
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Liu, Chang; Zhang, Xuyun; Liu, Chengfei; Yang,
Yun; Ranjan, Rajiv; Georgakopoulos, Dimitrios;
Chen, Jinjun

Title: An Iterative Hierarchical Key Exchange Scheme
for Secure Scheduling of Big Data Applications in
Cloud Computing

Conference name: 'Trust, Security and Privacy in Computing and
Communications' (TrustCom) 2013, the 12th IEEE
International Conference

Conference location: Melbourne, Australia
Conference dates: 16-18 July 2013
Publisher: IEEE
Year: 2013
Pages: 9-16
URL: http://hdl.handle.net/1959.3/376585

Copyright: Copyright © 2013 IEEE. The accepted manuscript
of the paper is reproduced here in accordance
with the copyright policy of the publisher.
Personal use of this material is permitted.
However, permission to reprint/republish this
material for advertising or promotional purposes
or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any
copyrighted component of this work in other
works must be obtained from the IEEE.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://doi.org/10.1109/TrustCom.2013.65

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

An Iterative Hierarchical Key Exchange Scheme for
Secure Scheduling of Big Data Applications in

Cloud Computing

Chang Liu†, Xuyun Zhang†, Chengfei Liu*, Yun Yang*, Rajiv Ranjan‡, Dimitrios Georgakopoulos‡
and Jinjun Chen†

†Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia
*Faculty of Information and Communication Technologies, Swinburne University of Technology, Australia

‡Information Engineering Laboratory, CSIRO ICT Centre, Australia
Email: {changliu.it, xyzhanggz, jinjun.chen, rranjans}@gmail.com; {cliu, yyang}@swin.edu.au;

dimitrios.georgakopoulos@csiro.au

Abstract — As the new-generation distributed computing
platform, cloud computing environments offer high efficiency
and low cost for data-intensive computation in big data
applications. Cloud resources and services are available in pay-
as-you-go mode, which brings extraordinary flexibility and cost-
effectiveness as well as zero investment in their own computing
infrastructure. However, these advantages come at a price -
people no longer have direct control over their own data. Based
on this view, data security becomes a major concern in the
adoption of cloud computing. Authenticated Key Exchange (AKE)
is essential to a security system that is based on high efficiency
symmetric-key encryption. With virtualization technology being
applied, existing key exchange schemes such as Internet Key
Exchange (IKE) becomes time-consuming when directly deployed
into cloud computing environment. In this paper we propose a
novel hierarchical key exchange scheme, namely Cloud
Background Hierarchical Key Exchange (CBHKE). Based on our
previous work, CBHKE aims at providing secure and efficient
scheduling for cloud computing environment. In our new scheme,
we design a two-phase layer-by-layer iterative key exchange
strategy to achieve more efficient AKE without sacrificing the
level of data security. Both theoretical analysis and experimental
results demonstrate that when deployed in cloud computing
environment, efficiency of the proposed scheme is dramatically
superior to its predecessors CCBKE and IKE schemes.

Keywords - cloud computing; big data; key exchange; efficient
security-aware scheduling; virtualisation security

I. INTRODUCTION

As the new generation computing paradigm, cloud
computing has been attracting extensive interest from IT
industry and academia in recent years. One of its core
concepts is ‘X as a Service’ (XaaS), including Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS), which means that both
individual and enterprise users can use IT services in pay-as-
you-go fashion. Compared to traditional distributed systems,
this new concept in cloud computing brings outstanding
advantages. First, a considerable amount of investment is

saved, for there is no need for users to purchase and maintain
their own IT facilities. Second, it brings exceptional elasticity,
scalability and efficiency for task executions, especially in big
data applications [6, 9]. Therefore, utilising cloud to run data-
intensive applications, such as applications in scientific
research or social networks, becomes a cost-effective choice.
For example, the Swiss physics research lab CERN [14]
utilised cloud computing to help execute the computation tasks
for their particle accelerator which generates 22PB data every
year. Until now, there have been several cloud computing
projects that provide public cloud computing services for
scientific users, for example Nimbus [19]. By utilising cloud
computing services, the numerous capital investments in
building and maintaining a supercomputing or grid computing
environment for big data applications can be effectively
reduced.

Despite these advantages, data security concern is still one
major obstacle in migrating big data applications to cloud
computing environments. For example, data in online social
systems are highly privacy-sensitive; data used for scientific
research often contain private information and/or unpublished
results, which make them valuable intellectual properties.
When submitting tasks to the cloud, people also surrendered
control over their valuable data at the same time. The
convenience of cloud computing is always accompanied by
the risk of data exposure, which is not the case in traditional
distributed computing systems where data are stored locally.

