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Abstract

Motion segmentation or recovering structure-and-motion (SaM) from images of

dynamic scenes plays a significant role in many computer-vision applications ranging

from local navigation of a mobile robot to image rendering for multimedia applica-

tions. Since in many applications, the exact type of motion and camera parameters

are not known, a priori, the fundamental matrix is commonly used as a general mo-

tion model. Although the estimation of a fundamental matrix and its use for motion

segmentation are well understood, the studies of conditions governing the feasibility

of segmentation for different types of motions are largely unaddressed.

In this thesis, the feasibility of motion segmentation using the fundamental ma-

trix is analysed. The focus is on a scene including multiple SaMs viewed by an

uncalibrated camera. The quantifiable measures for the degree of separation were

theoretically derived for the types of motion that are usually seen in practical appli-

cations, namely, motion from background, translational motions and planar motions.

Sets of condition to guarantee successful segmentation were proposed via extensive

experiments, the design of which was based on the Monte Carlo statistical method,

using synthetic images. Experiments using real image data were set up and executed

to examine the relevance of those conditions to the problems encountered in real

applications.

The experimental results show the capability of the proposed conditions to cor-

rectly predict the outcome of several segmentation scenarios. In addition, they also

show that the Monte Carlo experimental results are very relevant to the problems en-

countered in real applications. In practice, the success of motion segmentation could
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be predicted via the value of the degree of separation between two motions estimated

from obtainable scene and motion parameters. Therefore, the proposed conditions

serve as a guideline for practitioners in designing motion segmentation solutions for

computer-vision applications.
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Chapter 1

Introduction

This chapter presents an introduction to the research work in this thesis. The back-

ground and motivation of the research work are explained to establish the research

question. In addition, the overview of the research aim, objectives and contributions

is described. Finally, the chapter provides the structure of the thesis.

1.1 Background and motivation

Motion segmentation aims to recover structure-and-motion (SaM) from a collection

of two-dimensional (2D) camera images of a dynamic scene. In practice, the motion-

segmentation problem can be far more challenging, especially in situations where

multiple objects having different motions are present in the scene (called multibody

structure-and-motion (MSaM) by Schindler and Suter [80]). It is an important prob-

lem as it forms the initial step in many computer-vision applications, such as in

robotics, traffic and video surveillance, assembly inspection, object recognition, lo-

cal navigation, image rendering and many others. The interest in SaM or MSaM

1



recovery from multiple views stems from the established research in the recovery of

object shapes, summarised in [25, 39, 61], or traditionally termed Structure from Mo-

tion (SfM). SfM considers images of static objects viewed by a moving camera [26, 38]

whereas MSaM recovery deals with a dynamic scene including multiple objects having

distinct motions [80, 81].

Generally, motion segmentation is a complex process which involves three main

tasks — feature extraction, motion modelling and segmentation strategy [123]. The

main problem in SaM or MSaM recovery is that the exact nature of objects’ mo-

tions and the camera parameters are often not known in advance; thus, the most

general motion model in the form of a fundamental matrix is preferred to model a

three-dimensional (3D) rigid-moving object [104]. The fundamental matrix encapsu-

lates the geometry of a 3D structure, its motion and the camera intrinsic parameters

[27, 33, 123]. In addition, using the fundamental matrix could eliminate the need

for camera calibration, which is advantageous for demanding applications where the

camera parameters can be constantly changing due to zooming effect or external

vibration [14, 100].

A number of techniques for the estimation of multiple fundamental matrices, fun-

damental matrix approximations and their use in motion segmentation have already

appeared in the computer-vision literature and are summarised in [25, 39, 61]. How-

ever, the conditions governing the feasibility of motion segmentation of each SaM are

yet to be established.

In order to demonstrate a motion-segmentation process, its challenges and limita-

tions, two simple examples are presented. In these examples, we have performed mo-

tion segmentation to recover the light-coloured van from images in figures 1.1(a) and

2



1.1(b) [78] and the object on the left hand side of images in figures 1.2(a) and 1.2(b)

[78], respectively. All corresponding feature points in both images in figures 1.1(a)-

1.1(b) and 1.2(a)-1.2(b) were extracted using the publicly available implementation of

the Scale-Invariant Feature Transform (SIFT) algorithm [58, 56]. The ground truth

of the extracted points, as shown in figures 1.1(c) and 1.2(c), are associated with

(a) Image-1 (b) Image-2

 

 

Target points
Background points
Gross outliers

(c) Ground-truth (d) Segmentation result

Figure 1.1: Corresponding image points from two images of a 3D object in motion,

in (a) and (b), with the light-coloured van being the target object. The ground-truth

in (c) and the segmentation results are superimposed in image-1 in (d).
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each moving object, the background and some of them are the mismatches or gross

outliers.

The fundamental matrix associated with the target object and motion for each

case, shown in figures 1.1 and 1.2, was estimated using a publicly available func-

tion for the normalised eight-point algorithm [39, 52] with random sampling and

(a) Image-1 (b) Image-2

 

 

Target points
Unwanted points
Background points
Gross outliers

(c) Ground-truth (d) Segmentation result

Figure 1.2: Corresponding image points from two images of two 3D objects in motion,

in (a) and (b), with the object on the left being the target object. The ground-truth

in (c) and the segmentation results are superimposed in image-1 in (d).
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Target points
Unwanted points
Background points

(a) Image-1

 

 

Target points
Unwanted points
Background points

(b) Image-2

 

 

Target points
Unwanted points
Background points
Segmented points

(c) Segmentation result

Figure 1.3: Corresponding image points from two images of a simulated dynamic

scene, in (a) and (b). The segmentation results using the true fundamental matrix

are superimposed in image-1 in (c).

motion segmentation was concurrently performed using the Random Sample Consen-

sus (RANSAC) [28] as a gold-standard robust estimator having taken the square of

Sampson distances [101, 104, 119] as the residuals1. Figures 1.1(d) and 1.2(d) show

that the segmentation results are wrong as a number of points from the background

1Details on the fundamental matrix, its estimation, robust estimator and Sampson distance are

covered in chapter 2.
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or the other object are segmented as the target object. The potential sources of error

that lead to the unsuccessful segmentations include incorrect estimation of the fun-

damental matrix, the presence of gross outliers in the data and/or the limitation of

the fundamental matrix motion model.

To investigate the dominant source of segmentation errors in figures 1.1(d) and

1.2(d), we have simulated a dynamic scene containing two 3D objects having random

motions and a static object representing the background. In the simulation, all feature

points associated with both moving and static objects were projected onto two 512×

512 images and the ground-truth feature points are shown in figures 1.3(a) and 1.3(b).

The measurement noise in the image data was assumed to be Gaussian distribution

with standard deviation around one pixel. The camera was calibrated and the scene

was controlled such that the true fundamental matrix of the target motion was known

and no gross outliers were present in the data.

