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Abstract

Magnetic lattices comprising periodic arrays of magnetic microtraps are a promis-

ing complementary tool to the widely used optical lattices for trapping periodic ar-

rays of ultracold atoms. Magnetic lattices based on patterned magnetic films allow

nearly arbitrary lattice geometries and lattice periods without limitations imposed

by optical wavelengths. In this thesis, a hybrid atom chip structure containing a

patterned magnetic lattice film is designed and fabricated. The successful trapping

of ultracold 87Rb atoms in a 0.7µm-period triangular magnetic lattice is reported.

Four magnetic lattice structures including 0.7µm-period 2D square and triangular

lattices and 1D 0.7µm-period and 5µm-period lattices are patterned by electron

beam lithography and reactive ion etching in a magnetic Co/Pd multi-atomic layer

film. The submicron period magnetic lattices are chosen with the potential to enable

quantum tunnelling experiments and to simulate condensed matter phenomena. For

initial preparation of the ultracold 87Rb atoms and loading the magnetic lattice, a

chip structure comprising Z-shaped and U-shaped current-carrying wires is produced

from direct bonded copper (DBC).

Before loading the magnetic lattice traps, the effects of atom-surface interaction

are studied by bringing atoms trapped in the Z-wire magnetic trap within a few

micrometres of the magnetic film surface. The observed atom loss in the Z-wire

trap originates mainly from surface-induced evaporation and the attractive Casimir-

Polder interaction, rather than from spin-flips due to Johnson magnetic noise from

the reflecting gold surface layer. Then the interaction of the ultracold atoms with the

0.7µm-period magnetic potential located very close to the chip surface is studied

by the reflection dynamics of the atoms. The observed half-moon-shaped clouds

of the reflected atoms are consistent with a sinusoidal corrugated magnetic lattice

potential. Finally, the results of loading atoms into the 0.7µm-period triangular

magnetic lattice at estimated distances of only 90 - 260 nm from the chip surface are

presented. The measured trap lifetimes are 0.4 - 1.7 ms, depending on distance from

the chip surface, which are consistent with surface-induced thermal evaporation and
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three-body recombination losses as a result of the very tight lattice traps.

The trapping of atoms in a 0.7µm-period magnetic lattice is an important step

towards studying quantum tunnelling in a magnetic lattice. To the best of my knowl-

edge, this represents the first realisation of trapping ultracold atoms in a submicron

period magnetic lattice. In addition, the trapping of atoms at estimated distances

down to about 100 nm from the chip surface and at trapping frequencies as high as

800 kHz represents new territory for trapping ultracold atoms.
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CHAPTER 1

Introduction

1.1 The quantum world and ultracold quantum

gases

Matter exists in different states according to our daily life experience. Normally,

from high temperature to low temperature, the states of matter can be categorised

into plasma, gas, liquid and solid. Our intuition based on this macroscopic world

helps us to understand phenomena that occur in the classical world more easily.

However, once we acquired the capability to cool matter to extremely low temper-

atures, sometimes it can enter a new phase under certain conditions: a quantum

condensed phase, such as traditional superconductivity, superfluidity and high-Tc

superconductivity. In this peculiar quantum world, our established intuition in the

classical world often creates a barrier in understanding the behaviour of a system

governed by quantum mechanics. Although we are far from clearly understanding all

of these phenomena, this fascinating quantum world has attracted a lot of attention

from scientists since the beginning of the twentieth century. From an applications

point of view, scientists believe that understanding the underlying mechanisms of

these quantum phenomena may guide us towards building, for example, a power

network with room temperature superconductors one day in the future. This would
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change the landscape of the world energy consumption and benefit the whole human

society.

Back in 1925, inspired by Bose’s initial work on photons, Einstein extended this

newly developed statistical description to non-zero mass indistinguishable particles.

The Bose-Einstein statistics describes the statistical distribution of non-interacting

bosons [1–3]. When bosons are cooled to temperatures below a critical temperature

it is predicted that all the particles can occupy in the lowest energy states, pro-

ducing a macroscopic population in the same state now known as a Bose-Einstein

condensate (BEC). Since then, physicists have gradually realised that the transition

to the quantum condensed phase should be a key concept in understanding these

fascinating phenomena. The Bardeen-Cooper-Schrieffer (BCS) theory [4–6] is an

outstandingly successful example to explain low-Tc superconductivity. The central

picture is that two electrons can form a pair at low temperature, called a Cooper

pair. The Cooper pairs can be considered as composite bosons: they can form a

condensate when the temperature is below a critical temperature Tc. This conden-

sate state of electrons exhibits superconductivity in which current can flow in a

conductor without friction. However, most of the highly complex superconductivity

systems cannot be explained by such a simple theory.

Creating a pure BEC in the Lab became a long dream of many physicists. Such a

clean system can be accurately described by simple theoretical models. Starting from

this pure system, interesting effects can be studied in isolation from the complicated

environment. With the rapid development of laser cooling and trapping techniques

in the 1980s [7–9], physicists finally created BECs with alkali atoms in 1995 [10–12]

by combining laser cooling and evaporative cooling techniques. After twenty years,

ultracold quantum gases research continues to inspire us and the achievements are far

beyond the most optimistic expectations. Experiments and theories grow simultane-

ously as the complexity of the systems under study is increased. Using a combination

of lasers and precisely designed electromagnetic fields, we are adding more control

knobs to the system which give us the capability to freely vary system parameters

such as the trapping geometries, dimensionality and strength of interaction. Growth
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of the complexity of ultracold quantum gas systems allows the subject to cross the

borders of traditional atomic physics and to merge with condensed-matter physics,

information science and particle physics.

One example of the intersection of ultracold quantum gases with condensed-

matter physics is the optical lattice. Atoms can be loaded into optical lattices,

which are created by the interference of intersecting laser beams, so that their mo-

tion is analogous to the motion of electrons in a crystal lattice [13,14]. A milestone

experiment was the first observation of the quantum phase transition between the

superfluid state and the Mott insulator state in a 3D optical lattice [15]. The un-

derlying theory of the phase transition is based on the Bose-Hubbard quantum tun-

nelling model, introduced in [16] to describe the destruction of superfluidity because

of strong interactions and disorder. Subsequently, the superfluid-Mott insulator

transition has been observed in 1D and 2D optical lattices [17, 18]. Recently, state

of the art quantum gas microscope techniques have opened a new avenue to compare

with the theory more precisely through the observation of individual atoms [19,20].

A better model for the motion of electrons in a crystal lattice is the Fermi-Hubbard

model which requires loading fermionic atoms into an optical lattice [21, 22].

Not long after the creation of a BEC in alkali-atom vapours, degenerate Fermi

gases were realised with the help of the sympathetic cooling technique [23,24]. The

research on degenerate Fermi gases almost immediately attracted much attention

simply because the electron is a fermion and all the constituent particles of matter

are fermions. A big advantage of the ultracold gas system is that the interactions

between particles can be controlled through a Feshbach resonance [25]. A Feshbach

resonance allows direct control of the s-wave scattering length, which characterises

the interparticle interaction at low temperature, through the application of a mag-

netic field. In the case of fermions, a Feshbach resonance smoothly links two different

regimes. On one side of the resonance, the weak interaction between atoms of op-

posite spin leads to the formation of weakly bound Cooper pairs and the physics

described by BCS theory emerges. On the other side are tightly bound molecules;

these molecules are composite bosons and can undergo condensation. The unitary
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regime in the middle contains rich physics [26].

Another breakthrough was the realisation of spin-orbit coupling of ultracold atoms.

One challenge of quantum simulation is to emulate the effect of magnetic fields on

electrons using neutral atoms. By introducing spin-orbit coupling of neutral atoms,

scientists can engineer a vector potential for atoms which is equivalent to that expe-

rienced by electrons moving in a magnetic field [27, 28]. These engineered artificial

gauge potentials open the door to explore physics in new regimes. Scientists can

now tailor quantum systems to have properties which do not even exist in nature.

1.2 The atom chip: cold matter lab on a chip

The original version of the atom chip [29–32] combines the dramatic progress in

ultracold quantum gases with the mature technology of the semiconductor industry.

Atom chips minimise and integrate components that can create ultracold quantum

gases, accurately manipulate and measure them, while controlling both the internal

and external degrees of freedom. The atom chip has been shown to be a robust and

precise device to manipulate quantum matter [33]. The complexity [34] of an atom

chip can easily be scaled up. It is also considered to be a promising candidate which

can bring quantum gas systems out of the Lab.

Initial interest in the microscopic magnetic trap was due to the possibility of

entering a new regime in which the extension of the ground-state wave function in

the trap becomes smaller than the wavelength of the atomic transition line. Micro-

fabricated planar current-carrying wires on a chip were suggested to create such

traps [35]. In the early days, loading atoms into these microscopic traps was quite

challenging since the trap volume is very small. Many works were focused on guid-

ing precooled atoms with a tailored magnetic waveguide created from free-standing

current-carrying wires [36] and microfabricated wires on a chip [37–39]. For efficient

loading of a microscopic magnetic trap on an atom chip, two different approaches

were developed independently. The first is the Mirror MOT approach: in this scheme

the chip surface also serves as a reflective mirror which allows one to cool and trap
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atoms close to the surface [33, 40]. In the second approach, atoms are cooled and

collected at a different location and subsequently transported to the atom chip

surface by magnetic transport [41] or optical tweezers [42].

The first BECs on atom chips were realised shortly after, in 2001 [41, 43]. Since

then, research on atom chips has developed rapidly on both the fundamental physics

side and the applications side. More and more species can now be trapped and

studied on a chip. A Fermi gas has been cooled to degeneracy on an atom chip [44].

Trapped atoms can be excited to Rydberg states near a chip surface [45, 46]. Even

deceleration and trapping of molecules has been demonstrated on a chip [47, 48].

Compared to a macroscopic magnetic trap produced by magnetic coils, the ge-

ometry of a microtrap created on an atom chip can be easily shaped by patterning

a tailored wire structure. It turns out that atom chip microtraps are well suited to

realising a one-dimensional geometry [49–52]. A 1D quantum many-body system is

exactly solvable [53]. Therefore, the theory can be precisely checked by experiment.

A 1D Bose gas also exhibits rich physics, very different from 2D and 3D. One dra-

matic example is that a 1D Bose gas can become more strongly interacting as its

density decreases [54].

The atom chip usually traps atoms close to the surface in the range of micrometers

to hundreds of micrometers. Ultracold atoms or a BEC can be considered as a

sensitive probe to study effects that only dominate when the trap is very close to

the surface, such as the Casimir-Polder interaction [55–57] and Johnson noise [58].

Also, the trapped cloud can be used to probe the electron transport within a current-

carrying wire [59], the magnetic field near a surface [60,61] and the microwave field

near a surface [62,63].

A major research topic of the atom chip is the atom interferometer. An atom

interferometer enables the study of the matter-wave properties of a BEC. The atom

chip turns out to be a robust device to perform interferometry measurements. An

atom Michelson interferometer on a atom chip was demonstrated first [64]. A more

commonly implemented scheme is to dynamically split a single trap into a double

well; this process is analogous to a beam splitter in optics. A simple two current-
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carrying wire structure was introduced to perform double-well splitting [65] and this

was later demonstrated in an experiment [66]. One drawback of this scheme is that

it is difficult to maintain spatial coherence during the splitting of the wavepacket.

To overcome this limitation, the Heidelberg group demonstrated a coherent beam

splitter based on a radio-frequency-induced double-well potential [67]. Subsequently,

the same group reported a full Mach-Zehnder interferometer for BECs on an atom

chip by recombining the two separated wavepackets [68, 69].

The atom chip offers robust creation of a BEC and highly controlled manipulation

of the cloud motion. And it is easy to scale up, which makes the atom chip a promis-

ing candidate for quantum gate operation [70, 71]. Experiments have shown that

long coherence times of superposition states of the trapped atoms can be maintained

close to a chip surface [72,73], which is crucial for quantum gate operation. An im-

portant tool in these systems are state-dependent microwave potentials, which offer

a unique way of controlling the interaction between internal states, since the usual

magnetic Feshbach resonance cannot be implemented in an atom chip experiment.

The Munich group demonstrated an atom interferometer with a state-sensitive beam

splitter [74]. Furthermore, by precisely controlling the interactions, spin squeezing

and multi-particle entanglement has been achieved on an atom chip [75], which may

be useful for a chip-based atomic clock [76] and an interferometer operating beyond

the standard quantum limit. In addition, optical fibre cavities on an atom chip have

demonstrated the capability of single-atom control [77–79]. This looks promising

for the demonstration of a gate operation on an atom chip.

The original atom chip configurations were based on single-layer current-carrying

wires deposited on substrates. In recent years, many new technologies and tech-

niques have been conceived and implemented. As a natural extension of a single-

layer atom chip, multilayer atom chips have been fabricated and implemented for

versatile manipulation of atoms [80], and superconducting atom chips [81, 82] and

hybrid atom chips integrated with photonics devices [83] have been implemented.

In the Swinburne group, we have chosen permanent magnets as an alternative

to current-carrying wires. Permanent magnetic materials have the advantage that
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large magnetic field gradients and curvatures can be produced, free from technical

noise and fluctuations, compared to current-carrying wires. The required magnetic

field profile can be produced by patterning the magnetic structure through well-

established nano-fabrication technology.

1.3 Hybrid atom chip with a magnetic lattice

Permanent magnetic materials were first used as magnetic mirrors [84–89] in the

field of atom optics. Researchers then demonstrated the capability of loading atoms

into micromagnetic traps [90,91] based on permanent magnets and even to achieve

a BEC in such traps [92–94]. In the Swinburne group, we are particularly inter-

ested in designing a lattice potential structure with a permanent magnetic thin

film. Compared to the widely used optical lattices, magnetic lattices offer several

unique features: they have a large design flexibility allowing a variety of lattice

geometries; the lattice period is not limited by the wavelength of the optical lattice

laser; magnetic traps are state-selective so that RF evaporative cooling is allowed

in a magnetic lattice trap and RF spectroscopy [95, 96] can be used as a powerful

probe for the measurements.

Several proposals based on different techniques have been suggested to realise

a magnetic lattice, such as an array of current-carrying wires [97–99], an array

of superconducting vortices [100], synthesising a spatially periodic magnetic field

based on pulsed gradient magnetic fields [101] and RF-dressed magnetic lattice po-

tentials [102]. Here, we will focus only on the development of patterned permanent

magnetic films and summarise the brief history.

A 1D magnetic lattice is the easiest structure that can be transferred from a

magnetic mirror configuration. In 2005, the Imperial College group created a 1D

100µm-period magnetic structure based on a sinusoidally magnetised videotape [92].

They demonstrated loading 87Rb |F = 2,mF = +2〉 atoms and achieving a BEC

in one of the lattice traps. The dynamics of atoms confined in a single magnetic

waveguide was studied. Later, in 2010, the Imperial College group demonstrated the
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capability of selectively loading one or several lattice sites [103], and implemented

an effective transport of the confined atoms over long distances, up to ∼ 1 cm. In

2007, the MIT group implemented a similar type of experiment with |F = 1,mF =

−1〉 87Rb atoms in a 1D 100µm-period magnetic lattice created by a commercial

hard disk [104]. A 1D 4µm-period magnetic lattice created with current-carrying

wires was constructed in the Tübingen group who demonstrated the diffraction of a

BEC [105,106].

In 2008 the Swinburne group produced a 1D magnetic lattice structure on a

TbGdFeCo film with a period scaled down to 10µm [107]. About 150 lattice sites

were loaded with pre-cooled 87Rb atoms in the |F = 2,mF = +2〉 state. The

dynamics of the reflection of an ultracold atomic cloud from such a lattice potential

was also studied [108,109].

In parallel, the Amsterdam group created a 2D rectangular magnetic lattice with

periods of 22 and 36µm in orthogonal directions using FePt magnetic film [110].

More than 30 lattice sites were loaded with 87Rb atoms in the |F = 2,mF = +2〉

state. After improving the loading process they later demonstrated loading over 500

lattice sites and shuttled the trapped cloud across the chip surface by controlling an

external magnetic field [111]. RF evaporative cooling was performed to further lower

the temperature. However, the final temperature of the trapped cloud was limited

by rapid three-body losses [112] and quantum degeneracy could not be reached in

individual lattice sites.

In order to reduce three-body losses, the Swinburne group trapped atoms in the

|F = 1,mF = −1〉 state. The three-body recombination rate for a thermal cloud

is roughly three times smaller than for the |F = 2,mF = +2〉 state [113, 114].

This change increases the lifetime of the lattice traps and allows one to perform

more efficient RF evaporation. Finally, we realised BECs across more than 100 sites

of a 1D 10µm-period magnetic lattice. Single-site resolved imaging provided the

capability to simultaneously measure RF spectra of each individual lattice site in

situ. When slowly ramping down the final RF frequency, the RF spectra changed

from a thermal Boltzmann distribution with a broad width to a bimodal distribution
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and finally to reach a narrow peak with an inverted approximately parabolic shape

which signified an almost pure BEC [95,96].

A 2D magnetic lattice potential with equal barrier heights in different trapping

directions is crucial for equal tunnelling. Earlier proposals for creating such a 2D

lattice are difficult to implement because of the complexity of fabrication [115,116].

In 2010, Schmied et al. [117] developed a linear programming algorithm to design

tailored lattices of magnetic microtraps based on patterned magnetised films. The

designed pattern is a one-layer binary structure containing only a full magnetisation

area and a non-magnetisation area. Such a simple pattern can be easily adapted to

current nanofabrication processes. Nearly arbitrary geometries of trapping potential

patterns, in principle, can be produced with desired constraints.

Inspired by this optimised program, both the Amsterdam group and our group de-

veloped new types of magnetic lattices. 10µm-period square and triangular lattices

were fabricated with FePt film by UV lithography by the Amsterdam group [118].

Cold atoms were successfully loaded into hundreds of lattice traps. Such a period

is suitable for quantum information science with long-range interacting Rydberg

atoms. On the other hand, our group fabricated a structure with four magnetic

lattice structures having periods down to 0.7µm on a Co/Pd multi-atomic layer

film [119]. The sub-micron-period lattice is designed to allow us to explore quantum

tunnelling effects. It is a promising candidate as a quantum simulator of 2D systems

in condensed matter science.

1.4 Overview of thesis

This thesis reports on the design and fabrication of a new magnetic lattice atom

chip. The Co/Pd magnetic film contains four lattice structures: a 1D 5µm-period

structure, a 1D 0.7µm-period structure, a 0.7µm-period square lattice structure

and a 0.7µm-period triangular lattice structure. In addition, a new atom chip has

been fabricated using direct bonded copper. This atom chip contains four pairs

of separate U-wire and Z-wire traps which allows us to prepare ultracold atom
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clouds in the different magnetic lattices. Ultracold atoms or BECs can be brought

very close (∼ 0.3µm) to the 0.7µm-period magnetic film structures. The atom-

surface interaction is first studied. We then study the reflection of atom cloud from

the 0.7µm-period triangular magnetic potential, and the loading of atoms into the

0.7µm-period triangular magnetic lattice traps.

The structure of the thesis is as follows:

In Chapter 2 we first summarise the basic knowledge of magnetic trapping and

Bose-Einstein condensation. Then the interaction between the atoms and a chip

surface is discussed. In the last part of the chapter, we discuss the design principle

of the magnetic lattice.

The fabrication and characterisation of the magnetic film and atom chip are

presented in Chapter 3. This chapter starts with the features of the Co/Pd mag-

netic film. Then we introduce the design and fabrication of the sub-micron-period

magnetic lattice. The fabricated magnetic film is characterised by different methods.

The newly designed atom chip is presented in the last part of the chapter.

The experimental apparatus is described in Chapter 4 and the experimental pro-

cedure for preparing a BEC is discussed. The properties of the BEC and the Z-wire

trap are presented. This is the starting point for further experiments on magnetic

lattice loading.

Chapter 5 presents the main results of this thesis. First, the interaction between

Z-wire trapped ultracold atom cloud and the atom chip surface is studied and the

reflection dynamics of an atom cloud from the 0.7µm-period triangular magnetic

potential is studied. Finally, preliminary results for the trapping of ultracold atoms

in a 0.7µm-period triangular magnetic lattice are reported.

Possible future directions are discussed in Chapter 6.



CHAPTER 2

Theoretical background

In this chapter I review fundamental concepts of the magnetic lattice atom chip.

These concepts are important for understanding the whole experimental cycle and

further for designing a new type of experiment. Starting from the principle of

magnetic trapping I discuss the basic wire trap configuration used in our work.

Then the process of evaporative cooling is analysed which usually serves as the last

step for achieving BEC. Finally, the properties of a BEC are presented. In addition,

the atom-surface interactions are discussed since in a magnetic lattice the atoms can

be very close to the surface of the chip. In the last part of the chapter, the design

methods and basic properties of a magnetic lattice are discussed.

2.1 Magnetic trapping of neutral atoms

In the area of ultracold atom research, atoms are manipulated through interactions

with an electromagnetic field. The discussion here follows that in [120]. The princi-

ple of magnetic trapping of a neutral atom is based on the interaction of the atomic

magnetic moment µ with an external magnetic field B. In a classical picture, the

atom experiences a potential energy

E = −µ ·B = −µB cos θ. (2.1)
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The angle θ between µ and B is constant because of the rapid Larmor precession

of µ around the magnetic field axis. In a quantum mechanical picture, the Zeeman

energy levels of a atom with angular momentum F are

EF,mF = µBgFmFB, (2.2)

where µB is the Bohr magneton, gF is the Landé g-factor of the angular momentum

state F and mF is the magnetic quantum number associated with the projection of

F onto the direction of B. The classical term cos θ is now replaced by mF/F ; the

classical picture of constant θ is equivalent to the atom remaining in a state with

constant mF .

An atom trap requires a local minimum of the magnetic potential energy, Eq.(2.2).

For gFmF > 0 atoms “low-field seekers” require a local magnetic field minimum;

while for gFmF < 0 atoms “high-field seekers” require a magnetic field maximum;

and atoms in a state with gFmF = 0 are not influenced by the magnetic field to

lowest order. Since no local magnetic field maxima are allowed in a source-free

region according to Maxwell’s equations [121,122], only low-field seeking states can

be trapped with static magnetic fields.

When a low-field seeking atom is confined in a magnetic trap, it oscillates around

the trap bottom. The atom experiences a changing magnetic field in its moving

frame because of this oscillation and a transition to a high-field seeking state can

be induced. The trap is only stable if the atom’s magnetic moment adiabatically

follows the direction of the magnetic field. This requires that the rate of change θ

must be slower than the precession of the magnetic field:

dθ

dt
� ωL = gFmFµBB/h̄. (2.3)

When the trap bottom reaches zero (or very small) magnetic field B, the condition

in Eq.(2.3) can be violated. In this case, the precessing angle changes when an

atom passes through the zero magnetic region. So transitions between mF levels

can occur and bring atoms to untrapped states. This trap loss mechanism is known

as a Majorana spin flip [123].
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2.2 Magnetic traps on atom chips

Instead of using magnetic coils as in a standard BEC experiment, magnetic traps

created on an atom chip use lithographically patterned current-carrying wires. Many

of the developed microfabrication techniques in the semiconductor industry can be

incorporated in an atom chip experiment. An atom chip simplifies a BEC apparatus

significantly. Magnetic traps with large field gradient and curvature can be produced

close to the trapping wires with modest electric currents [29,30].