In order to ensure data security against a malicious third
party, encryption is a common choice. Fully-homomorphic
encryption can save all the trouble of key management, in that
it renders the encrypted dataset to be still decrypt-able with the
key used for encryption even after any kind of operation has
been performed on it. Unfortunately, to the best of our
knowledge, developing a fully-homomorphic encryption
algorithm with practically feasible time-complexity still
remains an open research problem [12]. Asymmetric-key
encryption does not require key exchange, but it is way too

time-consuming when employed over large datasets. In order
to utilise the much faster symmetric-key encryption,
Authenticated Key Exchange (AKE) scheme is a mandatory
requirement -- not only for negotiating session keys used in
encryption, but also for mutual authentication to deny fake-ID
attacks / Man-in-the-Middle (MITM) attacks. Reducing time
consumption of AKE schemes has hardly been an attractive
research problem in the past. However, in cloud computing, at
least thousands of virtualised server instances, i.e., virtual
machines (VMs), are participating in the execution of almost
every task, where the most widely-used Diffie-Hellman (DH)
based AKE schemes can become very time consuming. When
deploying IKE along with the execution of large-scale tasks in
cloud environment, it can even take up to 76% of the total
time consumed by the security system [22].

In this paper, we propose a hierarchical AKE scheme –
Cloud Background Hierarchical Key Exchange (CBHKE), in
the aim of secure and efficient scheduling in cloud computing
for large-scale computing tasks such as scientific applications.
Our work is based on our previously proposed scheme named
Cloud Computing Background Key Exchange (CCBKE) and
its predecessor, the standardised Internet Key Exchange (IKE)
scheme. All these schemes belong to the DH-AKE family.

The rest of this paper is organised as follows. Section II
discusses related work. Section III provides a motivating
example as well as detailed analysis to our research problem.
Section IV gives the description of our CBHKE scheme in
detail based on a series of notations, followed by the analysis
of security and efficiency. Section V evaluates the efficiency
of our scheme through experimental results. Section VI
concludes our work and discusses future work.

II. RELATED WORK

Nowadays, because of its outstanding cost-effectiveness
[10], cloud computing is being widely utilised for large-scale
computation tasks in big data processing [6, 9] such as
scientific research applications [14, 19]. Great efforts have
been placed on cost-efficient scheduling for distributed
computing systems including cloud computing [11, 25, 27, 28].
The work of Garg et.al [11] and Lee et.al [27] focused on
efficient scheduling with low energy consumption in cloud
computing and distributed systems; Yuan et.al [28]
investigated the trade-off between the cost of storage and
computing in cloud scheduling. However, none of their work
has taken into account the additional cost in enhancing data
security which is another important metric of QoS. Tang et.al
[25] proposed a cost-effective security-aware scheduling
algorithm for distributed systems. Although their approach
achieved high efficiency by grading data security into several
levels, their scheme in fact compromised security for higher
efficiency, and it still suffered from the inherent cost-
inefficiency of existing KE schemes. The security-aware
scheduling scheme for distributed computing systems
proposed by Xie et.al [26] suffered from similar problems.

Key exchange (KE) over untrusted communication
environment has always been an active research topic in
public-key cryptography. In [21, 29], extended security

standards were formalised and researched for key exchange
schemes for the basic 2-party scenario. For efficiency, some of
the most recent research on authenticated key exchange
schemes focused on password-based key exchange [13, 15],
which allows two parties to share a session key through
exchanging a low-entropy password. Many existing key
exchange schemes were trying to optimise the multi-party-
same-key scenario as we do. For example, some of them
focused on the scenario with users join and leave dynamically,
such as [16, 30]. Kurosawa [20] and then Bellare et.al [7]
studied the problem of asymmetric-key encryption in multi-
user-different-data scenario with randomness reuse strategy.
This problem is essentially the same as KE in the background
of cloud. Due to the low efficiency of asymmetric-key
encryption over large datasets, their schemes cannot be
directly applied into cloud computing environments. However,
the ideas from these schemes inspired our work directly.

Internet Key Exchange (IKE) [17], as the standardised key
exchange solution, has been widely adopted along with IPSec
to ensure data confidentiality, integrity and authenticity while
data is transferred via Internet. Its security has been formally
proven [8]. In the past, we developed a key exchange scheme
named CCBKE for security-aware scheduling in cloud
computing [22]. When deployed in cloud, CCBKE invokes
significantly lower time consumption compared to IKE, but it
still takes a considerable amount of time. We observed that in
CCBKE, the central cloud controller needs to generate keying
materials and compute all session keys (to be used to
communicate with ALL virtualised instances later on) by itself,
and the computational power of intermediate control nodes are
not effectively utilised. This is the main motivation of our
research in this paper.

