the performance of the proposed method for two-dimensional

cases, we used the following 2D test function, as proposed by Chen & Li (2013):

g3 (x, y) = 3 (1− x)2 e−x2−(y+1)2 − 10
(x
5
− x3 − y5

)
e−x2−y2 − 1

3
e−(x+1)2−y2 + ε

(5.3.4)
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Figure 5.3: Resulting TPS fit for the function in (5.3.2) with (a) 30% (b) 40% outliers

from distribution N(5, 0.12). The number of knots for L1-Norm method was set to 25.

where ε ∼ N(0, 12). Different numbers of pseudo-outliers from N(15, 22) distribution

were then added to test the robustness of the competing methods. The shape of the above

function (with no noise) with added outliers is shown in Figure 5.7. The mean error results

for the proposed method and the L1-Norm method with different number of outliers are

presented in Figure 5.8. For L1-Norm implementation, as suggested in Chen & Li (2013),

100 knot points were used to estimate the underlying spline.

The results show that the mean error of the L1-Norm method increases exponentially

when the outlier percentage is increased, whereas the mean error of the proposed method

increases linearly at a low gradient. The linear increase in the mean error for the proposed

method is explained by the fact that the data points available for fitting are decreased when

some points are replaced by outliers.
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Figure 5.4: The estimated splines for function (5.3.1) with 30% of outliers using different

methods. Numbers of knots for L1-Norm TPS are chosen to be 10 in figure (a), 50 in

figure (b) and 100 in figure (c).
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Figure 5.5: The estimated splines for function (5.3.2) where the L1-Norm method is

implemented with 10 knots, which was shown to be the optimum number for the first

function (5.3.1). This figure shows the L1-Norm method is fairly sensitive to the number

of knots chosen.

To provide an indication of the time required to estimate the 2D splines of function

(5.3.4) using both the proposed and the L1-Norm methods, their average running times,

using our MATLAB implementations, are shown in Table 5.1. It is important to note here

that since the proposed method uses all the inliers to construct the TPS the times would

be different for different percentages of inliers.

Table 5.1: Computation time of estimating a 2D spline using both the proposed and the

L1-Norm methods. Size of the dataset in these simulations is 101× 101.

L1-Norm Proposed Method

Outlier Rejection - 94.75

Fitting TPS to inliers - 19.25

Total Time 135.5 (s) 114.0 (s)

The performance of the L1-Norm method degrades even for a much lower number

of outliers if they are concentrated in space. An example of such behaviour is shown in

Figure 5.9. In the example, the percentage of outliers is around only 3%. The results show

that the L1-Norm method failed to exclude outliers and returned a wrong fit.The proposed

method is, however, able to properly recover the intended function.

5.3.2 Real data experiments
To demonstrate that the proposed method can be used to model surfaces in range data,

the 3D cloud of points produced by a structured light range scanner of an object with a
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Figure 5.6: Estimated splines for function (5.3.2) with: 25% pseudo-outliers plus 5%

gross outliers (a) and 10% pseudo-outliers plus 5% gross-outliers (b). To make a mean-

ingful comparison, densities of data points along the x axis for pseudo-outlier and main

structure are equalised.

number of parallel surfaces was used in our experiment. Although range data are usually

clean and accurate, the existence of multiple close structures means that there are signifi-

cant numbers of pseudo-outliers, no matter which surface is modelled. Figure 5.10 depicts

the test data as well as the results of applying both the L1-Norm and the proposed method

to model these objects. The outcomes show that, similar to the simulation results, the

L1-Norm method bridges different surfaces while the proposed method discards outliers

(data associated with other surfaces as well as gross outliers) correctly and fits a spline to

the largest surface.
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Figure 5.7: Plot of the function (5.3.4) with no noise and all added pseudo-outliers.
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Figure 5.8: The variation of the mean error of various spline estimation methods for dif-

ferent percentages of pseudo-outliers. The data in this simulation is created using (5.3.4)

and outliers are generated using a normal distribution with mean of 15 and standard de-

viation of 2.

5.4 Conclusion
A new algorithm for modelling visual data using robust thin plate spline fitting has

been proposed in this chapter. The fitting algorithm uses a variant of the least k-th order

statistics fitting approach with a novel iterative method for performing the inlier/outlier

segmentation. The proposed method was tested on synthetic and real data and was shown

to be effective, even when numerous structured outliers (pseudo-outliers) are present.
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Figure 5.9: Estimated splines for function (5.3.4) with only 3% localised pseudo-outliers

using (a) L1-Norm method and (b) proposed method.



CHAPTER 5. ROBUST DATA MODELLING USING THIN PLATE SPLINES 100

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a)

−0.1

0

0.1

0.2

0.3

−0.2−0.15−0.1−0.0500.050.10.15

−0.2

−0.1

0

0.1

0.2

0.3

(b)

−0.05

0

0.05

0.1

0.15

0.2

−0.2−0.15−0.1−0.0500.050.10.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

(c)

Figure 5.10: The results of the real data experiment. The measured 3D depth points

(point cloud) are shown by red dots and are rotated for better visualisation. (a) The

picture of the object used in the range data modelling experiment. (b) Estimated splines

for the L1-Norm method. (c) Estimated splines for the proposed method.
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Chapter 6

Robust Model Fitting Using Higher

Than Minimal Subset Sampling

6.1 Introduction
The task of identifying the underlying model in a set of data contaminated with both

noise and outliers is a highly researched area in computer vision. This task has many

applications, including motion segmentation (Elhamifar & Vidal 2013, Poling & Lerman

2014, Torr 1995), range image segmentation (Hesami et al. 2010, Lara-Alvarez et al.

2009, Wang & Suter 2004), medical image analysis (Hevia-Montiel et al. 2007) and visual

tracking (Lucena et al. 2010, Shen et al. 2010). In computer vision problems, the data

often comprise multiple structures that result in pseudo-outliers (correct measurements of

another structure away from the structure of interest) in addition to gross-outliers (Stewart

1997) that are produced by errors in the data generation process.

There are a large number of robust model-fitting techniques that can be used in recov-

ering the underlying models in the presence of both gross and pseudo-outliers, and many

of these techniques involve optimization of highly complex cost functions. A commonly

used approach is to discretise the parameter space using sampling and evaluate the cost

function on these discrete points to find the optimum (hypothesize and verify strategy).

The assumption here is that at least one of the hypotheses selected will be sufficiently

close to the true structure that is to be recovered.