2.2.1 Principle of wire magnetic traps

The principle of a simple wire trap can be illustrated by considering the magnetic

field created by an infinitely thin long straight wire, carrying a current I, as shown

in Figure 2.1, whose magnitude, gradient, and curvature at a distance r from the

wire are [29,30]

B =
µ0I

2πr
, B′ = − µ0I

2πr2
, and B′′ =

µ0I

πr3
, (2.4)

respectively. Here µ0 = 4π × 10−7 N/A2 is the vacuum permeability. By applying

a uniform bias field B0 perpendicular to the wire, the field is cancelled by the field

from the current-carrying wire at a distance

r0 =
µ0I

2πB0

. (2.5)

In the vicinity of this line, the magnetic field has the form of a two-dimensional

quadrupole field with gradient

B′(r0) = − µ0I

2πr2
0

= −2πB2
0

µ0I
(2.6)

in the plane perpendicular to the wire.

On an atom chip, atoms are trapped with the help of planar current-carrying

wires on a chip substrate plus a uniform bias field B0, as schematically shown in

Fig. 2.2. The substrate provides mechanical stability and efficient heat transport

from the wires. The chip wires have a rectangular cross-section: w is the width
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Figure 2.1: (a) A two-dimensional quadrupole field is formed by combining the radial

field of a straight wire with a uniform bias field B0. Red solid line represents the current

carrying wire and blue arrows represent the magnetic field displayed in the plane which is

perpendicular to the current wire. (b) Magnetic field magnitude B for a current I = 2 A

and bias field B0 = 40 G.

and t is the thickness of the wire. The field of an infinitely thin wire is a good

approximation to the field of real wires as long as r0 � w, t.

The straight wire trap provides two-dimensional confinement and can thus be

used to guide atoms on a chip. Traps providing three-dimensional confinement can

easily be obtained by either bending the wire ends or adding additional cross wires.

The most popular wire trap configurations are the U-shape wire and the Z-shape

wire [29,30]. In both cases, the central part of the wire in combination with the bias

field forms a two-dimensional quadrupole field for transverse confinement, while the

bent wire parts provide an axial confinement.
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Figure 2.2: Waveguide for neutral atoms formed at a distance r0 from a lithographically

fabricated current-carrying wire of finite width w and thickness t.

2.2.2 U-wire and Z-wire configurations

In the case of a U-wire (see Figure 2.3 for geometry), the field components By

generated by the two bent wires point in opposite directions and cancel at y = 0.

The resulting potential is that of a three-dimensional quadrupole trap, with field

zero at y = 0 and z = z0.
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Figure 2.3: Quadrupole U-wire trap: (a) wire layout in the z = 0 plane, the orientation

of the bias field B0 and current (white arrow). On top of the wire structure is a contour

plot of the magnetic trap in the xy plane, z = z0. Darker region shows the trap minimum,

and the trap position is shifted towards x > 0. (b)(c) Magnetic field modulus on a line

along z and y through the trap centre. The field is calculated for a wire length L = 5 mm,

I = 10 A, B0 = 20 G, wire thickness t = 0.127 mm, using the Radia package.

In the case of a Z-wire (see Figure 2.4 for geometry), the field components By

point in the same direction, adding up to a finite field along y along the trap centre.

The result is a three-dimensional Ioffe-Pritchard trap with the trap centre located
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at y = 0 and z = z0.
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Figure 2.4: Ioffe-Pritchard Z-wire trap: (a) wire layout in the z = 0 plane, the orientation

of the bias field B0 and current (white arrow). On top of the wire structure is a contour

plot of the magnetic trap in the xy plane, z = z0. Darker region shows the trap minimum,

and the trap is tilted along the y-direction. (b)(c) Magnetic field modulus on a line along

z and y through the trap centre. The field is calculated for a wire length L = 5 mm,

I = 10 A, B0 = 20 G, wire thickness t = 0.127 mm, using the Radia package.

For plotting the U-wire and Z-wire magnetic trap, Fig. 2.3 and Fig. 2.4, we use

the Mathematica software with the Radia add-on package which was developed at

the European Synchrotron Radiation Facility at Grenoble. Radia is a fast multi-

platform software dedicated to 3D magnetostatics computation 1.

2.3 Mirror magneto-optical trap (MMOT)

In order to load the magnetic trap produced by the atom chip, a mirror magneto-

optical trap configuration was invented [29, 40]. For a standard MOT setup [124],

Fig. 2.5 (a), six circularly polarised and red-detuned laser beams along three orthog-

onal axes overlap with a magnetic quadrupole field produced by a pair of magnetic

coils arranged in an anti-Helmholtz configuration. The MOT has proven to be a

very robust tool for collecting a large cold atomic cloud.

For a mirror MOT, Fig. 2.5 (b), two of the six beams of a normal MOT are

replaced by reflected beams from a metallic mirror. Two laser beams are parallel to

1http://www.esrf.eu/Accelerators/Groups/InsertionDevices/Software/Radia
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the chip surface (gold mirror) and another two 45◦ beams form a plane perpendicular

to the parallel beams. The axis of the anti-Helmholtz coils is oriented along the

direction of one 45◦ beam. The centre of the produced quadrupole magnetic field

is overlapped with the four laser beams. Since the circular polarisation of a laser

beam changes helicity upon reflection from the metallic mirror, the MMOT can

reproduce the same light-field configuration as a standard MOT. In a mirror MOT

configuration, atoms can be collected directly above the chip surface and transferred

straight into the magnetic trap produced by the atom chip.

(a) (b)

Mirror

Figure 2.5: Configurations of (a) a standard six-beam MOT and (b) a mirror MOT.

2.4 The thermodynamics of cold atoms

In this section, the thermodynamic properties of the trapped cold atoms are briefly

summarised. The trap potential for a thermal cloud trapped in a harmonic trap is

given by

U(x, y, z) =
1

2
M
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
, (2.7)

where M is the mass of atom and ω is the trap frequency. Due to the Maxwell-

Boltzmann velocity distribution of the thermal atoms, this gives rise to a Gaussian

thermal density distribution in the harmonic trap

nth(x, y, z) = n0 exp

[
−
(
x2

2σ2
x

+
y2

2σ2
y

+
z2

2σ2
z

)]
, (2.8)
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where the rms cloud width along each axis i ≡ x, y, z is given by

σ2
i =

kBT

Mω2
i

(2.9)

and the peak density is

n0 =
N

(2π)3/2σxσyσz
(2.10)

Therefore, the temperature T of the cloud can be estimated from Eq.(2.9) for

a given trap frequency and cloud width. Time-of-flight expansion measurement is

a common technique to measure the temperature. In a time-of-flight measurement

atoms are released from the trap at t = 0 and then the cloud undergoes expansion

due to its finite temperature and simultaneously falls under gravity. The evolution

of the cloud width is recorded by taking an image of the cloud with a CCD camera.

The cloud position and width are given by

z(t) = z(0) +
1

2
gt2 (2.11)

σi(t)
2 = σi(0)2

(
1 + ω2

i t
2
)

(2.12)

or

σi(t)
2 = σi(0)2 +

kBT

M
t2 (2.13)

where σi(0) represents the in-trap rms width.

2.5 Forced evaporative cooling

Evaporative cooling of an atomic cloud trapped in a magnetic trap is based on

the preferential removal of atoms above a certain truncation energy εt from the trap

and subsequent thermalization to a new equilibrium state at a lower temperature by

elastic collisions of the remaining atoms. Since no photon redistribution is involved,

evaporative cooling not only lowers the temperature further but also increases the

cloud phase space density significantly. It turns out to be a crucial step in almost all

BEC experiments. Detailed discussions about the theory of evaporative cooling of

trapped atoms can be found in [125,126], here only the basic principle of evaporative

cooling is introduced.
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For a constant truncation barrier εt, elastic collisions between atoms in a magnetic

trap produce atoms with energies higher than εt which are evaporated from the trap.

The evaporation rate can be expressed as [125]

τ−1
ev = −Ṅ

N
= −N ηe−η

τel
√

2
, (2.14)

where the elastic collision rate 1/τel = n0σelv̄
√

2, σel = 8πa2
s is the elastic collision

cross section, v̄
√

2 =
√

16kBT
πM

is the average relative velocity between two atoms,

and

η =
εt
kBT

(2.15)

is the truncation parameter. As the temperature drops, η becomes larger and the

evaporation rate is exponentially suppressed. In order to force the evaporation to

proceed at a constant rate, the trap barrier εt is reduced in a way that η remains

constant. In a magnetic trap, forced evaporation cooling is implemented by coupling

the hottest atoms out of the trap using RF radiation which resonantly couples them

to non-trapped magnetic sublevels. A resonance occurs when the Zeeman splitting

of the magnetic sublevels is equal to the RF frequency:

gFµBB = h̄ωRF (2.16)

For a 3D magnetic trap, hotter atoms far away from the trap centre have a large

Zeeman splitting. When ramping down the frequency of the RF radiation (effectively

reduce the trap barrier εt), the outer shell of the 3D trap filled with hotter atoms is

first removed by this RF “knife”. Efficient evaporative cooling results in a smaller,

colder and denser cloud, even though atoms are being removed. The efficiency of

the evaporative cooling can be described by

α =
d lnT

d lnN
. (2.17)

α is a constant during the evaporation process (constant η) and the temperature

drops to T (t)/T (0) = [N(t)/N(0)]α. In principle, the RF ramping speed should be

as slow as possible to obtain efficient evaporation at the expense of a minimal loss

in atom number. However, the loss of trapped atoms is not only induced by evapo-

ration, but also suffers from other loss mechanisms. For alkali atoms, the dominant
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loss mechanism is usually background gas collisions. τloss is the time constant for

trap loss due to background gas collisions. On the other hand, a fast evaporation

could simply lose atoms without considerable cooling if the thermal equilibrium

process is slow. Therefore, an important criterion for sustained evaporation is to

maintain or increase the elastic collision rate including trap loss mechanisms [125]

˙τ−1
el

τ−1
el

=
1

τel

(
α(δ − 1/2)− 1

λ
− 1

R

)
. (2.18)

where α = η
δ+3/2

−1 and the ratio of λ = τev/τel =
√

2eη

η
for large η, δ = 3/2 for a 3D

harmonic trap, R = τloss/τel is the number of elastic collisions per trapping time; it

is also called the “ratio of good-to-bad collisions”.

If ˙τel(t) < 0, the collision rate decays rapidly with time, and then the rether-

malisation takes an infinite time and the evaporation process stops. By contrast, if

˙τel(t) > 0, exponential growth of the collision rate allows a faster than exponential

growth in the phase space density. This is known as runaway evaporation. Therefore,

runaway evaporation requires

R ≥ Rmin =
λ

α(δ − 1/2)− 1
. (2.19)

Equation (2.19) sets requirements on the initial conditions for the evaporation to

reach BEC. Figure 2.6 shows the minimum number of elastic collisions per trapping

time Rmin versus the truncation parameter η. In order to have runaway evaporation

and a sustainable increase in the phase space density, we must prepare the initial

condition within the blue area.

2.6 Theory of Bose-Einstein Condensation

Bose-Einstein condensation is a macroscopic occupation of the ground state of the

system by bosonic particles when the temperature is below a critical temperature

T 0
c . The discussion in this section follows mainly ref. [127]. At temperature T the

total number of particles is given, in the grand-canonical ensemble, by

N =
∑
εi

1

exp [β(εi − µ)]− 1
, (2.20)
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Figure 2.6: Threshold for runaway evaporation. Solid blue line shows the minimum ratio

Rmin of good-to-bad collisions versus truncation parameter η for a harmonic trap potential,

δ = 3/2 [125].

where µ is the chemical potential and β = (kBT )−1. First, we consider N atoms

trapped in a harmonic trap U(x, y, z), Eq.(2.7), and neglect the atom-atom in-

teraction. In this case, the many-body Hamiltonian is the sum of single-particle

Hamiltonians, where the eigenenergy of the single-particle Hamiltonian in the ith

state is given by

εi =

(
nx +

1

2

)
h̄ωx +

(
ny +

1

2

)
h̄ωy +

(
nz +

1

2

)
h̄ωz (2.21)

and {nx, ny, nz} are non-negative integers. The total particle number N can be

written as the sum of the number of atoms in the ground state N0 and the number

of atoms in all excited states. N0 can be on the order of N when the chemical

potential is equal to the energy of the lowest state, µ = h̄(ωx +ωy +ωz)/2. Thus we

can write

N = N0 +
∑

nx,ny ,nz 6=0

1

exp[βh̄(ωxnx + ωyny + ωznz)]− 1
. (2.22)

In the thermodynamic limit N →∞, we can assume that the level spacing becomes

smaller and smaller so that the sum can be replaced by an integral:

N = N0 +

∫ ∞
0

dnxdnydnz
exp[βh̄(ωxnx + ωyny + ωznz)]− 1

. (2.23)
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This integral Eq.(2.23) can be easily calculated. One finds

N −N0 = ζ(3)

(
kBT

h̄ω

)3

, (2.24)

where ζ(n) is the Riemann ζ function and ω = (ωxωyωz)
1/3 is the geometric mean

of the trapping frequency. The transition temperature of a BEC can be obtained by

imposing that N0 → 0:

T 0
c =

h̄ω

kB

(
N

ζ(3)

)1/3

= 0.94
h̄ω

kB
N1/3. (2.25)

The T dependence of the condensate fraction for T < T 0
c :

N0

N
= 1−

(
T

T 0
c

)3

. (2.26)

In quantum mechanics, the indistinguishability of bosonic particles arises when

the wavefunctions of individual particles start to overlap. The phase space density

is defined as the number of particles occupying a volume equal to the de-Broglie

wavelength cubed

Φ = nλ3
dB. (2.27)

where n is the density of atoms and the thermal de-Broglie wavelength λdB =

h/
√

2πMkBT . From the above discussion, when the phase space density Φ is on the

order of one or greater, the de-Broglie waves of the individual bosons have significant

overlap and the Boltzmann distribution is replaced by Bose-Einstein distribution.

For a bosonic gas confined in a 3D uniform trap, the BEC transition temperature

is T 0
c = 2π

[ζ(3/2)]2/3
h̄2n2/3

MkB
[128], and the corresponding phase space density is Φc =

ζ(3/2) = 2.612. For a bosonic gas confined in a 3D harmonic trap, as we discussed

in this section, T 0
c = h̄ω

kB

(
N
ζ(3)

)1/3

, and the corresponding phase space density is

Φc = ζ(3) = 1.202.

2.6.1 Thomas-Fermi approximation

The previous discussion ignores the effect of atom-atom interaction. However, to

understand the condensate properties it is important to include the interactions. Ap-

plying a mean-field approach to treat this problem leads to the Gross-Pitaevskii (GP)
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equation

ih̄
∂

∂t
ψ(r, t) =

(
−h̄2

2M
∇2 + U(r) + g|ψ(r, t)|2

)
ψ(r, t), (2.28)

where on the right hand side the first term corresponds to the kinetic energy, the sec-

ond term corresponds to the external trapping potential, the third term corresponds

to the interaction due to the mean field produced by the other atoms, g = 4πh̄2as
M

is the coupling constant, and as is the s-wave scattering length. When as > 0 the

interaction is repulsive and when as < 0 the interaction is attractive.

The condensate wave function can be written as ψ(r, t) = ψ(r)e−iµt/h̄. Therefore,

the GP equation, Eq.(2.28), can be expressed as(
−h̄2

2M
∇2 + U(r) + g|ψ(r)|2

)
ψ(r) = µψ(r). (2.29)

Considering a condensate that is confined in a harmonic trap, the ratio between

the mean-field interaction energy Eint and the kinetic energy Ekin is Eint
Ekin
∝ N |as|

aho
,

where aho =
(

h̄
Mω

)1/2
is the harmonic oscillator length. In the case of atoms with

repulsive interaction, under most experiment conditions, the limit of Nas/aho � 1

is well satisfied. At this limit, the interaction term is strong and dominates, and the

kinetic energy term of the GP equation, Eq.(2.29), can be neglected. This is known

as the Thomas-Fermi approximation:

(
U(r) + g|ψ(r)|2

)
ψ(r) = µψ(r). (2.30)

The density profile of the condensate in the Thomas-Fermi approximation is

n(r)TF = ψ2(r) =
µ− U(r)

g
(2.31)

in the region where µ > U(r), and nTF = 0 outside this region. The boundary of the

condensate is µ = U(r). In a harmonic trap, U(r) = 1
2
M
∑

i ω
2
i r

2
i , where i = x, y, z,

and the density profile of the condensate is an inverted parabola. The condensate

boundary is an ellipsoid with radius Ri given by

µ =
1

2
Mω2

iR
2
i (2.32)
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So the condensate wave function can be expressed in terms of these radii:

ψ(r) =

(
µ

g

)1/2
(

1−
∑
i

r2
i

R2
i

)1/2

. (2.33)

Using the normalisation condition of ψ(r), we obtain a relation between the chemical

potential µ and the number of atoms in the condensate

µ =
h̄ω

2

(
15Nas
aho

)2/5

. (2.34)

2.6.2 BECs in a lattice potential: quantum tunnelling

The GP equation describes weakly interacting Bose gases very well. Two main

developments in the past years have made an ultracold gas system accessible to a

strongly correlated system. One is the ability to tune the interaction strength in

ultracold gases by means of a Feshbach resonances [25]. The other development

is the possibility of changing the dimensionality with tailored lattice potentials by

means of either optical lattices [13] or magnetic lattices [129]. When a BEC is

loaded into a 2D periodic lattice potential, the condensate is usually split into more

than 105 lattice sites with a mean occupation of 1-2 atoms per site [14]. The atoms

can only move through the lattice by tunnelling from one site to the next. Now

the tunnelling energy plays the role of the kinetic energy and the effective mass of

the atoms can be varied through the lattice potential depth [130]. In this way, the

system can enter a strongly correlated regime by dynamically controlling the lattice

trap depth. As a result, a quantum phase transition from a superfluid state to a

Mott insulator state can occur at a certain critical point [18].

The behaviour of an atomic system trapped in a lattice potential can be described

by the Bose-Hubbard model [16,131]

Ĥ = −J
∑
<i,j>

â†i âj +
∑
i

U

2
n̂i(n̂i − 1), (2.35)

where the operator â†i creates an atom at the site i, n̂i = â†i âi is the on-site number

operator, and the notation < i, j > restricts the sum to nearest neighbours only.
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J is the tunnelling matrix element and U is the on-site interaction energy. The

relative strength between J and U can be controlled by the lattice trap depth V0,

V0 is usually measured in units of the recoil energy Er = h̄2k2/(2M). We use

the approximate expressions J/Er = 4√
π
(V0/Er)

3/4 exp[−2(V0/Er)
1/2] and U/Er =√

8/πkas(V0/Er)
3/4 [14] to estimate the tunnelling matrix element and the on-site

interaction. The tunnelling time between two neighbouring lattice sites is τtunnel =

h̄/J [15].

The magnetic lattice structures in which we are interested can create 2D mag-

netic lattice potentials with equal trap depths along different lattice directions, as

discussed in Sect. 2.8. For a 2D square lattice, quantum Monte-Carlo simulations

predict a quantum phase transition between a superfluid state and a Mott insulator

state occurs at (J/U)c ≈ 0.06 [132]. This has been demonstrated in experiments with

optical lattices [18]. Based on this prediction and the above formula, we estimate

the relevant parameters which are required to access the quantum phase transition

in a 2D square lattice. Our calculations are listed in Table 2.1.

Table 2.1: Calculated parameters for a 2D square lattice with different lattice period a at

the superfluid-Mott insulator transition point (J/U)c ≈ 0.06.

Period a 0.1µm 0.7µm 5µm 10µm

Er 2.76µK 56 nK 1.1 nK 276 pK

V0/Er 6.13 11.9 19.7 22.8

V0 503 mG 20 mG 0.65 mG 0.19 mG

J 170 nK 820 pK 3.3 pK 0.46 pK

U 2.9µK 14 nK 55 pK 7.7 pK

τtunnel 45 µs 9.3 ms 2.3 s 17 s

From these estimates we can see that there is little chance for systems with large

lattice periods (5 and 10µm) to access the superfluid-Mott insulator transition with

neutral atoms. A 0.7µm-period magnetic lattice is a promising candidate to reach

this critical point when the magnetic fields are precisely controlled. With further

scaling of the lattice period down to 0.1µm, or even smaller, we enter a regime which
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is difficult to achieve with optical lattices. All the energy scales are increased by more

than two orders of magnitude compared with a 0.7µm-period lattice. This boosts

the quantity J2/U which is the energy scale associated with superexchange [133].

2.7 Atom-chip surface interactions

In atom chip experiments, the ultracold atoms are trapped at a distance d from the

room temperature chip surface, which usually varies from only a few micrometres to

hundreds of micrometres. This unique situation of exploring atom-surface interac-

tions has attracted much attention from both an experimental and theoretical side.

Atom-surface interactions give rise to additional mechanisms of atom loss, decoher-

ence and heating. The discussion in this section follows the discussion in [134].

2.7.1 Johnson noise

In a conductor of conductivity σ at temperature T , thermal agitation drives the

electrons to move randomly, leading to current noise. This effect is known as Johnson

noise. The thermal currents exist in any conductor, independent of whether an

external current is applied or not. So they exist in both the trapping wires and the

reflecting metal mirror on the surface of an atom chip. The fluctuating magnetic

field caused by the thermal current noise introduces spin-flip processes, and hence

atom loss in a magnetic trap, and finally sets the limit of trap performance near

conductors.

At a distance d from a conducting, non-magnetic layer of thickness t, the spectral

density of the magnetic field fluctuations is given by [135]

Bi,j(ω, d) =
µ2

0σkBT

16πd
· sij · g(d, t, δ), (i, j = x, y, z) (2.36)

where sij = diag(1
2
, 1, 1

2
) is a tensor which is diagonal in the coordinate system of

Fig. 2.7, the dimensionless function g(d, t, δ) depends on the geometry and the skin

depth δ =
√

2/(σµ0ω) and thus contains the frequency dependence of Bi,j(ω, d).

The spectral density is related to the mean-square fluctuations of the magnetic field
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d~µm
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z x
y

T~300K

T~1µK

Figure 2.7: Schematic of trapped atoms close to a conducting layer. Green circles represent

thermal agitated electrons. Trap loss is caused by spin flips introduced by Johnson noise.

Figure adapted from [134].

components

〈B2
i (d)〉 =

1

π

∫ ∞
0

Bii(ω)dω (2.37)

The fluctuating magnetic field couples to the magnetic moment µ of the atoms

in the trap. Components perpendicular to µ drive spin flips, which results in deco-

herence and atom loss from the magnetic trap. The rate of these processes is given

by Fermi’s golden rule [136–138]. Considering transitions between an initial state

|i〉 and a final state |f〉 at frequency ωfi, the transition rate Γ is given by

Γ =
1

h̄2

∑
α,β=x,y,z

〈i|µα|f〉〈f |µβ|i〉Bαβ(ωfi, d), (2.38)

where µα = −µBgFFα is the magnetic moment in the α direction. As a specific

example, we calculate the transition rate between |i〉 = |F = 1,mF = −1〉 and

|f〉 = |F = 1,mF = 0〉 at a Larmor frequency ωfi = ωL. The trap bottom B0

is parallel to the surface and we choose this direction as the z-axis in Fig. 2.7.