III. MOTIVATING EXAMPLE AND PROBLEM ANALYSIS

A. Motivating Example and Research Problem
Big data applications such as scientific applications are

always data-intensive and time-critical. Take astrophysics
research for example, Australian astrophysics researchers
operate a gigantic 64-metre Parkes telescope [1] which
generates a large amount of data through constant observation.
In pulsar searching workflow [28] the raw observation data are
generated at a 1GB-per-second ratio. The beam file is
generated for later pulsar searching through a local real-time
compression operation on the raw data file. During this
process, about 1 to 20GB beam file is generated from 4 to 60
minute observation. Scientists usually need to access the
results as early as possible, as a late-coming result may cause
an enormous waste of resources and loss of scientific
discovery. Example in astrophysics is gravitational wave
detection [18] which is especially time-critical. Due to its
nature of real-time and streaming, delay in returning a result of
a task may cause missed detection of an incoming
gravitational wave. This will lead to loss of scientific
discovery as the next wave would come after years. Moreover,
thousands of hours of data-intensive computation was in vain,
which is a terrible waste both economically and
environmentally. Online web service is another example,

where user requests normally demand servers’ response in a
few seconds. Hence, efficiency is of extreme importance in
cloud scheduling for many big data applications.

Cloud computing's unique characteristics of virtualisation,
consolidation and multi-tenancy bring unpredictable
challenges to data security. For example, a malicious party can
easily be another legitimate user who is using the same cloud
and has even more advantage for successful malicious
behaviours [24]. As discussed in Section I, Data in scientific
research are valuable intellectual property which can either be
people’s privacy-sensitive information or directly related to
scientific discovery. Therefore, we suggest that all user data
always stay encrypted in cloud. Decryptions may only be
applied right before data are used for task execution.

In big data applications, each interaction between users
and cloud servers requires key exchange because of encryption.
As a result, a large percentage of time overall is devoted into
the security system. As demonstrated in [22], the standardised
IKE key exchange scheme can take up to 76% of the total time
consumption in the security system (depending on the actual
parameters) when the size of user datasets and the number of
instances involved are large, which is why we need to improve
the efficiency of key exchange schemes.

B. Problem Analysis
In every KE session, a distinct session key is needed for

every virtual machine. This is because the risk of additional
information being exposed against malicious users needs to be
minimised. The existence of virtual machine hijacks [24]
further intensifies this risk. For example, if a single session
key is utilised for data encryption on 100 virtualised instances,
the information on all 100 nodes will all be exposed when
only one of the instances is hijacked and the key is revealed. If
we use different keys for different instances, the total
information leakage will be reduced by 99%. For this reason,
the computation cost and time consumption of key exchange

operations in cloud are more significant than in other
distributed computing systems.

Computations on server instances in key exchange
processes can be completed almost instantly. Data
communications in KE schemes via networking take almost no
time as well because only kilobytes of data need to be
transferred between the cloud controller and server instances
in order to complete key exchange. Digital signatures are
always necessary in key exchange schemes for identity
authentication. In key exchange schemes, messages to be
signed are usually of a short fixed length (typically 128 bits
which is the output size of a HMAC function). In this regard,
time consumption in signing and verification of messages is
negligible when compared to modular exponentiations over
1024-bit keying materials related to key exchanges. Based on
this view, we know that the modular exponentiations in KE
operations are acting as the predominant factor in the
efficiency for a distributed KE scheme.

For scheduling purposes, a large-scale cloud computing
infrastructure often employs a hierarchical control structure.
Following the acronyms defined in the early Eucalyptus cloud
system [23], a typical cloud computing structure may employ
a CLC (cloud controller) as the interface between user and
cloud, several CC (cluster controllers) for cluster control, a
bunch of NC (node controllers) for virtualisation, and then
virtualised instances for actual task execution. These are at
least three layers for control, and the number of control layers
could increase further with the scaling of the cloud
environment (see Figure 1 for an example of a hybrid cloud
which is consisted of multiple clouds with multiple control
layers). In CCBKE[22], CLC needs to perform all the KE
operations for exchanging a distinct key for each instance,
while the intermediate layers are required to do nothing other
than passing the messages. In this regard, the efficiency of KE
will be further improved by re-designing the scheme to
distribute the modular exponentiations to other control nodes.