In hypothesize and verify approach, the hypotheses are generated by sampling subsets

of p data points and estimating the model represented by those data points. Here p refers to
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Figure 6.1: Minimal subset sampling vs. higher than minimal subset sampling. The data

do not contain outliers (Pham et al. 2012). The figure represents an extreme case where

the span of the data samples is made deliberately small.

the number of parameters needed to represent the model and using p as the sample size is

known as minimal subset sampling (MSS) (Pham et al. 2012). In the presence of outliers

and multiple structures, the chance of generating a hypothesis close to a true structure

using random sampling is small. Recently several methods have been proposed to bias

the sampling process towards selecting points from the same structure in consecutive

steps (Chin et al. 2010, Fan & Pylvänäinen 2009). Estimating how many samples need

to be selected in order to guarantee success with a high probability is not trivial. The

main assumption made in setting the number of samples is that one sample with only

inliers (clean sample) will be adequate to generate a hypothesis close to the true structure.

However, as shown in Figure 6.1, in the presence of noise even a clean sample may result

in a hypothesis that is far from the true model, particularly if the span of the sample

data points, in one dimension, is not much larger than the scale of noise (Pham et al.

2012). For this reason, most implementations generate a higher number of samples than

necessary, which in applications involving high-dimensional model fitting, can make them

computationally inefficient. More importantly, there is usually no measure to indicate the

success, at a given number of samples.

Methods such as LO-RANSAC (Chum et al. 2003) try to improve the closeness of an

initial hypothesis to the true model by local search. However, this only works when the

initial guess is in the vicinity of the true structure. Pham et al. (2012) proposed higher than

minimal subset sampling to generate better hypotheses instead of refining the inaccurate

ones. As shown in Figure 6.1 using higher than minimal subset sampling for hypothesis

generation has a greater chance of generating a hypothesis closer to the true model, given

that all the points in the sample are inliers (this claim will be considered in more detail
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in the next section). It is important to note here, that selecting an all-inlier sample in the

presence of multiple structures and gross outliers, becomes increasingly difficult when

the sample size is increased (due to the multiplication of probabilities). This makes direct

extension of MSS sampling methods to higher than minimal subset sampling computa-

tionally inefficient.

In this chapter, similar to Bab-Hadiashar & Hoseinnezhad (2008), we propose an

efficient robust model-fitting method that uses higher than minimal subset sampling to

generate hypotheses. In this method, one starts from an arbitrary hypothesis (which does

not need to be in the vicinity of the solution) and moves towards a structure in the data

using local information available at each iteration. The method also has the ability to

identify when the algorithm has reached a hypothesis with adequate accuracy and stop

appropriately, saving computational time.

The rest of this chapter is organized as follows. Section 6.2 discuss the implications of

using higher than minimal subset sampling and prior work in that direction. Section 6.3

describes the proposed method in detail and Section 6.4 presents experimental results in-

volving synthetic and real data, and comparisons with state-of-the-art model-fitting tech-

niques. Section 6.6 concludes the chapter.

6.2 Higher Than Minimal Sampling

6.2.1 Previous work
There are two approaches in the literature that use higher than minimal subsets to

solve the model-fitting problem.

The first approach is to use higher than minimal subset samples to generate affinities

between those points and represent them using a hyper-graph, which is then partitioned to

obtain clusters in the data. Agarwal et al. (2005) proposed a two-step algorithm to cluster

the higher order affinities. In the first step, they constructed a hyper-graph with h =

p + 1 vertices per edge. This hyper-graph was then approximated with a pairwise graph

using the clique averaging technique and the resulting pairwise graph was segmented

using a spectral partitioning algorithm. A method that partitioned the hyper-graph directly

without converting it to a pairwise graph was introduced by Liu et al. (2010). Their

approach requires the hyper-graph and the weights to be calculated at the start. However,

calculating the weights of a full hyper-graph with all the nodes having adjacencies with
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each other is a very expensive task and a large memory space is needed to store the

weights (space needed ∝ nh where n is the number of data). Hairong & Shuicheng

(2012) proposed a computationally efficient hyper-graph clustering method that used a

hypothesize and verify strategy to approximately construct the hyper-graph called the

random consensus graph which is then converted to a pairwise graph that approximately

retains the affinity information. However, instead of constructing the hyper-graph and

then converting it to the pairwise graph, the authors directly compute the pairwise edge

weights from the consensus information. Once the pairwise graph is approximated it is

partitioned using a slightly modified version of the robust ensemble clustering approach

proposed in Liu et al. (2010). Since this algorithm relies on a RANSAC like method to

construct the consensus information, it inherits the problems that come with RANSAC:

such as identifying structures with multiple noise levels.

The second approach is to use higher than minimal subset sampling to improve the

quality of the hypothesis in a hypothesize and verify strategy. In LO-RANSAC method,

Chum et al. (2003) proposed a local optimization step that uses higher than minimal subset

samples. However, this step would only work if an initial estimate in the vicinity of

the true solution is provided using MSS. Pham et al. (2012), used higher than minimal

subsets obtained using random cluster models (RCM) to generate hypotheses and used

those to initialize a metric labeling problem that clusters the data points and recovers the

underlying model. However, their method relies on the spatial contiguity of structures in

the dataset, which may not be true for some model-fitting problems. Due to the need to

generate spatial relationships, this method is also computationally expensive.

6.2.2 Evidence to support the use of higher than minimal subset sam-

pling

In robust model-fitting techniques that utilize the hypothesize and verify strategy, at

least p points need to be sampled at a time to generate a valid hypothesis. The number

of parameters p constitutes the necessary condition for the sample size to derive a unique

hypothesis.

It is said that increasing the number of points in a sample beyond p (higher than

minimal subset sampling - HMSS) will increase the quality of the hypothesis (closer to

the true model), given that all the sampled points are from the structure of interest (Pham
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Figure 6.2: The variation in minimum estimation error with number of data points n for

different sample sizes (h). The figure shows the mean results of 100 experiments for each

combination.

et al. 2012). This assertion is examined in using a Monte Carlo simulation of a 2D line

fitting. In this test, n data points representing a line in 2D space with Gaussian noise

of N(0, σ2) were generated (no outliers) and all the possible tuples (each with h data

points) were used to generate the hypotheses1. Next, to measure the closeness of a given

hypothesis (hi) to the original line (ht) we used the following criterion: given that phi
and

pht are the two points on each line that is closest to the origin, the distance between these

two lines is calculated as ||phi
− pht ||2. Since this distance measure is proportional to the

scale of noise we normalize by σ to get the final measure ED(hi, ht) = ||phi
− pht ||2/σ.

The minimum of these estimation errors (mini=[1..(nh)]
ED(hi, ht)) indicates the closeness

of the best hypothesis to the true model for a given number of points (n) and sample

size (h). The average results of 100 such experiments for each n and h, are shown in

Figure 6.2.

The results show that the quality of the hypotheses generated increases with the sam-

ple size. However, the improvement becomes very small after a few additional points

(h = p + 2), particularly for data structures with a high number of points (n > 20).