In this case, the Fα component can be written in terms of the raising and lowering

operators F± ≡ Fx±iFy. Evaluation of the matrix elements yields |〈1, 0|µx|1,−1〉| =

|〈1, 0|µy|1,−1〉| = µB/
√

8 and |〈1, 0|µz|1,−1〉| = 0. Finally, we obtain [134]

Γ =
3µ2

0µ
2
BσkBT

256h̄2πd
· g(d, t, δ). (2.39)
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For a skin depth δ � max{d, t}, g(d, t, δ) ' t/(t+d) [135]. Therefore, the lifetime

due to spin flips caused by Johnson noise is

τs =
1

Γ
=

256πh̄2

3µ2
0µ

2
BσkBT

· d(t+ d)

t
(2.40)

2.7.2 Casimir-Polder interaction

An atom in its ground state close to a metallic or dielectric surface feels an attrac-

tive potential Vs(d). Such a potential arises due to the interaction of the fluctuating

electric dipole of the atom with the fluctuating electromagnetic field, which depends

on the distance d from the surface. For large distance z � λT , where λT = h̄c/kBT

is the thermal photon wavelength (λT = 7.6µm for T = 300 K), thermal fluctu-

ations of the field are dominant. In thermal equilibrium, the potential scales like

−T/z3 (Lifshitz or thermal regime). At smaller distances, λT � z � λopt/2π,

quantum fluctuations dominate, and the potential scales like −1/z4 (Casimir-Polder

regime). For the D2 line of 87Rb atoms, λopt/2π ≈ 120 nm. At even smaller distances,

λopt/2π � z � a0 (a0 is the Bohr radius), the potential scales like −1/z3 (van der

Waals-London regime). In most atom chip experiments, thermal fluctuations are

negligible, ultracold atoms are trapped in a regime where the Casimir-Polder and

van der Waals-London interactions are significant.

Therefore, Vs(d) ≈ VCP (d), the attractive Casimir-Polder potential VCP is given

by [139]

VCP (d) = − C4

d3(d+ 3λopt/2π2)
. (2.41)

This formula interpolates between the Casimir-Polder and van der Waals regimes.

C4 = 1
4πε0

3h̄cα0

8π
εr−1
εr+1

φ(εr) [55] is the Casimir-Polder coefficient, where α0 = 5.25 ×

10−39 Fm2 is the static atomic polarisability for a ground state Rb atom, φ(εr) is a

numerical factor [140] that depends on the relative permittivity εr of the top surface

layer, ε0 is the vacuum permittivity and c is the speed of light. In our experiment,

in which silica film is coated on top of the magnetic lattice atom chip, C4 is taken

to be 8.2× 10−56 Jm4 for εr = 4.0 and φ(εr) = 0.771.

In the absence of atom-surface interactions, the trap depth would be given by the
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value of the trapping potential at the surface. The trapping potential for a harmonic

magnetic potential can be expressed by

Vt(z) =
1

2
mω2

t (z − d)2 (2.42)

The trapping potential is truncated at the chip surface, and the trap depth is given

by Vt(0) = 1
2
mω2

t d
2. According to this estimation, the trap depth reaches zero

only when the trap position is at the chip surface (d = 0). However, the attrac-

tive Casimir-Polder potential VCP lowers the trap depth to Vb, and makes the trap

disappear at finite distance d > 0. Figure 2.8 (a) shows the combined potential

Vt(z) + VCP (z) seen by an atom close to a silica surface.

d

Vt(0)

Vb

(a) (b)

Figure 2.8: (a) Decrease in trap depth due to the attractive surface potential. Red dashed

line shows the trapping potential of a harmonic trap Vt. Blue curve shows the combined

potential of Vt and the Casimir-Polder interaction VCP . The trap frequency is ωt/2π =

300 Hz and the trap position is d = 4µm. (b) Calculated minimum trap-surface distance

dm versus trap frequency ωt.

We now wish to determine the minimum trap-surface distance dm required to

trap atoms of energy E = ζh̄ωt, where ζ is a constant. From the requirement

Vb(dm, ωt) = ζh̄ωt, dm can be calculated numerically as a function of ωt. A limiting

condition is ζ = 1/2, since the lowest bound state is 1/2h̄ωt for a harmonic trap.

The result is shown in Fig. 2.8 (b).

In conclusion, it is possible to manipulate atoms at a distance of a few hundred

nanometers from the chip surface with ωt in the range of several kHz to hundreds
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of kHz. Such trap frequencies are indeed realistic. One example is the magnetic

lattice traps based on tailored permanent magnetic structures. As we will show in

Sect. 5.2, trapping frequencies with hundreds of kHz are easily achieved by scaling

the lattice period down to 0.7µm.

2.8 Sub-micron period magnetic lattices

A periodic array of magnetic micro-traps which we call a magnetic lattice can be

created by patterned magnetic films [141], current carrying wires [97–99,105], vortex

arrays in superconducting films [100], or pulsed gradient magnetic fields [101, 142].

Magnetic lattices based on patterned magnetic films have a high degree of design

flexibility and may, in principle, be tailored with nearly arbitrary geometries and

lattice spacing [117] without restrictions imposed by optical wavelengths.

Since only low-field seeking atoms can be trapped in magnetic lattices, this prop-

erty allows radio-frequency (RF) evaporative cooling to be performed in the lat-

tice traps and RF spectroscopy to be used to characterise the trapped atoms in

situ [94, 143]. An array of about one hundred BECs in the 87Rb |F = 1,mF = −1〉

state has been achieved in our 1D 10µm-period magnetic lattice [95, 96]. This

achievement makes the magnetic lattice a promising candidate for quantum simu-

lation of condensed matter physics. As discussed Sect. 2.6.2, one requirement for

such a quantum simulator is that the tunnelling time between adjacent lattice sites

needs to be less than the coherence time of the system. In this sense, a 10µm-period

magnetic lattice loaded with neutral atoms is too large to study quantum tunnelling.

To overcome this limit and access the critical parameters for the superfluid to Mott

insulator quantum phase transition [129], it is natural to scale the lattice period

down to less than 1µm.

Optimised 2D magnetic lattices structures can be designed with a linear pro-

gramming algorithm developed by Schmied et al. [117]. This algorithm can output

an optimised pattern for a single-layer magnetic thin film with perpendicular mag-

netisation according to input constraints, such as the lattice geometry, lattice period
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and lattice trap distance to the film surface. The patterned magnetic film will create

a designed lattice potential at certain positions together with required bias fields.

Moreover, the lattice potential has equal barrier heights from one lattice site to all

nearest neighbours. The optimised pattern is a binary pattern with either a full

magnetisation area or a non-magnetisation area and can be readily implemented

with e-beam lithography plus reactive ion etching which is suitable to produce sub-

micron-period magnetic lattice structures.

To produce a square lattice, only the magnetic field gradient tensor needs to

be constrained. In Fig. 2.9 (a), we show the optimised magnetic pattern produced

by the algorithm [117]. The pattern produces a square lattice of microtraps at a

trapping height h = a/2 with equal barrier heights in the x- and y- directions,

Fig. 2.9 (b).

(a) (b)

y
 [

a
]

x [a]

Figure 2.9: (a) Optimised magnetic pattern for a square lattice at a trapping height

h = a/2. Blue areas are fully magnetised while white areas are non magnetised. Dark

blue dots indicate the trap positions and the arrow shows the Ioffe direction. (b) Pseudo-

potentials of the magnetic pattern in the trapping plane (h = a/2). Dark regions represent

the potential minima. Figure adapted from [117].

In Fig. 2.10 (a), we present the optimised magnetisation pattern that produces

a triangular lattice of microtraps at a trapping height h = a/2 with equal barrier

heights in three directions (Fig. 2.10 (b)). The required constraints are not only for

the field gradient tensor at each trap site, but also for the field gradient vector at

one of the barrier positions at {x, y, z} = {a/2, 0, a/2}.
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x [a]
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Figure 2.10: (a) Optimised magnetic pattern for a triangular lattice at a trapping height

h = a/2. Blue areas are fully magnetised while white areas are non magnetised. Dark

blue dots indicate the trap positions and the arrow shows the Ioffe direction. (b) Pseudo-

potentials of the magnetic pattern in the trapping plane (h = a/2). Dark regions represent

the potential minima. Figure adapted from [117].

Another program has been developed in our group which takes the optimised

pattern structure as a input and calculates the relevant parameter for the optimised

magnetic lattice traps, such as trap frequency, trap barrier height, trap bottom at

arbitrary bias magnetic fields and including the Casimir-Polder interaction. The

results are shown in Chapter 5.

2.9 Summary

In this chapter, the basic theory of magnetic trapping is introduced. The require-

ment of runaway evaporation is discussed, which is crucial in order to achieve effec-

tive evaporative cooling and to produce Bose-Einstein condensation. The properties

of a BEC, especially in the Thomas-Fermi regime, are summarised. In addition to

this general background theory, atom-surface interactions close to a chip surface, the

design method and the trap properties of magnetic lattice traps, which are specific

to our magnetic lattice atom chip work, are presented in the last part of the chapter.



CHAPTER 3

Magnetic lattice atom chip design and fabrication

This chapter describes the design, fabrication and characterisation of a hybrid atom

chip that combines a patterned permanent magnetic film with a current-carrying

wire structure. Four magnetic lattice structures including a 1D 5µm-period struc-

ture, a 1D 0.7µm-period structure, a 0.7µm-period square lattice structure and a

0.7µm-period triangular lattice structure are patterned on a perpendicularly mag-

netised Co/Pd multi-atomic layer film. The current-carrying wire structure is fab-

ricated with commercial direct-bonded copper (DBC) using wet etching, which is a

simple, rapid and low cost method for atom chip fabrication. Finally, the fabricated

magnetic lattice film is glued onto the current-carrying wire structure and mounted

in an ultrahigh vacuum chamber. The main part of this work has been published in

the paper J. Phys. D: Appl. Phys. 48, 115002 (2015).

The Co/Pd multi-atomic layer film was produced by the group of Prof. Dr.

Manfred Albrecht at University of Augsburg in Germany. The fabrication of the

magnetic lattice structures was carried out at the nano-fabrication facility at the

Melbourne Centre for Nanofabrication (MCN) by Armandas Balcytis from the Cen-

tre for Micro-Photonics at Swinburne. The magnetic lattice characterisation and

DBC atom chip fabrication was carried out by the Swinburne group.
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3.1 Co/Pd multilayer mono-atomic magnetic films

Permanent magnetic materials are appealing in atom chip experiments because of

the possibility of providing inherently stable magnetic traps and a versatile magnetic

trapping potential landscape [144]. Metallic multilayers composed of alternating

layers of a ferromagnetic transition metal (Fe, Co, Ni) and noble metal (Pd, Pt) [145–

147] is one of the most promising permanent magnetic materials. Co/Pd multi-

atomic layer magnetic film is the material chosen in our experiment to fabricate

the sub-micron period magnetic lattice structure because of the large perpendicular

magnetic anisotropy (PMA), high degree of magnetic homogeneity and small grain

size (6 nm) [148].

The thermomagnetic properties for Co/Pd film can be tailored by adjusting the

thickness of the individual Co and Pd layers and the total thickness of the layered

structure. Surface magnetic atoms (Co) have a preferential magnetic polarisation

due to the anisotropic environment at the surface. With decreasing Co thickness a

perpendicular easy axis of magnetisation for thin Co layer grows. For a thickness

below 1.2 nm the magnetisation direction is perpendicular to the film plane. For an

ultra-thin (< 0.4 nm) Co layer, which is equivalent to less than two atomic layers,

both the top and bottom layers have an interface with Pd and this configuration is

usually optimal for the interface anisotropy. Perpendicular magnetic anisotropy and

a square hysteresis loop can be obtained when very thin Co layers (∼ 0.2-0.3 nm) are

alternated with slightly thicker Pd layers (∼ 0.8-2 nm). For a combination of 0.2 nm

thick Co and 0.9 nm thick Pd, the films show a maximum saturation magnetisation

and anisotropy constant, and also the squareness of hysteresis loop [147]. The en-

hanced magnetisation is caused by polarisation of the Pd atoms within about 1 nm

by the neighbouring Co [147]. Optimum magnetic properties tend to be obtained

for a total thickness in the 10-30 nm range. Usually, the saturation magnetisation

Ms and the Curie temperature TCurie increase with increasing Co/Pd ratio. The

Curie temperature TCurie normally is in the range of 300 to 400 ◦C.

The magnetic film used in our experiment consists of a stack of 8 bi-layers of
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Si substrate (500 µm)

Ta (3 nm)

Pd (3 nm)

8

Pd (1.1 nm)

(a) (b)

[Pd (0.9 nm) / Co (0.28 nm)]

100 nm

Figure 3.1: (a) Schematic of the multilayer structure of Co/Pd magnetic film. (b) SEM

image of the surface of the Co/Pd film. The material shows high homogeneity and small

grain size; the measured average grain size is around 10 nm.

Co/Pd, sputter-deposited onto a 500µm-thick Si(100) substrate with a native oxide

layer, as shown in Figure 3.1. This bi-layered film is set on a seed layer of 3 nm-thick

Pd and Ta to provide a good (111) texture to start the deposition of the magnetic

layers, leading to an improvement of the crystallographic orientation of the layers

and to an improvement of the PMA. Eight bi-layers of alternating Co (0.28 nm) and

Pd (0.9 nm) are chosen in order to have a large magnetisation and a large PMA.

The Co/Pd multilayers are dc magnetron sputter-deposited at room temperature.

The argon pressure is adjusted to 3.5 × 10−3 mbar for all depositions, while the

base pressure of the deposition chamber is 1.0× 10−8 mbar. During the depositions

the thickness is monitored using a quartz micro balance, which is calibrated by X-

ray reflectometry measurements on Co and Pd thin film samples. Finally, a layer of

1.1 nm of Pd is deposited on top of the stack to provide protection against oxidation.

3.2 Co/Pd film characterisation

The Co/Pd multilayer film is magnetised in a strong (∼ 1 T) magnetic field cre-

ated by an electromagnet 1. The film is positioned perpendicular to the external

11 1
2 -inch electromagnet type C from Newport Instruments
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magnetic field. An accompanying setup for magneto-optical Kerr effect (MOKE)

measurements consisting of the electromagnet, a diode laser (780 nm), polarising

optics and a sensitive photodetector is used to monitor the dynamic process of the

magnetisation. Linearly polarised light experiences a rotation of the polarisation

plane, a Kerr rotation, when reflected from a magnetic material. The degree of ro-

tation is proportional to the magnetic moment at the film surface but is also strongly

dependent on other parameters such as the composition of the magnetic material,

the magnetisation direction, the angle of incidence, the probe laser wavelength and

any coating layers on the magnetic material. Because of this, MOKE is normally

used for qualitative analysis of a magnetic material allowing measurements of the

shape of the magnetic hysteresis loop and the coercivity. A magnetic hysteresis loop

can be mapped out through monitoring the Kerr rotation.
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Figure 3.2: (a) Hysteresis loop of the Co/Pd film measured by Kerr rotation. (b) Magnetic

force microscope image of the magnetic domain structures of an AC-demagnetised Co/Pd

multilayer film. The typical domain size is about 5µm. Figure adapted from [119].

The electromagnet is operated to provide a magnetic field with a maximum strength

of ±1 T. The laser is incident on the film at ∼ 45◦ from the normal. The Kerr

rotation causes a subsequent change in the photodetector signal which is propor-

tional to the perpendicular magnetic moment. The photodetector signal and the

driving current of the electromagnet are simultaneously recorded and the data is

post-processed to extract the hysteresis loop. The coercivity of this film measured

from the hysteresis loop is Hc = 1.0 kOe, as shown in Fig. 3.2 (a). The absolute
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value of the saturation magnetisation Ms was measured using a superconducting

quantum interference device (SQUID) at the University of Augsburg in Germany.

The calibrated value for Co/Pd is 4πMs = 5.9 kG.

The magnetic properties of the Co/Pd film are analysed by an atomic and mag-

netic force microscope (AFM/MFM). The instrument 2 is housed in an acoustic hood

to reduce vibration during scanning. When using the instrument in MFM mode,

the cantilevers are high resolution silicon probes with a 40 nm-thick CoCr magnetic

coating. The MFM is operated in two passes. In the first pass the surface topology

is measured in semi-contact mode. A phase-sensitive second pass is performed at

a constant height from the surface to provide the magnetic force signal. A MFM

image of an AC-demagnetised Co/Pd multilayer film showing the magnetic domain

structure is illustrated in Figure 3.2 (b). The island shape of the domain structure

reveals the magnetisation pointing up or down perpendicular to the film plane due

to the strong PMA. The magnetic domains are very stable in extent and position

over time.

3.3 Sub-micron-period magnetic lattice structure

fabrication

The sub-micron-period magnetic structures were fabricated by e-beam lithography

(EBL) plus reactive ion etching (RIE). This method provides high structure resolu-

tion and high versatility of arbitrary patterning. Four 1 mm×1 mm lattice structures

with different periods are patterned on the Co/Pd magnetic film: a 1D 5µm-period

lattice, a 1D 0.7µm-period lattice, a 0.7µm-period square lattice and a 0.7µm-

period triangular lattice.

The Co/Pd film-coated wafer is first cleaned by several ultra-sonication steps in

organic solvents: first in acetone, then isopropanol and finally in methanol. After

wet cleaning the wafer is blow-dried using dry nitrogen (N2) gas and the residual

2NT-MDT SPM Solver P7LS microscope
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Figure 3.3: Fabrication process for the magnetic lattice structure consisting of (a) spin

coating of PMMA resist, (b) EBL exposure, (c) resist development, (d) plasma etching

by ion bombardment, and finally (e) removal of the remaining resist. Figure adapted

from [119].

solvent is removed by heating on a 180 ◦C hot-plate for 3 minutes. The fabrication

procedure is illustrated in Figure 3.3. First, a 300 nm-thick layer of positive tone

PMMA (polymethyl methacrylate) 495k polymer is spin-coated onto the wafer, with

a further subsequent 30 second 180 ◦C hot-plate baking step to remove the remaining

anisol in which the PMMA is dissolved. EBL exposure is performed using a Raith

EBPG5000plusES tool operating at 100 kV electron acceleration voltage. The 1 mm2

write-field afforded by this machine allowed one to expose the entire magnetic lattice

structure without moving the sample stage, thereby avoiding any errors of stitch-

ing small patterns together. A 5 nm full-width half-maximum electron spot size

is employed and scanned along the designated pattern at 50 MHz rate afforded by

the pattern generator. The complexity of the lattice structure is the main factor

limiting the patterning speed. Exposure durations ranged from 30 min for the 1D

grating structures to 2 hours for the square and triangular 2D lattice structures.

Energetic electrons destroy the bonds joining the resist polymer chains, thereby

locally increasing the solubility of exposed areas in select solvents. Therefore, after

resist exposure the pattern is developed for 80 seconds in a 1:3 mixture of MIBK

(methyl isobutyl ketone) and IPA (isopropanol). When development is finished the

wafer is immersed in IPA, which acts as a stopper. After that the surface is again

blow-dried with N2. The next step involves pattern transfer from the resist to the

Co/Pd film itself. This is done through physical sputtering via argon ion (Ar+)
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bombardment in an inductively coupled plasma reactive ion etching (ICP-RIE) tool

(Samco RIE-101iPH). In this process the remaining unexposed resist areas act as

a protective mask against the ions. The exposed areas are stripped of Co/Pd film

down to the underlying Si wafer (the etching depth ≥ 25 nm), whereas the coated

regions remain unaffected. After the dry etching step all of the remaining resist

is removed by sonicating the wafer in acetone at 60 ◦C . The elevated temperature

is necessary in order to remove the parts of the resist which are cross-linked and

hardened during Ar+ bombardment.

The wafer with the magnetic lattice patterns etched in the Co/Pd film is then

coated with a reflective 50 nm layer of Au using magnetron sputtering in a AXXIS

(K.J.Lesker) physical vapour deposition system. The sputtering of gold tends to

smooth out the ∼ 25 nm deep etching gaps on the magnetic film. The unevenness

is estimated to be around 10 nm. An additional final 25 nm thick layer of protective

silica is deposited over the gold to prevent rubidium atoms from reacting with the

gold surface. This is done by means of electron-beam evaporation in the same

AXXIS machine. The final fabrication step involves cutting the wafer down to the

required 35 × 40 mm2 size, whilst keeping the four lattice structures situated at

the centre. This was done using a 1030 nm femtosecond laser beam (PHAROS,

Light Conversion) and by moving the wafer along the cutting trajectory on a high-

precision Aerotech stage. After cutting, the wafer is again washed in acetone and

IPA, followed by a final N2 blow drying step.

3.3.1 Correction for proximity effects

When EBL exposure is performed on large areas (∼ 1 mm2) it is found that the

uniform dose distribution does not produce a uniform pattern structure. We find

that the structure is deformed from the centre area towards the edge, Figure 3.4.

It is important to correct for these so-called proximity effects. As electrons impact

the resist-coated substrate they become scattered and spread over a wide area (∼

25µm radius), far beyond the initial 5 nm spot-size. These secondary electrons cause

parasitic exposure of areas around the sub-micron features being defined, which in
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turn causes changes in the dissolution rate of the resist. Therefore, the unexposed

regions receiving the scattered electrons are also partially developed, which results

in the developed patterns having dimensions different from the target ones.

350.6 nm

352.8 nm
415.3 nm

288.1 nm

535.9 nm

167.5 nm

535.9 nm

167.5 nm

259.0 nm

113.9 nm

437.7 nm

589.5 nm

(a) (b)

(c) (d)

Figure 3.4: Proximity effect in e-beam lithography: fabricated 1D 0.7µm-period lattice at

the edge of the structure (a) and in the centre area (b); fabricated 0.7µm-period square

lattice at the edge of the structure (c) and in the centre area (d).

1.000 1.475Dose map

Figure 3.5: Modified exposure dose map of a 0.7µm-period triangular lattice based on

Monte Carlo simulations to correct for the proximity effect in EBL.

Thanks to the serial scanning nature of EBL, proximity effects can be compen-

sated by dose scaling. Instead of using a uniform exposure dose, the dose of different
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features is allowed to be modified separately. Hence, after conducting Monte-Carlo

simulations to evaluate how the electron beam is scattered and obtaining the point

spread function, the exposure dose can be designed to compensate any parasitic

exposure. In general terms, when a 1 mm2 size structure is exposed, the central part

is scanned using the base dose whereas a ∼ 25µm wide periphery region is given

×1.5 of the base dose. As a example, an optimised exposure dose for a 0.7µm-period

triangular lattice is shown in Figure 3.5.

500 µm

1D  5 µm-period

1D  0.7 µm-period

Square  0.7 µm-period

Triangular  0.7 µm-period

Figure 3.6: SEM image of the centre region of the fabricated magnetic film. Four lattice

structures are patterned. The unevenness of the patterned magnetic film is smoothed out

by sputtering of 50 nm thick Au layer. The coated magnetic film serves as a high quality

reflecting mirror in the experiment.

