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ABSTRACT
We explore the phenomenon commonly known as halo assembly bias, whereby dark matter
haloes of the same mass are found to be more or less clustered when a second halo property is
considered, for haloes in the mass range 3.7 × 1011–5.0 × 1013 h−1 M�. Using the Large Suite
of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and
find that a clustering bias exists if haloes are binned by mass or by any other halo property.
This secondary bias implies that no single halo property encompasses all the spatial clustering
information of the halo population. The mean values of some halo properties depend on their
halo’s distance to a more massive neighbour. Halo samples selected by having high values
of one of these properties therefore inherit a neighbour bias such that they are much more
likely to be close to a much more massive neighbour. This neighbour bias largely accounts
for the secondary bias seen in haloes binned by mass and split by concentration or age.
However, haloes binned by other mass-like properties still show a secondary bias even when
the neighbour bias is removed. The secondary bias of haloes selected by their spin behaves
differently than that for other halo properties, suggesting that the origin of the spin bias is
different than of other secondary biases.

Key words: methods: numerical – galaxies: formation – galaxies: haloes – dark matter – large-
scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Halo assembly bias is the phenomenon found in cosmological N-
body simulations that the clustering of dark matter haloes depends
on halo properties other than mass. Detected by Sheth & Tormen
(2004) and Gao, Springel & White (2005) for a measure of halo age
it was soon realized that this clustering dependence not only exists
for various measurements of halo age (Gao, Springel & White 2005;
Wechsler et al. 2006; Gao & White 2007; Wang, Mo & Jing 2007;
Li, Mo & Gao 2008) but also for concentration (Wechsler et al.
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2006; Gao & White 2007; Faltenbacher & White 2010; Lazeyras,
Musso & Schmidt 2017; Villarreal et al. 2017), spin (Gao &
White 2007; Faltenbacher & White 2010; Lacerna & Padilla 2012;
Lazeyras et al. 2017; Villarreal et al. 2017), halo shape (Faltenbacher
& White 2010; Lazeyras et al. 2017; Villarreal et al. 2017), and the
amount of substructure in the halo (Wechsler et al. 2006; Gao &
White 2007). These varying measurements have collectively been
termed assembly bias (Croton, Gao & White 2007) because the
original result involving age showed that halo clustering is biased
with respect to halo assembly history. Thus, it is often assumed
that the reason other halo properties show clustering dependences
is because those properties are correlated with the halo’s assem-
bly history. However, some properties that do not correlate strongly
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with assembly history (e.g. spin) display a strong bias signal at fixed
mass, while other properties that are directly related to the history
(e.g. the scale of the last major merger) do not (Li et al. 2008),
making it unclear if that assumption is warranted.

The reason halo assembly bias is of interest, besides for un-
derstanding the growth and properties of dark matter haloes, is
that it questions assumptions that have traditionally been made
by statistical models that connect the clustering of dark matter to
the clustering of galaxies. There are a number of methodologies
used to make this connection, such as the halo occupation distribu-
tion (HOD; e.g. Peacock & Smith 2000; Scoccimarro et al. 2001;
Berlind & Weinberg 2002; Cooray & Sheth 2002; Berlind et al.
2003; Zu & Mandelbaum 2015, 2016), the conditional luminosity
function (CLF; e.g. van den Bosch, Yang & Mo 2003; Yang, Mo
& van den Bosch 2003) and subhalo abundance matching (SHAM;
e.g. Vale & Ostriker 2004; Conroy, Wechsler & Kravtsov 2006).
Regardless of the methodology used, all these techniques share the
common feature that they connect galaxies to dark matter haloes
through a simple parametrization instead of a full physical model of
galaxy formation. The parametrization is then tested by comparing
galaxy clustering in the model to the observed clustering of galaxies
(and/or galaxy–galaxy lensing). Traditionally, the parametrization
of these models is based solely on halo mass (or a single mass-like
parameter) in part because it was believed that the clustering of dark
matter haloes only depends on their mass (although SHAM models
also implicitly account for the bias with respect to substructure).
Halo assembly bias undermines the rationale for this assumption,
questioning the suitability of the entire approach.

Galaxies are connected to dark matter haloes in some way, thus
there is some HOD/CLF/SHAM model that correctly describes our
Universe. The main issue then is how complicated is that connection.
Most SHAM models allow for mass stripping of subhaloes as they
move through a halo by a simple global offset for subhalo masses
(Vale & Ostriker 2006; Weinberg et al. 2008), by using halo masses
at the time of accretion (e.g. Conroy et al. 2006; Simha et al. 2012),
or by using another quantity such as peak circular velocity that is
less strongly affected by tidal stripping (e.g. Reddick et al. 2013).
The following three classes of galaxy–halo models can be used to
describe their different levels of complexity.

(i) Traditional - the statistics of a halo’s galaxy population depend
only on halo mass. This applies to most HOD and CLF models, as
well as halo abundance matching models that ignore subhaloes.

(ii) Simple - a halo’s galaxy population depends on only one halo
property, but it is not necessarily mass. This applies to most SHAM
models.

(iii) Complex - a halo’s galaxy population depends on more than
one halo property. This applies to extensions to the HOD or SHAM,
like the ‘decorated HOD’ (Hearin et al. 2016), ‘environment depen-
dent HOD’ (McEwen & Weinberg 2016), ‘age matching’ models
(Hearin & Watson 2013), or the generalized SHAM model with
adjustable concentration dependence of Lehmann et al. (2017).

With this language, we see that one issue raised by halo assembly
bias is whether the galaxy–halo connection can be parametrized in
a simple manner or whether a more complex parametrization is re-
quired. We emphasize that the existence of halo assembly bias does
not in and of itself contradict the assumption of traditional HOD,
CLF or SHAM. It is possible that halo clustering depends in a com-
plex way on many halo properties, but that the galaxy population in
a halo only depends on halo mass. Analytic or semi-analytic mod-
els of galaxy formation suggest that other halo properties besides
mass play a secondary role in the galaxy formation process, but it

is possible that more complex treatments find that this is not the
case. Alternatively, it is possible that some halo properties affect
some galaxy properties but leave others unchanged. For example,
halo formation time may affect a galaxy’s current star formation
rate, but not its total mass in an appreciable way. Moreover, halo
properties may affect galaxy properties but to an extent that is too
small to change the clustering of galaxy properties at a measurable
level. Whether an HOD or other methodology needs to be tradi-
tional, simple, or complex is also a function of the data set and the
questions being asked.