Importantly, we observed similar patterns when the dimensionality of the data is varied.

To analyze the probability of generating a good hypothesis, given that the data are

1For h = p = 2, the hypothesis is generated by finding line connecting the two points. For h > p, the

hypothesis is given by the least squares method.
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from the inlier set, we generated n data points from a 2D line model with noise N(0, σ2).

For each dataset, the estimation errors (ED(hi, ht)) of all possible hypotheses generated

with h points were computed. These estimation error values (repeated over 100 such

experiments) were then used to draw the cumulative distribution function (CDF) of esti-

mation errors, shown in Figures 6.3 (a) and (b). These results show that the probability

of obtaining a good hypothesis (given that the data are inliers) increases with the sample

size h. Similar to the previous results, the improvement is only significant up to a few

additional points (h = p+2). The pattern remains similar when the dimensionality of the

model is increased, as shown by an equivalent 3D plane fitting experiment in Figures 6.3

(c) and (d).

To investigate the behavior on real data, we carried out a fundamental matrix estima-

tion task. The points that belong to one group were segmented manually, as shown in

Figure 6.3(e) and the fundamental matrix was estimated using 105 random samples with

sample size h. Since there is no information on the true model, the estimation error was

calculated using median Sampson’s distance from each hypothesis to the data points. The

CDF of estimation error for different sample sizes is shown in Figure 6.3(f) and similar

observations can be made from these results.

The above results show that “Higher than Minimal Subset Sampling” increases the

likelihood of the closeness of the generated hypothesis to the true model. However, in the

presence of outliers, increasing the number of points in a sample will decrease the prob-

ability of selecting a clean sample exponentially. Therefore, identifying how many more

points one should include beyond the necessary condition is not straightforward. The

above presented Monte Carlo simulation and experimental results show that the advan-

tage of increasing the sample size beyond h = p + 2 would be limited. Direct extension

of RANSAC-like methods that use random sampling for higher than minimal subset sam-

pling will be computationally inefficient due to the decreasing probability of selecting

a clean sample. In addition, these methods provide no means of knowing that a good

hypothesis has been reached, making it necessary to generate a predefined number of

hypotheses even if a good hypothesis is obtained early.

In the next section, we propose a new efficient method that carries out higher than

minimal subset sampling using a direct approach similar to a greedy algorithm, which

starts from an arbitrary sample and moves towards a good hypothesis using the available
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(a) 2D line, n = 20
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(b) 2D line, n = 50
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(c) 3D plane, n = 20
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(d) 3D plane, n = 50
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Figure 6.3: The cumulative distribution function of estimation errors for 2D line (a),

(b) and 3D plane (c), (d) fitting using different sample sizes (h). The data used for

fundamental matrix estimation and the CDF of the median residuals are shown in (e), (f).

local information. The method also has the capability to stop once a good estimate that is

likely to be a true structure is reached, saving computation time.
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6.3 Proposed Method
In this section we describe the proposed method for model fitting. The intention here is

to cluster data points ([xi]
n
i=1 ∈ R

d) into sub-groups, based on the existence of underlying

models ([θ(j)]nc
j=0). Here n is the number of data points and nc is the number of structures

in the dataset with j = 0 assigned to outliers.

6.3.1 Cost function

The first task is to establish a cost function that quantifies the suitability of a given

model to represent a structure in data. Here we select the Least k-th order statistics (LkOS)

estimator, which is well known for its stability and high breakdown point (Rousseeuw &

Leroy 2005). LkOS cost function is as follows:

F (θ) = r2ik,θ(θ) (6.3.1)

where r2i (θ) is the i-th squared residual with respect to model θ and ik,θ is the index of

the k-th sorted square residual with respect to model θ. Here k refers to the minimum

acceptable size of a structure in a given application. It should be noted here that the value

of k is almost always much larger than the dimensions of the parameter space (k � p).

Optimizing this cost function is highly complex. Hence, the parameter space is com-

monly discretized using randomly generated hypotheses and the cost function is evalu-

ated at each of these points to find the best solution (hypothesize and verify). As was

previously discussed, hypotheses generated using minimal subset sampling may not gen-

erate a hypothesis close enough to the true model. The intention in the proposed method

is to generate more appropriate hypotheses using higher than minimal subset sampling.

However, due to the multiplication of probabilities, it is not efficient to generate accurate

hypotheses using random sampling of higher than minimal subsets.

To find a way of conducting HMSS efficiently, we present a greedy algorithm that

starts from a random location on the parameter space and moves towards a solution that is

with in the basin of attraction of a local minimum using the locally available information.

The algorithm starts by generating a hypothesis (θ0) via random sampling of h data points

which are then used to generate the residuals r2(θ0). Next, these residuals are sorted and

the h data points around the k-th sorted residual are then used to generate a new set of
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parameters as follows:

θl+1 = LeastSquareF it
(
[xim,θl

]km=k−h+1

)
(6.3.2)

where θl is the parameters at iteration l and the sample size h is set as h = p+2 following

the analysis presented in Section 6.2.2. This step (equation 6.3.2) is then repeated until

the stopping criterion described in the next section is reached. The convergence of the

proposed iterative scheme at a good estimate will be further analyzed in Section 6.3.3.

To visualize the operation of the above algorithm, the intermediate steps of the scheme

in a simple 2D line fitting problem are shown in Figure 6.4. The figure shows that the cor-

rect structure is recovered by going through only a few iterations, even when the starting

samples are not members of that structure (outliers).

6.3.2 Stopping criterion

The next main challenge is to identify a method to stop the algorithm once it has

reached a good estimate that is likely to be a true structure (having at least k points as

inliers). Once the algorithm arrives at a vicinity of a local minima representing a structure

in data, the first k sorted points should be from that structure. As the proposed algorithm

picks the points for the next iteration around the k-th sorted index, they too would be from

the same structure. This leads to a situation where the consecutive samples are from the

same structure. This property is utilized here to devise a stopping criterion by which we

can detect if the algorithm has found a structure in data.

The stopping criterion is as follows:

Fstop =

⎛
⎜⎜⎝r2ik,θl

(θl) <
1

h

k∑
j=k−h+1

r2ij,θ(l−1)
(θl)︸ ︷︷ ︸

(a)

⎞
⎟⎟⎠∧

⎛
⎜⎜⎝r2ik,θl

(θl) <
1

h

k∑
j=k−h+1

r2ij,θ(l−2)
(θl)︸ ︷︷ ︸

(b)

⎞
⎟⎟⎠

(6.3.3)

Here (a) and (b) are the residuals of the sampled points in iterations l − 1 and l − 2 with

respect to the current parameters θl. This criterion checks the data points associated with

the two previous samples to see if the average residuals of those points (with respect to
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

Figure 6.4: The intermediate steps of the proposed method in a simple 2D line fitting

example for h = 4. The model represented by the current hyper-edge is plotted to make

the steps clear. Note that the vertices of the starting point (Step 1) are not members of the

structure and the algorithm does not move away from the underlying structure after it is

found (Step 6).

the current parameters) are still lower than the inclusion threshold associated with having

k points (assuming that a structure has at least k points implies that data points with

residuals less than r2ik,θl
(θl) are inliers). This indicates that the samples selected in the last

three iterations are likely to be from the same structure hence the algorithm has converged.