By scaling the exposure dose and optimising the fabrication procedure, we have

produced high quality magnetic lattices with period down to 0.7µm. The large size

(35 mm × 40 mm) of the film is designed to allow us to make a large Mirror MOT,

Sect. 2.3. Four lattice structures are patterned in the centre of the film, Fig. 3.6. The

50 nm reflective Au layer smooths out the irregularities of the patterned magnetic

film (such as the grating structure). No diffraction of MOT light has been observed

in the experiment. For the 0.7µm-period 1D, 2D square and triangular lattices,

there are more than 1.4 × 103, 2 × 106 and 1.5 × 106 lattice sites, respectively.

Because of the large number of lattice sites, end-effects [115] are small in the central
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region and analysis based on an infinite number of lattice sites can be used as a

good approximation.

3.4 Film characterisation

The fabricated sample is magnetised and characterised before mounting on the current-

carrying atom chip. The surface topology is checked with scanning electron micro-

scope (SEM) images, as shown in Figures 3.7 and 3.8.

200 nm

40 nm

2 µm

(b)(a)

Figure 3.7: SEM images of the 1D 0.7µm-period magnetic lattice structure. The dark

regions correspond to the etched part and the bright regions are the magnetic film. (a)

Large-scale image. A Fourier transform of the SEM image reveals that the lattice period

is 688 nm. (b) Small-scale SEM image. The edge roughness has an amplitude of about

40 nm. Figure adapted from [119].

A magnetic force microscope (MFM) scan over the magnetised sample is carried

out to map the magnetic field over the structures. The semi-contact mode provides

a measure of the difference of the phase of the oscillating cantilever-sample system

instead of directly mapping the magnetic field over the surface. The tip is driven to

oscillate at its resonant frequency with a small amplitude in the vertical z-direction.

To lowest order the magnetic force causes a phase shift and a shift in the resonant

frequency [149]

∆φ ≈ Q

ks

∂Fz
∂z
∝ ∂2Bz

∂z2
, ∆f ≈ − fn

2ks

∂Fz
∂z
∝ ∂2Bz

∂z2
(3.1)

where Q is the cantilever quality factor, fn is the natural resonant frequency of the
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1 µm

200 nm

1 µm

100 nm

(a) Square lattice (b) Triangular lattice

Figure 3.8: SEM images of the fabricated 2D 0.7µm-period (a) square and (b) triangular

magnetic lattice structures. The light grey regions correspond to the magnetic film regions

which are not etched and the dark grey regions are the etched regions. The insets show

the zoomed images.

cantilever tip and ks is the spring constant. Therefore, the MFM signal is primarily

sensitive to the second spatial derivative of the z-component of the magnetic field. If

we consider the magnetic field from a 1D magnetic lattice structure, the MFM signal

is just proportional to the magnetic field, i.e., an oscillating signal in the y-direction

with the period of the structures. The amplitude of the oscillating signal decays

exponentially with increasing tip-sample-surface distance, with a decay length k−1 =

a/2π, where a is the lattice period. A way to check the quality of the magnetic lattice

across the sample is to determine the dependence of the amplitude of the oscillating

MFM signal on the distance of the MFM tip from the etched magnetic film. From

the oscillating profile of the MFM signal, we measured a period of aosc = 651±3 nm,

and from the fitted decay length we obtain aosc = 662±11 nm, where the uncertainty

comes from the residuals of the fits, Figure 3.9. These values are close to the result

from the SEM analysis (688 nm) confirming the quality of the periodicity of the 1D

structure. Some of the difference between the two measurements comes from the

calibration of the spatial dimensions in the MFM apparatus and from high harmonic

terms that we have neglected in this analysis. In addition, a ∼ 40 nm amplitude of

the edge roughness is observed in SEM images, Fig. 3.7. Since the distance of the

1D 0.7µm-period magnetic lattice traps to the magnetic film surface is normally
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about ∼ 480 nm (Sect. 5.2.2), which is much larger than the edge roughness of the

grating structure, we expect the potential roughness in the longitudinal direction of

the lattice trap is small.
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Figure 3.9: (a) MFM measurement of the 1D 0.7µm-period lattice structure with a probe

tip height of 50 nm. (b) Plot of the natural logarithm of the amplitude of the MFM signal

versus tip height ∆z. The red line is a fitted decay curve. Inset: Plot of the profile of the

MFM signal in the y-direction at a tip height of 50 nm. The red curve is a fit to the data

points for the oscillating signal. Figure adapted from [119].

The SEM images of the fabricated square and triangular lattice structures, Fig-

ure 3.8, also show good agreement with the designed pattern. Because of the ca-

pability of patterning large areas without moving the sample stage, we avoid any

errors of stitching many small patterns together. The drift during the patterning

time of ∼ 2 hours is negligible.

The magnetic properties of the lattice structure have also been characterised

with MFM measurements. The second derivative of the produced magnetic field

is calculated for comparison with the measured MFM data. Figure 3.10 shows the

surface topology and calculated field for the optimised square lattice. The calculated

second derivative is in qualitative agreement with the MFM measurements of the

lithographically patterned Co/Pd multilayer. In the MFM data there are several

sharper (nearly) horizontal lines that are not reproduced by the simulations. This

feature could be explained by the formation of magnetic domains near the boundaries

of the structure. However, we cannot rule out the possibility of artifacts introduced
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(a) (b) (c) (d)

Figure 3.10: (a) Optimised square magnetic lattice pattern generated by the Schmied et

al. [117] code. (b) Calculated magnetic potential of a square lattice at height z = a/2 from

the magnetic film surface. (c) Calculated second derivative of Bz at a constant height.

(d) MFM measurement from the fabricated 0.7µm-period square lattice structure. The

red square indicates one unit cell.

by the MFM when the surface topology changes at the edges.

3.5 Hybrid atom chip

The magnetic field produced by patterned permanent magnetic films is well suited to

tight confinement of ultracold atoms close to the surface, but is too short-range to ef-

fectively allow the loading of atoms directly from the background atomic vapour. To

support the magnetic film microtrap and facilitate good loading efficiency, a hybrid

technology [93] was developed to combine the permanent magnetic film structure

with a current-carrying wire atom chip.

The new current-carrying wire atom chip is made with direct bonded copper

(DBC). The wire structures are defined by wet etching. This method provides an

easy, fast and low cost way to produce a high quality atom chip for cold atom

experiments. The atom chip is designed with four separated U/Z-wire structures,

which are positioned below each of the four magnetic lattice structures, Fig. 3.11.

By choosing different working wires, this allows one to trap atoms below the desired

magnetic lattice structure.
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Figure 3.11: Schematic drawing of the designed magnetic lattice atom chip. Four separated

U/Z-wire structures positioned beneath the fabricated lattice structures are used to trap

the ultracold atom cloud and load the magnetic lattice traps.

3.5.1 Direct bonded copper

Direct bonded copper (DBC) substrates are composed of a ceramic substrate with

a sheet of pure copper bonded to one or both sides by the oxygen-copper eutectic.

The copper and substrate are carefully heated to ∼ 1065 ◦C which is just below

the melting point of pure copper (∼ 1085 ◦C) in a nitrogen atmosphere containing

∼ 1.5% oxygen. Under these conditions, a thin melt layer occurs at the oxide-

copper interface that wets the ceramic surface and fills surface irregularities. The

resulting bonds are very strong and the material has excellent thermal conductivity 3.

Aluminium nitride is commonly used as the DBC substrate because of its high

thermal conductivity (∼ 170 W/m◦C) and high bond strength.

Evaporation and lift-off metallisation is the standard technique for fabricating

high quality wire structures [150]. However, the thickness is limited by the slow

deposition rate and substantial material consumption to a few micrometres at max-

imum. Thicker structures (� 1µm) can be fabricated by electroplating or sput-

tering of the metal. However, it is still a challenge to make the thickness around

3J. F. Burgess and C. A. Neugebauer, U.S. patent 3,911,553 (October, 1975)
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100µm. DBC substrates are widely used in power electronics due to their high

current handling and heat dissipation properties. Because DBC substrates are also

UHV compatible they have become a promising material for producing an atom

chip [151, 152], especially for atom chips with thicker wires (> 100µm). Another

practical benefit of DBC atom chips is the excellent wire to substrate adhesion.

Atom chips that use electroplated or evaporated wires need an adhesion layer to

avoid delamination of the atom chip wires.

It is straight-forward to produce various rectangular wire cross sections because

of the availability of copper layers with different thickness. Quality wire structures

can be easily produced by wet etching. Better defined structures are possible using

ablative laser micromachining. In the following section, we present a fabricated atom

chip based on DBC substrate4 with 127µm-thick copper bonded on both sides.

3.5.2 Atom chip design: four U-wire and four Z-wire con-

figuration

The wire structures of the fabricated DBC atom chip are shown in Figure 3.12 (a).

The size of the atom chip is 50 mm × 55 mm. It contains four separate U/Z wire

configurations. As discussed in the previous chapter, the U-wire trap is used in

(compressed MMOT) an intermediate step to improve the efficiency of the atom

transfer from the initial Mirror MOT to the final Z-wire trap. The Z-wire trap

provides a Ioffe-Pritchard magnetic trap. A cold atom sample or a BEC is first

prepared in the Z-wire trap. By varying the combination of current and bias field,

the atoms can be positioned at different distances from the surface to study the

atom-surface interaction. This is also a versatile method for loading atoms into

the magnetic lattice traps. The desired U/Z-wire configuration is determined by

connecting different pins: 1, 5, 6, 9, 13, 14. For example, when pin 1 and 5 (U-

wire), 1 and 13 (Z-wire) are connected, the working trap area is the upper-left. In

4From Stellar Ceramics, AlN: 5.4”×7.5”×0.005” DBCu: 0.012” B/S
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each U/Z-wire configuration, the same central segment is shared which is 5 mm long

and 1 mm wide. The current-carrying capability of the atom chip wires is tested by

running a current up to 40 A (current density 3×104 A/cm2) through the U-wire and

the Z-wire. The current is turned on for two minutes and no significant increase in

temperature is observed. The measured resistance of the U/Z-wire is ∼ 4 mΩ. Pins

2 and 3, 10 and 11 provide two wires for RF evaporative cooling or RF spectroscopy.

The central segment of these wires is 3.4 mm long and 0.5 mm wide. Pins 7 and 8,

15 and 16 provide two end-wires. Additionally, six small trenches oriented along

parallel and perpendicular directions are marks for aligning the magnetic film with

the DBC chip. The DBC chip is mounted on a copper heat sink through terminals

4 and 12. The rear side of the atom chip is shown in Fig. 3.12 (b); the shape is

designed to match the copper heat sink for efficient heat dissipation.

(a) Front mask
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1516

(b) Rear mask (c) Mounted atom chip

5 mm

Figure 3.12: (a) Toner mask for the front side of the atom chip. The wire pattern is defined

by chemical etching of the area which is not covered by the mask. (b) Toner mask for

the rear side of the atom chip. This side is physically attached to a copper block for heat

dissipation. (c) Photograph of the fabricated atom chip mounted on the copper block.

The designed wire pattern is transferred from a mask to the copper layer of

the DBC substrate by means of UV lithography and wet etching. The process is

illustrated in Fig. 3.13. First, the DBC substrate is polished and ultrasonic cleaned.

A 20µm-thick layer of positive photoresist (AZ4620) is spin-coated on the chip

surface. Then the mask is applied on top of the resist. After UV photolithography,

the patterned resist serves as a mould for subsequent developing. Here, we choose
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Spin on photoresist UV exposure Develop photoresist Remove photoresist

Ceramic

Copper

AZ4620
Mask

Figure 3.13: DBC chip wire structures are defined by UV lithography with a contact mask.

The process steps are described in text.

wet etching to transfer the wire patterns from the resist to the copper sheet. The

sample is immersed in a 1:10 mixed solution of ammonium persulphate and water

at 60 ◦C. The uncovered part is completely etched out in one hour. Finally, the

remaining photoresist is removed with acetone. Figure 3.12 (c) shows the produced

atom chip mounted on a copper heat sink.

3.5.3 Assembly and pre-baking of hybrid magnetic lattice

chip

The fabricated magnetic film is glued on the DBC atom chip using a UHV compat-

ible, thermally conductive and electrically insulating two-component epoxy (EPO-

TEK H77). A thin layer of epoxy is applied to the copper wire structure, then

the magnetic film is carefully aligned with the marks to position it in the centre

of the chip. The combined magnetic film and wire structure is cured for one hour

on a hotplate at ∼ 110 ◦C so that the epoxy turns into a glassy state to form a

strong bond. The complete atom chip is then pre-baked in a separate chamber at a

maximum temperature of 110 ◦C for two days. The baking temperature is chosen on

the low side of the affordable temperature. The main concern is to avoid any thermal

demagnetisation of the very thin magnetic film and meanwhile this temperature is

high enough to remove trapped water vapour and other gases. Fig. 3.14 shows the

complete magnetic lattice atom chip.
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Figure 3.14: Photograph of the complete magnetic lattice atom chip after pre-bake.

3.6 Summary

This chapter presents the design and fabrication of the sub-micron-period magnetic

lattice structure film and the supporting DBC atom chip. The general properties

of the magnetic Co/Pd multilayer film are discussed. An optimised procedure of

e-beam lithography and reactive ion etching is introduced to produce high quality

magnetic lattice structures with a period down to 0.7µm. The fabricated magnetic

film is characterised with various methods, including SEM for film surface topology

and homogeneity and MFM for the produced magnetic field. In order to load atoms

into different lattice traps, an atom chip containing four U/Z-wire structures has

been fabricated. A simple way to produce an atom chip with a DBC substrate is

also introduced.



CHAPTER 4

Experimental setup and BEC preparation

This chapter describes the experimental setup of the magnetic lattice experiment.

The setup includes an ultrahigh vacuum system which houses the atom chip and

magnetic lattice structure; magnetic field coils surrounding the scientific vacuum

chamber to provide the bias magnetic fields to create the magnetic traps; a laser

system which provides laser light to cool and manipulate the atoms and to diagnose

the properties of the cloud of ultracold atoms and the BEC; and an experimental

control system which provides various time sequences for trapping the ultracold

atoms and for producing the BEC. Based on this system, we routinely produce a

BEC in our daily experiment. The roadmap towards BEC and the properties of a

BEC are also discussed in this chapter.

The experimental setup was built by former students who worked on this project

and full details can be found in their theses [153–155]. The work described in this

chapter mainly includes installing the fabricated sub-micron-period magnetic lattice

atom chip in the chamber and producing BEC with this new atom chip in the UHV

chamber .
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4.1 Ultrahigh vacuum system

Experiments with ultracold atoms require an ultrahigh vacuum (UHV) chamber to

isolate the atoms from the environment. In order to reach the condition of runaway

evaporation in a magnetic trap (Sect. 2.5), UHV is a crucial requirement for reducing

the collisions of the trapped atoms with atoms of the background gas and increasing

the lifetime of the magnetic trap. A schematic drawing of the vacuum system is

shown in Figure 4.1.
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Figure 4.1: Schematic drawing of the vacuum system (without the surrounding magnetic

coils and optics). A: octagonal chamber and the mounted atom chip. B: ion pump. C:

compact cold cathode gauge. D: getter pump. E: all-metal angle valve. F: access viewport

for the imaging and optical pumping beams.

The centre part of the UHV system is a spherical octagon chamber made from

(nonmagnetic) 316L stainless steel from Kimball Physics (MCF600-SO200800). This

main vacuum chamber has ten CF (conflat) ports including two 6′′ diameter ports

and eight 2.75′′ diameter ports. The hybrid magnetic lattice atom chip is mounted

upside down in the centre of the chamber on an electrical feedthrough having a

single copper conducting rod of diameter 20 mm attached to a 2.75′′ diameter CF
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flange through an electrical insulated seal. The copper rod serves as a base connector

and a heat sink. One of the 2.75′′ ports is attached to a six-way cross through an

adapter. A combination of ion pump (Varian VacIon Plus 55-StarCell) and getter

pump (SAES getter, CapaciTorr D 400-2) are chosen to achieve and maintain UHV.

The top port of the six-way cross is attached to a compact cold cathode gauge

(Pfeiffer IKR 270) for monitoring the vacuum. Another port of the cross has a 2.75′′

diameter viewport (F, not visible in Fig. 4.1) which serves as an optical access for

the imaging and optical pumping beams. The last port is sealed by an all-metal

angle valve to provide access for the initial pumping stage. The electrical connection

of the atom chip and two Rb dispensers is provided by two electrical feedthroughs.

The remaining ports of the main chamber are sealed with optical viewports.

Since the new sub-micron period magnetic lattice structure and DBC atom chip

are used in the present experiment, the vacuum chamber needs to be opened and the

former 1D 10µm-period magnetic lattice structure be replaced. Ultra-high purity

(UHP) N2 gas is flushed in the chamber through the angle valve to protect the

magnetic film from possible oxidation and reduce water vapour and other particles

inside the chamber during this process. After careful assembling, the chamber is

pumped down to UHV again through careful baking of the whole vacuum system.

About 1× 10−11 mbar level vacuum is achieved after a two-week vacuum baking at

about 110 ◦C.

4.2 Laser system

The laser system is comprised of four lasers housed on a single optical table. It

creates four different beams required for a BEC experiment, which are called the

trapping light, the repumper light, the optical pumping light and the imaging light.

These four laser beams with different frequencies and the energy levels of the 87Rb D2

transition are illustrated in Figure 4.2. The optical table is floated with compressed

air to minimise mechanical vibrations which affect the laser locking stability. The

optical table is properly covered to block any scattered light from entering the
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vacuum chamber which is mounted on a separate “machine table” next to the laser

system. The covering also reduces acoustic noise and improves temperature stability

inside. Finally, the different beams created from the laser system are transferred to

the machine table through polarisation-maintaining optical fibres.
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Figure 4.2: Energy level diagram of the 87Rb D2 line. Four different laser frequencies are

used in the experiment.

The BEC experiment starts with the creation of a magneto-optical trap. This

requires the trapping light to be red-detuned by several linewidths from resonance

with the F = 2→ F ′ = 3 cycling transition. To collect a large number of atoms, we

require as much light as possible. Therefore, a tapered amplifier laser system (Top-

tica TA100) with typically ∼ 600 mW output is used as our trapping laser. A

small amount of light (∼ 3 mW) from the rear output of the TA100 is used for
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the locking spectroscopy. The beam frequency is first blue-shifted 2f1 by passing

AOM 1 (Isomet 1205C-2) in a double-pass configuration and locked to the 87Rb

F = 2 → F ′ = 3 closed transition through a modulation-free polarisation spec-

troscopy system [156,157], as shown in Fig. 4.3 (a). The main output of the TA100

is passed through AOM 2 (Isomet 1206C) whose frequency is fixed at f2 = 125 MHz.

The first-order diffracted beam is coupled into a polarisation-maintaining optical fi-

bre which gives an output power ∼ 200 mW. The effective detuning from the closed

transition F = 2→ F ′ = 3 is f2 − 2f1. During an experiment, the frequency of the

trapping light is only varied through AOM 1, since the double-pass configuration

maintains the beam position. In the MOT stage, f1 = 70 MHz and the frequency

of the trapping laser is red-detuned 15 MHz from the transition. In the following

polarisation-gradient cooling (PGC) stage [158], this detuning is increased to 56 MHz

to compress and further cool the cloud.
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Figure 4.3: Schematic drawing of the laser system: optics for (a) the trapping laser, (b)

the repumper laser, (c) the optical pumping laser and (d) the imaging laser.

In the MOT stage, the trapping beam with high intensity and mixed polarisation

can introduce a high probability of off-resonant excitation of the F = 2 → F ′ = 2

transition. The F ′ = 2 state can spontaneously decay into the lower ground-state
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F = 1, which is a dark state. Once atoms are populated in the dark state, they are

out of the cooling cycle. Therefore, a repumper laser is required to prevent all the

atoms being rapidly pumped into this state and lost from the trap. A MOGLabs

diode laser (ECD-004) is used for the repumper laser. It has ∼ 50 mW output power.

The repumper laser is locked to the F = 1 → F ′ = 2 transition using a standard

modulation locking technique [159], Fig. 4.3 (b). The repumper light is coupled to

a polarisation-maintaining fibre. In order to improve the coupling efficiency, beam

mode matching is done by a lens telescope. It yields ∼ 20 mW at the fibre output.

In the experiment, after the polarisation-gradient cooling (PGC) stage the atoms

are distributed over all ground-state magnetic sublevels. In order to create a BEC

in the |F = 1,mF = −1〉 state, the atoms are then optically pumped into this state

for magnetic trapping. A MOGLabs diode laser with ∼ 40 mW output is employed

as an optical pumping laser. The light is locked to the F = 2 → F ′ = 1 and

F = 2→ F ′ = 3 transition crossover with a modulation locking scheme, Fig. 4.3 (c).

Before coupling into the optical fibre, the beam is passed through an AOM (Isomet

1205C-2) operating at 75 MHz. As a result, the beam is red-detuned by ∼ 20 MHz

from the F = 2 → F ′ = 2 transition. The fibre output is ∼ 3 mW. The required

polarisation (σ−) is achieved by passing through a λ/4 waveplate. The σ− light

pumps atoms into the |F = 2,mF = −2〉 state. In order to transfer atoms from

the |F = 2,mF = −2〉 state to the |F = 1,mF = −1〉 state, a small amount of

π-polarisation is introduced by deliberately misaligning the optical pumping beam

from the quantisation axis, Sect. 4.5.3.

Finally, to determine the properties of the atom cloud, we image the cloud and

analyse the casted shadow. The imaging laser (a third MOGLabs diode laser) is

locked to the F = 2→ F ′ = 1 and F = 2→ F ′ = 3 transition crossover, Fig. 4.3 (d).

The error signal is obtained through modulating the Zeeman splitting of the Rb

sample in a vapour cell. The output of the imaging laser is ∼ 40 mW. A double-pass

AOM (Isomet 1206C) configuration is built to tune the detuning between the laser

frequency and the F = 2 → F ′ = 3 transition. The output power from the optical

fibre is ∼ 5 mW.
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In the laser system, AOMs are employed not only to shift laser frequencies, but

also some of them serve to control the timing of the laser beams. These AOMs can

be considered as fast switches, with a response time on the order of ∼ 1µs. However,

the attenuation provided by the AOMs used to switch off the laser beams is usually

a factor of 104 on a single pass. To achieve a long magnetic trap lifetime, therefore,

mechanical shutters are used to block off the laser beams completely even though

their response time is slow, on the order of ∼ 1 ms.
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Figure 4.4: Surrounding optics on the machine table. The MOT beams including the

trapping light and the repumper light are expanded (BE: beam expanding telescope) and

guided into the octagonal chamber. The image and optical pumping beams pass through

the chamber along the x-direction through the viewport in the six-way cross.