Motion segmentation was performed to segment the points associated with the

target motion using its true fundamental matrix. As shown in figure 1.3(c), the

segmentation is wrong even though the true fundamental matrix was used as the

motion model and the segmentation was performed without any gross outliers.

The segmentation results in figures 1.1(d), 1.2(d) and 1.3(c) imply that the suc-

cess of motion segmentation depends on the motion and/or scene parameters. The

research question deduced from the preliminary analysis is: What type and how much

motion can be segmented using the fundamental matrix? To answer this question, a

feasibility analysis for successful motion segmentation needs to be thoroughly con-

ducted to determine the theoretical limits for correct and successful segmentation

using the fundamental matrix motion model. The governing conditions for successful
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segmentation can be developed from those theoretical limits. In practice, these con-

ditions are capable of predicting the outcome of motion segmentation in advance and

they provide a useful set of guidelines for practitioners designing motion-segmentation

solutions for computer-vision applications.

1.2 Aim and contributions

The thesis aims to analyse the feasibility of motion segmentation using the funda-

mental matrix motion model. The focus is on a dynamic scene involving multiple

rigid 3D objects viewed by an uncalibrated camera. The analysis is divided into

three main parts based on the types of motions that are commonly encountered in

computer-vision applications. These parts are: stationary object from the back-

ground, translational motion and planar motion. The objective of the analysis is to

develop the set of conditions for correct and successful motion segmentation for each

type of motion using the fundamental matrix motion model.

The main contribution of this thesis is the theoretical analysis of the feasibility of

motion segmentation in commonly encountered scenarios including:

1. motion-background segmentation,

2. segmentation of translational motion, and

3. segmentation of planar motion

in dynamic scenes using the fundamental matrix motion model.
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1.3 Overview of the thesis

The thesis is divided into seven chapters including the introduction. The rest of the

thesis is organised as follows:

Chapter 2 starts by describing the building blocks of a motion-segmentation

algorithm and provides a critical review of previous works in motion segmentation

using the fundamental matrix. It introduces the concept of image data, camera

model and feature extraction. Furthermore, the concept of a fundamental matrix

motion model and its approximations for special motions, i.e. static object (zero

motion), translational and planar motions, are explained. The discussion continues

with a review of existing estimation methods and error measures used to estimate

a fundamental matrix. Finally, the segmentation strategies and robust estimation

techniques used in motion segmentation are described.

Chapter 3 defines the scope and methodology of the feasibility analysis of motion

segmentation using the fundamental matrix. The analysis is divided into three main

parts based on the types of motions and approximations of the fundamental matrix.

Each part consists of dynamic scene modelling and the theoretical derivation of the

conditions for successful motion segmentation. The derived conditions are verified

via experiments using both synthetic and real-image data.

Chapter 4, 5 and 6 detail the theoretical derivation for successful motion-

background segmentation, translational-motion and planar-motion segmentations, re-

spectively. The conditions for segmentation are examined when all motions and scene

parameters are varied. The derived conditions are verified via experiments, the design

of which is based on the Monte Carlo method, using synthetic images. Experiments
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using real-image data are applied to demonstrate the capability of the proposed con-

ditions to correctly predict the outcome of motion segmentation.

Chapter 7 concludes the analysis of motion segmentations and reviews the con-

tributions of the research work. In addition, several recommended future works and

research directions are discussed.
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Chapter 2

Motion Segmentation Using

Fundamental Matrix: A Review

Motion segmentation involving multibody structure-and-motion (MSaM) is a com-

plex process involving three main tasks [123], which are to extract all feature points

from 2D images, to estimate the motion model and to decide on the inlier-outlier

dichotomy. In practice, the unknown camera and motion parameters in most appli-

cations require the usage of the most general motion model which is the fundamental

matrix. In addition, a motion-segmentation process needs to be robust to tolerate

potential wrong matches from feature extraction and contamination of noise in the

data.

This chapter reviews several related works in motion segmentation using the fun-

damental matrix (section 2.1) and the theoretical background for all stages of the

segmentation process — namely, feature extraction (section 2.2), application of the

fundamental matrix motion model (section 2.3) and segmentation strategy (section

10



2.4) — to understand the theories behind them and their practical limitations.

2.1 Related works

The solutions for motion segmentation using the fundamental matrix and its approx-

imates can be broadly classified into non-algebraic methods (Shapiro et al. [82, 83],

Torr et al. [94, 104] and Schindler et al. [79]), and algebraic methods (Wolf and

Shashua [120], Vidal et al. [107, 109, 110, 111, 113], and Vidal and Ma [108]). Alge-

braic methods use the algebraic constraint satisfied by all objects in the scene whereas

in non-algebraic methods, detection and recovering of each SaM is usually an iterative

process [81].

One of the first modern techniques for the recovery of 3D motions was developed

by Shapiro et al. [82, 83], in which all image points were considered simultaneously

and the motions were modelled using the affine approximation of the fundamental

matrix. The performance of this approach in terms of its accuracy, tolerance to noise

and matching errors or gross outliers were better then the segmentation approaches

that required data sampling [82, 83].

Then, Torr et al. [94, 102, 104] presented a way to automatically determine the

number of motions and the appropriate motion model for each motion in a particu-

lar scene. In their work, the use of seven motion models was proposed to eliminate

the possibility of non-unique solutions while estimating the motion model due to

the degeneracy problem [95, 104]. These models included the fundamental matrix,

the affine and the translational fundamental matrix and also the plane homography.

After the number of motions was determined, the parameters for each motion were
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estimated by alternating between feature-clustering and motion estimation in a prob-

abilistic framework using the Expectation Maximisation (EM) algorithm [94]. The

main issue with the proposed algorithm was the dependence of the EM algorithm on

its initialisation procedure [102].

Wolf and Shashua [120] presented a method for two-body motion segmentation

that uses a geometrical constraint derived from all image points and called it the

segmentation matrix. Using this matrix, they could estimate the fundamental matrix,

its affine approximation or the translational fundamental matrix associated with each

body [120]. This method has the advantage of being able to determine the camera

parameters under affine camera assumptions by recovering the homography at infinity

when the relative motion between the two bodies is a pure translation [120].

Vidal et al. developed an algebraic method called the Generalized Principal Com-

ponent Analysis (GPCA) for solving the problem of data-fitting to a linear subspace

with an unknown dimension [107, 109, 110]. The GPCA starts by algebraically deter-

mining the number of unique subspaces to represent the data and their dimensions,

and then decides on the segmentation of the data. Since the GPCA estimates the

dimension of each subspace in the data, it is applicable to a wide range of sub-

spaces or motion models, including the fundamental matrix with respect to motion-

segmentation problems. The advantage of this approach is that it algebraically solves

the motion model and is thus able to eliminate the feature-clustering stage in motion-

segmentation problems [112]. The main issue with this approach is the huge amount

of data points required by the GPCA when dealing with multiple subspaces with high

dimensions.
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As a specific solution to motion-estimation and segmentation problems, Vidal et al.