A challenging problem in multi structural data segmentation is the existence of some

local minima due to accidental alignment of outliers and true structures. A common

solution, also used by competing methods ((Hairong & Shuicheng 2012, Pham et al. 2012,

Yu et al. 2011)) is to reinitialize the hypothesis generation a number of times. Where this

number is determined by the user. To quantify the number of required re-initializations,
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in our method this process is carried out until there is no further improvement in the

cost function in consecutive runs and the algorithm is then stopped automatically. In

our experiments, it was observed that the number of random initializations required was

always smaller than ten across different types of problems, which was far less than the

number of random samples needed by the RANSAC-based methods.

For problems with multiple structures, once a reliable local minimum is returned, the

core data points that correspond with that minimum are segmented out and the process

is repeated until all the structures are recovered. In this implementation, we selected

the Modified Selective Statistical Estimator (MSSE) (Bab-Hadiashar & Suter 1999) to

segment points due to its low computational cost, high level of consistency, and small

bias in applications involving close data structures (Hoseinnezhad et al. 2010). This step

is aimed at removing the majority of points associated with already identified models to

prevent the algorithm from returning the same structure in subsequent iterations. This may

be particularly relevant to problems with one structure with a significantly lower level of

noise compared to other structures. It should be noted that MSSE does not require any

additional information (such as noise level) for the segmentation and if such information

is available, a separate segmentation strategy utilizing those information would result in a

better segmentation. The more one knows a priori, the better the outcome will be.

The complete algorithm of the proposed higher than minimal subset sampling based

model-fitting method is given in Algorithm 5.

6.3.3 Why does the proposed method converge?

To analyze the local convergence of the proposed method, we first show that the pa-

rameter update used is equivalent to that of a generalized Newton method.

First we slightly modify the cost function in (6.3.1) to suit HMSS. The new cost

function is:

F̂ (θ) =
m=h−1∑
m=0

r2i(k−m),θ
(6.3.4)

where rim,θ
= θTxim,θ

− yim,θ
and k � h ≥ p. The proposed method is based on finding

the roots of this cost function

H(θ) =
∂F̂

∂θ
= 0 (6.3.5)

via Newton method. Bab-Hadiashar & Hoseinnezhad (2008) have shown that, although
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Algorithm 5 Step-by-step algorithm of proposed higher than minimal subset sampling

based model-fitting methods

Inputs: Data Points (X ∈ [xi]
N
i=1), minimum cluster size (k), Number of clusters (nc)

1: lmax ← 50, tmax ← 10, h ← p+ 2
2: l ← 0, t ← 1, j ← 1, [F̂

(j)
min]

nc
j=1 ← ∞

3: repeat
4: repeat
5: Select a random h-tuple from the data points.

6: Generate model θ0 using the h-tuple.

7: repeat
8: [r2(θl), iθl ] =SortedRes(X, θl) .

9: Calculate the cost function F̂ (θl).

10: θl+1 ← LSFit
(
[xim,θl

]km=k−h+1

)
11: Evaluate equation (6.3.3)

12: if Fstop then
13: break;

14: end if
15: until (l++ < lmax)

16: if F̂ (θl) < F̂
(j)
min(t− 1) then

17: F̂
(j)
min(t) ← F̂ (θl)

18: θ
(j)
best ← θl

19: end if
20: if F̂ (j)

min(t) = F̂
(j)
min(t− 1) = F̂

(j)
min(t− 2) then

21: break;

22: end if
23: until t++ < tmax

24: [outliers] =GetOutliers(X, θ
(j)
best).

25: X ← X(outliers)
26: until j++ < nc

27: Cluster data using [θ
(j)
best]

nc
n=1.

the index i of the k-th sorted residual cost function in equation (6.3.5) depends on the

parameter estimates, there is a finite neighborhood (DH) around the estimate in which the

sorted indices do not change2. Inside this neighborhood, the cost function has a quadratic

relationship to the model parameters. Therefore, the cost function and its derivatives are

continuous and differentiable. The generalized Newton method for solving this can be

defined as follows (Qi & Sun 1999):

θl+1 = θl − V −1
l H(θl) (6.3.6)

2Only exception is when two residuals are exactly the same, in which case, the remedy is to merge those

as one.
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where Vl ∈ ∂H(θl). For the cost function (6.3.5) we can derive the following:

H(θ) = 2
h−1∑
m=0

xi(k−m),θl
(θTxi(k−m),θl

− yi(k−m),θl
) = 2J�r (6.3.7)

H ′(θ) = 2
h−1∑
m=0

xi(k−m),θl
x�
i(k−m),θl

= 2J�J (6.3.8)

where J� = [xik,θl
, · · · , xi(k−h−1),θl

] = X� and r� = [(θ�l xik,θl
−yik,θl ), · · · , (θ�l xik−h−1,θl

−
yi(k−h−1),θl

)]. Equations (6.3.6), (6.3.7) and (6.3.8) can be simplified into:

θl+1 =
[X�X ]−1 X�Y (6.3.9)

which is equal to the proposed parameter update in equation (6.3.2).

The classical Newton method that is used to optimize in case where H(θ) is con-

tinuously differentiable, is locally quadratically convergent. This property is not di-

rectly applicable to a piecewise continuous function. However, theorem 2.2 in Qi &

Sun (1999) shows that the generalized Newton method is quadratically convergent in a

neighborhood of θ∗ if H is strongly semi-smooth at θ∗. Equation (6.3.8) shows that H ′(θ)

does not depend on θ inside the neighborhood where the index does not change, hence

H ′(θ∗ + δ) − H ′(θ∗) = 0. This satisfies the criterion of strong semi-smoothness3 (Qi &

Sun 1999), which makes the proposed method quadratically convergent in a neighborhood

of θ∗. The experimental analysis of both synthetic and real data presented in the next sec-

tion shows that the proposed method either lands at this neighborhood and consequently

converges to a solution, or the process is re-initiated.