Polarisation-maintaining fibres bring different light beams to the machine table on

which the vacuum chamber is mounted. At the same time, polarisation-maintaining

fibres work as a spatial filter to provide a clean Gaussian mode. The spatial mode

quality is crucial for the imaging beam. On this table, the trapping and repumper

beams are combined using a polarisation beam splitter and sent to the UHV chamber

after division into four different beams and expansion to a diameter of ∼ 20 mm, as

shown in Fig. 4.4. The power in each beam is around 40 mW. The optical pumping

and imaging beams are also combined using the same method. The imaging beam

is σ+ polarised by carefully aligning with a λ/4 waveplate. Meanwhile, the optical
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pumping beam is automatically σ− polarized.

4.3 Absorption imaging

All of the information about the atom clouds prepared in our experiments is obtained

by absorption imaging [120]. With this technique, the shadow cast by the atoms in

a beam of resonant laser light is imaged onto a CCD camera. Following Lambert-

Beer’s law one can write the intensity distribution I(y, z) of the probe light (imaging

direction: x-direction) after passing through the cloud as

I(y, z) = I0(y, z)e−OD(y,z), (4.1)

where I0(y, z) is the intensity distribution of the probe beam before the absorption.

The optical density

OD(y, z) = σ

∫
n(x, y, z)dx (4.2)

is given by the photon absorption cross section σ and the cloud density n(x, y, z).

When imaging untrapped clouds, a small magnetic field is applied to give a well-

defined quantisation axis, since the imaging light is σ+ polarised with respect to this

quantisation axis. The probe beam forms a closed cycle between the |F = 2,mF =

+2〉 and the |F = 3,mF = +3〉 states. The absorption cross section can be written

as

σ =
σ0

1 + I/Is + 4(δ/Γ)2
, (4.3)

where σ0 = 3λ2

2π
is the resonant absorption cross section; for 87Rb D2 line, σ0 =

2.9 × 10−13 m2. Is is the saturation intensity, δ is the laser detuning and Γ is the

natural radiative linewidth. The largest absorption signal is obtained by imaging

on resonance, δ = 0. We usually choose I � Is so that σ ≈ σ0 is a constant. The

atomic column density can be determined as

n(y, z) ≡
∫
n(x, y, z)dx ≈ OD(y, z)

σ0

. (4.4)

The intensity distribution of the light in the plane of the atoms is imaged onto a

CCD camera. In each experimental cycle, the camera takes three pictures, one clean
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image which discharges all the dark counts, one absorption image (Iabs) with atoms

and one reference (Iref ) image without atoms. Taking the last two pictures allows

one to compensate for inhomogeneities in the intensity distribution of the imaging

beam [120]. Then the optical density is determined as

OD = − ln[I/I0] = − ln[Iabs/Iref ]. (4.5)

From the optical density, the total number of atoms located in an area A in the

plane of the atoms is calculated by summing over the pixels (i, j) corresponding to

that area

N =

∫
A

n(y, z)dydz =
A

σ0

∑
(i,j)∈A

ODij. (4.6)

4.3.1 CCD camera

The camera used in the experiment is a frame transfer camera (MicroMAX: 1024B)

from Princeton Instruments. The CCD chip consists of two equal sized pixel arrays,

one array (1024×1024 pixels2) is sensitive to the external light, the other is masked

(not exposed to light) and used as a store array. The area of each pixel is A0 =

13µm×13µm. The quantum efficiency of the camera chip is Q ≈ 0.7 at λ = 780 nm.

This value describes the average number of electrons produced in the CCD chip by

one photon. When the CCD camera takes an image, the imaging light is pulsed

onto the CCD chip. Assuming I is the imaging light intensity and τ is the pulse

duration, the number of photons in the imaging pulse shining on one pixel can be

determined from IA0τ/(hν), where ν is the light frequency. The number of produced

electrons on that pixel is QIA0τ/(hν). The measured digitised values Iabs and Iref

are proportional to the produced electron numbers on the CCD chip.

4.3.2 Imaging optical setup

The laser beam used for detection is spatially filtered by an optical single mode fibre.

After collimation, the very uniform imaging beam is guided into the UHV chamber

which contains the atomic cloud. The collecting optics are shown in Fig. 4.5 (a),
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the image is formed by two high-quality lenses, a near-infrared achromatic doublet

(ThorLabs) with focal lengths f1 = 120 mm and f2 = 500 mm. They are arranged

in the following way: the first lens is placed at a distance f1 from the object and

the CCD sensor is at a distance f2 from the second lens. The distance between

the two lenses is not important. The magnification M obtained is M = f2/f1. In

the experiment, the magnification is checked by measuring the effective pixel size.

The measurement is made by recording the position of the cloud centre at different

free-falling times t. The position of the free falling cloud can be determined from

the kinematic equation:

z =
g

2
t2 + v0t+ z0 (4.7)
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Figure 4.5: (a) Two-lens setup for absorption imaging. (b) Time-of-flight measurement

of the effective camera pixel size in the objective plane. The experimental points (black

circles) are fitted by a second-order polynomial function (red solid curve).
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Fitting of the experimental points, as shown in Fig. 4.5 (b), with a second-order

polynomial function gives the coefficient C in units of [pixel·s−2] in front of t2.

Therefore, the effective pixel size in the object plane is g/(2C) = 3.48µm. This

measured value agrees with the calculated value 3.12µm. The resolution of the

imaging system for this experiment is about 10µm.

The imaging beam is usually oriented parallel to the chip surface. To image

atoms at a small atom-surface distance, Sect. 5.1.1, the beam can be tilted by a

few degrees towards the surface, so that both the direct and mirror images in the

reflecting chip surface are visible [160].

The predominant source of noise in absorption imaging set-ups is interference

fringes in the imaging beam, caused by diffraction from the chip surface, from dirt

on the optics, and by reflections from the various optical surfaces in the beam path.

If there are mechanical vibrations present, these fringes cannot be cancelled out

completely by the method discussed above. To minimise mechanical vibrations, all

the elements along the imaging line must be bolted tightly. The time delay between

the absorption image and the reference image should be reduced as much as possible.

For this reason, the frame transfer mode is activated for the CCD camera, so that

the delay can be reduced to a few ms [155].

4.4 Experimental control and 50 Hz line trigger

The whole experiment is controlled by many synchronised trigger signals. These

signals can be divided into two categories, the digital signals (the signals that control

the shutters and AOMs on and off, and other trigger signals) and the analog signals

(the signals that control the current ramping in the atom chip wires and in the

magnetic field coils, and also the signals that drive the frequencies of AOMs). All of

these control signals are created by three National Instruments (NI) cards housed

in one personal computer: one PCI-6259 with 32 digital output channels and two

PCI-6713 cards with a total of 16 analog output channels. The output signals from

these cards are synchronised by linking the cards with a RTSI cable. The cards
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are programmed under a Labview environment. To run the experiment, the whole

programmed sequence is first loaded into the buffer of the computer. Then the

computer executes the program based on the defined step size. The size of the data

of the programmed sequences is inversely proportional to the step size. Different

stages of the BEC experiment actually have different tolerances on the step size. For

instance, the initial MOT stage has quite a rough requirement whereas the imaging

stage requires a very precise short pulse. Therefore, to improve the efficiency of

the program we divide it into two arrays: the first array contains the MOT loading

stages which has a large step size, 10 ms, while the rest of the program forms the

second array which has a small step size, 100µs. A step size of 100µs is usually

sufficient in the experiment. In addition, a second computer is used to control the

image acquisition of the CCD camera.

4.4.1 Control electronics

The current in the magnetic field coils and chip wires is controlled by home-made

IGBT switches [153]. These switches typically have a switching time ∼ 800µs for the

U-wire and Z-wire current and a switching time ∼ 10 ms for the magnetic field coils.

To create traps, external coils are mounted surrounding the vacuum chamber. A

pair of coils in an anti-Helmholtz configuration used to produce a quadruple field for

the mirror MOT is mounted at 45◦ to the chip surface (Fig. 2.5 (b)). The separation

of the two coils is about 250 mm. It produces a quadruple field of gradient about

15 G/cm when passing 10 A current. A large bias field along the x-direction Bx

is produced by an external pair of coils. Each coil was produced by winding 104

turns of copper wire of diameter 2 mm on a plastic former of radius 175 mm. The

coils can produce about 50 G magnetic field at 10 A. Three other independent small

coils of relatively low inductance are positioned in an orthogonal geometry around

the vacuum chamber to cancel stray magnetic fields and to produce additional field

components.
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4.4.2 50 Hz AC line synchronisation

Time-varying magnetic fields are normally present in the lab. These fields are pre-

dominantly 50 Hz and harmonic frequencies which originate from lab equipment

power supplies. Various measures can be employed to minimise these fields such as

placing the power supplies far away from the scientific chamber and adding cancel-

lation coils to create an opposing AC field. On the other hand, instead of actually

cancelling these magnetic fields, a simpler solution is to ensure the experiment per-

forms magnetically sensitive steps at well-defined phases of the AC line. We can

synchronise the experiment to a zero-crossing of the AC power line using a circuit

designed by the Rice group [161], Fig. 4.6.
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Figure 4.6: Schematic of the AC line synchronisation circuit.

The circuit continuously converts the AC line signal to a TTL signal, which is

fed to one of our NI cards. Our Labview program allows the experiment sequence

to wait for the TTL trigger at the desired position. The following sequence is only

executed once the trigger has arrived. In this way, the desired experiment can be

locked to a fixed phase of the AC line. This locking suppresses the noise of the

measurements which are sensitive to the magnetic environment. One example is RF

spectroscopy measurements which are discussed in Sect. 4.5.6.



64 Experimental setup and BEC preparation

4.5 Experimental sequence for BEC

4.5.1 Mirror MOT

The experimental cycle begins with loading a mirror MOT (MMOT) [29]. The Rb

dispensers are switched on in a pulsed mode to make an efficient loading of the

MMOT and to maintain a high vacuum level (to prevent reduction of the lifetime of

the atoms in the magnetic trap). The dispenser is switched on with 5.8 A for 26 s at

the beginning of the experimental cycle. In the last phase of the cycle, the dispenser

is switched on again with 2.9 A. This current is below the threshold for releasing

Rb atoms, but keeps the dispenser warm so that it can heat up more quickly when

pulsed in the next cycle. The total experiment cycle time lasts for 65 s.

The position of the MMOT centre can be displaced slightly by adding a uniform

bias field to the quadrupole field. Good performance of the MMOT is achieved

when the centre is located 1-2 mm from the surface [29]. The MOT beams consist of

combined trapping beams whose frequency is red-detuned 15 MHz (∼ 2 Γ) and re-

pumper beams. We typically collect 2× 108 atoms in the MMOT located ∼ 1.2 mm

below the chip surface in the first 26 s, and the typical atom temperature is∼ 100µK.

4.5.2 Compressed U-wire MMOT

After loading the MMOT, the trapped atoms need to be brought closer to the chip

surface and finally transferred to the magnetic trap created by the chip wire (Z-

wire trap). In order to achieve good initial conditions for evaporative cooling in a

magnetic trap, several intermediate steps are required.

The MMOT is first transferred to a compressed U-wire MMOT (CMOT) by

ramping down the current in the external quadrupole coils with the simultaneous

creation of a quadrupole trap on the atom chip by ramping up the current through

the U-wire and the field in the bias magnetic coils Bx. This transfer is done within

30 ms to avoid significant atom losses. The strong confining force in the CMOT

allows the atoms to be kept tightly trapped as they are raised towards the surface.
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Typically, we transfer ∼ 1.5 × 108 atoms to the CMOT. The positioning of the

CMOT closer to the surface is crucial for aligning the cloud with the centre of the

Z-wire trap. Meanwhile, the CMOT geometry, in which the radial field gradient

is much higher than the axial field gradient, helps to change the cloud shape from

roughly spherical in the MMOT to ellipsoidal. This also helps to match the cloud

shape to the shape of the Z-wire magnetic trap. However, the increased density of

the cloud results in an increase in the temperature to ∼ 140µK. Eventually, the

compression of the cloud is limited by the radiation pressure. Thus the phase space

density of the cloud is limited.

In order to increase the phase space density, the frequency of the trapping light is

further red-detuned to 56 MHz (∼ 9 Γ) during the compression. This decreases the

scattering rate and leads to a reduction of the radiation pressure which finally helps

to increase the cloud density. A small fraction of atoms in the centre (zero magnetic

field) of this configuration are cooled by polarisation gradient cooling. To increase

this effective volume we rapidly reduce the magnetic field gradient to 0.11 T/m

(IU = 2.8 A, Bx = 2.5 G) in 5 ms while ensuring the centre of the quadrupole field

does not shift. This procedure reduces the cloud temperature from 140µK down to

40µK . After this, the CMOT light is shut off and the U-wire current is switched to

zero, leaving the atoms in a uniform magnetic field of Bx = 2.5 G.

4.5.3 Optical pumping

After polarisation gradient cooling, the atoms are distributed across the mF states

of the ground states. When atoms are transferred to the Z-wire magnetic trap,

only low field-seeking states can be trapped. To magnetically trap as many atoms

as possible, the atoms are pumped into the |F = 1,mF = −1〉 state in an optical

pumping stage. This state is chosen because it has a three-times smaller three-body

recombination coefficient [113,114] and two-times weaker magnetic confinement than

the |F = 2,mF = +2〉 state. A schematic of the optical pumping is shown in Fig. 4.7.

The optical pumping light is red-detuned 20 MHz from the F = 2 → F ′ = 2
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Figure 4.7: Optical pumping to the |F = 1,mF = −1〉 trapping state. The red dashed

lines denote spontaneous emission.

transition since the cloud is optically thick for resonant light. The atoms can be

optically pumped into the |F = 1,mF = −1〉 state with σ− light. The optical

pumping stage is performed by applying 1 ms-long σ−-polarised light. Repumper

light is also required since it brings atoms in the |F = 1,mF = +1〉 state and the

|F = 1,mF = 0〉 state into the optical pumping cycle. It can be provided from the

MOT repumper light by carefully designing the experiment sequence so that there

is a 0.5 ms overlap between the repumper and the optical pumping light, as shown in

Fig. 4.7 (a). In addition, a small amount of π-polarisation component is added to the

optical pumping beam by deliberate misalignment with the quantisation axis. When

the repumper light is switched off 0.5 ms before the optical pumping light, most of

the population in the |F = 2,mF = −2〉 state is transferred to the |F = 1,mF = −1〉

state due to the π transition via the |F ′ = 2,mF = −2〉 excited state.

The efficiency of the optical pumping is checked by comparing the atom number

captured in the magnetic trap with and without the optical pumping pulse applied.

An optimised optical pumping stage normally gives a factor of 2.5 improvement. Af-

ter the optical pumping pulse has finished, both the optical pumping and repumper

shutters are closed, leaving the atoms in the dark and captured by the magnetic

trap.
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4.5.4 Z-wire magnetic trap

In order to maximise the capture efficiency in the Z-wire magnetic trap, the mode-

matching needs to be carefully optimised. The following requirements are consid-

ered. First, a proper trapping frequency in the Z-wire trap is necessary to prevent

a breathing mode excitation. Second, the trap and the cloud should be properly

overlapped, otherwise the atom cloud will slosh around in the magnetic trap. Both

situations will heat the cloud. The proper trapping frequency ωi in each direction

can be determined by measuring the size σi and temperature T of the cloud after

optical pumping, ωi = 1
σi

√
kBT
m

1. The third consideration is the trap depth. To keep

as many of the atoms as possible, the trap must be as deep as possible. In practice,

all of these optimising parameters are fundamentally constrained by the atom chip

itself, which is the maximum current density that the chip wires can safely carry.

In the experiment, the initial Z-wire magnetic trap is formed by passing 35 A

current through the Z-wire and increasing the Bx bias field to 33 G. The trap bottom

is adjusted to ∼ 3 G by applying a bias field By = 7 G to prevent spin-flip loss and to

enlarge the trap depth. The magnetic field gradient is about 150 G/cm in the vertical

z-direction for this initial Z-wire trap. Approximately 5× 107 atoms are transferred

to the initial magnetic trap at a temperature of ∼ 80µK. The transfer efficiency is

mainly limited by the small volume and finite depth of the Z-wire magnetic trap. The

initial magnetic trap lasts for 5 ms, then the trap is compressed in the next 100 ms

by ramping up the Z-wire current Iz, the bias fields Bx and By to 37.6 A, 52 G

and 8.3 G, respectively. The magnetic field gradient correspondingly increases to

about 380 G/cm in the vertical z-direction. Since the magnetic trap is conservative

the optimum compression is adiabatic, i.e., the phase space density of the initial

magnetic trap is preserved. The adiabatically compressed magnetic trap brings the

cloud closer to the surface, increases the trap depth and most importantly boosts the

1Since the mean potential energy in the trap in each direction should match the thermal energy

in this direction, 1
2mω

2
i σ

2
i = 1

2kBT .
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elastic collision rate 2 so that the runaway condition can be fulfilled, and effective

evaporative cooling is possible.

At the end of the compression phase, the Z-wire trap is located below 670µm

above the chip surface. The trap frequency in the radial direction can be measured by

the dipole-oscillation method: shifting the position of the trap centre then returning

back to the initial position after half of an oscillation period, and measuring the

induced oscillation frequency of the centre of the cloud. The position shift must

be a small displacement to ensure the cloud remains in the harmonic region of the

potential.
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Figure 4.8: Experimental measurement of the radial trapping frequency of the Z-wire

magnetic trap via dipole oscillations. The measured radial trapping frequency ωr/2π =

416± 2 Hz.

Figure 4.8 shows the radial trapping frequency measurement of the Z-wire trap

for Iz = 37.6 A, Bx = 52 G, By = 8.3 G. The trapped cloud is first cooled using

RF evaporation to reduce its size and the temperature. The cloud is then kicked

by decreasing the current in the wire for half of a oscillation period (∼ 1 ms) and

then returning it to the initial value. During this process all the bias fields are kept

constant. The final centre positions of the cloud are recorded with time-of-flight

21/τel =
√

2n̄σelv̄; adiabatic compression increases both the average cloud density n̄ and the

mean relative thermal velocity
√

2v̄.
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measurements after different holding times t. The position of the cloud centre is

measured using Gaussian fits to the radial profile. The measured points are fitted

with a simple sine curve. This gives an oscillation frequency of ωr/2π = 416± 2 Hz.

The measured value agrees well with the expected trap frequency (ωr/2π = 426 Hz)

determined from the magnetic field calculation.

In our chip configuration, it is difficult to introduce a dipole-oscillation in the

axial direction. Therefore, a collective mode excitation method [162] is used to

measure the axial trapping frequency. In this method, the trapped cloud is first

evaporatively cooled to a temperature T/Tc ≈ 2. The density of the thermal cloud

and the corresponding interactions are very small. The cloud is then perturbed by

switching off the bias field By for a certain time, keeping Iz = 37.6 A and Bx = 52 G

constant at the same time. As a result of this operation the trap confinement

suddenly changes in both the radial and the axial directions. The thermal cloud

starts evolving according to this perturbation. For a harmonically confined thermal

gas, the lowest normal mode in the excitation spectrum is the dipole oscillation h̄ω.

Due to parity constraints, only the second lowest mode 2h̄ω can be excited. Finally,

the trap is switched off and the cloud response is monitored through time-of-flight

measurements. The observable in this case is the width of the expanding cloud

as a function of the holding time. The measurements are shown in Fig. 4.9. The

quality of the data is limited by the single measurement and the perturbation also

introduces a small dipole oscillation. The quality of the data can be improved by

simply taking the average value of multiple measurements. A carefully designed

perturbation which only introduces the second lowest excitation can also improve

the quality of the measurement.

By fitting the measured data to a simple sine curve, the extracted collective mode

excitation frequency is 36±2 Hz. Therefore, this frequency should be twice the axial

trapping frequency, ωax/2π = 18± 2 Hz. The calculated axial trapping frequency is

18 Hz, which is very close to the measured value. Therefore, the sinusoidal fitting is

appropriate. For comparison, we also study the BEC case. The same measurement

is performed on a trapped condensate. We expect to see the excitation frequency
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Figure 4.9: Measurement of the axial trapping frequency of the Z-wire trap via collective

mode excitation of a thermal cloud. The spatial profile of the cloud starts to evolve under

a certain perturbation.

10 ms 25 ms 45 ms 60 ms

Figure 4.10: Collective mode excitation of a condensate. The evolution of the condensate

shows a radial width oscillation.

deviate from that of the spectrum of a thermal cloud as a result of the strong inter-

action in the condensate. The measured result is shown in Fig. 4.10. The frequency

of the excitation is determined from a sine wave fit to the freely oscillating cloud



Experimental sequence for BEC 71

width. The measured collective mode excitation frequency is ωc/2π = 28±1 Hz. For

a cigar-shaped trap geometry (ωax/ωr � 1), this corresponds to a quadrupole mode

(` = 2, m = 0) excitation, ωc =
√

5/2ωax [163]. From this formula, the derived axial

trapping frequency is ωax/2π = 17.7 ± 1.0 Hz, which also agrees with our previous

thermal cloud excitation measurement.

After adiabatic compression, the trap frequency increases on the one hand. On

the other hand, the temperature of the cloud also increases. By monitoring the cloud

expansion, we estimate the cloud temperature to be around 200µK. Therefore, the

calculated elastic collision rate 1/τel ≈ 150 s−1. The trap loss rate 1/τloss can be

monitored from a trap lifetime measurement, which is performed by measuring the

atom number in the trap for different holding times. In Fig. 4.11, we can see there

is possible evidence of double-exponential decay, the fast atom decay at short times

is probably due to the finite trap depth. The lifetime of the trap is determined

mainly by the slow decay tails at long times. A lifetime of ∼ 20 s is extracted

from the fitting. Using the initial lifetime τloss = 4 s, the value for R = τloss/τel

is therefore ∼ 600, which is within the regime where runaway evaporation can be

achieved (Fig. 2.6).
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Figure 4.11: Log scale plot of the remaining |F = 1,mF = −1〉 state atom number in

the Z-wire trap versus different holding times. The blue points are the experimental data.

The red solid line is a fit to an exponential decay function with lifetimes of 4 s and 19.4 s

at short and long times, respectively.
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4.5.5 Bose-Einstein condensate in the Z-wire trap

Once the runaway evaporation condition is achieved, it is time to apply forced RF

evaporative cooling to the compressed atom cloud. A RF field is coupled to the

atoms through the wire (see Fig. 3.12 (a), pins 2 and 3 or 10 and 11) positioned

on the chip close to the Z-wire trap. The RF field is generated by an unamplified

30 MHz synthesised function generator (Stanford Research Systems DS345). The

produced RF magnetic field is oriented in the plane perpendicular to the trap axis

to drive ∆mF = ±1 transitions.

The RF function generator is used in sweep mode. The output frequency loga-

rithmically ramps from a specified start frequency νi down to an end frequency νf in

a certain duration when it is triggered. The amplitude of the RF signal is set to be

5 V peak-to-peak. This corresponds to a Rabi frequency Ω0/2π = 6 kHz, Sect. 4.5.6.

In the experiment, we sweep from νi = 30 MHz to various νf over a period of 12 s.

Parameters of the Z-wire trap (Iz = 37.6 A, Bx = 52 G, By = 8.3 G) are kept

constant during the evaporation. The atom number and the temperature of the

cloud are measured by time of flight measurements at different end RF frequencies.