Fig.1 An example of a hybrid cloud structure used for scientific applications

IV. CBHKE – CLOUD BACKGROUND HIERARCHICAL
KEY EXCHANGE

Before showing how the CBHKE scheme works, we
first define the symbolised notations to be used for the
formalised description.

A. Notations
��,� : The � th control node (or node, for

simplicity) on layer � . �1,1 is the cloud
controller (CLC)

���� : Header, contains security parameter
indexes

�	
��	�: Certificate request
�	
��: Certificate of node N
��	: One-time nonce for message freshness
��: Security associations, used in negotiating

cryptographic algorithms
���: Identity information of node N
Sig�: Node �’s signature, which can be verified

using algorithms negotiated in SA and
public key in �	
�

prf(): Pseudorandom function
{�}� : Encrypt message � with session key �
���� (�): Decrypt message � with session key �
�: Total number of control layers
�: Number of nodes on the � th layer
��,� : Number of sub-nodes for node � on the

�th layer
����: Node N’s public key for KE
��� : N’s sub-nodes (children nodes), where

� = 1, … , �
��: N’s parent node
���_���: Temporary key used by node � to encrypt

the communications with its parent node
���_�� ��,� : Temporary key used by node N to encrypt

the communications with its �th sub-node

B. System Setup
The system chooses a large prime integer ! and select a

generator " of group #!
$. Normally ! is a Sophie Germain

prime where (! % 1)/2 is also prime, so that the group &!
$

has maximum resilience against square root attack. A
certificate authority (CA) is needed in our security system
so that communicating parties can identify each other
through exchanging verifiable certificates �	
��, although
we will skip further details regarding these straightforward
CA-involved operations in detailed scheme description.

C. Key Exchange
This is a generalised description for a cloud

infrastructure that has � control layers, from CLC to end NC.
Layer � has � nodes, namely ��,� , � = 1, … , �, � = 1, … , � .
CLC is on layer 1, where 1 = 1. Let ��,� be the numbers
of sub-nodes for nodes � = 1, … , � on layer �.

Overview: The scheme can be divided into two phases.
The aim of Phase 1 is for the CLC to securely deliver its
secret keying material to NCs, while Phase 2 is for the
actual key exchange. In Phase 2, CLC deliver to NCs
interact with virtualised instances on CLC’s behalf and send
back the results of KE to the CLC.

Phase 1: This phase is for KE between all control nodes
from CLC (layer *1) to the �th control layer (layer *� , i.e.,
NC layer). This exchanged session key will be used for
encrypting the real keying material in Phase 2.

All control nodes picks their own private key +�,� and
one-time nonce ��	�,� . They compute their public key for
KE as follows:

�����,� = "+�,�

Then CLC broadcasts the very first message ��-_11,1:

��-_11,1: ��. , ���1,1 , �� , ����1,1 , ��	1,1

to all nodes in layer 2. ��. is a flag for message
identification, indicating the request for keying material.

For the nodes ��,� (� = 1, … , �) in layer *� , upon
receiving message ��-_1(�%1),� from their parent-node in
*�%1 (� = 2, … , �), they send messages ��-_1�,� to their
sub-nodes in the next layer *�+1:

��-_1�,� : ��. , ����,� , �� , �����,� , ��	�,�

Meanwhile, they respond ��-_2 to their parent node:

��-_2�,� : ��. , ����,� , �� , �����,� , �	
��	� , ��	�,�
3

After receiving ��-_1, every node in layers *2, … , *� will
know its parent node ��’s public key ����� , and compute
the session key for communicating with its parent:

���_����,� = (�����)+�,� ,
where � = 2, … , �; � = 1, … , �; � = 1, … , ��,�

For nodes in layer *�%1, upon receiving ��-_2 from their
sub-nodes, they’ll know the public keys of their sub-nodes,
namely "+�+1,� . We denote the public key of node ��,� ’s sub-
nodes ��� as ������ , � = 1, … , ��,� . ��,� compute the
following session keys for communicating with their sub-
nodes:

���_�� ���,� ,� = 4������ 5+�,� ,
where � = 1, … , � % 1; � = 1, … , �; � = 1, … , ��,�
For authentication, all nodes in *� (� = 1, … , � % 1)

broadcast ��-_3 to its sub-nodes ��� :

��-_3�,� :
����,� , 7����,� , ��, �	
���,� , �	
��	���1 , Sig��,� 8

���_�� ���,� ,1

|| …

|| 7����,� , ��, �	
���,� , �	
��	���� , Sig��,� 8
���_�� ���,� ,�

(� = 1, … , � % 1; � = 1, … , �; � = 1, … , ��,�)
where the structure of message for signatures is also an
output of prf(), similar to IKE. All nodes on *� , (� = 2, … , �)
will receive this message, and respond with ��-_4�,� if
signature verification is successful:

��-_4�,� :
����,� , 7����,� , �� , �	
���,� , Sig��,� 8

���_����,�

(� = 2, … , �; � = 1, … , �)
The reason that only the receiver of ��-_3 and ��-_4

can decrypt them is that, for every parent-child node pair
�PARENT and �CHILD , we already have:

���_�� ��PARENT = ���_���CHILD

which concludes phase 1.
Phase 2: This phase is for the eventual goal of our

scheme – KE between CLC and virtualised instances. The
outcome of Phase 1 will play a vital role here.

CLC picks its secret value < as its keying material for
KE with those virtualised instances. CLC encrypts < with
the session key negotiated in phase 1 and broadcast the
following message to the next layer:

��-_11,1: {<||���1,1 }���_�� ��1,1,1 || …
||{<||���1,1 }���_�� ��1,1,� 1,1

Upon receiving message ��-_1(�%1),� from their parent-
nodes in *�%1 (� = 2, … , �), the nodes in *� broadcast
similar ��-_1�,� to their sub-nodes in *�+1:

��-_1�,� : {<||����,� }���_�� ���,� ,1 || …
||{<||����,� }���_�� ���,� ,� �,�

because the recipients can obtain < by decrypting the
received ��-_1 using its ����� ��,� ,� . For security reasons,
all nodes in *2, … , *�%1 should destroy < after sending
��-_1 in Phase 2 where they re-encrypt < with ����� �
and send to their sub-nodes.

After these operations, once nodes on layer *� , i.e., NCs,
get to know the < value. They now use this secret value to
perform a 4-round CCBKE to finish the final KE:

NC-VM: ����� , ���� , "< , ��	�
VM-NC: ���>�� , ��>�� , "�� , ��	�� , �	
��	�
NC-VM: ����� ,

{���� , ���� , �	
��� , �	
��	� , Sig��}"< �1

|| … ||{���� , ���� , �	
��� , �	
��	� , Sig��}"< �?
VM-NC: ���>�� , @��>�� , ��>�� , �	
�>�� , Sig>�� B"< ��

The final session key for data encryption is "<�� where
� = 1, … , ? . After this step, not only ? but all ��,�
virtualised instances will have the desired session key for
data encryption/decryption.

Now all virtualised instances have exchanged a key with
their control nodes. For each NC, i.e. ��,� (� = 1, … , �),
they combine and encrypt the final session keys in this
format:

��-_2�,� :{"<�1 || … ||"<�� �,� }���_����,�

and send it to its upper level. Then, nodes in every level
from *� , � = 2, … , � % 1 compute and send the following
message to their parent nodes, after receiving from their
sub-nodes:

��-_2�,� :
{������_�� ��i,� ,1 (��-_2��+1,1)|| …

||������_�� ��i,� ,� �,�
F��-_2��+1,� �,�

G}���_����,�

After this layer-by-layer action, CLC, i.e., �1,1, will know
the session keys "<�? that has been negotiated with all
virtualised instances, thereby concludes the KE scheme. The
task data stored at CLC can now be split, encrypted and
distributed to the virtualised instances for execution. After
the execution, the server instances may follow an inversed
procedure to exchange session keys with CLC and send
back the encrypted results.

D. Security Analysis:
The security of our scheme is analysed in Dolev-Yao’s

threat model with a bit extension. As we are dealing with
communication security only, all the data stored on CLC
and intermediate control nodes are assumed safe against the
adversary in this model. This is a practical assumption
because usually the control nodes are not directly exposed to
users and the open network environment, which renders
them less vulnerable than the processing servers and
virtualised instances. The abilities of the adversaries, or
attackers, are defined as follows:
Definition 1 (attackers): A cloud outside attacker �� aims
to retrieve the session keys in exchange. �� can access,
intercept or modify any data in transmission, but cannot
decrypt any cipher text without the corresponding key or
secret keying material; a cloud inside attacker �� not only
has the same ability as �� , but also can be authenticated by
the cloud as a legitimate server instance. However, �� has
no access to other instances or controllers or any of their
secret keys. �� aims to steal data of other users of the same
cloud.

We gave a security proof to CCBKE in [22], and had the
following theorems:
Theorem 1: A cloud outside attacker �� cannot retrieve any
exchanged session key "+J� in CCBKE in polynomial time.