6.4 Experimental Analysis
We evaluated the proposed method using both synthetic and real data experiments.

The results of the proposed method were then compared in terms of both accuracy and

computational time with RCM (Pham et al. 2012), which uses higher than minimal subset

sampling as well as the following state-of-the-art model fitting techniques: QP-MF (Yu

et al. 2011), MultiGS (Chin et al. 2010), LO-RANSAC (Chum et al. 2003) and RGC

(Hairong & Shuicheng 2012).

3H is strongly semi-smooth at x if Vd −H ′(x; d) = O(‖d‖2), d → 0 where V ∈ ∂H(x+ d).
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The code for the proposed algorithm was developed in MATLAB and the codes pro-

vided by the authors were used to generate the results for competing methods with pa-

rameters either set as instructed by the authors or tuned to give the best results. It should

be noted that the RCM, MultiGS and LO-RANSAC methods have some part of their code

implemented in C (MEX) and the QP-MF method uses the MOSEK quadratic solver

whereas the proposed method is implemented in MATLAB by simple scripts.

The experiments were run on a HP Z400 workstation with an Intel Xeon W3550

processor. For each instance, the experiments were repeated 100 times and the averages

of the results are reported.

The accuracy of all methods was evaluated using the commonly used clustering accu-

racy measure (Hairong & Shuicheng 2012, Yu et al. 2011) given as:

CA =

∑nc

i=0 ntp,i∑nc

i=0 ni

(6.4.1)

where ntp,i is the number of true positives in group i and ni is the total number of points

in that group.

The MultiGS and LO-RANSAC methods are intended at hypothesis generation and

can be paired with any clustering method to generate the clustering accuracy measure. In

this chapter, we have used consensus information (similar to RANSAC) as the clustering

method for those techniques, noting that it requires inlier noise as an input. This parameter

was manually set to the true inlier noise in our synthetic data experiments. Hence, the

clustering accuracy for those methods reflects the best possible value and in practice,

lower accuracies can be expected.

Since the MultiGS and LO-RANSAC methods do not have any explicit stopping cri-

teria, in our experiments, the sampling times of these methods are limited to the average

run time required by the proposed method in each problem.

6.4.1 2D line fitting
First, we evaluated our algorithm in detecting lines in a 2D point set contaminated

with both noise and gross outliers using the standard regression model. The data points

were generated by combining four intersecting lines, with each line containing ni points

with Gaussian noise N(0, σ2
i ). Furthermore, uniformly distributed n0 = 100 gross out-

liers were added. An example of a point set ([ni]
4
i=0 = 100, σ = 0.025) is shown in
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Figure 6.5(a). The structures returned by the proposed method are also shown.

We examined the performance of the algorithm for varying levels of inlier noise in

the interval σi ∈ [0.001, 0.05]. The number of data points was fixed at [ni]
4
i=0 = 100.

The clustering accuracies are shown in Figure 6.5(b) together with those of competing

methods.

The results show that the proposed method produces the best accuracy, specially for

higher noise levels, closely followed by MultiGS and LO-RANSAC. It should be noted

here that the threshold value for clustering in MultiGS and LO-RANSAC was manually

set to the true value, giving these methods an advantage over the proposed method which

uses MSSE for clustering (automatically estimating the scale of noise). The model com-

plexity penalty (β) is an external parameter that is needed by the RCM method and during

our experiments we found that in order to recover the correct model, this parameter needs

to be manually tuned for each noise level. Figure 6.5(e) shows the variation of the cluster-

ing accuracy with β for each noise level. The RCM clustering accuracy in Figure 6.5(b)

is the best achieved for a given noise level across all tested parameter values. None of the

other methods required parameter tuning for each step.

Figure 6.5(c) shows the total computation time for each method. The results show

that the proposed method is the fastest of the tested methods and is more than an order of

magnitude faster than RCM.

Next, the number of total data points was varied in the range 250-2500 while the

noise was fixed at σi = 0.01. The total computation times are shown in Figure 6.5(d).

The results show that the proposed method is very efficient in terms of computation time

with a slight linear increase in time with the number of points. As expected clustering

accuracy remained constant.

Through these experiments the parameter k for the proposed method was fixed at

k = 0.1 ∗N , where N is the total number of points.

6.4.2 3D plane fitting

In the second set of experiments we detected planes in a 3D point set contaminated

with both noise and gross outliers using standard regression model. The data points were

generated by combining four planes, with each plane containing ni points with Gaussian

noise N(0, σi). Furthermore, uniformly distributed n0 gross outliers were also added. An
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Figure 6.5: 2D Line fitting results.

example of a points set ([ni]
4
i=0 = 100, σ = 0.5) is shown in Figure 6.6(a) with the clusters

returned by the proposed method.

We assessed the performance of the proposed algorithm for varying levels of inlier

noise in the interval σi ∈ [0.1, 5.0]. The number of data points was fixed at [ni]
4
i=0 =

100. The clustering accuracy and the total computation time of the proposed method are

shown in Figures 6.6(b) and 6.6(c) respectively, together with those of the competing

methods. The proposed method again produced the best clustering accuracy with the
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lowest computation time, and the improvement over MultiGS and LO-RANSAC is much

larger than that of the 2D line fitting case.

As shown in Figure 6.6(e), the clustering accuracy for MultiGS and LO-RANSAC

does not exceed that of the proposed method (for high noise values) even when the sam-

pling times for those methods are increased to 10 to 25 times that of the proposed method.

In the next experiment, the number of total data points was varied in the range 250-

2500 while the noise level was fixed at σi = 0.2. The results shown in Figure 6.6(d),

indicate that the proposed method is very efficient in terms of computation time with

slight linear increase in time with number of points, whereas the computation time of

MultiGS increased exponentially with the size of the data.

6.4.3 Two-view motion segmentation
Two-view motion segmentation is the task of identifying the points corresponding to

each object in two views of a dynamic scene that contains multiple independently moving

objects. Provided that the point matches between the two views are given as , each motion

can be modeled using the fundamental matrix F ∈ R
3×3 as Torr & Murray (1997):

X�
1 FX2 = 0 (6.4.2)

The distance from a given model to a point pair can be measured using the Sampson

distance (Hartley & Zisserman 2003).

First, we used the “box-book-mag” image pair from Schindler & Suter (2006) to eval-

uate the performance of the proposed and competing methods. The “box-book-mag” has

two images of three independently moving objects together with feature correspondences.

The performance of each algorithm was evaluated using clustering accuracy and compu-

tation time.