[111] derived and proposed the multibody fundamental matrix; the generalisation of

the epipolar constraints or the fundamental matrix for multiple motions. This work

was then extended to also work with a two-dimensional motion model based on the

optical flow [108]. Recently, Schindler and Suter have used the multibody fundamen-

tal matrix for two-view MSaM segmentation and have improved the segmentation

performance by implementing the geometric model selection to replace degenerate

motion/s in dynamic scenes [80, 81].

Klappstein, Stein and Franke studied the detection of moving objects for the

applications of local navigation and automobile driver-assisted systems [51]. Several

motion models over two and three image frames were considered, including the funda-

mental matrix, positive depth and height constraint and the trifocal tensor. However,

the detection analyses were limited to circular, parallel and lateral motions, which

are usually seen from a monocular camera mounted in front of an automobile.

Even though, the analyses aimed at solving motion-segmentation problems have

received considerable attention over the years (summarised in [25, 39, 61]), the con-

ditions governing the feasibility of detection and segmentation of each structure-and-

motion in a dynamic scene are largely unaddressed. These conditions are able to

provide practical limitations of motion-segmentation solutions and serve as useful

guidelines for practitioners designing motion-segmentation solutions for computer-

vision applications.
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2.2 Image formation and feature extraction

An image is a map of a 3D scene on a 2D plane. In terms of computer vision, it is

a transformation from 3D scenes to 2D images. The fundamental concept of the 3D-

to-2D transformation is based on the theory of perspective projection using a pinhole

camera model as shown in figure 2.1. The relationship between the homogenous

Figure 2.1: The pinhole camera model. Figure is from [39].

coordinate of a 3D point M = [X Y Z 1]> in figure 2.1 and its equivalent point on a

2D image m = [x y 1]> can be expressed as:

m = A[R | T ]M, (2.1)

where matrices A and [R | T ] summarise the intrinsic and extrinsic parameters of the

camera [23, 39]. The 3 × 3 matrix A is called the camera calibration matrix

A =




f 0 Px

0 f Py

0 0 1




, (2.2)

with the symbol f denoting the camera focal length and the symbol [Px Py] denoting

the location of the principal point of the image. The matrix [R | T ] in equation
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(2.1) represents changes in camera position by rotation R followed by a translation

T . For the case of a static camera, the matrix [R | T ] reduces to [I | 0], which is a

combination of an identity matrix and a vector of zeros.

Besides the perspective projection and pinhole camera model, shown in figure 2.1,

there are many other camera models that have been developed, including the affine

camera model [70] and the pushbroom camera model [31]. For a review of these

models and their theoretical derivations, the reader is referred to [2, 23, 39].

The image data contain rich and high-density information about a particular scene

such as colour, texture, object size and position, and object motion in the case of mul-

tiple images. In many computer-vision applications, this information is redundant;

thus, for optimisation purposes, a feature detector is used to filter out some of the

irrelevant information. In terms of motion estimation and segmentation, a feature

detector is applied to extract point correspondences from two or more images to

represent object motions.

Generally, a feature detector functions by first determining the data primitives,

such as individual pixels, corners, lines, blocks, blobs and T-junctions [88]. Then these

features are represented by unique feature vectors and finally are matched with their

correspondences from different images. The matching is done by solving a particular

cost function in terms of distances between those vectors. Importantly, a feature

detector for motion-segmentation problems needs to be repeatable and reliable under

different viewing conditions, and also scale-invariant to handle changes in the size of

objects in the image.

One of the most popular feature detectors developed for computer-vision problems

is the Harris corner detector [32]. However, the Harris corner detector can not handle
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variations of image size or image-scaling which are critical in motion-segmentation

applications. The image-scaling problems are solved by the automatic scale selec-

tion algorithm developed by Lindeberg [54] and later improved by Mikolajczyk and

Schmid [66] to produce a highly repeatable and robust feature detector. Several other

feature detectors for computer-vision problems are also proposed — namely, the Scale-

Invariant Feature Transform (SIFT) algorithm [57, 58] and the Speeded-Up Robust

Features (SURF) algorithm [11] — mainly to improve their repeatability, robustness,

stability and computational speed [49, 50]. For a review of these feature detectors

and a comparison of their performance, the reader is referred to [67, 68, 72].

In this work, we consider a case where a static and uncalibrated camera has

a camera matrix according to equation (2.1) and a feature detector based on the

SIFT algorithm [58]. This is because they are widely used in many computer-vision

applications and the SIFT algorithm has been shown to outperform other feature

detectors in terms of repeatability, robustness and ability to tolerate image scale

variation [68].

2.3 The fundamental matrix motion model

Over the years, the computer-vision community has developed a number of motion

models to represent moving objects in a dynamic scene [25, 39, 61]. Common examples

are: the fundamental matrix for a rigid 3D object having an arbitrary motion; plane

homography [24, 84] for moving planar object; and 2D optical flow [1, 15, 89] or models

based on change-detection [63, 99] to represent apparent motions on the image planes.

The analysis in this work focuses on motion segmentation using the most gen-
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eral motion model for 3D SaM, i.e. the fundamental matrix. The theory of the

fundamental matrix motion model, introduced in [26, 27, 37, 33], is an improvement

on the novel essential matrix [55] for cases involving an uncalibrated camera. The

fundamental matrix summarises the intrinsic projective geometry between two views

[39] and only depends on the camera parameters and its position [39]. In terms of

motion-segmentation problems, the fundamental matrix takes into account all scene

and motion parameters, i.e camera parameters and 3D motion, size and location of

object [123]. In practice, the fundamental matrix motion model represents a more

realistic motion model compared to the models based on apparent changes on the

image planes, i.e. the 2D optical flow or change detection [123].

In addition, the fundamental matrix is suitable for many computer-vision applica-

tions since it does not require prior knowledge of the exact nature of object motions

and camera parameters [14, 104]. This results in the fundamental matrix being one

of the preferred motion models in motion-segmentation applications because it will

not be adversely affected by small changes to the camera parameters that occurr due

to lens focusing or camera vibrations [14].