In this paper, we explore halo assembly bias in a large suite of
cosmological simulations with a goal of better understanding its
causes. We generalize the concept of assembly bias by not just
considering how the clustering of haloes in a bin of mass depends
on other halo properties, but how the clustering of haloes binned
by any halo property depends on other halo properties. We call
this ‘secondary bias’ (Mao, Zentner & Wechsler 2017). We then
study how halo properties depend on a halo’s distance from a more
massive neighbour. This dependence implies that when haloes are
selected by some secondary properties, a ‘neighbour bias’ is created
whereby these haloes are much more likely to be near more massive
haloes. We show that if this neighbour bias is controlled for, then
haloes binned by mass have almost no secondary bias with age or
concentration.

The paper is organized as follows. In Section 2, we describe
our simulations and halo catalogs. In Section 3, we discuss our
methodology for studying secondary bias. In Section 4, we look at
generalizations of assembly bias binning and then splitting haloes
based on different halo properties. In Section 5, we explore how
halo properties depend on distance from a massive neighbour and
how this dependence is related to clustering biases. We conclude in
Section 6.

2 T H E S I M U L AT I O N S

We study simulated haloes from the Large Suite of Dark Matter
Simulations (LasDamas) project1. LasDamas consists of a series
of cosmological N-body simulations run in four boxes of varying
sizes and mass resolutions. All boxes in the current phase of Las-
Damas use a �CDM cosmological model based on the Planck satel-
lite’s measurements (Planck Collaboration XVI 2014): �m = 0.302,
�� = 0.698, �b = 0.048, h = 0.681, σ 8 = 0.828, ns = 0.96.

In this paper, we focus on one of the highest resolution boxes,
Consuelo. This run is a periodic cube with a side length of
L = 420 h−1Mpc that contains Np = 14003 particles of mass,
mp = 1.87 × 109 h−1 M�. The gravitational force softening is
εg = 8 h−1kpc. We use 48 realizations of this box with different
initial perturbations, which gives us a much larger effective volume
and allows us to measure box-to-box variations.

The initial power spectrum of density fluctuations was computed
using CAMB (Antony & Challinor 2011). An initial density field at
z = 99 was generated and initial positions and velocities computed
for the particles using the 2LPT code (Scoccimarro 1997). 2LPT com-
putes initial conditions using second-order Lagrangian perturbation
theory. This method is more accurate than the traditional Zel’dovich
approximation because it accounts for very early non-linear gravi-
tational evolution, which can have a significant impact on the prop-
erties of the highest density peaks. 2LPT initial conditions have been

1 http://lss.phy.vanderbilt.edu/lasdamas/
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tested extensively by Sefusatti et al. (2006). Once the initial posi-
tions and velocities were generated, the gravitational evolution was
performed using the publicly available GADGET-2 code (Springel
2005). We only used collisionless dark matter particles and utilized
its TREEPM functionality to speed computation and increase the long
range force accuracy.

We used the software package ROCKSTAR version 0.99.9 (Behroozi,
Wechsler & Wu 2013a) to identify haloes. The haloes were defined
as spherical overdensities with a mean virial density as defined
by Bryan & Norman (1998) and unbound particles were not re-
moved. Merger trees were created using the CONSISTENT TREES pack-
age (Behroozi et al. 2013b) tracking each halo’s history through the
simulation.

In this paper, we make use of the following halo properties at
redshift zero.

(i) The halo mass Mh.
(ii) The maximum circular velocity Vmax.
(iii) The halo concentration cvir, measured using the method de-

scribed by (Klypin, Trujillo-Gomez & Primack 2011). This uses
measurements of the halo’s maximum circular velocity and virial
radius instead of fitting an NFW profile (Navarro, Frenk & White
1996) to the halo density distribution because those quantities can
be measured more robustly. Then, through linear interpolation one
solves:

cvir

f (cvir)
= V 2

max

Rvir

GMh

2.1626

f (2.1626)
, (1)

where f(x) is given by:

f (x) ≡ ln(1 + x) − x

1 + x
. (2)

If the halo density profile is well fit by an NFW then this will
give identical results as a fit to the profile, but for haloes poorly
fit by the profile this method gives more reasonable values of cvir.
We have found in the course of this work that an early version of
ROCKSTAR gave a different value for the relative bias of haloes when
split by NFW-fitted concentrations. However, the bias when split by
Vmax-based concentration is consistent across versions of ROCKSTAR.
Thus, one is cautioned that the details of how haloes are found and
properties are fit may play a role in this type of analysis.

(iv) The halo spin, λ, is calculated as defined in Bullock et al.
(2001a):

λ = ‖J‖√
2MhVvirRh

, (3)

where J is the halo angular momentum and Vvir is the circular
velocity at the halo’s virial radius, Rh.

Furthermore, since we have merger trees that trace each halo back
through all previous saved time-steps, we also have the following
properties of halo histories.

• The peak mass Mpeak, which is the highest value of Mh in a
halo’s history.

• The peak maximum circular velocity Vpeak, which is the highest
value of Vmax in a halo’s history.

• The redshift at which the halo first achieves Mpeak, which we
denote as zpeak. Note that if a halo stops growing, then zpeak will be
the redshift where it first attains its z = 0 halo mass.

• The redshift when a halo had its last major merger (a merger
of ratio 1:3 or greater), which we denote by zlmm.

Table 1. The total number of haloes in our 48 simulation boxes that are
above the cut used for different samples. We consider samples determined
by the z = 0 halo mass and maximum circular velocity, as well as by the
peak halo mass or circular velocity in a halo’s history.

Halo property Cut used Number of haloes

Mh Mh > 3.74 × 1011 h−1 M� 33.1 million
Vmax Vmax > 130 km s−1 31.7 million
Mpeak Mpeak > 5.0 × 1011 h−1 M� 30.0 million
Vpeak Vpeak > 160 km s−1 25.4 million

• The halo’s dynamical time averaged accretion rate, Ṁτdyn . A
halo’s dynamical time is defined by:

τdyn = 1√
Gρh

∼ 3 Gyr. (4)

Because of the spherical overdensity halo definition this is a mass-
independent property.

leftmvirgvin=* The halo age, defined as the redshift at which
the halo accreted half of its peak mass, which we denote by z1/2.