The clustering accuracy of the proposed method was observed while limiting the num-

ber of allowed random initializations to a specific value. The results are presented in

Figure 6.7(a), and show the proposed method achieves high accuracy without the need

for many random re-initializations. Then, we set the sampling times of the MultiGS and

LO-RANSAC to the time taken by the proposed method at each step and recorded their

accuracy. The results, plotted on the same figure, show that these algorithms take longer

to achieve the same level of accuracy as the proposed method. For comparison, we also



CHAPTER 6. ROBUST MODEL FITTING USING HIGHER THAN MINIMAL SUBSET

SAMPLING 118

−50 0 500 20 40
−40

−20

0

20

40

60

80

100

120

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

σ
i

C
lu

st
er

in
g 

A
cc

ur
ac

y

 

 

Preposed method
MultiGS
LO−RANSAC
RCG
QP−MF

(b)

0 1 2 3 4 5
50

100

150

200

250

300

σ
i

C
om

pu
ta

tio
n 

T
im

e 
(m

s)

 

 

Preposed method
MultiGS
LO−RANSAC
RCG

(c)

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

Total Number of points

C
om

pu
ta

tio
n 

T
im

e 
(m

s)

 

 

Preposed method
MultiGS
LO−RANSAC

(d)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

σ
i

C
lu

st
er

in
g 

A
cc

ur
ac

y

 

 

Preposed method
MultiGS run time = 1 × t
MultiGS run time = 10 × t
MultiGS run time = 25 × t
Lo−RANSAC run time = 1 × t
Lo−RANSAC run time = 10 × t
Lo−RANSAC run time = 25 × t

(e)

Figure 6.6: 3D plane fitting results.

included the results given by RCM. The results show that the proposed method is fast and

can achieve better accuracy. Figures 6.7(b) and 6.7(c) show the inlier and outlier points

identified by the proposed method, respectively.

The clustering results of the proposed method for the remaining sequences in dataset

Schindler & Suter (2006) is shown in Figure 6.8. The results show that the proposed

method has successfully identified the structures present in data with multiple structures

and gross outliers.
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Figure 6.7: (a) Variation of clustering accuracy with sampling time (b) Inliers identified

by the proposed method (c) Outliers identified by the proposed method.

6.4.4 Multi-homography detection
Assume that the point matches between two views of a static scene with multiple

planar surfaces are given as [X1, X2] . Multi-homography detection aims to detect point

matches arising from the same planar surface using a homography matrix H ∈ R
3×3 that

relates the matching points via X1 ∼ HX2. The distance from a data point to a given

model can be measured using the Sampson’s distance.

Similar to Pham et al. (2012) we test the performance of the proposed method on

the AdeladeRMF dataset (Wong et al. 2011). The clustering accuracy of the proposed

method together with RCM and multiGS is given in Table 6.1. Here, the sampling time

of MultiGS method was set to ten times that of the proposed method.

The results show that the proposed method achieved high accuracy in a very short

time compared to other methods. It should be noted here that the proposed method was

not able to detect the two smallest (in terms of number of points) structures in Johnsonb

dataset. This is due to the small number of points in each of those structures, which was
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Figure 6.8: Two-view motion segmentation results for image sequences in dataset

Schindler & Suter (2006). Line 1 shows the ground truth whereas lines 2 and 3 show

the final HMSS samples selected and the clustering results of the proposed method. The

outliers are marked in red.

20 and 15 respectively. RCM was also not able to detect these structures reliably. The

analysis of Hoseinnezhad et al. (2010) showed that if the scale of inlier noise is not known

a priori, its estimation requires at least 20 data points to limit the effects of finite sample

bias.

To provide a qualitative measure of the performance of those methods, clustering re-

sults of the proposed method and RCM are compared with the ground truth in Figure 6.9.

The first column shows that both methods were able to achieve good results on union-

Table 6.1: Multi-homography detection results. The time is given in milliseconds.

RCM MultiGS
Proposed

Method

CA Time CA Time CA Time

Johnsona 0.91 1300 0.69 5023 0.94 473
Johnsonb 0.89 2150 0.73 6958 0.85 663
Ladysymon 0.91 1010 0.89 2371 0.94 219
Neem 0.92 1020 0.74 3565 0.93 327
Oldclassicswing 0.98 950 0.92 2699 0.97 252
Sene 0.98 1220 0.99 2590 0.98 237
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house having five structures. However, the proposed method was able to detect all six

structures in the bonhall image (some incorrect classification of outliers as inliers can be

seen) whereas RCM was not able to detect one of those structures. Due to the use of

spatial consistency, RCM results are affected if the same structure is separated by either

outliers or another structure as seen in images of elderhall, barsmith and napiera build-

ings. The proposed method does not assume the existence of spatial contiguity and was

therefore able to achieve good clustering in those cases.

In these experiments, the parameter k of the proposed method was set to a value

between 20 to 40 based on the number of points in each dataset.

6.4.5 3D-motion segmentation of rigid bodies

The objective of 3D motion segmentation is to identify multiple moving objects using

point trajectories through a video sequence. If the projections (to the image plane) of N

points tracked through F frames are available, [xfα]
f=1...F
α=1...N ∈ R

2 then Sugaya & Kanatani

(2004) has shown that the point trajectories Pα = [x1α, y1α, x2α, . . . xFα, yFα]
� ∈ R

2F

that belong to a single rigid moving object are contained within a subspace of rank � 4,

under the affine camera projection model. Hence, the problem of 3D motion segmentation

can be reduced to a subspace clustering problem.

We utilized the commonly used “checkerboard” image sequence in the Hopkins 155

dataset (Tron & Vidal 2007) to evaluate our algorithm. This dataset contains trajectory

information of 104 video sequences that are categorized into two main groups depending

on the number of motions in each sequence (two or three motions).

One of the characteristics in subspace segmentation is that the dimension of the sub-

spaces may vary between two and four, depending on the nature of the motions. The

proposed method, which was not specifically developed to solve this problem (similar

to most competing techniques) is not capable of identifying the number of dimensions

of a given motion and requires this information as an input. In our implementation we

have taken two approaches. In the first approach (PM T1), we set the dimensions of the

subspaces to four and in the second we set the dimensions to three or four based on the

average ground truth knowledge (not set for each sequence but to the whole sequence i.e.

the subspace dimensions for all checkerboard three object sequences were set to [3, 4, 4]).

The second approach (PM T2) is intended to demonstrate the accuracy of the method in
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Figure 6.9: Qualitative results of multi-homography estimation. line 1 is the ground

truth where as lines 2 and 3 are segmentation results of the proposed method and RCM

respectively. The outliers are marked in red.



CHAPTER 6. ROBUST MODEL FITTING USING HIGHER THAN MINIMAL SUBSET

SAMPLING 123

cases where an estimate of the subspace dimensions is available.

We compared our results with energy minimization and QP-MF4. For completeness

we also included the results of the sparse subspace clustering (SSC) (Elhamifar & Vidal

2013) method which does not rely on dimensionality information. The results are shown

in Table 6.2. The proposed method with fixed subspace dimensions (dim = 4) achieved

better results than the competing model-fitting techniques (QP-MF, RANSAC, Energy

minimization) but these results are not as good as SSC. However, when some information

about the dimensionality of the subspaces was provided to the algorithm, our proposed

algorithm achieved results comparable with the SSC.