Consider a scene in figure 2.2 where an uncalibrated camera is moved according

to rotation R followed by translation T from position C1 to position C2 while taking

two images of a point Mi = [Xi Yi Zi 1]> in 3D-space from each position. The corre-

sponding image/feature points associated with a point Mi for both camera positions

are given by the homogenous coordinates m1i = [x1i y1i 1]> and m2i = [x2i y2i 1]>,

respectively. The relationship between the points m1i and m2i on two images in figure
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2.2 are according to equation

[
x2i y2i 1

]
F




x1i

y1i

1




= 0, (2.3)

where

F =




h1 h2 h3

h4 h5 h6

h7 h8 h9




, (2.4)

is a unique 3 × 3 rank-2 matrix called the fundamental matrix [25, 39, 61]. The

fundamental matrix can be computed using equation

F = A−T [T ]xRA−1, (2.5)

where [T ]x is a skew symmetric matrix of the translation T [3, 39, 124].

Figure 2.2: An uncalibrated scene for the fundamental matrix motion model. Figure

is from [61].
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Meanwhile, if the camera matrix A is known, i.e. in the calibrated case, the

equation (2.3) is reduced to:

[
x2i y2i 1

]
E




x1i

y1i

1




= 0, (2.6)

where E is a 3 × 3 essential matrix based on the external camera parameters or,

specifically, the motion of the camera [55]:

E = [T ]xR. (2.7)

The role of the moving camera and static object in figure 2.2 could be interchanged

based on the principle of duality [17, 117]. Thus, the fundamental matrix in equation

(2.5) is also applicable for the case of motion segmentation where a static camera is

observing objects in motion [61]. For the complete derivation of the essential and

the fundamental matrices using both geometric and algebraic methods, the reader is

referred to [39, 55, 61, 121].

2.3.1 Fundamental matrix estimation

In a practical motion-segmentation problem, the fundamental matrix associated with

a particular motion needs to be estimated from corresponding image/feature points.

This is due to the fact that the camera parameters and object motion are not known,

a priori. The basic equation for the estimation of a fundamental matrix is derived by

expanding equation (2.3):

x2ix1ih1 +x2iy1ih2 +x2ih3 + y2ix1ih4 + y2iy1ih5 + y2ih6 +x1ih7 + y1ih8 +h9 = 0, (2.8)
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which is factorised to:

(x2ix1i + x2iy1i + x2i + y2ix1i + y2iy1i + y2i + x1i + y1i + 1)h = 0, (2.9)

where h is the 9 × 1 vector made up of the elements of F in (2.4).

Several methods have been developed to estimate the fundamental matrix from

image-point correspondences and these are classified as linear, iterative and robust

methods [3, 124]. The essence of the linear methods is that they estimate the fun-

damental matrix by solving equation 2.9 using either seven or eight corresponding

image points [3, 124]. The fundamental matrix estimate can be obtained by solv-

ing equation (2.9) algebraically using at least seven corresponding image points via

singular-value decomposition (SVD) and the rank-2 constraint of the fundamental

matrix [29, 35, 96].

In a linear method, called the eight-point algorithm [36, 55], the fundamental

matrix is estimated by minimising the sum of squares of algebraic distance:

min
F

∑

i

(m>
2iFm1i)

2, (2.10)

using either least-squares [60] or orthogonal least-squares techniques [101]. The linear

methods are computationally efficient, however their accuracies are poor, especially

in the presence of wrong matches from feature extraction and bad locations of image

points due to contamination from measurement noise [3].

The iterative methods for the estimation of a fundamental matrix involve min-

imising a cost function in terms of distances between corresponding image points to

an eight-dimensional manifold representing a model candidate for the fundamental

matrix estimate. The iteration is repeated until the cost function is minimised, which
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means that the best candidate for the fundamental matrix estimate is found. It-

erative methods are capable of producing superior accuracies of fundamental matrix

estimates compared to linear methods; however, they are still unable to handle wrong

matches [3, 124].

Three commonly used cost functions for the estimation of a fundamental matrix

using iterative methods are:

1. The sum of squares of geometric distances [39]

min
F

∑

i

[
(x1i − x̂1i)

2 + (x2i − x̂2i)
2 + (y1i − ŷ1i)

2 + (y2i − ŷ2i)
2
]2

, (2.11)

where x̂1i, x̂2i, ŷ1i and ŷ2i are the estimated locations of image points m̂1i and

m̂2i that satisfy m̂>
2iF̂ m̂1i = 0 calculated using the candidate of the fundamental

matrix estimate F̂ . This measure minimises the distances between correspond-

ing image points to their reprojection using the F̂ .

2. The sum of squares of Sampson distances [101, 119]

min
F

∑

i


 m>

2iFm1i√
[( ∂

∂x1i

)
2
+ ( ∂

∂y1i

)
2
+ ( ∂

∂x2i

)
2
+ ( ∂

∂y2i

)
2
]m>

2iFm1i




2

. (2.12)

The Sampson-distance measure is the first-order approximation of the geometric

distance in equation (2.11) with high accuracy, i.e. up to 4 or 5 significant figures

[101].

3. The sum of squares of Luong distances [59]

min
F

∑

i


 m>

2iFm1i√
[( ∂

∂x1i

)
2
+ ( ∂

∂y1i

)
2
]m>

2iFm1i

+
m>

2iFm1i√
[( ∂

∂x2i

)
2
+ ( ∂

∂y2i

)
2
]m>

2iFm1i




2

.

(2.13)

21



The Luong-distance measure is also an approximation of the geometric distance.

It differs from the Sampson distance by computing the distances separately

in each image. However, the use of Luong distance produces slightly inferior

estimates compared to the Sampson-distance measure [39, 124].

In this analysis, we use the cost function based on the Sampson-distance measure [119,

101] due to its practicality in terms of lower computing requirement and high accuracy

compared to the geometric-distance [104, 101] and the Luong-distance measure [39,

124].

The robust methods for the estimation of the fundamental matrix incorporate ro-

bust statistical-regression techniques to handle both wrong matches and contamina-

tion of measurement noise. These methods are usually preferred since they represent

the real problem encountered in many computer-vision applications involving funda-

mental matrix estimation1. For a complete review of all methods for the estimation of

a fundamental matrix and their performances, the reader is referred to [3, 101, 124].

2.3.2 Degeneracy and fundamental matrices for special mo-

tions

The degeneracy problem occurs when a set of corresponding image points produce

non-unique estimates of the fundamental matrix [39, 104]. In this case multiple solu-

tions of the fundamental matrix can be estimated from those points. This condition

is not desired as it could produce errors in the estimation of the motion model which

results in an incorrect inlier-outlier dichotomy with respect to motion-segmentation

1More details about robust estimators are covered in section 2.4.
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problems.

The problem of degeneracy in the fundamental matrix is caused by either structure

degeneracy or motion degeneracy [98]. Structure degeneracy takes place when the

corresponding points are coplanar or coming from the same plane. This situation

is usually encountered when the image points associated with a 3D object have a

relatively small depth compared to the distance between the object and camera, for

example, a camera viewing a small building located very far away where most of the

image points appear to be on the same plane. In such cases, the image data does not

contain enough information in terms of the depth for the fundamental matrix motion

model and a plane homography is a much more appropriate model [62].