We only study distinct haloes; no subhaloes (defined as haloes
whose centres are within another halo’s Rvir) are included in any of
the analysis.

While some halo properties, like mass, are well determined with
just a hundred particles, other properties may require many more
particles before they can be reliably determined. Klypin et al. (2015)
claim that the mass and velocity functions converge with only 50
particles per halo. Oñorbe et al. (2014) show that for many prop-
erties one needs 1000 particles to ensure that the properties only
exhibit small changes when they are resimulated at higher resolu-
tion, while for halo spin this is as much as 10 000 particles (Benson
2017). However, for this study it is not critical that we accurately
resolve these quantities because we are for the most part just using
them to make high- and low-quartile subsamples. For example, sup-
pose we wish to identify the highest quartile of concentrations in a
mass bin. While errors in measuring the concentration may scatter
some haloes in and out of this quartile, as long as the errors are
smaller than the intrinsic spread in concentration this will not affect
a large fraction of haloes. Errors will only cause a weakening of the
assembly bias signal. We consider haloes with at least 200 particles
when using a halo mass or Vmax selected sample. This corresponds
to a minimum halo mass of Mh ≥ 3.74 × 1011 h−1 M� or a mini-
mum maximum circular velocity of Vmax ≥ 130 km s−1. However,
we also consider samples selected by their peak mass or Vpeak value.
In those cases we choose our cuts so that 98.5 per cent of the haloes
have more than 100 particles and 99.5 per cent have more than 50
particles at z = 0. Thus, any errors introduced by underresolved
haloes will contribute very little to the overall results. With those
cuts, we have Mpeak ≥ 5.0 × 1011 h−1 M� and Vpeak ≥ 160 km s−1.
Table 1 shows the values of these cuts and the resulting number of
haloes when each cut is made. One can see that for all cuts there are
more than 25 million haloes in the 48 simulation boxes that we use.

3 R E L AT I V E B I A S

In order to study secondary bias, we will be primarily looking at
the relative bias of different subsets of haloes. The relative bias is
just the square root of the ratio of two correlation functions; we
use CORRFUNC2 (Sinha & Garrison 2017) to compute all correlation

2 https://github.com/manodeep/Corrfunc
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Figure 1. Clustering of old versus young haloes at fixed mass. The top panel
shows the two-point correlation function of the oldest 25 per cent (red line),
youngest 25 per cent ( blue line), and all haloes (black line) in the narrow
mass range 2.7–3.4 × 1012 h−1 M�. The bottom panel shows the square
of the relative bias function for the 25 per cent oldest and youngest haloes,
where the relative bias is defined by equation (5). Dotted horizontal lines
show the bias values for the two samples, averaged over all scales. In both
panels, results are averaged over 48 simulation boxes and error bars show
the uncertainly in the mean as estimated from the standard deviation among
the boxes. Old haloes are clearly more clustered than young haloes at fixed
mass. Moreover, we can see that the relative bias is weakly dependent on
the distance between haloes. We choose to focus on a range of 6–8 h−1 Mpc
(illustrated by the shaded region), where the relative bias function is fairly
flat. We have checked both larger and smaller scales and find that none of our
conclusions depend on the scales over which the relative bias is measured.

functions. One way of quantifying assembly bias is to measure the
relative bias of a subset of haloes, selected by some halo property,
compared to all haloes with the same mass. For some property S,
this can be expressed as,

b2
S(r|Mh, S) = ξ (r|Mh, S)

ξ (r|Mh)
. (5)

Note that bS for all haloes of a given mass is 1.0 by definition and
is not equal to the bias between those haloes and the dark matter
distribution. Fig. 1 shows the case of haloes in a narrow mass bin
split into upper and lower quartiles by age. The top panel shows the
correlation functions computed for the oldest quartile, the youngest
quartile, and all the haloes in the range 2.7–3.4 × 1012 h−1 M�.
The bottom panel shows the square of the relative bias (as given
by equation 5) calculated from these correlation functions. Clearly,
old haloes are more clustered than young haloes at fixed mass and
this is precisely the phenomenon known as ‘halo assembly bias’
(Sheth & Tormen 2004; Gao et al. 2005; Harker et al. 2006; Wechsler
et al. 2006). We see that the relative bias has very weak dependence
on the distance between haloes. Therefore, throughout this paper
we consider clustering at only one length scale, 6 − 8 h−1 Mpc.
This scale is large enough to be safely in the two-halo regime of
ξ (r) but is small enough that sample variance errors and finite box-
size effects are negligible for this study. We have checked that our

conclusions do not change if we instead adopt a smaller or larger
separation. Although we do not study this further here, we note that
the level of assembly bias does have a modest scale dependence,
even above this scale.

Fig. 2 shows the square of the relative bias (measured at this
scale) as a function of halo mass. In this case, we show results
for the highest and lowest three deciles of halo age, concentration,
and spin. As can be seen clearly from the plot, when haloes of
the same mass are split by these parameters there is a significant
change in their clustering and this behaviour is mass dependent. Age
and concentration show many similar behaviours that are not shared
when splitting the haloes by spin. For age and concentration, the bias
of the top decile is much larger than that of the next decile for halo
masses below 1013 h−1 M�; the three bottom deciles have similar
bias. For spin, the difference between the deciles is more symmetric
and fairly small. Based on the results for age and concentration, we
see that most of the relative bias is coming from the top 20 per cent
of haloes. We thus choose to focus on the top and bottom quartiles
as this should conservatively account for most of the biased haloes.
We note that this isn’t the case for spin, but we prefer to use one
value for all properties, so we only consider quartiles for the rest of
this paper.