Table 6.2: Percentage clustering Error of 3D motion segmentation.

Reference RANSAC Enargy QP-MF SSC PM T1 PM T2

2 Objects

Mean 2.76 6.52 5.28 9.98 2.23 3.98 3.88

Median 0.49 1.75 1.83 1.38 0.00 0.00 0.00

3 Objects

Mean 6.28 25.78 21.38 15.61 5.77 11.06 6.81

Median 5.06 26.01 21.14 8.82 0.95 1.20 1.04

To provide a qualitative measure of the performance the final segmentation results of

several sequences in the Hopkins 155 dataset, where the proposed method was success-

ful, are shown in Figure 6.10. These results show that the proposed method has been

successful in a range of problems with different types of motion. We have also included

some cases where the proposed method was not successful (Figure 6.11). Figures 6.11(a)

and 6.11(b) show instances where a single motion has been segmented into two. This is

because some motions are segmented in to multiple degenerate motions. Figures 6.11(c)

and 6.11(d) show instances where a structure has very low number of points relative to

the other structures and in these cases the proposed method would be expected to fail due

to the finite sample bias in the inlier noise estimation.

6.5 Discussion
This chapter presents an accurate and efficient method that can be used to detect un-

derlying structures in data contaminated with noise and outliers. The method uses higher

than minimal samples to generate hypothesis and moves from one sample to another using

4The results published in Yu et al. (2011) are used in this comparison.
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(a) 1R2RC (b) 2R3RTCRT

(c) cars10 (d) three-cars

Figure 6.10: Segmentation result for several sequence in the Hopkins 155 dataset where

the proposed method was successful. The sample used to generate the best hypothesis is

also shown.

locally available information at each step while trying to minimize the cost function. The

proposed method is very general and requires only a very few input parameters compared

to the competing methods.

One of the parameters required by the proposed method is the value of k, which de-

fines the minimal acceptable size for a structure in a given application. Any robust model

fitting method needs to establish the minimal acceptable structure size (either explicitly

or implicitly), or else it may result in a trivial solution. for example in 2D line fitting

any two points will result in a perfect solution. The proposed method also assumes that

the number of structures is known a prior. This is one of the weakness in the proposed

method, however the problem of identifying the number of structures present and the scale

of noise simultaneously is still a highly researched area with no good solutions. Remain-

ing outliers can always be seen as members of a model with large noise values. Some

model fitting methods that are based on energy minimization (Delong et al. 2012, Pham

et al. 2012) are devised to estimate the number of structures given the scale of noise.



CHAPTER 6. ROBUST MODEL FITTING USING HIGHER THAN MINIMAL SUBSET

SAMPLING 125

Single Structure
Segmented to two

(a) 1R2RCT-A

Single Structure
Segmented to two

(b) 2RT3RCR

Merged in to
one structure

(c) cars2-06

Incorrectly included
some points from
another structure

Correctly
Identified

(d) cars2-07

Figure 6.11: Segmentation result for several sequences in the Hopkins 155 dataset where

the proposed method was not successful. The sample used to generate the best hypothesis

is also shown.

They achieve this by adding a model complexity term to the cost function that penalize

additional structures in a given solution. However, these methods require an additional

parameter that balances the data fidelity cost with the model complexity (number of struc-

tures in RCM). Our experiments on RCM showed that the output of these methods were

heavily dependent on this parameter and required hand tunning to generate reliable re-

sults (see Figure 6.5). The RCG method which is a hyper-graph-based method does not

take the number of structures directly as an input. However, it may also result in multi-

ple models representing the same structure and in order to remove these repetitions that

method uses an additional pruning step that require the knowledge of separation between

the structures (another parameter).

Knowledge on the scale of noise is essential for any robust model-fitting system to

work. While most competing methods require this as an input, the proposed method
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Figure 6.12: Two-view motion segmentation results for image sequences “poster-
checkerboard” (line 1) and “poster-keyboard” (line 2) from Poling & Lerman (2014).

estimates the noise scale from data. The analysis of Hoseinnezhad et al. (2010) showed

that if the scale of inlier noise is not known a priori, its estimation requires at least 20 data

points to limit the effects of finite sample bias. Due to this the proposed method would

fail to identify the underlying model if that structure contains only a small number of data

points (< 20).

The MSSE algorithm which is used to estimate the scale of noise, requires the constant

threshold T as an input. T defines the inclusion percentage of inliers based on a normal

distribution for noise which is a number around 2.5, i.e. T = 2.5 will include 99% of

inliers.

The proposed method does not employ any additional information such as the spatial

contiguity of data in clustering. While this is advantageous in cases where the spatial

contiguity is violated (see Figure 6.9), in some problems where a structure has spatial

contiguity, not using such priors will result in slight degradation in the clustering. This

problem is elaborated in Figure 6.12. The clean samples in the figure shows that the

proposed algorithm has identified the underlying model correctly. However some points

within one structure is clustered into another as these points are closer to that model. This

problem can be eliminated by coupling the segmentation step with partial contiguity prior

where applicable. However, we have not implemented such scheme in this chapter as the

main aim is to detect the a underlying models.
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6.6 Conclusion
In this chapter we first studied the usefulness of using higher than minimal subsets for

hypothesis generation in parametric model fitting. The synthetic data experiments showed

that using higher than minimal subset samples for hypothesis generation increases the

probability of generating a good hypothesis close to the true model, given that it is a clean

sample. The experiments also showed that the probability increase is only significant up to

few additional data points. However, the probability of selecting a clean sample decreases

with the increase of the sample size, making it improbable to extend the commonly used

sampling methods to accommodate higher than minimal samples.

This chapter presents a new approach to parametric model fitting that uses higher

than minimal subset sampling to generate hypotheses. The proposed method, equivalent

to Newton’s optimization method, starts from an arbitrary set of parameters and moves

towards a dense structure in data using the local information present at each iteration. The

algorithm also consists of a stopping criterion that identifies when a dense cluster in data

is reached and stops the iterations saving computation time.

The performance of the algorithm in terms of accuracy and computational efficiency

was evaluated on several models-fitting problems including line/plane fitting, two-view

motion segmentation and 3D motion segmentation. The results of the proposed method

were compared with state-of-the-art model fitting techniques. The comparisons showed

that the proposed method is both highly accurate and computationally efficient.



128

Chapter 7

Conclusion and Future Work

The main objectives of this dissertation are to study the fundamental problem of automatic

registration and motion estimation of volumetric medical images and improve the perfor-

mance of registration in terms of both robustness and computational efficiency. Reg-

istration is a powerful tool used in many medical image analysis tasks such as disease

diagnosis, progress monitoring and treatment planning. Non-rigid registration techniques

are commonly used for medical images as they involve complex motions which cannot be

captured using rigid techniques with low degrees of freedom.