The problem of motion degeneracy occurs when the camera or object has a re-

stricted motion which is less than six degrees-of-freedom since the fundamental matrix

takes into account all motion parameters, i.e. rotation and translation around or along

X, Y and Z axes in a 3D-space. Common examples occur in the situations where a

camera does not translate or only rotates around its center. In these situations, the

relationship between the image points in the two images would also be best described

by a plane homography, as the fundamental matrix is a zero matrix [98], according

to equation (2.5) when the translation T is zero.

In addition, there are two other fundamental matrix approximations to represent

restricted motions and also to eliminate the possibility of degeneracy. There are: the

translational fundamental matrix for camera or object having a pure translational
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motion without any rotation

FT =




0 q3 −q2

−q3 0 q1

q2 −q1 0




, (2.14)

and the affine fundamental matrix [13, 114]

FA =




0 0 r1

0 0 r2

r3 r4 r5




, (2.15)

which arises from a scene viewed by an affine camera [39, 70] or a 3D object having

planar motion [104], i.e. a motion restricted to a plane orthogonal to the camera

optical axis.

These fundamental matrix approximations are important because they are com-

monly encountered in many practical computer-vision applications [39]. For example,

a zero fundamental matrix arises from images of a static object in the background,

or an object having a pure rotation, such as in a turntable sequence. Pure transla-

tional motions are encountered in many traffic surveillance applications while planar

motions are seen in a scene when the ratio of the object motions along the cam-

era optical axis over the distance between the objects and the camera is negligible

[70, 83, 101, 121].

In practice, to ensure that the estimated motion model does not degenerate, a

model-selection algorithm is usually implemented to select the most suitable motion

model to represent a particular motion in a dynamic scene [80, 81]. Model selection

problem is however outside the scope of this thesis and is not explained here.
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2.4 Segmentation strategies and robust estimation

A robust estimator is a regression technique based on statistical theory and is used

to estimate certain parameters from a particular data set. In terms of motion seg-

mentation, a robust estimator is commonly used to estimate the motion model and

to decide on the inlier-outlier dichotomy of the data. This is because many motion-

segmentation applications are dealing with data set containing multiple structures

and motions, wrong matches or gross outliers and errors from the contamination

of measurement noise. In general, robust estimators used to solve computer-vision

problems include three main steps [43]:

1. Optimisation: return an initial estimate of the motion model, i.e. a fundamental

matrix for a 3D SaM, as a result of the optimization of a cost function. For the

fundamental matrix motion model, the cost functions are in terms of distances

provided in equations (2.10) to (2.13).

2. Segmentation: decide on the separation between inlier and outlier by evaluating

their magnitude of distance to the manifold given by an estimate of the motion

model. The scale estimate of the inliers population determines the threshold

for deciding the inlier-outlier dichotomy. In other words, all points with their

associated distances larger than the threshold are considered as the outliers.

3. Refinement: refine the estimate of the motion model by applying the least-

squares technique only to the inlier population detected in the segmentation

step.
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Many robust estimators use random sampling in their optimisation step in order

to find the best candidates in the data by satisfying a particular cost function. In

terms of fundamental matrix estimation, a robust estimator searches for seven or

eight image/feature points based on equation (2.9) that optimise a particular distance

measure (equations (2.10) to (2.13)). The probability of a robust estimator finding

at least all candidates associated with the target motion/structure or inlier using

random sampling is given by the equation:

Psuccess = 1 − [1 − εp]B. (2.16)

The symbol ε is the ratio of inliers in the data set, p is the dimension of the model

and B is the number of trials. Thus, to ensure an accurate estimation of the motion

model with the probability of Psuccess, the random sampling needs to be repeated for

B iterations:

B =
log(1 − Psuccess)

log(1 − εp)
. (2.17)

This shows that the random sampling process requires a high computational load,

making it undesirable for real-time applications. The number of samples B in equa-

tion (2.17) increases exponentially when the motion model has high dimensions, i.e.

seven or eight dimensions for the fundamental matrix motion model, and the smallest

possible value of inlier ratio ε is usually used since it is not known in advance for most

applications.

To overcome the high computational cost associated with random sampling, guided

sampling techniques were applied to reduce the number of samples when the infor-

mation about the reliability of the data set was roughly known. This information

could come either from user input or be heuristically estimated from the data itself
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[18, 43]. The essence of a guided sampling technique is that it minimises the number

of samples by selecting data candidates which have a high probability of being the

inlier to the data [93, 97]. There are a number of techniques for guided sampling

which have been developed for robust estimators such as in [4, 21, 30, 43, 45, 71, 93];

however, in practice, the information about the reliability of the data is not usually

known in advance for most motion-segmentation applications.

The performance of a robust estimator is usually measured by its breakdown point

which is defined as the minimum percentage of outliers contamination that can cause

an estimator to produce arbitrarily large values [77]. For example, if the breakdown

point of a particular estimator is around 40%, it means that the estimator should

be able to produce a correct parameter estimate if outliers contamination is less

than 40% of the entire data. However, the performance of a robust estimator does

not necessarily live up to its expected breakdown point if the size of the data set is

relatively small [44]; this usually occurs in a scene containing objects with a small

number of detectable features. This is because the accuracy of the scale estimate for

the inliers deteriorates when the size of the inliers population in the data set is small

[44].

Robust estimators have a very long history and have been used in computer vi-

sion for more that a quarter of a decade. In the early stage, estimators are mainly

developed for statistical applications assuming that only a single structure or model

exists in the data. A common example is the Least-Square (LS) technique — based

on the theory of linear regression — which performs the parameters estimation by

minimising the sum of squared residuals [77]. The main issues with the LS technique

are its inability to handle the outliers in the data and its breakdown point of 0%.
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In order to handle the presence of outliers in the data, several estimators have

been designed, namely, the least-median-of-squares (LMedS) [76] and the family of

maximum likelihood, or M-estimators [41, 47, 48, 86]. The LMedS minimises the

median of the residuals and theoretically it has a breakdown point of 50% [76] whereas,

the M-estimator uses a symmetric function to reduce the effect of outliers in the

data [47]. Even though LMedS was mainly developed for statistical applications,

it has been used in a number of computer-vision applications due to its robustness

and relatively high breakdown point. Examples of applications of LMedS in computer

vision are in solving pose-estimation problems [20, 74], optical-flow calculations [5, 73],

range-image segmentation [75] and object recognition and tracking [106]. The main

issue with LMedS is its performance deterioration when the data is contaminated by

Gaussian noise [77].