As has been found by several past studies, the relative bias is
a strong function of halo mass for age and concentration, with
low-mass haloes exhibiting the strongest assembly bias signal. In
the case of concentration, the direction of the bias changes from
low-to-high-mass haloes, switching at around 1013 h−1 M�. When
split by age, however, there is no crossing in the halo mass range
we probe, i.e. up to 5.0 × 1013 h−1 M�. Mao et al. (2017) have
shown that there is no age assembly bias for cluster mass haloes,
although they find other forms of secondary bias. When split by
spin, the halo mass dependence is much weaker and the sign is
an increase of relative bias for more massive haloes (this may be
due to noisy measurements of halo spin at low masses; see e.g.
Benson 2017). Thus, the relative bias of haloes selected by their
spin seems to be a different phenomenon than the case of age or
concentration. We show later that this continues to be the case
when more halo properties are considered. Age and concentration
are known to correlate with each other, with older haloes also having
higher concentrations. Thus, if there is a bias arising from assembly
history we would expect there to also be an induced assembly
bias from concentration. However, the fact that the direction of
the bias changes for concentration but not for age tells us that the
concentration bias is not simply a consequence of age assembly
bias combined with the correlation between age and concentration.
While there is some change in the age–concentration relation with
halo mass, this change is modest, and the sign of the correlation
remains the same. This result is also apparent for cluster mass
haloes (Mao et al. 2017).

The results in Fig. 2 represent the mean of our 48 simulation
boxes, and the errors shown are the uncertainty in the mean, as
estimated from the standard deviation among the boxes. Due to
the large number of haloes in our simulations, these errors are
quite small until we get to high-mass systems. Another possible
source of error is the finite width of our mass bins. Since age and
concentration both correlate with halo mass, when we select older
and more concentrated haloes we also preferentially select less
massive haloes, which could be a problem since clustering depends
on mass. To quantify the possible contribution from this source of
error we split each mass bin into the top and bottom quartiles of
mass itself and calculate the relative bias of each. The range between
these two biases is shown as the grey shaded region in Fig. 2 and
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Figure 2. Relative bias of halo samples split by age (left-hand panel), concentration (middle panel), and spin (right-hand panel), as a function of halo mass.
In each mass bin, we split the halo sample into deciles of each property and show the relative bias of the highest three deciles (red lines) and lowest three
deciles (blue lines). For example, the dotted red curve in the left-hand panel shows the correlation function of the 10 per cent oldest haloes divided by that of
all haloes at a scale of 6–8 h−1Mpc. Results are averaged over 48 simulation boxes and error bars show the uncertainly in the mean as estimated from the
standard deviation among the boxes. Grey shaded regions show the maximum effect associated with the finite width of the mass bins. The relative bias of the
top decile of age or concentration is much higher than the other deciles, but this is not the case for spin nor for the bottom deciles. Halo assembly bias is thus
largely driven by the high tail of the distribution when split by age or concentration. Assembly bias is a strong function of halo mass when split by age and
concentration, but a weak function of halo mass that goes in the opposite direction when split by spin. As found by several previous studies, the sense of the
bias switches at a halo mass of Mh ≈ 1013 h−1 M�, when split by concentration, but this does not occur for the halo mass range we probe when split by age.

it thus represents the maximum possible deviation from b = 1 that
could be due to correlations of halo properties with halo mass. We
will show this shaded region in all subsequent figures that display
the relative bias, and we will refer to this uncertainty as the finite
width error. In Fig. 2, the measured relative bias is much larger
than any contribution from this error for haloes with masses below
8 × 1012 h−1 M� for age and concentration and for all haloes when
splitting by spin.

4 SEC O N DA RY BIA S

In this section, we will consider a generalized formulation of assem-
bly bias where we bin the haloes by one property and evaluate the
relative bias when the haloes are split by a second property. If the
primary property the haloes are binned in is P and the secondary
property they are split on is S then we can write the generalized
relative bias as,

b2
S(r|P , S) = ξ (r|P , S)

ξ (r|P )
. (6)

We see that equation (5) is just a special case of this where P = Mh.
When the primary property is something other than mass, we

have to change how the sample of haloes is selected so that in-
completeness does not affect the lowest bins. Table 1 shows the
selection made for each primary halo property to ensure that there
is high completeness in all bins. In all the analysis that follows, halo
mass or any other primary property is binned such that there are an
equal number of haloes in each bin for low-mass haloes. For higher
mass haloes, this results in wide bins, making the finite width error
large, so we reduce the width of the bins until this error is smaller
than the uncertainty calculated from the box-to-box variance.

It has become common to not only look at halo mass as the
primary indicator of halo clustering, but other halo properties that
strongly correlate with halo mass. Maximum circular velocity is

often used instead of halo mass, and with a halo’s history one can
instead look at the peak value of halo mass or maximum circular
velocity to try remove the effect of mass-loss. While we know
haloes can be strongly stripped and often destroyed when they
become subhaloes, it has also been shown that this mass-loss can
occur before the merger (Behroozi et al. 2014). In this section, we
explore whether the results of traditional assembly bias (as shown
in Fig. 2), where haloes are binned by mass hold up if haloes are
instead binned by a different parameter. We use four halo properties
to bin the haloes: halo mass, peak halo mass, halo maximum circular
velocity, and the peak maximum circular velocity. We refer to these
as the primary property by which the haloes are binned and then we
look at the relative bias if these bins are further split by a secondary
property as described in equation (6).

Fig. 3 shows the matrix of results for these four primary properties
(columns) split on nine secondary properties (rows). Each panel of
the figure is similar to the panels shown in Fig. 2, except that here
we only consider quartiles. We have looked at the deciles and the
results are quite similar to what we found in Fig. 2, i.e. the assembly
bias signal is about twice as high for the top decile but not much
different for the bottom decile and there is little effect when the
secondary property is halo spin.

The first thing one notices is that there is a relative bias when
haloes are split by a secondary property in all cases, except when
the secondary property is zlmm. In other words, a secondary bias is
not a particular feature of binning haloes by mass and splitting by
age or concentration, but instead it is generic feature when look-
ing at haloes binned by any quantity and then split by a second
quantity.3 We see that irrespective of what primary property we

3 We have also examined the case of binning the haloes by age, concentration,
or spin and splitting by any other property (not shown here) and as might be
expected still find a secondary bias exists.
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Figure 3. Relative bias of halo samples when binned by a primary mass-like property and split by a secondary property. The four columns of panels show the
cases when haloes are binned by halo mass, maximum circular velocity, peak halo mass, and peak maximum circular velocity. Each row of panels then shows
results when haloes are split by a different secondary property. In each panel, the red and blue lines show b2

S for the top and bottom quartiles of the secondary
property, respectively. Results are always averaged over 48 simulation boxes, and error bars show the uncertainly in the mean as estimated from the standard
deviation among the boxes. Grey shaded regions show the finite width error, the maximum effect that would arise if the secondary parameter were perfectly
correlated with the primary parameter. In the panels, where the primary and secondary parameters are the same, this is the same as the measured bias.
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bin on, the relative bias when split by age, concentration, spin, and
mass accretion rate remains rather similar. The mass dependence is
quite similar and the change of direction we saw for concentration
also occurs if the primary parameter is Vmax, Mpeak, or Vpeak (albeit
at different mass scales). Now that we show quartiles rather than
deciles, the signal to noise of these results is sufficiently high to see
definitively that there is no corresponding change of direction in the
case of halo age. This is especially evident when we bin by Vmax or
Vpeak because in those cases the age assembly bias signal vanishes
at a low enough velocity scale that we would easily see a change of
direction if it existed. This reinforces the conclusion that secondary
bias with concentration is distinct from age bias, at least to some
extent.