When the RF ramp is optimised the cloud becomes more and more cold and dense

by reducing the end RF frequency. The temperature and atom number dependence

on the end RF frequency is shown in Fig. 4.12 (a).
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Figure 4.12: (a) Dependence of atom number and temperature in the Z-trap on the end RF

frequency. (b) Log scale plot of the corresponding phase space densities versus different

end RF frequencies.
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To show the phase transition more clearly, the corresponding phase space densities

are plotted on a log scale, Fig. 4.12 (b). A phase space density Φ = 1.7 is observed at

the end RF frequency νf = 590 kHz which is larger than the critical value Φc = 1.202

for a BEC in a harmonic trap. If the end RF frequency is further reduced to

νf = 560 kHz, then the phase space density Φ = 13.2 is achieved.
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Figure 4.13: A bimodal density profile appears in the Z-wire trap as the RF end-frequency

sweeps across the threshold of the BEC transition. The upper panel show the absorption

images of the cloud and the bottom panel show the fits of the cloud density distribution

across the peak in the y-direction. (a) Slightly above the transition, the density profile is

still a Gaussian. (b) When the temperature drops below the critical temperature, a sharp

parabolic peak of the condensate emerges on top of the Gaussian profile. (c) Almost a

pure condensate appears as we further cool the cloud.

Other evidence of a BEC is the bimodal distribution. The density distributions

of a thermal cloud and a pure BEC in a harmonic trap are clearly different. The

thermal cloud has a Gaussian distribution, while the ground state of a condensate

is shown to have a parabolic Thomas-Fermi distribution (Sect. 2.6.1) characteristic

of the harmonic trap. The bimodal density distribution considers the partially con-

densed cloud as two non-interacting parts: a thermal component plus a condensate
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component:

n(r) = (1− fc)nth(r) + fcnTF (r) (4.8)

where fc is the condensate fraction. Figure 4.13 shows the emergence of a BEC as

the end RF frequency is reduced. At high temperature, the density profile is an

isotropic Gaussian distribution. A bimodal distribution appears as the temperature

drops below the critical temperature Tc ≈ 520 nK. After further cooling the cloud,

we can produce an almost pure BEC.

5ms 6ms 7ms 8ms 9ms 10ms 11ms 12ms 13ms 14ms 15ms 16ms 17ms

Figure 4.14: Anisotropic expansion of a condensate after the indicated times of flight. The

small “shadow” clouds above the BEC are attributed to small thermal clouds spilling over

the magnetic trap during the evaporation.

The easiest way to observe a signature of a BEC is the anisotropic expansion

after releasing the cloud from the trap due to the anisotropic confinement. Once

released, the condensate undergoes a radial accelerated expansion as the atom-atom

interaction energy is converted to kinetic energy. This is because ωrad/ωax ≈ 23� 1

and ωradt > 1 when the expansion time t is longer than 1 ms. The asymptotic

expansion parameters upon release from the trap can be approximated by [164]

R(t)rad/R(0)rad = 1 + ωradt (4.9)

R(t)ax/R(0)ax = 1 +
πω2

ax

2ωrad
t. (4.10)

The radial width R(t)rad of the cloud expands rapidly while the expansion of the

axial width R(t)ax is negligible after release from the trap. The anisotropic expansion

is shown in Fig. 4.14. The absorption image integrates the atom distribution over
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one of the transverse directions, and in fact the shape of the cloud after expansion

is a pancake shape instead of a cigar shape.

4.5.6 RF spectroscopy

In addition to a time of flight measurement, RF spectroscopy is a powerful in-situ

technique to characterise an atomic cloud in a magnetic trap. The trapped atoms

are probed by applying a RF pulse for a certain duration. Atoms satisfying the

resonance condition hf = µBmFgFB(x, y, z) are outcoupled from the trap, where

f is the frequency of the RF pulse. The remaining atoms are measured by absorp-

tion imaging. A self-consistent Hartree-Fock mean-field model was used to fit the

attained RF spectra (Appendix 1 in [155]). Figure 4.15 shows a RF spectrum of

a Z-wire BEC obtained by applying a 3 ms RF pulse of amplitude 0.5 V. A very

narrow inverted-near parabolic peak appears when the end-RF frequency is close

to the trap bottom, which indicates an almost pure BEC. The temperature of the

condensate can be extracted from the fit; in this case it is about 300 nK. Each

black dot represents a measured atom number at one frequency of the RF pulse in

one experiment cycle. By repeating experiment cycles, we can scan across the RF

resonance peak.
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Figure 4.15: RF spectrum of a BEC in the Z-wire magnetic trap. A RF pulse of amplitude

0.5 V is applied for 3 ms (a) without a 50 Hz AC line trigger (b) with a 50 Hz AC line trigger.

Trap bottom f0 = 657 kHz.

The RF spectrum is quite sensitive to any magnetic noise. During each experi-
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ment cycle when we are applying a RF pulse, the phase of the 50 Hz AC line at that

moment fluctuates. This fluctuation alters the trap bottom, broadening the mea-

sured spectrum. With the help of the 50 Hz AC line synchronisation (Sect. 4.4.2), the

influence of the magnetic noise can be suppressed and the measured RF spectrum

shows a more stable result and a more defined shape, Fig. 4.15 (b).

m  = -1F

m  = 0F

m  = +1F

RF

Rb   F=1, m =-1>F
87

Figure 4.16: Schematic diagram of RF radiation-induced coupling between three Zeeman

sublevels of the F = 1 state.

Since RF spectroscopy is the major method we use to probe the atomic cloud in

a magnetic lattice, it is necessary to characterise the coupling of atoms introduced

by the RF radiation. The coupling strength can be described by Ω0 = µBgFB
2h̄

. As

the RF magnetic field is perpendicular to the quantisation axis, all of the RF power

is equally distributed to drive σ+ and σ− transitions. We follow the theoretical

treatment described in [165]. Atoms condensed in the |F = 1,mF = −1〉 state are

coupled by RF radiation leading to Rabi-type oscillations in a three-level system, as

shown in Figure 4.16. The relative populations Ni/N of all the Zeeman sublevels in

the F = 1 state, i = −1, 0, +1, are given by:

N−1/N = |ψ−1|2 =
(
1− |c2|2

)2

N0/N = |ψ0|2 = 2|c2|2
(
1− |c2|2

)2
(4.11)

N+1/N = |ψ+1|2 = |c2|4,

where c2 is:

|c2|2 =
Ω2

0

Ω2
0 + ∆2

sin2

(√
Ω2

0 + ∆2

2
t

)
. (4.12)
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Figure 4.17: Images of the BEC in states |F = 1,mF = −1, 0,+1〉 and the population

oscillation in the three states. The blue dots are the experimental data and the red curve

is the fit.

In the experiment, we perform these Rabi oscillation measurements on a conden-

sate in the |F = 1,mF = −1〉 state in the Z-wire magnetic trap. The trap bottom is

657 kHz which can be measured precisely from RF spectra. A RF pulse of frequency

653 kHz and amplitude Vpp = 2 V is applied for a duration t. The condensate is

held in the trap for thold = 0.2 ms. The population of the three Zeeman levels is

driven by varying the pulse duration. Atoms in the mF = −1 state remain trapped

in the same position since the magnetic field gradient holds atoms against gravity.

At the same time, atoms in the mF = 0 state fall out of the trap with acceleration g

since they are not sensitive to the magnetic field to a first order approximation. In

contrast to the mF = −1 state, atoms in the mF = +1 are accelerated downwards

by the magnetic field gradient plus gravity with an acceleration of 2g. Therefore,

the components mF = −1, 0 and +1 acquire initial velocities of 0, gthold and 2gthold,
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respectively, and are spatially separated after a free expansion time. We image all

the components simultaneously in free fall after transferring them to the F = 2 state

with a short repumper pulse. Our measurement is shown in Fig. 4.17.

Fitting the measured data with Eq.(4.11) yields a coupling strength Ω0/2π =

2.6 kHz and a detuning ∆/2π = 0.96 kHz. This relatively weak coupling indicates the

earlier RF spectra measurements are not limited by RF radiation power broadening.

4.6 Summary

This chapter started with a presentation of the experimental set-up. This mainly

contains three parts: the vacuum system, the laser system and the computer control

system. A versatile control system was developed to produce well defined sequences

for our daily BEC experiment. Then the experiment procedures from the initial

MOT loading to the final evaporative cooling to achieve a BEC are summarised.

Absorption imaging as the main diagnostic method is also discussed. From an anal-

ysis of the absorption images, the trap frequencies of the Z-wire magnetic trap and

lifetime of the atoms trapped in the Z-wire trap are studied. Finally, the emergence

of a BEC is characterised by a bimodal distribution fit, anisotropic expansion and

RF spectra.



CHAPTER 5

Loading atoms into the 0.7µm-period triangular

magnetic lattice

In this chapter I present experiments towards loading the 0.7µm-period triangular

magnetic lattice. As the lattice period is scaled down to the sub-micron regime, the

magnetic lattice traps are located at distances of only hundreds of nanometres from

the magnetic film. The atom-surface interactions are first studied by bringing the

Z-wire trapped atoms very close to the chip surface. Measurements of the Z-wire

trap lifetimes and the remaining atom fraction at distances down to about a few mi-

crometres are described. Then the interaction with the short-range magnetic lattice

potential located a few hundreds nanometres from the chip surface is studied. Fi-

nally, preliminary results for loading atoms into the 0.7µm-period triangular lattice

are presented. The measured short lifetimes of the atoms trapped in the magnetic

lattice are consistent with a model based on surface-induced thermal evaporation.

The preliminary experiments for loading the 0.7µm-period magnetic lattice were

carried out jointly with PhD student Tien Tran and the experimental data presented

in Figures 5.15 and 5.16 were taken by him.
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5.1 Z-wire trapped atoms-surface interactions

The sub-micron period magnetic lattices are designed for possible quantum tun-

nelling in these systems. Since the strength of the surface magnetic field decays

exponentially from the film surface, the distance of the created lattice traps from

the film surface is usually limited within the lattice period. For a 0.7µm-period

magnetic lattice, this means that the distance from the magnetic film surface to

the trapped atoms is hundreds of nanometres. On the one hand, the atom-surface

interaction can be important at such a short distance. On the other hand, the

trapped atoms can be considered as an extremely sensitive probe to measure these

elusive interactions which are difficult to measure in other situations.

5.1.1 Z-wire trap distance calibration

A strategy for loading a 0.7µm-period magnetic lattice located about hundreds of

nanometres from the chip surface is required to smoothly merge the Z-wire trap with

the magnetic lattice traps. Therefore, it is important to study the surface effects on

the Z-wire trapped atoms before they are loading into the magnetic lattices. First of

all, an accurate calibration of the distance between the chip surface and the centre

of the Z-wire trap is needed.

A simple experiment is performed to measure this distance by imaging a cloud

in situ, i.e., without time of flight [160]. When the atom cloud is brought close to

the chip surface, the imaging beam is tilted by a small angle (θ ∼ 2◦) such that

it reflects from the surface so that two beam paths traverse the cloud. One beam

first passes through the atom cloud and then reflects from the surface, while the

second beam first reflects from the surface and then passes through the atom cloud.

This creates both a direct image and a mirror image of the cloud simultaneously

in the absorption image, see Fig. 5.1 (a). The distance between the cloud centres

is 2d cos θ ≈ 2d, where d is the distance of the trap centre to the surface of the

gold reflecting layer. At very small distances the two images merge into one due
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Figure 5.1: Distance calibration of the Z-wire trap near the chip surface. (a) Top panel:

atom chip structure and the imaging geometry. Bottom panel: a typical in situ reflective

absorption image of the cloud near the surface. Both direct and mirror images are visible.

(b) Measurements of the distance d from the trap centre to the gold reflecting layer on

the chip surface versus Z-wire current Iz for Bx = 51.8 G. Solid line is a linear fit: d =

(38.8± 1.6)Iz − (718± 33)µm, where the uncertainties are 1σ statistical uncertainties.

to the finite size of the cloud and the finite resolution of the imaging system. To

determine these small distances we use an extrapolation based on the best fit to the

experimental measurements.

The experimental results are plotted in Fig. 5.1 (b). The vertical positions of

the cloud centres in CCD pixels are measured from a Gaussian fit to the cloud in

the trap and then converted into micrometres from the measured effective pixel size.

The measured data fit well to a linear relationship, where the intercept d(Iz = 0) =

−718µm corresponds approximately to the estimated distance of the gold mirror

from the current-carrying copper wires. The effect of the finite size wire structure

(width 1 mm) is small at this distance. Based on the distance calibration, further

measurements can be performed at trap centre distances down to a few micrometers

from the chip surface.
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5.1.2 Trap lifetime versus Z-wire trap distance

To investigate surface-induced losses, we measure the trap lifetime as a function of

the distance d of the Z-wire trap centre to the chip surface. In each measurement,

the atom cloud in the initial Z-wire trap (Iz = 37.6 A, Bx = 51.8 G) is prepared

∼ 670µm from the surface. To bring the atoms closer to the surface, the Z-wire

current is then smoothly ramped down in the next 150 ms. During this stage the

bias field Bx is kept constant. The final position of the Z-wire trap is determined

from the final current Iz according to the calibration. The atom cloud is held in

the final position for different holding times, and the remaining atoms are imaged

by absorption. At large distances where the direct image and the mirror image can

be resolved, the atom number is read directly from the measurement of the direct

image. At small distances where the two images are merged, the atom number is

estimated as half of the total measured atom number.

d = 7.6 µmd = 30 µm

(a) (b)

[ ] [ ]

[ 
]

[ 
]

A A

Figure 5.2: Trap loss at different atom-surface distances: (a) d = 30µm, (b) d = 7.6µm.

Data points (black squares) are plotted on a log scale. The measured lifetimes are 25± 4 s

at d = 30µm and 1.82± 0.26 s at d = 7.6µm.

The cloud is evaporatively cooled to a temperature above Tc, T ∼ 1.5µK, and

the trap bottom BIP is adjusted to about 0.7 MHz (1 G). Figure 5.2 shows two trap

loss measurements for the Z-wire trap at d = 30µm and d = 7.6µm, respectively.

For d = 30µm the Z-wire trap is far away from the surface. An exponential decay

of the atom number with a rate γ0 = (25 ± 4 s)−1 is observed. This trap loss is

attributed mainly to collisions with background atoms. This is confirmed by the
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observation of a distance-independent loss rate for d > 10µm in Fig. 5.3. Therefore,

the background (one-body) loss rate should be close to γbg = (25 ± 4 s)−1. When

the trap is brought closer to the surface at d = 7.6µm, we observe a much faster

loss rate γ0 = (1.82 ± 0.26 s)−1. The increased loss rate cannot be explained by an

increase in γbg, because during all the measurements no clear background pressure

change in the vacuum chamber was observed.

We account for the faster loss by adding surface-induced losses. First, we consider

the effect of Johnson noise. The fluctuating magnetic field caused by the thermal

current noise (at room temperature T ∼ 300 K) in a conductor may couple to the

magnetic moment of the trapped atoms to drive a spin-flip transition. Our hybrid

atom chip has a tAu = 50 nm thick reflecting gold layer on top of the magnetic film

and a 127µm thick copper current-carrying wire structure underneath. Since the

copper wire (the Z-wire) is far away (> 700µm) from the Z-trap, the effect on the

spin-flip loss is small and can be neglected [166]. For a gold conductor and a trap

bottom (1 G) corresponding to a Larmor frequency of ωL/2π ∼ 0.7 MHz, we obtain a

skin depth δ ∼ 94µm (δ =
√

2/(σµ0ωL), Sect. 2.7.1). Our measurements are within

the regime δ >> max{d, tAu}, and therefore the spin-flip rate can be calculated

from Eq.(2.40). At a distance d = 7.6µm, this value is γs = 1/τs = (150 s)−1.

In order to estimate the measured trap lifetime, both the background collision-

limited lifetime τbg and the spin-flip-limited lifetime τs should be taken into account:

τ = (1/τbg + 1/τs)
−1.

In Figure 5.3 we show the measured trap lifetime versus distance d of the trap

centre from the chip surface on a log scale. The measurements show that when the

trap distance d > 10µm, the measured lifetime is almost constant, τ ≈ 25 s, with

no significant lifetime reduction observed. In the small distance regime, d < 10µm,

the lifetime decrease is rapid with distance. The estimation based on spin-flips

and background collisions (solid red curve) cannot explain this fast decay. For

comparison, we also plot the fundamental limit due to Johnson noise only (dashed

red curve). In principle, the Johnson noise can be effectively reduced by using

a thinner and narrower layer of conductor or a reflective conductor with higher
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Figure 5.3: Measured lifetimes (blue points) on a log scale versus distance d of the centre of

the Z-wire trapped cloud from the chip surface. The solid red curve (dashed red curve) is

the calculated lifetime due to spin-flip loss from Johnson noise plus background collisions

(due to spin-flip loss only).

resistivity such as palladium. However, this is not the main limitation in our present

experiment performed near the chip surface (a few micrometer distances). The trap

lifetimes at small d are significantly shorter than what is expected from spin-flip

transitions [166].

Secondly, we consider the loss caused by 3-body recombination. The estimation

of the 3-body recombination lifetime is determined by the cloud density. In these

measurements, the highest possible cloud density is about 6.65 × 1012 cm3 based

on ∼ 4 × 105 atoms at temperature T = 1.5µK trapped in a Z-wire trap with

trapping frequency ωr/2π = 300 Hz and ωax/2π = 20 Hz. The calculated lifetime

is τ3b ≈ 500 s. Therefore, the additional trap loss is most likely caused by surface-

induced evaporation. Because of the attractive Casimir-Polder interaction, when

the trap approaches the surface of the chip, the trap depth decreases accordingly.

This leads to an additional trap loss.
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5.1.3 Atom fraction versus Z-wire trap distance

To test the above explanation, we measure the remaining atom fraction χ versus

distance d. Starting with Ni atoms in a Z-wire trap at distance di far away from the

surface, we move the trap to a distance d < di by decreasing the Z-wire current Iz.

The cloud is held there for a certain time t0, then quickly moved back to its original

location, where the remaining number of atoms Nf is measured.
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Figure 5.4: (a) Z-wire radial trap frequency as a function of trap-surface distance d. The

blue points are dipole-oscillation measurements at different positions. The red curve is the

best fit. The blue area (at distance smaller than 50µm) highlights the region of interest.

(b) Theoretical calculations of the trap depth for the Z-wire trap using the fitted trap

frequency ωr/2π = 291.43 − 0.4055d + 0.00023d2 Hz. The dashed (solid) curve shows

the calculation without (with) the Casimir-Polder interaction Vt (Vt(z) + VCP ), where

Vt = 1
2Mω2

rd
2. The inset shows a zoom of the blue area.

As discussed before, because the attractive Casimir-Polder potential VCP lowers

the trap depth to Vb, the trap finally disappears at a finite distance from the chip

surface. When the Z-wire trap is close to the surface, it can be approximated by a

simple harmonic trap Vt(z). We simply model the atom loss from the combined trap-

ping potential Vt(z)+VCP as a sudden truncation of the tail of the Boltzmann energy

distribution of the trapped cloud due to the finite trap depth Vb. The remaining

fraction of atoms is given by χ = 1−exp(−η), where η = Vb/(kBT ) is the truncation

parameter. It is difficult to measure the Z-trap frequency by the dipole-oscillation
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method at small distances from the surface. In the experiment we measure a se-

quence of trap frequencies as the Z-wire trap approaches the surface and extrapolate

the value to our region of interest. The measurements are presented in Fig. 5.4 (a).

We choose the fitted Z-wire trap frequency ωr/2π = 291.43−0.4055d+0.00023d2 Hz

when the trap-surface distance is within 50µm. In Fig. 5.4 (b), we show calcu-

lations of the trap depth with and without the Casimir-Polder interaction for a

trap frequency using C4 = 8.2 × 10−56 Jm4 for a silica surface, Sect. 2.7.2. When

including the Casimir-Polder interaction, the trap depth reduces to ∼ 1.5µK at

distance d = 10µm, and further reduces to ∼ 250 nK at d = 5µm. Finally, the trap

depth disappears at about 1.5µm from the chip surface. In our previous lifetime

measurements, the initial temperature of the cloud was about 1.5µK. According to

this calculation, the barrier height becomes comparable with the cloud temperature

at around d = 10µm. Therefore, additional atom loss is expected to occur within

this distance.

For the atom fraction measurements, we start with a Z-wire trapped cloud at

an initial position di = 100µm from the chip surface. The cloud temperature and

the atom number is controlled by the RF knife position during evaporative cooling.

Then this cloud is brought closer to the chip surface at various distances d by

ramping down the current Iz and holding there for t0 = 10 ms. Then the cloud

is moved back to its original position and imaged. Figure 5.5 shows the measured

atom fraction χ versus distance d for a condensate (T ≈ 200 nK) well below the

critical temperature (Tc ≈ 520 nK), and for thermal clouds at about 600 nK, 1µK

and 2µK. The temperature of the cloud is measured by time of flight in which the

thermal wing of the cloud is fitted with a Gaussian distribution; so the uncertainty

increases when the temperature is close to and below Tc.

The measurements show that the thermal cloud exhibits loss at a much larger

distance than the condensate. For a thermal cloud at T ∼ 2µK, the loss starts at

d ∼ 20µm and for a condensate the loss appears at d ∼ 5µm. The solid curves

are theoretical fits based on χ = 1 − e−η. The only fitting parameter is the cloud

temperature T . Our fitted values are 195 nK, 480 nK, 0.95µK and 1.7µK for the
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Figure 5.5: Remaining atom fraction χ in the Z-wire trap versus distance d of the cloud

centre from the chip surface for a BEC at T ≈ 200 nK (blue points) and for a thermal cloud

at about 600 nK (gold points), 1µK (green points) and 2µK (red points), for Bx = 51.8 G.

Solid curves are theoretical fits using the simple truncation model with T = 195 nK (blue),

480 nK (gold), 0.95µK (green) and 1.7µK (red).

blue, gold, green and red curves, respectively. These values are comparable to

the temperatures measured by time of flight. No atom loss is only expected when

Vb → ∞ (η → ∞) from the model χ = 1 − e−η. When η reduces to 3 only 5% of

atoms are lost from the trap. This means for T = 1.7µK (red), 0.95µK (green),

480 nK (gold) and 195 nK (blue) cloud the losses kick in at Vb reduces to about

5.1µK, 2.9µK, 1.4µK and 590 nK which corresponding to distance d ≈ 18µm,

13µm, 10µm and 6µm.