Theorem 2: Assume � = "+J� is the session key negotiated
between a cloud inside attacker �� and CLC. �� cannot
retrieve in polynomial time any session key "+J� other than
�, unless a negligible probability in CCBKE.
Proofs: See [22].

Derived from these theorems, we now have the
following lemma:
Lemma 1: The adversaries defined above have negligible
chance of breaking the CBHKE scheme. Specifically, a
cloud outside attacker �� cannot retrieve any session key,
while a cloud inside attacker �� cannot retrieve any session
key other than her/his own.
Proof: The key exchange procedures for each node and its
sub-nodes in both CBHKE Phase 1 and Phase 2 are actually
minimised and iterative CCBKE processes. As CCBKE is
secure against cloud inside and outside attackers according
to Theorems 1 and 2, all the KE operations in CBHKE
scheme are secure against these attackers. Therefore, all the
encrypted messages in our CBHKE scheme are securely
encrypted. Hence, we can say that our new CBHKE scheme
is secure against attackers from either outside or inside the
cloud, defined in Definition 1.

In addition, if we use different parameters and keying
materials for every execution and re-keying in CBHKE
scheme, it will also hold perfect forward security just the
same as in CCBKE and IKE.

E. Efficiency Analysis:
As analysed in section II, the majority of time

consumption is from modular exponentiations, e.g.,
"+ mod! . Compared to them, the symmetric-key
encryptions and decryptions in phase 2 take virtually no
time because those concatenated keying materials to be
encrypted are only several KBs long. Hence, we will
analyse the efficiency advantage of our new CBHKE
scheme by calculating the total number of modular
exponentiations.

Let
�� = max

1K� K�
@��,� B

be the maximum number of sub-nodes for each node on
level �. Starting from �1 = 2 , we have

� = M ��%1,�

�%1

� =1

K �%1��%1 , � = 2, … , �

then the total number of VM instances is O ��,�
�
� =1 , with at

most �� VMs controlled by one NC. Assume the maximum
time consumption of one modular exponentiations on one
node is ��Q+ , then the total time consumption of CCBKE is
close to FO ��,�

�
� =1 G��Q+ given that VM hold similar

computational ability. In CBHKE, the upper bound of the
total time consumption in KE modular exponentiations in
one round should be 4O ��

�
�=1 5��Q+ . Given the fact that

each NC can launch and control plenty of VMs (much more

than the number of control nodes controlled by a higher-
level control node), the following inequality will hold:

�� > M ��

�%1

�=1
which is the case of both of our experimental environments.
Besides, because we have � V 2 (otherwise CBHKE will
have the exact same efficiency as CCBKE), we will have

M ��,�

�

� =1

V 2��

if the NCs have similar computational capability that can
launch similar amount of VMs. Therefore:

M ��,�

�

� =1

V 2�� > �� + WM ��

�%1

�=1

X = M ��

�

�=1
then we have

YM ��,�

�

� =1

Z ��Q+ > WM ��

�

�=1

X ��Q+

which means in practical cloud settings, CBHKE always has
increased efficiency compared with CCBKE. In fact, in
most cases we have:

�� >> M ��

�%1

�=1
then

M ��,�

�

� =1

[� M ��

�

�=1
In this case, the time consumption of CBHKE is even only a
fraction of CCBKE. Although IKE, CBHKE and CCBKE
are all of linear time complexity to the scale of the task, the
efficiency advantage of CBHKE is nonetheless tremendous.

V. EXPERIMENT AND EVALUATION

A. Experiment Environment
We conducted our experiments on U-Cloud (see Fig 2) -

- a cloud computing environment located in University

Fig. 2 U-Cloud structure

of Technology, Sydney (UTS). The computing facilities of
this system are located in several labs in the Faculty of
Engineering and IT, UTS. On top of hardware and Linux
OS, We installed KVM Hypervisor [3] which virtualises the
infrastructure and allows it to provide unified computing
and storage resources. Upon virtualised data centres,
Hadoop [2] is installed to facilitate the MapReduce
programming model and distributed file system. Moreover,
we installed OpenStack open source cloud platform [5]
which is responsible for global management, resource
scheduling, task distribution and interaction with users.

B. Experiment Process
We tested our scheme under two differently structured

cloud instantiations of U-Cloud. The first one have 3 control
layers and 4 NCs in total, while the second one have 4
control layers and 6 NCs in total. The layouts of the two
experimental cloud scenarios are shown in Figure 3.