Perhaps the most interesting aspect of Fig. 3 is the upper part
of the figure where we use halo mass, maximum circular velocity,
peak mass, and peak maximum circular velocity as the secondary
parameters. We find that the relative bias when splitting on a mass-
like secondary property is typically just as large as when splitting
on age or concentration, which are more obviously connected to
assembly history. (The Mpeak–Vmax combination is the exception,
showing much smaller secondary bias.) However, it is important to
recall that we compute secondary bias in bins of the primary quan-
tity, and within such a bin the value of a second mass-like quantity
may indeed depend strongly on assembly history. For example, in
a bin of Vmax the less massive haloes must be more concentrated,
so the relative bias at low Vmax is bS > 1 for the lowest Mh quartile,
even though halo bias increases with Mh, when Vmax is not consid-
ered. Another novel result is the strong secondary bias with Mpeak,
when binning by Mh: haloes that have lost mass are significantly
more clustered than haloes that have not.

In some cases, the correlation between halo properties leads to
two panels with almost identical results (although in general this
is not necessarily the case; Mao et al. 2017). For example, binning
by halo mass and splitting by either Vmax or cvir produce almost
identical biases. This makes sense since at fixed halo mass cvir and
Vmax are perfectly correlated, provided the haloes follow an NFW
profile. In most cases, the connection of these relationships to halo
assembly history is not very clear, one reason we refer to these
relative biases as secondary bias. Another interesting feature is that
for some combinations, like binned by Mpeak and split by Vmax, both
the top and bottom quartile are more clustered than the mean for
low-mass haloes. The middle quartiles must be less clustered then,
which suggests a non-monotonic relation between the secondary
property and clustering. In several cases, when the bias of the top
and bottom quartiles cross, it need not be at a value of one like it
happens to be when the primary halo property is halo mass.

5 D E P E N D E N C E O F H A L O P RO P E RT I E S O N
N E I G H B O U R D I S TA N C E

Early theoretical discussions of galaxy and halo bias focused on
the biased clustering properties of the high peaks of a Gaussian
field, the locations in the primordial fluctuations that would most
naturally give rise to massive clusters and galaxies (Kaiser 1984;
Bardeen et al. 1986). The extended Press–Schechter or excurtion
set formalism (Press & Schechter 1974; Bond et al. 1991; Bower
1991), based on spherical collapse in the presence of a large scale
background perturbation, provides a powerful tool for analytic mod-
elling of halo bias (Mo & White 1996). In the simplest version of
this formalism, where pertubations from different scales are uncor-
related and the threshold overdensity for collapse δc is universal, the
bias of haloes is predicted to depend strongly on halo mass but be

independent of assembly history at fixed mass (White 1996). How-
ever, this prediction does not hold for more general assump-
tions (Zentner 2007). Since the discovery of assembly bias in
numerical simulations, numerous analytic and numerical stud-
ies have attempted to explain its origin. Some of these expla-
nations emphasize properties of the initial fluctuations, depar-
tures from spherical collapse, and the influence of tidal fields
(e.g. Dalal et al. 2008; Desjacques 2008; Paranjape, Sheth &
Desjacques 2013). Others emphasize strongly non-linear effects
(Wang, Mo & Jing 2007; Dalal et al. 2008; Wang, Mo & Jing
2009; Sunayama et al. 2016; Borzyszkowski et al. 2017; Vil-
larreal et al. 2017), especially mass-loss by haloes that have
been stripped by passing through or near other haloes (e.g
Sinha & Holley-Bockelmann 2012). This stripping tends to increase
a halo’s inferred formation redshift, since it could reach 50 per cent
of its z = 0 mass relatively early, and it acts preferentially in the
overdense environments around massive haloes. Given the complex
behaviour of secondary biases shown in Fig. 3, it is likely that more
than one mechanism plays a significant role in assembly bias, and
the importance of different mechanisms may be very different at
masses Mh 
 M� and Mh > M�.

In order to gain a better understanding of the origin of these
secondary biases, we study how halo properties are influenced by
their local environments at z = 0. This has been studied many
times (Lemson & Kauffmann 1999; Bullock et al. 2001b; Sheth &
Tormen 2004; Avila-Reese et al. 2005; Einasto et al. 2005; Macciò
et al. 2007; Maulbetsch et al. 2007; Skibba & Macciò 2011; Lee
et al. 2017), usually by comparing halo properties to a measure of
local density smoothed over some length scale. Instead, we compare
halo properties to a halo’s distance from a more massive neighbour.
This allows us to go to smaller scales because there is no need
to smooth over a scale to define an environmental density. Also,
while halo mass and environmental density are correlated, they are
different things and it may be that the masses of individual haloes
are more relevant here than the environmental density. We define
the normalized neighbour distance Dn of a given halo as

Dn = D

Rvir,n
, (7)

where D is the distance between the centres of the halo in ques-
tion and the massive neighbour, and Rvir,n is the neighbouring halo’s
virial radius. Using this normalized definition, the mass of the neigh-
bouring halo affects the distance such that a halo at the same physical
distance is considered closer to a more massive neighbour than a
less massive one.