In practice, a robust estimator for computer-vision applications requires a break-

down point of larger than 50% since it needs to be able to process a data set with

a majority of outliers; especially in cases involving multiple structures or objects in

a scene [64]. To meet this requirement, a number of robust estimators have been

specially designed for computer-vision problems where the breakdown point is much

larger than 50%. For example, the Hough transform [46], the Random Sample Con-

sensus (RANSAC) [28], the Residual Consensus (RESC) [122], the projection-based

M-estimators [18, 90, 91], the Minimise the Probability of Randomness (MINPRAN)

[85], the Minimum Unbiased Scale Estimator (MUSE) [69], the Maximum Likeli-

hood Estimation Sample Consensus (MLESAC) [103], the Adaptive Least kth Order

Squares (ALKS) [53], the Modified Selective Statistical Estimator (MSSE) [6], the

High Breakdown M-estimator (HBM) [43], the Two-Step Scale Estimator (TSSE)
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and the Adaptive Scale Sample Consensus (ASSC) [115, 116].

Most of the above estimators have been successfully applied to computer-vision

problems; to name a few, motion segmentation [100, 105] and structure-from-motion

[12, 34, 92, 125]. For a theoretical analysis of robust estimation for data including

two distinct populations and a complete review of robust estimators, the reader is

referred to [19, 64, 65, 86, 87].

In this work, the segmentation step is based up on using MSSE [6]. The choice

is motivated by the MSSE desired performance in terms of consistency [42] and the

fact that it has been shown to be successful in segmenting closely-spaced structures

[40, 44]. It is important to note that, although the segmentation steps within MSSE

are used, all of the analysis is general and similar results would be obtained if other

robust estimators are used.

2.5 Conclusion

In this chapter, we have critically reviewed the theories and methods for motion

segmentation using the fundamental matrix, including their practical limitations. Al-

though the estimation of a fundamental matrix and its use for motion segmentation

are well understood, the conditions governing the feasibility of detection and seg-

mentation of each structure-and-motion are largely unaddressed. These conditions

are important as they provide useful guidelines for practitioners designing motion-

segmentation or estimation solutions for computer-vision problems. In the next chap-

ter, we will provide the details of the methodology adopted to analyse the feasibility

of motion segmentation using the fundamental matrix for different types of motions.
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Chapter 3

Scope and Methodology

This chapter presents the scope and methodology for a feasibility analysis of motion

segmentation. The analysis starts with modelling a dynamic scene, presented in

section 3.1, including two 3D-rigid objects having distinct motions. In section 3.2,

motion segmentation is performed to determine each object in the scene and to derive

the theoretical limits for successful segmentation. The focus is on developing measures

for the degree of separation between motions using the fundamental matrix motion

model. Based on these measures, a set of conditions to guarantee successful motion

segmentation is proposed. Section 3.3 describes the experiments, using synthetic

images, which are designed to evaluate the validity of the proposed conditions and

examine their effect on variations of scene and motion parameters. The applicability

of the proposed conditions and their relevance to the problems encountered in real

motion-segmentation applications are demonstrated in experiments using real-image

data, described in section 3.4. Finally, section 3.5 concludes this chapter.

The feasibility analysis is organised based on the types of motions in a dynamic
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scene and the approximate models of the fundamental matrix to eliminate the possi-

bility of degeneracy, when dealing with less general motion, i.e. motion less than six

degree-of-freedom [25, 39]. In practice, the less general motions are usually seen in

a number of computer-vision applications. For example, static points are associated

with the background or objects very far from the camera, pure translational motions

are present in most traffic surveillance applications and planar motions are present

in a scene where the motions along the camera optical axis are small compared to

the object-to-camera distance [39, 70, 83, 101, 121]. Therefore we have divided the

analysis into three main parts:

1. motion-background segmentation in chapter 4,

2. translational-motion segmentation using the translational fundamental matrix

in chapter 5, and

3. planar-motion segmentation using an affine fundamental matrix in chapter 6.

3.1 Modelling a dynamic scene

To analyse the motion-segmentation problem, we consider the general case of a

stationary and uncalibrated camera viewing a dynamic scene including two rigid

3D-objects that move according to two distinct motions denoted by motion-a and

motion-b. Both motion-a and motion-b are parameterised by rotation θ and followed

by a translation T i.e. θa and Ta for motion-a and θb and Tb for motion-b where

Ta = [Txa Tya Tza]
> and Tb = [Txb Tyb Tzb]

>.
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The focus on only two motions present in a scene is justified because the segmen-

tation is an iterative process and the analysis aims to find the smallest amount of

relative motion that can be detectable. Intuitively, in a motion-segmentation prob-

lem involving more than two motions, the motion that includes the highest number of

points will be segmented first and then the segmentation process is repeated for other

motions in the scene. In addition, the assumption of a stationary camera viewing

the scene is justified, since only the motions relative to the camera is relevant to this

analysis [100].

Consider a point in the 3D-space with coordinates Mi = [Xi Yi Zi]
> viewed by a

camera with a camera matrix A

A =




f 0 Px

0 f Py

0 0 1




, (3.1)

with focal length f and the image principal point [Px Py], and denote its corresponding

point on the image plane by m1i = [x1i y
1i
]>. After an arbitrary motion, image point

m1i moves to position m2i = [x2i y
2i
]> on another image.

The images contain Ni +No points where Ni and No denote the number of points

having either motion-a and motion-b, respectively. The number of image points can

be controlled by varying the inlier ratio ε:

ε =
Ni

Ni + No

. (3.2)

We assumed that there were no mismatches or gross outliers in the images to eliminate

their effect on the analysis and segmentation results. In practice, gross outliers are

removed by the robust estimator commonly used as part of the motion-segmentation
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process [123].

All points on the image planes are contaminated by measurement noise assumed

to be independently and identically distributed (i.i.d) with Gaussian distribution:

x1i = x1i + e1
ix, y1i = y

1i
+ e1

iy,

x2i = x2i + e2
ix, and y2i = y

2i
+ e2

iy,

(3.3)

where [e1
ix e1

iy e2
ix e2

iy]
> ∼ N(0, σ2

nI4) in which σn is the unknown scale of noise and

I4 is a 4 × 4 identity matrix. The underlined variables denote the true noise-free

locations of the points in the image planes.

Without loss of generality, motion-a is considered as the target motion and motion-

b as the unwanted one. In the context of robust estimation, the matching points

associated with motion-a are assumed to be inliers, which we aim to segment from

the matching points having motion-b, i.e. outliers.

3.2 Motion segmentation using fundamental ma-

trix

The analysis of motion segmentation aims to derive a measure for the degree of

separation between two motions — motion-a and motion-b where motion-a is the

target motion (inliers) — using fundamental matrix motion model. The derived

measure is used as the basis to determine a set of conditions to guarantee successful

segmentation.