In Chapter 2, we studied the non-rigid registration techniques applied in medical imag-

ing applications. Although the methods vary, a typical registration algorithm consists of

a similarity measure, transformation model and an optimization strategy. Once the over-

all problem is segmented into these categories, techniques used in each of them were

analysed extensively.

Next, in Chapter 3 we explored the smoothness requirement of motion estimation

from a robust statistical perspective. Here, smoothing refers to the size of the locality

upon which the estimation is based. In this study a new approach to quantifying the

minimum required smoothing based on the concept of the finite sample bias of a robust

estimator is proposed. The proposed approach is very general and makes predictions

about the amount of smoothness required to satisfy the sufficiency condition for a broad

range of visual estimation tasks such as optic flow calculation. The theoretical analysis

predicts that smoothing over a cubic area as small as 5 to 7 voxels wide is sufficient to

achieve the highest practical accuracy. A robust 3D optic flow, in which the imposition

of smoothing can be locally quantized, was then devised to test the proposed hypothesis
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on the smoothing requirement. The hypothesis was then tested using a geometrically

realistic synthetic CT image sequence of the breathing lung and five cases of real 4D CT

lung images with extensive sets of expert annotated landmarks. As predicted, the results

showed that only a very small amount of local smoothing is required to achieve high

accuracy and that in some cases increasing the amount of smoothing reduces the quality

of the results.

In Chapter 4 we focused on image information-based non-rigid image registration

methods. Due to the enormous amount of information to be processed and the complexity

in the transformation models (the large number of parameters) these methods tend to be

computationally expensive. We propose a new approach that uses robust segmentation of

squared intensity differences to intelligently identify the most relevant information for the

registration and use them in a stochastic optimization framework. The method also incor-

porates a computationally-efficient means of measuring the quality of registration. Since

the registration schemes are all iterative, this measure is highly useful for deciding when

to stop the registration process. The performance of the proposed registration algorithm in

terms of both accuracy and efficiency was extensively evaluated using two real CT image

sets with ground truth and the results were compared with those from several available

techniques. The experiments showed that the proposed method substantially improves

both the accuracy and the computational complexity of the registration task.

Non-rigid registration algorithms use TPS-based data modelling techniques to model

transformation in feature-based image registrations, smoothing of motion fields and in-

terpolating intensity fields. However, they tend to be inaccurate, especially when the data

contain outliers. Chapter 5 presents a new algorithm for modelling visual data using ro-

bust thin plate splines. The fitting algorithm uses a variant of the least kth order statistics

fitting approach with a novel iterative method for performing the inlier/outlier segmenta-

tion. The proposed method was tested on synthetic and real data and was shown to be

effective even when numerous structured outliers (pseudo-outliers) are present.

In Chapter 6 we studied the usefulness of using higher than minimal subsets for hy-

pothesis generation in parametric model fitting. The synthetic data experiments presented

showed that using higher than minimal subset samples for hypothesis generation increases

the probability of generating a good hypothesis close to the true model, given that it

is a clean sample. These experiments also showed that the probability increase is only
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significant up to few additional points. However, the probability of selecting a clean

sample decreases with the increase of the sample size, making it improbable to extend

the commonly-used sampling methods to accommodate higher than minimal samples.

Hence, we presented an efficient approach for parametric model fitting that uses higher

than minimal subset sampling to generate hypotheses. The proposed method equivalent

to a Newton optimization method starts from an arbitrary set of parameters and moves

towards a dense structure in data using the local information present at each iteration.

The algorithm also consists of a stopping criterion that identifies when a dense cluster in

data is reached and stops the iterations, saving computation time. The performance of

the algorithm in terms of accuracy and computational efficiency was evaluated on sev-

eral model-fitting problems including line/plane fitting, two-view motion segmentation

and 3D motion segmentation. The results of the proposed method were compared with

the state of the art model fitting techniques. The comparisons showed that the proposed

method is both highly accurate and computationally efficient.

Future Work

• Optical flow estimation is known to be not very accurate in cases with large defor-

mations due to the existence of local optima. Hierarchical strategies are commonly

used to overcome this limitation. Implementation of a hierarchical strategy such as

coarse to fine estimation or affine preregistration for the local optical flow calcu-

lations in Chapter 3 would have improved the registration accuracy of the images

with large deformations (Cases 3-5 in the DIR dataset). However, this was not

carried out in the present study as the objective was not to propose a new regis-

tration method but to quantify the smoothing requirement from a robust statistical

perspective.

• In terms of improving the accuracy of the local optical flow estimation, Sun et al.

(2010) found that spatial smoothing of the estimates using a median filter was the

single most significant step. Using such a technique on the estimated deformation

vectors would have further improved the results presented in Chapter 3. However,

such an approach would have made it impossible to directly compare the relation-

ship between the smoothing and estimation accuracy. Hence, it was not imple-

mented in our study.



CHAPTER 7. CONCLUSION AND FUTURE WORK 131

• The non-rigid registration method proposed in Chapter 4 uses the intensity dif-

ference in selecting the samples for derivative estimations. However, changes in

intensity of lung tissue due to breathing motion can affect the performance of this

method. The use of a mass-preserving intensity model that adjusts intensity ac-

cording to the volume expansion may improve results over those presented in this

thesis.

• Due to the use of intensity differences in the sample selection process, the regis-

tration method proposed in Chapter 4 is limited to the registration of mono-modal

images. Development of appropriate clustering methods to identify the almost reg-

istered group of voxels from a joint histogram may enable this method to be ex-

tended to registering images from different modalities. However, this path is yet to

be explored.

• A common technique used to reduce the computational time of an algorithm is to

implement it using a graphical processing unit (GPU). One of the main require-

ments for accelerating an algorithm using GPUs is that it has to be parallelizable.

The non-rigid registration algorithm presented in Chapter 4 uses B-spline as the

transformation model and because of the compact support region of these spline

kernels and the shared memory on GPUs, the gradient estimation can be easily par-

allelized to be implemented on a GPU. Such implementation would further reduce

the computation time of the proposed algorithm.

• The experiments in Chapter 4 were run on thoracic CT images where no significant

anomalies exist within the region of interest. It would be beneficial to evaluate the

proposed registration method on images acquired from patients with anomalies in

the lung. To our knowledge, such datasets with adequate ground truth do not exist

and defining the registration accuracy in such cases would be challenging.

• The model fitting technique presented in Chapter 5 has been evaluated only on

synthetic data and range images. The contribution of such a method in image

registration-related applications has not yet been explored.
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