Fig. 4 shows how halo properties are correlated with their neigh-
bour distance. Specifically, we take haloes in a narrow range of mass,
3.76–4.07 × 1011 h−1 M�, and we show the mean value of their
age, concentration, spin, and the redshift zpeak when they stopped
accreting mass in bins of Dn. We show results for different defini-
tions of what constitutes a more massive neighbour, as listed in the
legend. For example, to compute the red line in the top left panel,
we perform the following steps: (1) consider each halo in the narrow
mass range, (2) find its closest haloes of mass at least 300 times
higher than itself, (3) calculate the distance to each neighbour in
units of that halo’s virial radius and set Dn equal to the smallest of
these, (4) bin all the haloes in Dn and calculate the mean age in each
bin. Fig. 4 reveals that the mean values of z1/2, cvir and zpeak increase
substantially for haloes that are close to a more massive neighbour.
The amount of increase depends on how much more massive is the
neighbour, with almost no effect for neighbours less than three times
as massive as the halo, but a large effect for neighbours 10 times
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Figure 4. The mean value of age (top left panel), concentration (top right panel), spin (bottom left panel), and redshift where the halo reached its peak mass
(bottom right panel), as a function of closest distance to a more massive neighbour halo, Dn, is shown for haloes in the mass range 3.76–4.07 × 1011 h−1 M�.
Different colour lines show results for different definitions of what constitutes a more massive neighbour, as listed in the bottom right panel. The black dotted
horizontal line in each panel shows the population average for that property, while the dot–dashed lines bracket the middle 50 per cent. The distance Dn is
normalized by the virial radius of the neighbour halo.

as massive. For spin there is very little dependence on distance to
a massive neighbour, with only a slight decrease in the mean spin
occurring for haloes within two virial radii of neighbours 10 times
or more as massive. The change in spin values are small compared
to the overall spread of spin values (shown by the shaded region),
but for age and concentration the change in the mean can exceed
the halo-to-halo dispersion.

The mean values of z1/2, cvir and zpeak exhibit a similar overall
dependence on Dn; they are highest right at the virial radius of
the massive neighbour and they gradually drop with distance. The
mean properties all converge to the global means (shown by the
horizontal dashed lines) at Dn ∼ 10, and they drop below the mean
at larger distances. For a halo that lives within a few virial radii
of a massive neighbour, we might expect that the massive neigh-
bour is directly influencing mass accretion on to that halo either
by tidal forces or its effect on the velocity of dark matter particles
around the halo. Additionally it has been shown that a significant
fraction of these haloes are ejected or ‘backsplash’ haloes that once
resided within the virial radius of their massive neighbour (Wang
et al. 2009). However, when Dn � 5 the massive neighbour cannot
be directly influencing the halo, and the correlation is likely caused
by a large-scale environment that affects both the halo property and
the probability of a massive neighbour. We see that for Dn greater

than 10 the mean value of z1/2, cvir and zpeak becomes less than the
population average. At these distances haloes are in underdense re-
gions which must be the cause of this small decrease in mean values
for these properties. Clearly, the distance to a massive neighbour
is highly correlated with other measures of environmental density;
however, by not smoothing over a larger length scale we are able
to see how significant this effect becomes for haloes that are very
close to a massive neighbour and how it depends on the mass of
that neighbour.

The redshift where a halo reaches its peak mass, zpeak, is the
property most strongly affected by the distance to a massive neigh-
bour. The mean value of zpeak exceeds the 1σ deviation of the whole
population for haloes with Dn < 5, even when the neighbour is
only three times more massive. Haloes that have stopped growing
or have lost mass are predominantly near a more massive halo. We
can infer that this is the reason these haloes also have higher values
of z1/2 and cvir. Having reached their peak mass earlier, it is likely
that these haloes have also reached half of their peak mass at an
earlier time. These haloes also tend to have density profiles that are
steeper in the outer parts than NFW (see e.g. Lee et al. 2017), which
increases their concentrations (a steeper outer profile at fixed Mh

and Rvir requires a smaller scale radius, rs). Thus, proximity to a
massive neighbour tends to lead to arrested development, a higher
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Figure 5. The mean value of age (top left panel), concentration (top right panel), spin (bottom left panel), and redshift where the halo reached its peak mass
(bottom right panel), as a function of closest distance to neighbour halo, Dn, with at least ten times larger mass (Mn > 10 × Mh). Different colour lines show
results for different halo mass bins, as listed in the top right panel. The distance Dn is normalized by the virial radius of the neighbour halo. A simple fitting
function for the mean values of z1/2 and cvir as a function of halo mass and Dn is given in the text.

value of zpeak, which will cause such haloes to have higher values of
age and concentration. Many of these haloes have not only stopped
growing, but have lost mass as well. For haloes with a z = 0 halo
mass of ∼1013 h−1 M�, 15 per cent have lost at least 5 per cent of
their peak mass value. For haloes with a mass of ∼1012 h−1 M�,
19 per cent have lost at least 5 per cent of their peak mass. Mass-
loss for dark matter haloes is a much more common phenomenon
(Behroozi et al. 2014; Lee et al. 2017) than commonly appreciated,
a fact that is not accounted for in a spherical collapse type picture
of halo formation.

Fig. 4 shows that having a large change in the mean values of halo
properties requires neighbours 10 times as massive as the halo under
consideration. We thus adopt this neighbour mass ratio. Using only
these neighbours, Mn > 10 × Mh, we now examine how the change
in mean properties depends on halo mass. Fig. 5 shows clearly that
the change is strongest for the lowest halo mass bin and decreases
for higher mass haloes. For the highest mass haloes, there are not
enough of them in the box to firmly say how their properties change,
but we can see that the effect is trending towards no effect at higher
masses.

The mean value of halo properties thus depends on the halo mass,
the distance to a massive neighbour, and the ratio of that neighbour’s
mass to the halo mass. We can fit a function to the mean age and
concentration for neighbour mass ratios Mn/Mh ≥ 10, as a function

of halo mass and neighbour distance. We find that the following
function gives good fits to the curves in Fig. 5 over most values of
Dn:

p̄ = �p

(
1 + Dp

Dn + Dp

)
+ pf , (8)

where pf is the mean value of the property far from the massive
neighbour, �p is the maximum increase in the value of the property
and Dp is a scale in units of the neighbours virial radius which
determines when the increase becomes significant. Note that this
function is a good fit over most of the range of Dn but not at Dn

close to unity where the function tends to turn over. In that region,
it is better to evaluate equation (8) at a Dn of 1.5 or 2 and use that
value of p̄ for smaller values of Dn. For both cvir and z1/2, we find
that the parameters �p, Dp, and p are well fit by power laws that
depend only on the halo mass. For z1/2, the best-fitting parameters
are:

�z1/2 = −0.186 × log Mh + 3.162,

Dz1/2 = −0.163 × log Mh + 2.462,

z1/2f
= −0.186 × log Mh + 3.259
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Figure 6. The distribution of halo distances Dn from a neighbouring halo that is at least ten times more massive (Mn > 10 × Mh), for a samples of haloes in a
narrow mass range (3.76–4.07 × 1011 h−1 M�) and further cut by age ( left-hand panel), concentration (middle panel), and spin (right-hand panel). The black
histogram corresponds to the full sample and is the same in all three panels, while red histograms show the top 10 per cent (dashed) and 25 per cent (solid) of
each property and blue histograms show the bottom 25 per cent (solid) and 10 per cent ( dashed) of each property.

and for cvir they are:

�cvir = −0.099 × log Mh + 0.837,

Dcvir = −2.147 × log Mh + 30.400,

cvirf = −1.432 × log Mh + 26.222

These fitting functions should not be assumed to hold outside
the range of halo masses we have probed, Mh = 5 × 1011–
5 × 1013 h−1 M�.

The dependence of halo properties on distance from a massive
neighbour provides a clear explanation of why some secondary bias
occurs. If the mean value of a halo property depends on distance
to a massive neighbour, then selecting haloes by that property will
preferentially select haloes that are close to massive neighbours.
These haloes will have neighbour bias, that is, their clustering will
reflect the mass of the massive neighbour they are close to instead
of their own halo mass. We can see how this happens in Fig. 6,
which shows the distribution of Dn from a neighbour ten or more
times as massive as the halo for all haloes in a mass bin, compared
to that for a subset of the haloes selected by a secondary property.
We see that for age and concentration the distribution of Dn is
strongly altered when haloes are selected by high or low percentiles
of this property. For spin, as we would expect based on Figs 4
and 5, we see that the distribution of neighbour distances is only
slightly changed when selecting the high or low values of spin. In
other words, halo spin shows little neighbour bias, unlike age and
concentration, yet another example of how spin bias is different than
other secondary biases. For age and concentration, the distributions
in Fig. 6 are reminiscent of Fig. 2. The bottom quartile and decile
have essentially the same distribution, while the top decile has
many more haloes with low Dn than the top quartile. This is the
same behaviour of the relative bias in Fig. 2. We have also looked
at the distributions when binned by other properties (not shown)
and found that the neighbour distributions change based on the
primary property used to bin the haloes. This sheds some light on
why the relative biases in Fig. 3 can vary greatly when binned by
a different primary property. Clearly, neighbour bias contributes to
some secondary biases and can explain some of the trends we have
previously seen.

To test whether neighbour bias is the sole driver of assembly
bias, we can create a sample that has the same neighbour distance
distribution, even when splitting it by age or concentration. To do
this we fit the top and bottom quartile as a function of neighbour
distance with a fourth order polynomial. This is similar to equation
(8) but a little more accurate. We then determine which haloes are
in the top and bottom quartiles of z1/2 or cvir in bins of halo mass
based on their values of Dn. By construction this yields a sample
that has no neighbour bias, but is split by age or concentration.
Fig. 7 shows the relative bias for such a sample. In the left panels
we see that, when haloes are binned by mass, normalizing to a fixed
Dn distribution drastically reduces the secondary bias, at least for
haloes below 1013 h−1 M�. In other words, the presence of massive
neighbours almost fully explains the secondary bias with z1/2 or cvir

at fixed Mh. Some effect remains at Mh > 1013 h−1 M�, but our
statistics are limited, and the error bars shown only come from the
variance between boxes and do not include any error in our fit to the
property dependence on Dn. When binning by Vmax (right panels),
normalizing the Dn distribution does not remove the secondary
bias with z1/2 or cvir, but it changes the behaviour significantly.
Most notably, after normalizing to the same Dn distribution it is the
younger, less concentrated haloes that exhibit stronger clustering.
Comparing the left and right panels of Fig. 7 suggests that removing
neighbour bias eliminates most assembly bias for Mh-selected halo
samples but ‘overcorrects’ for Vmax-selected samples. We do not
show the analagous panels for bins of Mpeak and Vpeak but the effect
of removing neighbour bias is similar to that seen in bins of Mh and
Vmax, respectively.

6 SU M M A RY A N D D I S C U S S I O N

In this paper we have explored the clustering of dark matter haloes
in a large suite of cosmological simulations with the goal of under-
standing how the clustering of haloes depends on their properties. In
agreement with previous studies, we have found that assembly bias
is a generic feature of dark matter halo clustering. More generally
if haloes are selected to have one property fixed, then a subset of
those selected by a second property usually exhibits biased clus-
tering compared to the set of haloes in the first selection, which
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Figure 7. The relative bias when the upper and lower quartiles of age (top panels) and concentration (bottom panels) are constructed to remove neighbour bias,
i.e. to have identical distributions of distance from a more massive neighbour. Left-hand panels show binning by halo mass while right panels show binning by
maximum circular velocity. Dashed lines show the relative bias before removing neighbour bias, i.e. they are identical to the lines shown in the corresponding
panels in Fig. 3, and solid lines show the result after controlling for neighbour bias. When binned by halo mass, removing neighbour bias largely eliminates
the relative bias. In contrast, when binned by Vmax, there remains a large relative bias when split by age or concentration, but now the bias curves do not cross.

we refer to as secondary bias. The strength of the bias can be a
strong function of the selectivity of the second property. For exam-
ple, haloes from the top 10 per cent of the concentration distribution
are more than twice as biased as the next 10 per cent at fixed halo
mass. However, this behaviour is not shared by all properties, and
it is asymmetric; for the properties we have considered the relative
bias of the bottom three deciles is similar.

Exploring nine different halo properties, we find that binning
haloes by one property and then selecting a subset by a second
property generally gives a population with increased or decreased
clustering. This is the case even if the two properties are closely
related, like halo mass and peak halo mass. The strongest relative
bias we find is for binning by peak maximum circular velocity and
splitting by dynamical time averaged accretion rate. The complexity
of how halo clustering depends on different halo properties and
how it varies with those properties suggests there is more than one
underlying cause of these phenomena, a result also found by Mao
et al. (2017) for cluster mass haloes.