The analysis focuses on investigating the theoretical limit of motion segmentation,

in terms of obtainable scene and motion parameters, and how imperfect estimate of
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the fundamental matrix would affect the conditions for segmentation is beyond the

scope of this work. In practice, the fundamental matrix can be accurately estimated

using a number of robust methods proposed in computer-vision literatures [3, 101, 124]

and the estimation issues in terms of both the feasibility and the accuracy, has already

been thoroughly studied [42, 44]. Thus, in our analysis we assume that an accurate

estimate of the fundamental matrix associated with the target motion is provided by

a robust estimator. As such the fundamental matrix of motion-a is calculated using

equation (2.5).

To decide on the inlier-outlier dichotomy in the mixture of all image points, the

segmentation steps within the Modified Selective Statistical Estimator (MSSE) [6]

is used due to its desired performance in terms of consistency [42] and that it has

been shown to be successful in segmenting closely spaced structures [40, 44]. It is

important to note that, although we use MSSE in our experiments, the analysis is

general and similar results would be obtained if other robust estimators are used.

The residual for motion segmentation is the square of the Sampson-distance mea-

sure [101, 119]:

di =
m>

2iFm1i√
[( ∂

∂x1i

)
2
+ ( ∂

∂y1i

)
2
+ ( ∂

∂x2i

)
2
+ ( ∂

∂y2i

)
2
]m>

2iFm1i

, (3.4)

and di denote the distance of the ith point from the motion manifold with respect to

the fundamental matrix of motion-a. The Sampson-distance measure is applied be-

cause it is commonly used due to its lower computing requirement and high accuracy

(up to 4 or 5 significant figures [101]) compared to the geometric distance measure

[101, 104]. The Sampson-distance measure also produces slightly better results than

the Luong-distance measure in equation (2.13) [39, 124].
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In MSSE, the residuals (di
2) are sorted in an ascending order, indexed by the

symbol k, and an unbiased estimate for the scale of noise, given by k points with the

smallest distances, is [6]:

σ2
k =

∑k

i=1
d2

i

k − 1
. (3.5)

While incrementing the value of k, the inlier-outlier dichotomy occurs as soon as

the magnitude of dk+1 becomes larger than 2.5 times the scale estimate given by the

smallest k distances:

|dk+1| > 2.5σk. (3.6)

With the threshold of 2.5, at least 99.4% of points associated with motion-a (inliers)

will be correctly segmented if their di are normally distributed [6]. In practice, the

measurement values are always bounded and the above threshold would represent a

perfect segmentation.

Equations (3.5) and (3.6) show that the success of motion segmentation depends

on the values of the residuals or Sampson distances di associated with both motions.

If the residuals of points having motion-a are sufficiently different from the residuals

associated with points having motion-b, the segmentation is expected to be successful.

A measure for the degree of separation between two motions based on the relative dis-

tance between both populations of di will be introduced in this thesis. The condition

for motion segmentation is determined based on the degree of separation to ensure

that the distribution of residuals are always sufficiently far from each other. If the con-

dition for segmentation is satisfied, the segmentation is guaranteed to be successful.

In practice, the outcome of a motion segmentation could be predicted via the value

of the degree of separation between two motions estimated from obtainable scene and
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motion parameters. Therefore, this condition serves as a guideline for practitioners

in designing motion segmentation solutions for computer-vision applications.

3.3 Monte Carlo experiments using synthetic im-

ages

The theoretical analysis in section 3.2 is verified via experiments using synthetic

images. The foci are:

1. to examine the validity of the proposed degree of separation between two mo-

tions and

2. to determine the conditions for segmentation when all scene and motion param-

eters are varied, i.e. inlier ratio, camera parameters, objects motions, sizes and

locations.

The experiments are designed to represent identical conditions in the theoretical anal-

ysis and are based on the Monte Carlo statistical method.

In the experiments, 1000 segmentations are performed for each scene parameter

(inlier ratio, camera parameters, objects sizes and locations) while the motion param-

eters are randomly selected based on the values of the degree of separation between

two motions. The segmentation performance is measured by the ratio (ζ) of the

number of segmented points having motion-a over the true number of points having

motion-a. The value of ζ equal to one signifies correct segmentation while ζ larger

than one means over-segmentation, which indicates that some points having motion-b

are also segmented as motion-a due to the similarity between the two motions. To
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examine the consistency of the segmentation results, the statistical mean and stan-

dard deviation of 1000 ζs, denoted by ζ̄ and σζ , are also calculated. We considered

the segmentation of motion-a to be correct and consistent if ζ̄ ≈ 1 and σζ ≤ 0.01

throughout the experiments.

In addition, using the above experiments, the dominant scene or motion-parameters

affecting the performance of a motion segmentation can be identified and exam-

ined. The experimental results are presented in terms of the conditions for motion-

background segmentation, translational-motion and planar-motion segmentation —

the proposed conditions are based on the derived measures for the degree of separation

between two motions.

3.4 Experiments using real-image data

Experiments using real-image data are designed to show the relevance of the analysis

and Monte Carlo experiments in section 3.2 and 3.3 to the problem encountered in a

real motion-segmentation problem. In addition, the experiments aim to demonstrate

the capability of the proposed conditions to correctly predict the outcome of a set of

segmentation scenarios.

In the experiments, motion segmentation is performed in cases where the values of

the degree of separation between two motions are less than, close to and larger than

the proposed thresholds for successful segmentation. The segmentation performance

and the histogram of distances associated with all points for each case are examined

and compared with the results from experiments using synthetic images.
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3.5 Conclusion

The feasibility analysis of motion segmentations is organised in the following steps:

1. development of a model to represent a dynamic scene,

2. theoretical derivation of quantitative measures for the degree of separation in

motion-background segmentation, translational-motion segmentation and planar-

motion segmentation,

3. Monte Carlo experiments to verify the theoretical analysis and develop the

conditions for successful segmentation, based on the derived measures for the

degree of separation between two motions, and

4. experiments using real-image data to show the relevance between the analysis

and the problems encountered in real-image applications.

In practice, the value of the degree of separation between two motions could be esti-

mated using obtainable scene and motion parameters. By comparing the estimated

value of the degree of separation with the proposed condition for segmentation, the

outcome of motion segmentation could be predicted. Thus, these conditions serve as

a guideline for practitioners designing motion-segmentation solutions for computer-

vision problems. In the following chapters, we will derive measures for the degree of

separation between two motions and develop the conditions for motion-background,

translational-motion and planar-motion segmentation.
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Chapter 4

Analysis of Motion-Background

Segmentation

In most computer-vision applications, feature or image points extracted from images

of a dynamic scene are associated with either moving objects or the background.

In this categorisation, the background points have zero or negligible motion as they

are generally extracted from static objects or objects located very far away from the

camera.