The above simple truncation model can be extended to include the effect of

1D surface evaporation in which the more energetic atoms in the trap region near

the chip surface preferentially escape the trap during the t0 = 10 ms holding time,

since for the thermal cloud T = 2µK (atom number N ≈ 4.5 × 106), the elastic

collision time τel ≈ 1.6 ms which is shorter than the holding time. For the colder and

denser cloud the elastic collision time will be reduced further. Using a classical 1D

surface evaporation model [55], the remaining atom fraction becomes χ = χ0e
−Γevt0 ,

where χ0 = 1 − exp(−η) and Γev = f(η)e−η/τel is the loss rate due to 1D surface
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evaporation, f(η) ≈ 2−5/2(1−η−1 + 3
2
η−2) for η ≥ 4 [167]. In Fig. 5.6 we compare fits

for the 1D surface evaporation model (solid purple curve) and the simple truncation

model (solid blue curve) for the condensate at about 200 nK. To obtain a good fit,

the temperature of the cloud T = 120 nK and the elastic collision time τel = 0.7 ms

are required. Therefore, surface-induced 1D evaporation indeed can cool the cloud

close to the surface; this has been demonstrated as a alternative to RF evaporative

cooling to obtain a BEC [166]. The discrepancy at small atom fraction (χ < 0.4) is

probably due to the simple 1D evaporation model which breaks down for η ≤ 1 and

assumes a constant cloud temperature with decreasing distance. In the experiment,

we also observed that the atom fraction curve shifts towards the chip surface when

the holding time t0 and hence the amount of surface evaporation is reduced. This

is consistent with the model.

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Distance from surface d [µm]

A
to
m
fr
ac
tio
n
χ

Figure 5.6: Remaining atom fraction χ versus distance d from the chip surface for a BEC

at T ≈ 200 nK, for Bx = 51.8 G. Blue curve: simple truncation model using T = 195 nK.

Purple curve: 1D surface evaporation model using T = 120 nK and τel = 0.7 ms.

Due to the attractive Casimir-Polder interaction, the trap depth disappears at

about d = 1.5µm. Our measurements are consistent with this prediction. To com-

pensate this effect and to maintain a trap at a distance of a few hundred nanometers,

the trap frequency needs to be high. In the next section, we show that our magnetic

lattice trapping is strong enough to compensate the Casimir-Polder interaction in
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this regime.

5.2 Loading a sub-micron period magnetic lattice:

simulation

There are four lattice structures patterned on the Co/Pd multilayer magnetic film:

0.7µm-period square and triangular magnetic lattices, and 0.7µm-period and 5µm-

period 1D magnetic lattices. The magnetic film is 10.34 nm thick with a mag-

netisation Mz = 470 kA·m−1 (4πMz = 5.9 kG). In this section, it is important to

address whether the produced magnetic lattice traps are tight enough to compensate

the Casimir-Polder interaction at distances of hundreds nanometres from the chip

surface.

5.2.1 0.7µm-period 2D magnetic lattice

The optimised 0.7µm-period square and triangular magnetic lattice potentials can

be created with bias fields Bx = 7.86 G, By = −3.76 G and Bx = 0.50 G, By =

4.52 G, respectively. The optimised lattice traps are located at zmin = a/2 = 350 nm

from the magnetic film, where a = 0.7µm is the lattice period. Including the 75 nm

thick coating layer (50 nm gold and 25 nm silica) on the magnetic film, the distance

between the optimised 2D magnetic lattice traps and the chip surface is only 275 nm.

In this region, as discussed in the previous section, the Casimir-Polder interaction

is the dominant atom-surface interaction. It may alter the shape of the lattice traps

and cause additional atom loss. We have simulated this situation and the contour

plots of the trap potentials are presented in Fig. 5.7. The optimised magnetic lattices

are still available even including the Casimir-Polder interaction. Furthermore, the

Casimir-Polder effect for these optimised 0.7µm-period magnetic lattices can be

neglected due to the large lattice trap frequencies (as high as hundreds kilohertz).

The calculated trap parameters for the optimised magnetic lattice are listed in

Table 5.1. For the square lattice, each individual lattice trap is approximately
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Figure 5.7: The upper panels show contour plots of the optimised 0.7µm-period square

(left) and triangular (right) magnetic lattice potentials with bias fields {Bx = 7.86 G,

By = −3.76 G} and {Bx = 0.50 G, By = 4.52 G}, respectively, at zmin = a/2 = 350 nm.

The lower panels show calculated trapping potentials for 87Rb |F = 1,mF = −1〉 atoms

trapped in the optimised 0.7µm-period square (left) and triangular (right) magnetic lat-

tice. Black dashed lines are the magnetic lattice potentials and the red solid lines include

the Casimir-Polder interaction with C4 = 8.2×10−56 Jm4 for a silica surface. The vertical

gold lines indicate the position of the silica surface (z = 75 nm). Magnetic film parameters:

magnetization 4πMz = 5.9 kG, film thickness tm = 10.34 nm.

cylindrically symmetric with the long axis in the {1,1,0} direction and the trap

bottom BIP = 5.11 G. The barrier heights are equal in the x- and y- directions,

6.56 G above the trap bottom. This corresponds to a barrier height of 220µK for

87Rb atoms in the |F = 1,mF = −1〉 state. The barrier height in the z-direction

is 3.61 G (121µK). The geometric mean trap frequency is ω/2π = 173 kHz. For the

triangular lattice, the symmetrical axis (Ioffe axis) of each lattice trap is oriented
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approximately along the x-direction and the trap bottom BIP = 1.69 G. The barrier

heights are 5.97 G (200µK) above the trap bottom and equal in all three lattice

directions in the xy-plane. In the z-direction the barrier height is 2.85 G (96µK).

The geometric mean trap frequency is ω/2π = 195 kHz.

As discussed in Sect. 4.5.4, since the magnetic trap is conservative the optimised

loading process is adiabatic, which means the phase space density Φ is preserved.

When transferring atoms from the Z-wire trap to the magnetic lattice traps, a sig-

nificant increase in trapping frequency results in appreciable heating of the atom

cloud. The temperature of the lattice cloud due to the adiabatic compression can

be estimated by Tlattice = ωlattice
ωZtrap

TZtrap, where ω = (ωxωyωz)
1/3 is the geometrical

mean trapping frequency. For both lattices, the geometric mean trap frequency

is ∼ 103 times larger than the geometric mean trap frequency of the Z-wire trap

(ωZtrap/2π ≈ 144 Hz). Therefore, a large heating of the cloud due to adiabatic

compression is expected during the loading process. In addition, the atom cloud

may experience a large three-body recombination rate because of the high trap

frequencies and hence large atom densities. All of these contributions can limit the

lifetime of the magnetic lattice traps. More detailed discussions are presented in

Sect. 5.4.

Table 5.1: Calculated trapping parameters for the optimised 2D magnetic lattices

Square Lattice Triangular Lattice

Period 0.7µm 0.7µm

Trap height zmin 0.35µm 0.35µm

Bias field {Bx, By, Bz} {7.86 G, −3.76 G, 0} {0.50 G, 4.52 G, 0}

Barrier height in lattice directions 6.56 G (220µK) 5.97 G (200µK)

Barrier height in z-direction 3.61 G (121µK) 2.85 G (96µK)

Trap bottom 5.11 G 1.69 G

Trap frequency

ωz/2π = 260 kHz ωz/2π = 314 kHz

ω⊥/2π = 254 kHz ωy/2π = 307 kHz

ω‖/2π = 79 kHz ωx/2π = 77 kHz

ω/2π = 173 kHz ω/2π = 195 kHz
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5.2.2 0.7µm-period 1D magnetic lattice

The loading procedure for a 1D 0.7µm-period magnetic lattice is similar to that

which we demonstrated previously for the 1D 10µm-period magnetic lattice [155].

The simulations are shown in Fig. 5.8. The Z-wire trap which is initially far away

(∼ 670µm) from the chip surface is brought closer to the lattice traps by ramping

down the Z-wire current Iz. The Z-wire trap smoothly merges with the magnetic

lattice traps at Iz = 18.2 A, Bx = 52 G. The lattice traps are located ∼ 480 nm from

the chip surface (d = zmin − (tAu + tSiO2) = zmin − 75 nm), Fig. 5.8 (d). According

to the calculations, the Casimir-Polder interaction does not change the shape of the

lattice traps at this trapping distance.
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Figure 5.8: Radia simulations for loading a 0.7µm-period 1D magnetic lattice from a

Z-wire trap. Z-wire currents are Iz = (a) 37.6 A, (b) 20 A, (c) 18.2 A, and a bias field

Bx = 52 G. The red curves show the trapping magnetic field of the Z-wire trap. The blue

curves show the combined trapping magnetic field of the Z-wire and the magnetic lattice.

(d) Zoom of plot (c) in temperature units while taking the Casimir-Polder interaction into

account. The green solid line plots the magnetic lattice trapping potential for 87Rb |F =

1,mF = −1〉 state atoms. The red dashed line includes the Casimir-Polder interaction (off

scale) with coefficient C4 = 8.2 × 10−56 Jm4 for a silica surface. The gold line indicates

the position of the chip surface.
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Figure 5.9: Calculated trap potential of the created 1D 0.7µm-period magnetic lattice for

Iz = 18.2 A, Bx = 52 G. (a) Magnetic field of the lattice along the x-, y-, z- directions. (b)

Corresponding trapping potential for 87Rb |F = 1,mF = −1〉 state atoms in temperature

units.

The lattice trap created with the parameters Iz = 18.2 A and Bx = 52 G is

shown in Fig. 5.9. The calculated radial trap frequency is ωr/2π = 212 kHz and

the axial trap frequency ωax/2π = 675 Hz. The geometric mean trap frequency

ω/2π = 31 kHz, so the adiabatic compression in transferring the atom cloud from

the Z-wire trap to the 1D magnetic lattice is smaller than in the 2D case because of

the weak confinement along the axial direction.

5.3 Projection of ultracold atoms towards the 2D

lattice potential

Before loading the 0.7µm-period magnetic lattice, it is important to check that the

ultracold atoms can interact with the short-range magnetic lattice potential. This

is to ensure that the magnetic film is still strongly magnetised after the vacuum

baking and that the atom cloud is actually reaching the magnetic lattice potential,

a few hundreds nanometres from the chip surface, without being lost. Then, by
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fine tuning the experiment parameters, we will attempt to load the 0.7µm-period

triangular magnetic lattice and look for a signal of the trapped atom cloud.

Figure 5.10 shows the calculated magnetic potential pattern produced by the

magnetic film structure itself without any bias fields. The 2D magnetic film struc-

tures still produce a certain periodic potential pattern (but without magnetic lattice

traps since there are no trap minima in the z-direction, which need bias fields to

provide the required field cancellation) and the produced potential pattern is quite

robust at various distances from the surface. Interestingly, the square lattice struc-

ture creates a square potential pattern with a period of
√

2a while the triangular

lattice structure creates a potential pattern which looks like an array of 1D chains.

The magnetic potential pattern for the triangular structure has a larger barrier in the

y-direction than in the x-direction and the pattern period is about a/2 = 350 nm

in the x-direction and about a = 700 nm in the y-direction. The magnetic field

magnitude decays exponentially in the vertical z-direction from the surface.

(a) Square (b) Triangular

Figure 5.10: 2D magnetic lattice potential patterns created by (a) a square lattice structure

and (b) a triangular lattice structure, without bias fields and in the plane z = a/2. Lattice

period a = 0.7µm.

When an atom moves in such a magnetic potential field, the force experienced by

the atom is given by F = −∇U(x, y, z) = −mFgFµB∇|B(x, y, z)|. Therefore, atoms

feel a strong repulsive force when approaching the surface and finally can be reflected

back. Singh et al. [108,109] have previously demonstrated the atom cloud reflection
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from the 1D 10µm-period magnetic grating structure. A 1D corrugated magnetic

potential is formed in the presence of a By bias field. Since the corrugation only

appears in one direction (y-direction), both the experiment and calculation show

that the lateral expansion of the cloud only occurs in this direction, resulting in an

arc-shaped reflected atom cloud. For the more complicated potential pattern formed

by the 2D magnetic lattice structures, corrugations in both x- and y-directions are

expected to introduce force components parallel to the magnetic film surface which

lead to a lateral expansion of the cloud in both directions when ultracold atoms are

reflected from the magnetic potential. In our experiment configuration, one of the

directions overlaps with the imaging beam path, so we expect the reflected cloud to

have a half-moon shape.

5.3.1 Reflection from a 0.7µm-period triangular magnetic

potential

In this experiment, the ultracold cloud is projected vertically towards the magnetic

film structure and the reflection signal from the corrugated magnetic potential is

recorded. An ultracold atom cloud at about 200 nK, below the critical temperature,

is first prepared in a Z-wire trap ∼ 670µm below the surface. Then the cloud is posi-

tioned at different distances d0 close to the 0.7µm-period triangular magnetic lattice

structure by ramping down the Z-wire current Iz. To launch the cloud vertically,

the Z-wire trap is switched off suddenly by turning off the Z-wire current Iz and the

bias field Bx. During this period Iz rapidly decreases to zero (in ∼ 1 ms) while Bx,

which is produced by external coils, decreases slowly (in ∼ 10 ms) compared to the

Z-wire current. This delay gives a momentum kick (launching velocity ∼ 70µm/ms)

to the atom cloud, thus launching the cloud. A series of measurements is made by

launching the cloud at different positions and monitoring the reflection dynamics

after different waiting times. The measurements are presented in Fig. 5.11. When

the launching position is too far from the surface, d0 = 145µm, no reflection is

observed. The atom cloud falls down under gravity before it can reach the magnetic
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potential. More importantly, no lateral expansion is observed. Since the cloud is

cooled below the critical temperature, thermal expansion in the lateral direction

should be very small and can be neglected. Reflections start to appear when the

launching position approaches d0 = 128µm; both the free falling part and the re-

flected part are observed. As shown in Fig. 5.11 (b), the cloud splits into two parts

when it turns back from the surface the lower cloud which expands in the lateral

direction (parallel to the surface) is the reflected part and the upper cloud which

remains almost constant in the lateral dimension is the free falling part. Finally,

clear reflections are observed at d0 = 76 and 67µm. The reflected clouds show a

half-moon shape and the lateral dimension after reflection by the magnetic lattice

potential is up to three times larger than the dimension of the incident cloud.

d

t=0 ms 3 ms 4 ms 5 ms 6 ms 7 ms 8 ms 9 ms 10 ms 11 ms 12 ms

0

y
z

(a)

(b)

(c)

(d)

Figure 5.11: Reflection absorption images of the time evolution of an ultracold atom cloud

projected towards the magnetic lattice potential with no bias fields. Launching position

d0 = (a) 145µm, (b) 128µm, (c) 76µm, (d) 67µm from the chip surface. Both the direct

and the mirror images are visible due to the reflection absorption imaging geometry. The

white dashed line in (a) indicates the position of the reflecting surface.

An accurate simulation of the reflection dynamics requires detailed knowledge of

factors such as the lattice potential, the launching velocity and stray magnetic fields.

Here, we apply a simple analysis to capture the main features of the reflection dy-

namics. The width of the cloud in the lateral direction (σY ) and the cloud position
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in the vertical direction (d) are plotted versus the projection time t in Fig. 5.12.

Without reflection, the lateral width remains almost constant at ∼ 50µm and the

trajectory of the cloud in the vertical direction can be fitted with a single quadratic

function. For the case of reflection, the lateral width increases approximately lin-

early with time after reflection, with a slope corresponding to lateral velocities of

30µm/ms for d0 = 67µm and 21µm/ms for d0 = 76µm. In the vertical direction,

two quadratic functions are required to fit the cloud trajectory. This implies that

the incident velocity towards the lattice potential is not equal to the exit velocity

after reflection. From the fitting we find that for d0 = 67µm the incident velocity

is 60µm/ms and the exit velocity is 45µm/ms, while for d0 = 76µm, the incident

velocity is 52µm/ms and the exit velocity is 45µm/ms. Generally, the initial launch-

ing velocity increases when the cloud approaches the surface. The reflection of the

cloud starts to occur at a certain launching velocity and becomes stronger over a

certain range of launching velocities and finally disappears for launching velocities

much larger than 70µm/ms.

(a) (b)

[    ] [    ]

[    ]

[    ]

Figure 5.12: Time evolution of (a) the lateral widths along y and (b) the vertical positions

of the ultracold atom cloud projected towards the magnetic lattice potential. Launching

positions d0 = 67µm (blue), 76µm (gold), 128µm (green) and 145µm (red). Fitted

curves (σ and d in µm, t in ms, gravitational acceleration g = 9.8µm/ms2) are (a) lateral

width σY = −46.15 + 30t (blue); σY = −20.08 + 21.4t (gold) and (b) vertical position:

d = −67.5 + 70t−0.5gt2 before reflection and d = −82.5 + 60(t+ 8.1)−0.5g(t+ 8.1)2 after

reflection (blue); d = −75.7 + 65t− 0.5gt2 before reflection and d = −82.5 + 60(t+ 7.8)−

0.5g(t+ 7.8)2 after reflection (gold); d = −130 + 52t− 0.5gt2 (green).
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No reflection is observed when the atom cloud is launched towards a region of

the magnetic film without the lattice structure. The cloud disappears almost imme-

diately when it touches the chip surface. From the above results, we conclude that

the reflection is caused by the magnetic lattice potential and the ultracold atom

cloud can interact with the short-range magnetic lattice potential. Further study of

the reflection dynamics from a sub-micron-period magnetic lattice is needed. For

example, we were not able to observe a diffraction signal from the 2D triangular

magnetic lattice as Günther et al. have done for the case of a 1D current-carrying

wire magnetic lattice [105,106].

5.4 Loading a 0.7µm-period triangular magnetic

lattice: preliminary results

After demonstrating the interaction between the ultracold atom cloud and the mag-

netic lattice potential, we are now in a position to investigate loading of atoms into

the 0.7µm-period triangular magnetic lattice. The optimised triangular magnetic

lattice potential is created with bias magnetic fields Bx = 0.50 G and By = 4.52 G.

In our experiment configuration, the loading procedure starts from a Z-wire trap

which requires a large bias field in the x-direction (Bx ∼ 50 G). In these preliminary

measurements, the Z-wire trapped ultracold cloud is transferred to the magnetic

lattice traps by ramping down the Z-wire current to zero and the bias field Bx to

various final values.

The lattice potential formed by the triangular lattice structure with a bias field

{Bx, By = 0, Bz = 0} is studied first. The created triangular lattice potential

pattern is quite robust for a range of various values of Bx. Figure 5.13 (b) shows

an example of a 2D contour plot for the 0.7µm-period triangular lattice structure

with Bx = 51.8 G. For this magnetic lattice, the traps are more elongated and

tighter than for the optimised triangular lattice, Fig. 5.13 (c). For a magnetic film

structure magnetised in the z-direction, the magnetisation can be modelled as a
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Figure 5.13: (a) The magnetic film pattern designed to create a triangular magnetic lattice

optimised for a trap distance of z = zmin = a/2 from the surface of the magnetic film,

where a is the lattice period. Blue regions represent the magnetic film and arrows represent

virtual currents circulating around the edges of the film structure. (b) Contour plot of

a triangular magnetic lattice potential with bias fields {Bx = 51.8 G, By = 0, Bz = 0};

a = 0.7µm; and zmin = 132 nm. Dark regions are trap minima. (c) Contour plot of the

optimised triangular magnetic lattice potential with bias fields {Bx = 0.50 G, By = 4.52,

Bz = 0}; a = 0.7µm; and zmin = a/2 = 350 nm. Magnetic film parameters: magnetisation

4πMz = 5.9 kG, film thickness tm = 10.34 nm.

virtual current circulating around the edges of the patterned structure, as indicated

by the arrows in Fig. 5.13 (a). A bias field Bx applied along the +x-direction can

cancel the magnetic field produced by the virtual current flowing along the vertical

red edge to create a periodic array of elongated magnetic traps aligned along the

long vertical red edges, Fig. 5.13 (b). On the other hand, a bias field By applied

along the +y-direction can cancel the magnetic field produced by the virtual current

flowing along the horizontal black edge to create a periodic array of magnetic traps

aligned along the short horizontal black edges, Fig. 5.13 (b). In general, a larger

Bx results in a lattice trapping plane closer to the magnetic film and hence creates

tighter traps with larger trap frequencies and barrier heights.

The formed magnetic lattice traps are located 132 nm from the magnetic film

surface for the Bx = 51.8 G case. The distance of the lattice trap position to the chip

surface d = zmin− (tAu+ tSiO2) becomes extremely small (∼ 60 nm) when taking the

75 nm thick coating layer (gold and silica) into account. Therefore, it is important to
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Figure 5.14: Calculated trapping potentials for 87Rb |F = 1,mF = −1〉 atoms trapped in a

0.7µm-period triangular magnetic lattice for various values of the bias field Bx. The black

dashed lines are the magnetic lattice potentials and the red solid lines include the Casimir-

Polder interaction with coefficient C4 = 8.2× 10−56 Jm4 for a silica surface. The vertical

gold lines indicate the position of the silica surface (z = 75 nm) used in the calculations.

study the effect of the Casimir-Polder interaction on the lattice trap potential in the

z-direction for various Bx. The calculations are presented in Figure 5.14, where the

Casimir-Polder coefficient is taken to be C4 = 8.2×10−56 Jm4 for a dielectric surface

of silica film (Sect. 2.7.2). According to these calculations, the trapping potential

for Bx = 51.8 G is very shallow, with the calculated trap depth ∆ECP/kB ∼ 1.5µK.

For Bx ≤ 26.4 G the trap centre is located at distances d > 130 nm from the chip

surface and the effect of the Casimir-Polder interaction is relatively small, so that the

effective depth of the lattice traps is determined by ∆Eeff ≡ ∆Ez. For Bx ≥ 40 G,

the trap distance d < 100 nm and the deformation of the lattice trap potential caused

by the Casimir-Polder interaction becomes significant, so that ∆Eeff ≡ ∆ECP .

The calculated trapping parameters for different Bx are listed in Table 5.2. The

calculated trap frequencies for these very tight magnetic lattice traps can be larger

than 1 MHz. In order to form a meaningful trap with these extreme frequencies, the

corresponding Larmor frequencies at the trap bottom BIP are also required to be

very high to avoid losses induced by Landau-Zener spin-flip transitions. In Table 5.2,

the calculated Larmor frequency is much larger than the lattice trapping frequency
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for the various bias fields Bx. Therefore, the permanent magnetic film structure can

create magnetic traps with trap frequency in megahertz regime.

Table 5.2: Calculated parameters for 87Rb |F = 1,mF = −1〉 atoms trapped in the

0.7µm-period triangular magnetic lattice including Casimir-Polder interaction, using the

parameters 4πMz = 5.9 kG, tm = 10.34 nm and C4 = 8.2 × 10−56 Jm4. zmin and d =

zmin− 75 nm are the distances of the trap minima from the magnetic film surface and the

chip surface, respectively; BIP is the trap bottom; ωL is the Larmor frequency at the trap

bottom; ω⊥, ω‖ are the trap frequencies perpendicular to and parallel to the elongated

traps; ω is the geometric mean trap frequency; ∆Ex,y, ∆Ez are the barrier height of the

magnetic potential in the x-y plane and z-direction, respectively; and ∆ECP is the barrier

height due to the effect of the Casimir-Polder interaction.