A halo’s proximity to a more massive neighbour can strongly
influence the mean value of some halo properties like age, con-
centration and when a halo reaches its peak mass. Proximity to a
massive neighbour causes haloes to stop growing or even to lose
mass. It may also cause haloes to grow slower than they would
without the massive neighbour, though we have not examined this

here. All of these effects can be grouped together as the arrested
development of the halo. This arrested development causes the mea-
sured age and concentration of the haloes to be higher, such that
when one selects the oldest or highest concentration haloes one is
selecting haloes that are preferentially located close to much more
massive haloes. As a result, the haloes inherit the higher cluster-
ing amplitude of their massive neighbours. If one controls for this
neighbour bias, then the most common expression of assembly bias,
binning by halo mass and splitting by age or concentration, is al-
most entirely removed. We therefore conclude that these forms of
clustering bias are caused by those halo properties being altered for
haloes that are near massive neighbours. However, other forms of
secondary bias, either splitting by a different property or binning
by a different property, do not vanish when controlling for prox-
imity to massive neighbours. Thus, while neighbour bias explains
some forms of secondary bias, removing it actually increases the
secondary bias for other properties.

All of this leads to the conclusion that the correlation between
halo properties and halo clustering is a complex phenomenon, with
likely more than one physical cause. We summarize the types of
bias discussed here in as follows:

(i) Secondary bias – when haloes are binned by any property,
there can exist a secondary bias when split by a different halo prop-
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erty. Standard assembly bias where haloes are binned by mass and
split by age, concentration, spin or another property is a particular
example of this. When the binning is done by another mass-like
halo property we see that the resulting relative bias is very similar.
However, we find as strong or stronger effects when binning a sam-
ple by a one mass-like halo property and then splitting it by another
mass-like property. The one exception to this is peak halo mass and
maximum circular velocity, which results in a fairly weak secondary
bias. The only property we find that doesn’t give a secondary bias
is the redshift of the last major merger.

(ii) Neighbour bias – Many halo properties show a strong de-
pendence on the distance to a more massive neighbour halo. Thus,
selecting haloes by a high value of such a property can preferentially
select haloes that are close to much more massive neighbours, re-
sulting in neighbour bias. This bias seems to completely explain the
secondary bias of haloes binned by halo mass (or Mpeak) and split
by age or concentration. However, when haloes are binned by other
mass-like properties, such as maximum circular velocity, and the
neighbour bias is removed these haloes still show large secondary
biases when split by age or concentration.

(iii) Spin bias – The secondary bias when haloes are split by
spin behaves differently than when split by other halo properties.
There is almost no dependence on halo mass or other mass-like
properties unlike the case for age and concentration. Moreover, the
relative bias does not increase when looking at the top 10 per cent
instead of top 25 per cent. Finally, spin has only a weak dependence
on distance to massive neighbours, not enough to cause significant
neighbour bias. Together these findings suggest that the secondary
bias from halo spin is caused by a separate physical mechanism than
the other secondary biases we have explored. It is quantitatively
less important, and the trends of spin with environment are weak
compared to the intrinsic dispersion of the spin distribution, in
agreement with older studies based on much smaller simulations
(Barnes & Efstathiou 1987).

The most common usage of the term ‘assembly bias’ would be
expressed in this language as secondary bias of haloes binned by
halo mass and split by either age or concentration. This bias can be
explained largely by neighbour bias in the mass range considered
here. However, we have also found a large number of secondary
biases that are not explained by neighbour bias, including spin bias.
When the effect of neighbour bias is removed, the secondary bias
of haloes binned by maximum circular velocity and split by age or
concentration resembles that of spin bias. It is thus possible that
spin bias is unusual in not having neighbour bias and that other
secondary biases have a combination of neighbour bias and other
causes of secondary bias.

One suggestion that has been made is that halo properties may
be correlated with the density fluctuations in the linear regime that
form the halo. The height of the density peak or its curvature may
partly determine a haloes age or concentration and thus correlations
in the early density field can create secondary biases (Zentner 2007;
Desjacques 2008; Dalal et al. 2008). It may be the case that early
density fluctuations create an initial set of secondary biases and
then later non-linear evolution (like arrested development) alters
the initial mapping between halo properties and clustering. This
explains some aspects of secondary bias: why the relative bias for
haloes binned by mass crosses when split by concentration but not
when split by age. Even when we account for neighbour bias, the
concentration assembly bias signal remains for high-mass haloes.
Possibly, its source is from early fluctuations that do not create a
secondary bias when splitting by age. The strong dependence of

some halo properties on neighbour distance within Dn = 1 − 3
favors non-linear explanations of assembly bias, but the continuing
dependence out to Dn = 10 may be better explained by correlations
rooted in initial conditions.

Regardless of physical origin, the fact that halo secondary bias
is largely accounted for by neighbour bias has useful implications
for modelling observations. First, it suggests focusing on distance
to neighbouring groups and clusters when searching for signatures
of galaxy assembly bias, as in some recent studies of ‘galaxy con-
formity’ (Kauffmann et al. 2013). Secondly, this description may
be a good way to implement parametrized forms of assembly bias
in HOD-based cosmological analyses, where the potential impact
of assembly bias is treated via nuisance parameters.

The great complexity of assembly bias may actually be a good
thing for simple models connecting galaxies to haloes. If the rela-
tionship between halo properties and clustering depends on many
properties in a complex way, then it is more likely that these ef-
fects may cancel out when translating to galaxy properties. This
conjecture can be tested on semi-analytic galaxy formation models,
which typically incorporate many effects and predict a multitude of
galaxy observables. On the other hand, models that too tightly con-
nect a galaxy property to only one-halo property (e.g. age-matching;
Hearin & Watson 2013) may overestimate the secondary bias to be
seen in galaxies (Paranjape et al. 2015; Lin et al. 2016; Mandelbaum
et al. 2016; Zu & Mandelbaum 2016). Alternatively, one can test
the validity of a single halo property strongly controlling a galaxy
property by measuring the secondary bias in galaxy properties. For
example, galaxy disc size in most semi-analytic models is mostly
determined by halo spin (e.g. Somerville et al. 2012) and therefore
should have a secondary bias like that found for spin. If such a re-
lationship is not found, then galaxy disc sizes are not primarily set
by halo spin. The study of secondary bias in the galaxy population
can thus be a powerful tool to determine if and how halo properties
influence galaxy properties.
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