We implemented CBHKE, CCBKE and IKE schemes
using C++ with MIRACL[4] cryptography library, and ran
on our U-Cloud environment. The numbers of instances
launched by each NC are 5, 10, 15, … , 50. On each of the
cloud scenario, we repeatedly ran each of the key exchange
scheme 20 times to simulate a big computation task with 20
CLC-VM interactions.

U-Cloud scenario A

U-Cloud scenario B

Fig.3 Structures of two cloud scenarios on U-Cloud for experiments

C. Experiment Results
Our experimental results (average for 20 runs) are

shown in Figure 4. The results match the analysis in section
IV - E. Through these results we can see that compared to
IKE in U-Cloud, the total time consumption of CBHKE in
KE is decreased by an average of 85.9% and 89.8% in
scenarios A and B, respectively. This efficiency advantage
of CBHKE when compared to CCBKE in the two scenarios
is 70.96% (max: 75.9%; min: 58.9%) and 77.85% (max:
82.4%; min: 61.3%), respectively. This is a significant
improvement in efficiency without compromising the level
of security. Also, the results match our efficiency analysis in
section IV.E.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel hierarchical key
exchange scheme, namely Cloud Background Hierarchical
Key Exchange (CBHKE). Based on our previous work,
CBHKE aimed at providing secure and more efficient
scheduling for cloud computing environment. In our new
scheme, we have designed a two-phase layer-by-layer
iterative strategy to reduce the overall time consumption in
authenticated key exchange (AKE) without sacrificing the
level of data security. Both theoretical analysis and
experimental results have demonstrated that when deployed
in cloud computing environment, the proposed scheme was
significantly much more efficient than its predecessors
CCBKE and IKE.

Results in scenario A

Results in scenario B

Fig.4 Efficiency comparison of CBHKE, CCBKE and IKE
in the two cloud scenarios

Although the efficiency of security-aware scheduling in
cloud computing can greatly benefit from an efficient key
exchange (KE) scheme such as CBHKE, current encryption
algorithms (even the fastest symmetric-key encryptions) are
still not fast enough when encrypting large datasets, which
is why currently another large research community is
focusing on another way around -- to reduce encryption
usage. Research on an efficient and secure encryption
algorithm for cloud and other large-scale distributed
computing systems is still an open research problem.

ACKNOWLEDGMENTS

This research work is partly supported by Australian
Research Council under Linkage Project LP0990393.

REFERENCES

[1] Australia Telescope, Parkes Observatory. Available:
http://www.parkes.atnf.csiro.au/, accessed on 10 March, 2013.

[2] Hadoop MapReduce. Available: http://hadoop.apache.org,
accessed on 10 March, 2013.

[3] KVM Hypervisor. Available: www.linux-kvm.org/, accessed on 10
March, 2013.

[4] MIRACL Cryptography Library. Available:
http://certivox.com/index.php/solutions/miracl-crypto-sdk/,
accessed on 10 March, 2013.

[5] OpenStack Open Source Cloud Software. Available:
http://openstack.org/, accessed on 10 March, 2013.

[6] D. Agrawal, S. Das, and A. E. Abbadi, "Big Data and Cloud
Computing: Current State and Future Opportunities," in
Proceedings of the 14th International Conference on Extending
Database Technology (EDBT/ICDT '11), Uppsala, Sweden, 2011.

[7] M. Bellare, A. Boldyreva, and J. Staddon, "Randomness Re-use in
Multi-recipient Encryption Schemeas " in Proceedings of the 6th
International Workshop on Theory and Practice in Public Key
Cryptography (PKC '03), Miami, USA, 2003.

[8] R. Canetti and H. Krawczyk, "Security Analysis of IKE's
Signature-Based Key-Exchange Protocol," in Proceedings of the
22nd Annual International Cryptology Conference on Advances in
Cryptology (CRYPTO '02), Santa Barbara, USA, 2002, pp. 143-
161.

[9] S. Chaudhuri, "What Next?: A Half-dozen Data Management
Research Goals for Big Data and the Cloud," in Proceedings of the
31st symposium on Principles of Database Systems (PODS '12),
Scottsdale, Arizona, USA, 2012, pp. 1-4.

[10] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The
Cost of Doing Science on the Cloud: the Montage Example," in
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (SC ’08), Austin, Texas, 2008, pp. 1–12.

[11] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya,
"Environment-conscious Scheduling of HPC Applications on
Distributed Cloud-oriented Data Centers," Journal of Parallel and
Distributed Computing, vol. 71, pp. 732-749, 2011.

[12] C. Gentry, S. Halevi, and N. P. Smart:, "Fully Homomorphic
Encryption with Polylog Overhead," in Proceedings of the 2012
International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT '12), Cambridge, UK,
2012, pp. 465-482.