Bias field zmin(CP) d BIP ωL/2π ω⊥,‖/2π ω/2π ∆Ex,y/kB ∆Ez/kB ∆ECP/kB

Bx (G) (nm) (nm) (G) (kHz) (kHz) (kHz) (µK) (µK) (µK)

6.6 339 264 1.2 840 530, 81 283 264, 170 181 1518

8.9 310 235 1.6 1120 616, 93 328 359, 232 244 1429

13.7 267 192 2.5 1750 769, 114 407 559, 362 377 1243

26.4 203 128 4.5 3149 1093, 153 568 1106, 730 736 763

40.0 162 87 6.0 4199 1370, 180 696 1689, 1151 1142 289

51.8 132 57 5.3 3709 887, 111 444 2297, 1588 1563 1.5

The loading stage starts with a cloud of ∼ 5 × 105 87Rb |F = 1,mF = −1〉

atoms at ∼ 1µK prepared in the Z-wire trap located ∼ 670µm from the surface

with Iz = 37.6 A, Bx = 51.8 G. The cloud is first brought to about 100µm from the

chip surface by linearly ramping down the current Iz and Bx in 100 ms. In the next

step, Bx is kept constant and Iz is further ramped down, which brings the atoms

closer to the surface until the Z-wire trap merges smoothly with the magnetic lattice

traps located hundreds of nanometres from the chip surface. The ramping speed for

Iz is optimised so that it is sufficiently slow to prevent the Z-wire trapped atoms

acquiring enough momentum to penetrate the magnetic lattice potential and hit the

surface and to project them onto different magnetic states but not so slow that at

distances very close to the chip surface the atoms are lost by surface interactions

and sloshing. Loading of the magnetic lattice is performed using a range of bias
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fields Bx = 8.9, 13.7, 26.4, 40.0 and 51.8 G. For Bx = 51.8 G, there is no change

in Bx and the procedure involves simply ramping down Iz. For smaller Bx, it is

necessary to reduce both Bx and Iz in the first 100 ms.
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Figure 5.15: Reflection absorption images of 87Rb |F = 1,mF = −1〉 atoms (a) trapped

in the 0.7µm-period triangular magnetic lattice mid-way between the direct and mirror

images of the Z-wire trapped cloud, for Bx = 51.8 G; (b) trapped in the 0.7µm-period

triangular magnetic lattice only, for Bx = 13.7 G.

A search for atoms loaded in the magnetic lattice is made by rapidly ramping

up Iz again to bring the Z-wire trapped cloud further from the surface and taking

an in situ image. A typical reflection absorption image is shown in Fig. 5.15 (a)

for Bx = 51.8 G. The clouds at the bottom and top of the figure are the direct and

mirror images of the atoms remaining in the Z-wire trap, while the smaller cloud in

the middle is attributed to atoms trapped in the magnetic lattice very close to the

chip surface. The direct and mirror images of the lattice trapped cloud cannot be

resolved owing to their very small (∼ 0.2µm) separation and atoms in individual

lattice sites (separated by 0.7µm) are not resolved because of the limited resolution

of the imaging system. Similar images of the small atom cloud trapped very close

to the chip surface are observed for the other values of the bias field Bx.

The small atom cloud trapped in the middle remains when the Z-wire current

Iz is completely turned off (as shown in Fig. 5.15 (b) for Bx = 13.7 G). When Iz

is quickly reduced to zero the Z-wire trapped atoms are projected vertically to hit

the chip surface and are removed. The remaining atoms are only trapped in the

magnetic lattice traps. We estimate from the absorption images that ∼ 2 × 104
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atoms are trapped in the magnetic lattice, initially in an area of 170µm × 11µm

containing about 3000 lattice sites (0.7×0.7µm2 per lattice site), which corresponds

to N site ≈ 6 atoms per site. The total number of trapped atoms represents a loading

efficiency of about 4%.
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Figure 5.16: (a) Decay curve for atoms trapped in the 0.7µm-period triangular magnetic

lattice for Bx = 13.7 G. The blue solid line is a single exponential fit to the data corre-

sponding to τ = 1.24 ± 0.07 ms. Time zero is chosen arbitrarily. (b) Measured lifetimes

(black points) of atoms trapped in the magnetic lattice versus distance z of the lattice

trap centre from the magnetic film surface. The Bx values (in G) are shown and the error

bars are 1σ statistical uncertainties.

The lifetime of the atoms trapped in the magnetic lattice is measured by recording

the number of remaining atoms versus different holding times for a range of bias

fields Bx, and hence for a range of distances z = zmin from the magnetic film

surface. Figure 5.16 (a) shows a typical decay curve for Bx = 13.7 G. Within our

detection sensitivity, the decay curves are well fitted with a single exponential, with

lifetimes varying from 0.43 ± 0.06 ms for Bx = 51.8 G to 1.69 ± 0.11 ms for Bx =

8.9 G (Table 5.4). These lifetimes are much longer than the corresponding lattice

trap periods (1-3µs), and they are found to increase approximately linearly with

distance d = z − (tAu + tSiO2) from the chip surface over the range of investigation

(Fig. 5.16 (b)).

To interpret the short measured lifetimes and their approximately linear increase

with distance d, we consider the following possible atom loss mechanisms:

(1) Adiabatic compression. According to our previous analysis (Sect. 5.2.1), when
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the ultracold atoms are transferred from the Z-wire trap to the very tight magnetic

lattice traps, they are heated by adiabatic compression. The geometric mean trap

frequency of the Z-wire trap is measured to be ωZtrap/2π = 113 Hz (Bx = 51.8 G),

96 Hz (Bx = 26.4 G) and 87 Hz (Bx = 13.7 G). Because of the much larger geometric

mean trap frequency of the magnetic lattice traps, Table 5.2, the compression will

introduce a significant heating of the cloud, from an initial temperature T ≈ 1µK

to ∼ 3 mK (Bx = 13.7 G) and ∼ 4 mK (Bx = 26.4 G). Atoms with energies higher

than the effective trap depth, ∆Eeff = min{∆Ez,∆ECP}, rapidly escape the traps,

resulting in a sudden truncation of the high energy tail of the Boltzmann distribu-

tion.

(2) Surface-induced thermal evaporation. After the sudden truncation, the re-

maining more energetic atoms that populate the edge of the lattice traps with ener-

gies comparable to ∆Eeff can rapidly overcome the trap barrier in the z-direction

and become lost from the traps or spill over into neighbouring lattice traps. The

escaped atoms carry away energy greater than the average energy per atom from

the trap, and the remaining cloud reaches equilibrium at a lower temperature T ≈

∆Eeff/(ηkB), where η is the truncation parameter. The surface evaporation loss

rate is large at the beginning of the evaporation and then gradually decreases as the

evaporation proceeds.

The lifetime for surface-induced thermal evaporation is given by τev = τel/[f(η)e−η]

[55], where τel = [n0σelvrel]
−1 is the elastic collision time, and n0 = Nsite

(2π)3/2

(
M
kBT

)3/2

ω3

is the peak atom density in the magnetic lattice traps. According to this model, τev

scales as ∆Eeff/
[
ω3N siteηf(η)e−η

]
, where the truncation parameter η is assumed

to remain constant. For decreasing Bx ≤ 26.4 G (where ∆Eeff ≡ ∆Ez), the trap

minima move away from the chip surface and ω−3 increases at a faster rate than

∆Ez decreases, so that τev exhibits an almost linear increase with increasing distance

d from the chip surface. On the other hand, for increasing Bx > 26.4 G (where

∆Eeff ≡ ∆ECP ), the trap minima move very close to the chip surface and ∆ECP

and ω−3 both decrease together with decreasing d, resulting in a sharp decrease in

τev (Table 5.2).
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A reasonable fit, as shown in Fig. 5.17 (a), requires N site ≈ 2 and η ≈ 4.4. The

value N site = 2 is smaller than the estimated initial value N site ≈ 6 which could be

due to atoms initially spilling over into neighbouring lattice sites or the initial atom

number being about three times smaller than the measured value (∼ 2× 104). The

fitted curve (red solid line) represents the measurements well for distances to the

magnetic film surface z larger than 200 nm. However, the fitted curve deviates from

the measurements when the lattice traps approach the surface (z < 200 nm). This

deviation occurs at a position where the effect of the Casimir-Polder interaction

starts to dominate. The calculated lifetime is very sensitive to the distance d from

the chip surface at these very small distances due to the Casimir-Polder interaction.
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Figure 5.17: The measured lattice lifetimes are fitted with the model of surface-induced

thermal evaporation. The red curve shows the calculated evaporation lifetime τev for (a)

N site = 2, η = 4.4 and the fixed parameters given in Table 5.2. (b) N site = 2, η = 4.4,

offset δd = 25 nm and the fixed parameters given in Table 5.3.

To obtain a better fit at very small distance d requires either the calculated

C4 = 8.2 × 10−56Jm4 to be smaller by an order of magnitude or the calculated

distances of the trapped atoms from the chip surface d = zmin − (tAu + tSiO2) to be

larger by an offset δd ≈ 25 nm. The above C4 value is expected to be accurate to

within ∼ 40% based on the level of agreement between the calculated C4 value and

the measured value for a dielectric sapphire surface film [168]. An offset value of

δd = 25 nm is within the estimated uncertainty (+40
−30 nm) in d = zmin − (tAu + tSiO2)

for Bx = 40 G and 51.8 G, which has a contribution from a systematic error of
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about +10 nm due to the effect of the 25 nm-deep etching of the magnetic film and

estimated uncertainties in tAu + tSiO2 (±5 nm), zmin (±25 nm) and the effect of the

estimated uncertainty in C4 (±2 nm). Introducing an offset δd = 25 nm for the

distance d = zmin − (tAu + tSiO2) of the lattice traps from the chip surface gives

∆ECP/kB = 655µK for Bx = 51.8 G, as shown in Figure 5.18.
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Figure 5.18: Calculated trapping potentials for 87Rb |F = 1,mF = −1〉 atoms trapped

in a 0.7µm-period triangular magnetic lattice for various values of the bias field Bx by

introducing an offset δd = 25 nm.

Table 5.3: Calculated parameters for 87Rb |F = 1,mF = −1〉 atoms trapped in the

0.7µm-period triangular magnetic lattice, for 4πMz = 5.9 kG, tm = 10.34 nm, C4 =

8.2× 10−56 Jm4 and offset parameter δd = 25 nm. The distance of the trap minima from

the chip surface is d = zmin − (tAu + tSiO2) + δd = zmin − 50 nm.

Bias field zmin(CP) d BIP ωL/2π ω⊥,‖/2π ω/2π ∆Ex,y/kB ∆Ez/kB ∆ECP/kB

Bx (G) (nm) (nm) (G) (kHz) (kHz) (kHz) (µK) (µK) (µK)

6.6 339 289 1.2 840 532, 82 285 264, 170 181 2348

8.9 310 260 1.6 1120 618, 94 330 359, 232 244 2258

13.7 267 217 2.5 1750 772, 115 409 559, 362 376 2072

26.4 203 153 4.7 3289 1097, 153 569 1104, 729 731 1584

40.0 163 113 6.7 4689 1405, 185 715 1703, 1155 1118 1075

51.8 139 89 8.2 5738 1657, 207 828 2233, 1554 1465 655

The calculated trap parameters for different bias fields Bx with δd = 25 nm are

listed in Table 5.3. Based on these calculations and with fitted parameters N site = 2,
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η = 4.4, the calculated lifetime τev (solid red curve) in Fig. 5.17 (b) is well fitted to

the measurements. The model clearly shows the turning point (d ≈ 110 nm from the

chip surface) where the Casimir-Polder interaction becomes dominant. The atoms

can be trapped as close as ∼ 90 nm from the chip surface due to the extremely high

trap frequency produced by the magnetic lattice.

(3) 3-body recombination. A second possible loss process is 3-body recombina-

tion in the very tight magnetic lattice traps. This rapid loss process is expected

to occur at the very beginning of the loading process before recording the atom

number remaining in the lattice traps. The lifetime for (non-exponential) decay by

3-body recombination can be estimated from τ3b = 1/(K3n
2
0), where K3 = 4.3(1.8)×

10−29 cm6/s for non-condensed 87Rb |F = 1,mF = −1〉 atoms [113]. Thus, τ3b scales

as ∆E3
eff/

[
ω6N

2

siteη
3
]
. For deceasing Bx < 40 G (for δd = 25 nm) (or Bx < 26.4 G

for δd = 0 nm), the trap minima move away from the chip surface and ∆E3
eff

deceases at about the same rate as ω−6 increases (Table 5.3 for δd = 25 nm and Ta-

ble 5.2 for δd = 0 nm), so that τ3b remains almost constant for distances z > 170 nm

(for δd = 25 nm) (or z > 210 nm for δd = 0 nm). For increasing Bx ≥ 40 G (for

δd = 25 nm) (Bx ≥ 26.4 G for δd = 0 nm), the trap minima move very close to the

chip surface and ∆E3
eff and ω−6 both decrease strongly together with decreasing z,

resulting in a rapid decease in τ3b.

In Figure 5.19, we show this changing behaviour for N site = 2, η = 4.4. The

flat shape for “lifetime” for 3-body recombination τ3b versus distance is different

to the observed linearly dependence of lifetime versus distance (Fig. 5.16 (b)), and

therefore it is unlikely that 3-body loss is contributing to the measured lifetime.

But in reality, the 3-body loss should only be suppressed for N site = 2 since the

hopping allows some 3-body recombination for N < 3. An average of two atoms

per lattice site over the occupied lattice is consistent with the end-product of rapid

3-body recombination prior to the final equilibration stage, leaving 0, 1 or 2 atoms

on any given site. The lifetime of the lattice trap mainly depends on the relatively

long exponential decay curve (Fig. 5.16 (a)) due to the surface-induced thermal

evaporation loss when N site ≈ 2 is reached.
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Figure 5.19: Calculated 3-body recombination lifetime τ3b for N site = 2, η = 4.4, δd =

0 nm (purple curve) and N site = 2, η = 4.4, δd = 25 nm (blue curve).

Table 5.4: Measured magnetic lattice trap lifetimes τexp for a range of bias fields Bx and

the calculated lifetimes for different loss processes. τs and τev are the spin-flip lifetime and

the lifetime for surface-induced thermal evaporation, respectively.

Bx (G) τexp (ms) τs (ms)

N site = 2, η = 4.4

τev (ms) τev (ms)

(δd = 0 nm) (δd = 25 nm)

6.6 254 1.87 1.83

8.9 1.69± 0.11 210 1.62 1.59

13.7 1.24± 0.07 150 1.31 1.29

26.4 0.90± 0.06 80 0.94 0.93

40 0.78± 0.11 50 0.20 0.69

51.8 0.43± 0.06 30 0.004 0.27

(4) Spin flips due to Johnson noise. Another possible loss process can result from

spin-flips caused by Johnson magnetic noise. For tAu = 50 nm thick gold layer on

top of the magnetic film, we obtain spin-flip lifetimes that are much longer than the

measured lattice trap lifetimes, for example, τs = 50 ms and 250 ms for d = 110 nm

and 290 nm, respectively, see Table 5.4.
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The above discussion suggests that the short lifetimes (0.4 - 1.7 ms) of the atoms

trapped in the 0.7µm-period triangular magnetic lattice at distances d = 90 - 260 nm

from the chip surface are limited mainly by losses due to surface-induced ther-

mal evaporation following transfer of atoms from the Z-wire trap to the very tight

magnetic lattice traps, rather than by fundamental loss processes such as 3-body

recombination or spin-flips due to Johnson magnetic noise.

5.5 Summary

The chapter described experiments on a 0.7µm-period triangular magnetic lattice

which is a possible candidate for conducting quantum tunnelling experiments in a

magnetic lattice. Since the lattice traps for a sub-micron-period magnetic lattice are

normally located only a few hundred nanometres from the magnetic film surface,

the atom-surface interactions were studied prior to loading atoms into the magnetic

lattice traps. In the experiment, we found that the atom loss introduced by the

Casimir-Polder interaction appears at about 5µm from surface for a condensate in

a Z-wire trap. The interaction of ultracold atoms with the 0.7µm-period magnetic

potential was then studied by the atom cloud reflection dynamics. The observa-

tion of half-moon-shaped reflected clouds is consistent with the existence of a weak

sinusoidal magnetic potential pattern in the lattice plane. Finally, preliminary re-

sults for loading 87Rb atoms into the 0.7µm-period triangular magnetic lattice were

presented. The measured trap lifetimes are in the range 0.4 - 1.7 ms for bias fields

Bx = 52 - 9 G. To interpret these short lifetimes, possible atom loss mechanisms

were discussed. Our model suggests that surface-induced thermal evaporation is the

major limitation, rather than 3-body losses or spin-flips due to Johnson magnetic

noise. It should be feasible to overcome surface-induced thermal evaporation losses

by improving the transfer of atoms from the Z-wire trap to the very tight magnetic

lattice traps, for example, by loading the atoms from a magnetic trap with higher

trap frequency.



110 Loading atoms into the 0.7µm-period triangular magnetic lattice



CHAPTER 6

Summary and future directions

6.1 Summary

In this thesis, I have reported the design, fabrication and testing of sub-micron

period 2D magnetic lattice structures on a Co/Pd multi-atomic layer magnetic film

for ultracold atom experiments. This patterned film is integrated onto a current-

carrying wire atom chip to form a hybrid chip device. The original result of the

thesis is the trapping of ultracold 87Rb atoms in a 0.7µm-period triangular magnetic

lattice at estimated distances down to about 100 nm from the atom chip surface and

at trap frequencies as high as 800 kHz. This result represents new territory for

trapping ultracold atoms.

In chapter 2 theoretical background relevant to the experiments described in this

thesis was briefly introduced. This included the basic theory of magnetic trapping,

runaway evaporation and the properties of Bose-Einstein condensation, and the

atom-surface interactions including both Johnson noise and the attractive Casimir-

Polder interaction.

Chapter 3 described the fabrication of the sub-micron period 2D magnetic lattice

structures and the construction of the hybrid magnetic lattice atom chip. High

quality magnetic lattice structures with a period down to 0.7µm were patterned on
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a multi-atomic layer Co/Pd magnetic film with an optimised procedure of electron-

beam lithography and reactive ion etching. It includes 0.7µm-period square and

triangular lattices and 0.7µm- and 5µm-period 1D lattices. In addition, a current-

carrying wire structure which contains four U-wires and four Z-wires was fabricated

based on a direct bonded copper (DBC) substrate for the preparation of the initial

ultracold cloud.

In the chapter 4 the experimental setup and the experimental procedure for rou-

tinely producing a BEC or ultracold atom cloud in a Z-wire trap were described. The

Z-wire trap is usually located ∼ 670µm below the chip surface, where the magnetic

field from the magnetic lattice structure is negligible. Time of flight measurements

and RF spectroscopy were used to characterise the properties of the condensate and

the ultracold thermal cloud.

In chapter 5 the interactions between the Z-wire trapped atoms and the new

hybrid magnetic lattice chip surface was first studied at short distances (∼ 1 -

20µm) before loading the magnetic lattice traps. For distances d > 10µm, the

measured trap lifetime is constant (∼ 25 s) and independent of the distance but

reduces rapidly and becomes distance-dependent when d < 10µm due to the at-

tractive Casimir-Polder interaction. This has been confirmed by measurements of

the remaining atom fraction versus distance d. Next, the interaction between the

ultracold atoms and the short-range magnetic potential located about 100 nm from

the chip surface is checked by observing the reflection dynamics. The observation

of half-moon-shaped reflected clouds confirms that the magnetic potential pattern

created by the triangular magnetic structure is consistent with the expected sinu-

soidal corrugations in the xy-plane. In the final section, the results for loading

the 0.7µm-period triangular magnetic lattice were presented. The measured short

lifetimes (0.4-1.7 ms) of the lattice traps at various distances (90-260 nm) from the

chip surface is fitted well by a surface-induced thermal evaporation model. Our

analysis suggests that the trap lifetimes are currently limited mainly by losses due

to surface-induced thermal evaporation following transfer of the atoms from the

Z-wire trap to the very tight magnetic lattice traps, rather than by fundamental
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processes such as surface interactions, 3-body recombination or spin flips caused by

Johnson magnetic noise.

6.2 Future directions

The current lifetimes (∼ 1 ms) of the trapped atoms need to be increased at least

one order of magnitude to enable quantum tunnelling which is typically about 10 ms

(Sect. 2.6.2) for a 0.7µm-period magnetic lattice. The surface-induced thermal evap-

oration is the main limiting factor based on our calculations. For the same atom

number per lattice site, for example N site = 2, the estimated evaporation lifetime

τev is determined by the temperature of the cloud which is not a fundamental limit.

It should be feasible to overcome the losses by loading the atoms from a magnetic

trap with higher trap frequency. Trap frequencies as high as 5 kHz [55] or even tens

of kilohertz [169] have previously been achieved for a current-currying conductor mi-

crotrap on an atom chip. This can significantly reduce the heating due to adiabatic

compression. For example, if we choose ωr/2π = 20 kHz, ωax/2π = 20 Hz and an

optimised 0.7µm-period triangular magnetic lattice, the resulting heating reduces

from a 1000 times to 100 times. Another improvement is that the Casimir-Polder

interaction can be compensated at about 400 nm (Sect. 2.7.2) with such a high trap

frequency. We can expect the atom loss due to the Casimir-Polder interaction to be

small during the loading process. For a condensate initially prepared at temperature

T ≈ 100 nK, the temperature can increase to ∼ 10µK after loading lattice traps.

The truncation parameter is η ≈ 10 in this case since ∆Ez ≈ 96µK (Sect. 5.2.1).

Our model suggests that the surface-induced thermal evaporation lifetime can in-

crease to τev ≈ 300 ms, which is very promising for quantum tunnelling. In order to

drive the system through the quantum transition from the superfluid regime to the

Mott-insulator regime, the barrier height needs to be precisely ramped over about

20 mG. This requires that the bias fields and stray DC and AC magnetic fields need

to be precisely controlled to within about 1 mG. As demonstrated in chapter 3, the

quality of the fabricated magnetic lattice structure is very high and the imperfections
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in the periodicity are about 1%. The kind of effects this can introduce to quantum

tunnelling requires further studies. In conclusion, quantum tunnelling should be pos-

sible in a 0.7µm-period magnetic lattice without fundamental limitations although

it will be experimentally very challenging.

Recently, a proposal to simulate lattice spin models based on long-range inter-

acting Rydberg atoms trapped in a magnetic lattice with large period (∼ 3µm)

has been reported [170]. The capability to produce a large-period magnetic lattice

structure is one advantage compared to the widely used optical lattices. In addition,

the large periods reduce adiabatic compression heating and increase the evaporation

lifetime τev and suppress 3-body losses accordingly. A ten-times thicker magnetic

film would be suitable for this experiment because it can produce enough trap bar-

rier height for a 3µm-period magnetic lattice. A main concern here is that the

inhomogeneous electric fields produced by the adsorbed atoms on the chip surface

can perturb the nearby Rydberg atoms [171]. This perturbation should be very

small when atoms are prepared in nS Rydberg states due to their small differential

electric polarisability [170]. The Amsterdam group has demonstrated loading 87Rb

|F = 2,mF = +2〉 atoms into a 10µm-period 2D magnetic lattice with a lifetime of

about 1 s [118]. Longer lattice trap lifetimes are expected for 87Rb |F = 1,mF = −1〉

atoms which have a smaller 3-body recombination rate [113, 114]. This is another

promising research direction for the future.
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phase transition from a superfluid to a Mott insulator in a gas of ultracold

atoms. Nature, 415:39, 2002. (Cited on pages 3 and 25.)

[16] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson

localization and the superfluid-insulator transition. Phys. Rev. B, 40:546, 1989.

(Cited on pages 3 and 24.)
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