[13] A. Groce and J. Katz, "A New Framework for Efficient Password-
based Authenticated Key Exchange," in Proceedings of the 17th
ACM conference on Computer and communications security (CCS
'10), Chicago, USA, 2010, pp. 516-525.

[14] N. Heath. Cern: Cloud Computing Joins Hunt for Origins of the
Universe. Available: http://www.techrepublic.com/blog/european-
technology/cern-cloud-computing-joins-hunt-for-origins-of-the-
universe/262, accessed on 10 March, 2013.

[15] J. Katz and V. Vaikuntanathan, "Round-optimal Password-based
Authenticated Key Exchange," in Proceedings of the 8th
conference on Theory of cryptography (TCC'11), Providence,
USA, 2011, pp. 293-310.

[16] J. Katz and M. Yung, "Scalable Protocols for Authenticated Group
Key Exchange," Journal of Cryptology, vol. 20, pp. 85 - 113, 2007.

[17] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key
Exchange Protocol Version 2 (IKEv2). The Internet Engineering
Task Force Request for Comments (IETF RFC) 5996, September
2010. Available: http://tools.ietf.org/html/rfc5996, accessed on 10
March, 2013.

[18] D. Kawata, R. Cen, and L. C. Ho, "Gravitational Stability of
Circumnuclear Disks in Elliptical Galaxies," The Astrophysical
Journal vol. 669(1), pp. 232-240, 2007.

[19] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,
"Science Clouds: Early Experiences in Cloud Computing for
Scientific Applications," in Proceedings of the First Workshop on
Cloud Computing and its Applications (CCA ’08), Chicago, USA,
2008, pp. 1 - 6.

[20] K. Kurosawa, "Multi-recipient Public-Key Encryption with
Shortened Ciphertext," in Proceedings of the 5th International
Workshop on Practice and Theory in Public Key Cryptosystems:
Public Key Cryptography (PKC '02), Paris, France, 2002, pp. 321–
336.

[21] R. Küsters and M. Tuengerthal, "Computational Soundness for
Key Exchange Protocols with Symmetric Encryption," in
Proceedings of the 16th ACM conference on Computer and
communications security (CCS '09), Chicago, USA, 2009, pp. 91-
100.

[22] C. Liu, X. Zhang, C. Yang, and J. Chen, "CCBKE - Session Key
Negotiation for Fast and Secure Scheduling of Scientific
Applications in Cloud Computing," Future Generation Computer
Systems, to appear, 2012. doi: 10.1016/j.future.2012.07.001.

[23] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, "The Eucalyptus Open-Source
Cloud-Computing System," in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGRID '09), 2009, pp. 124-131.

[24] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, "Hey, You,
Get off of My Cloud: Exploring Information Leakage in Third-
party Compute Clouds," in Proceedings of the 16th ACM
conference on Computer and communications security (CCS '09),
Chicago, USA, 2009, pp. 199-212.

[25] X. Tang, L. Kenli, Z. Zeng, and B. Veeravalli, "A Novel Security-
Driven Scheduling Algorithm for Precedence-Constrained Tasks
in Heterogeneous Distributed Systems," IEEE Transactions on
Computers, vol. 60, pp. 1017-1029, 2011.

[26] T. Xie and X. Qin, "Performance Evaluation of A New Scheduling
Algorithm for Distributed Systems with Security Heterogeneity,"
Journal of Parallel and Distributed Computing, vol. 67, pp. 1067-
1081, 2007.

[27] A. Y. Z. Young Choon Lee, "Energy Conscious Scheduling for
Distributed Computing Systems under Different Operating
Conditions," IEEE Transactions on Parallel and Distributed
Systems, vol. 22, pp. 1374-1381, 2011.

[28] D. Yuan, Y. Yang, X. Liu, and J. Chen, "On-demand Minimum
Cost Benchmarking for Intermediate Dataset Storage in Scientific
Cloud Workflow Systems," Journal of Parallel and Distributed
Computing, vol. 71, pp. 316-332, 2011.

[29] J. Zhao and D. Gu, "Provably Secure Authenticated Key Exchange
Protocol under the CDH Assumption," Journal of Systems and
Software, vol. 83, pp. 2297-2304, 2010.

[30] Z. Zhou and D. Huang, "An Optimal Key Distribution Scheme for
Secure Multicast Group Communication," in Proceedings of the
2010 IEEE Conference on Computer Communications
(INFOCOM '10), San Diego, USA, 2010.

	cover_page-10
	TrustCom2013-Liu-camera-ready