This chapter studies the feasibility of detection and segmentation of an unknown

motion from its static background using the fundamental matrix motion model. First,

the separability of a pure translation from static background is theoretically analysed

in section 4.1. The analysis shows that a pure translation is not separable from its

static background using the fundamental matrix. Section 4.2 then proposes a set

of sufficient conditions for motion-background segmentation based on a quantitative

measure for the degree of separation in terms of the rotation angle of the target
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motion. The results of the experiments using real-image data designed to demonstrate

the usability of the proposed conditions are presented and discussed in section 4.3.

Finally, section 4.4 concludes the chapter.

4.1 Non-separability of a pure translation

To analyse the feasibility of a motion-background segmentation, a dynamic scene

containing two rigid 3D-objects having distinct motions, denoted as motion-a and

motion-b, is considered. The focus is on a scene viewed by a static and uncalibrated

camera (as introduced in section 3.1). Motion-a is parameterised by a rotation θa

around the camera optical axis and followed by a non-zero translation Ta, while the

parameters of motion-b are set to zero, i.e. θb = 0 and Tb = 0, to represent a static

object or background.

The analysis aims to prove that a pure translational motion is not separable

from static points in a motion segmentation using the fundamental matrix. In other

words, we aim to segment points having a pure translational motion from static points

associated with the background. Firstly, the analysis focuses on a case of motion-a

restricted to a 2D translational-motion, i.e. θa is set to zero and Ta is confined on a

plane perpendicular to the camera optical axis (Z axis); this motion is denoted by

the symbol Ta2D = [Txa Tya 0]>. The 2D translational-motion segmentation analysis

provides the necessary foundation for a more general case, where motion-a is an

arbitrary 3D translation Ta = [Txa Tya Tza]
> (including a component along the camera

optical axis). Without loss of generality, in terms of robust estimation, the image

points having Ta2D or Ta extracted from the images of the scene are considered inliers,
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which are to be separated from the points associated with the static background —

the outliers.

In this analysis, we assumed that an estimator has provided an accurate estimate

of the fundamental matrix of a 2D translation Ta2D

FTa2D =
1

f




0 0 Tya

0 0 −Txa

−Tya Txa 0




, (4.1)

provided by equation (2.5) [3, 39, 124] with camera matrix according to A in (2.2)

including focal length f and the image principal point [Px Py]. The relationship

between the noise-free points, denoted by the underlined symbols, having a 2D trans-

lation Ta2D in two images are

x1i =
fXi

Zi

+ Px, x2i = x1i +
fTxa

Zi

+ Px,

y
1i

=
fYi

Zi

+ Py and y
2i

= y
1i

+
fTya

Zi

+ Py,

(4.2)

where the symbols [Xi Yi Zi] refer to the coordinates of the point in 3D-space. While

the noise-free points associated with the static background have the following rela-

tionship in two images:

x1i =
fXi

Zi

+ Px, x2i = x1i,

y
1i

=
fYi

Zi

+ Py and y
2i

= y
1i
.

(4.3)

All measured points are assumed to be contaminated by measurement noise e;

having a Gaussian distribution and being independently and identically distributed

(i.i.d)

x1i = x1i + e1
ix, y1i = y

1i
+ e1

iy,

x2i = x2i + e2
ix, and y2i = y

2i
+ e2

iy,

(4.4)
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where [e1
ix e1

iy e2
ix e2

iy]
> ∼ N(0, σ2

nI4) in which σn is the unknown scale of noise and

I4 is a 4 × 4 identity matrix. The Sampson distances of all points are computed

using equation (3.4) with the substitution of the fundamental matrix of the target

translation Ta2D in (4.1) and the noise contamination in (4.4). This yields:

di =
Tya(x2i + e2

ix − x1i − e1
ix) + Txa(y

1i
+ e1

iy − y
2i
− e2

iy)√
2(T 2

ya + T 2
xa)

. (4.5)

For points having Ta2D, the above expression without noise terms are equal to zero

according to equation (2.3) since the true FTa2D is used to compute the distances di.

Thus, for points having Ta2D, equation (4.5) can be simplified to:

di =
Tya(e

2
ix − e1

ix) + Txa(e
1
iy − e2

iy)√
2(T 2

ya + T 2
xa)

. (4.6)

The distances in equation (4.6) are a linear combination of the i.i.d. noise samples e.

Therefore, they are also normally distributed with zero mean and variance σ2
n as the

numerator and denominator cancel each other.

The distances associated with static points can also be calculated using equation

(4.5), the world-to-image points relationship in (4.3) and the measurement noise as-

sumption in (4.4), which results in the same equation as that given in (4.6). Thus, the

distances of the static background are also distributed according to N(0,σ2
n). Hence,

the distributions of distances associated with points having the target translation

Ta2D and the static background will be the same.

The success of motion segmentation is determined by looking at the relative sizes

of inlier and outlier distances. In order for the points having Ta2D to be successfully

segmented, the smallest distance associated with the static background should be

sufficiently larger that the biggest distances associated with points having Ta2D (note
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that the distances are calculated using the fundamental matrix associated with the

moving object). Since the distributions of distances associated with points having

Ta2D and static background are the same, theoretically, the points having Ta2D cannot

be segmented from the static background if the fundamental matrix motion model is

used.

The segmentation of 3D translation Ta with Tza 6= 0 form static background is

mathematically intractable and too complex to be derived theoretically. However,

the results of our Monte Carlo experiments in section 4.2 verify that the Sampson

distances of the points having 3D translation and static background are also nor-

mally distributed with zero mean and similar variances. Therefore they are also not

separable from the static background.

4.2 Conditions for motion-background segmenta-

tion

The non-separability of a pure translation from its static background when using

the fundamental matrix as motion model implies that the separability of a motion

from its background depends on its rotational part. Therefore we aimed to deter-

mine the sufficient conditions in terms of the minimum rotation angle for successful

motion-background segmentation via Monte Carlo experiments using synthetic im-

ages. The correctness of these conditions was verified by studying the variance of the

experimental results.

The Monte Carlo experiments consisted of two main parts: the first part was to
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verify the non-separability of a pure 3D translation from its static background and the

second part was to determine the minimum rotation angle for correct and successful

segmentation. The Monte Carlo experimental setup was designed to be identical with

the earlier analysis in section 4.1.

In each experiment, 2000 randomly generated points M1i = [X1i Y1i Z1i]
> in a

world-coordinate system were moved to position M2i = [X2i Y2i Z2i]
> according to

motion-a. The points M1i to M2i were viewed by a static camera A1, with a focal

length of 703 pixels and image size of 512×512 with the principal point at the center

of the images i.e.

A1 =




703 0 256

0 703 256

0 0 1




, (4.7)

representing a typical camera with a field of view around 40◦. The symbols m1i =

[x1i y
1i
]> and m2i = [x2i y

2i
]> denoted the corresponding points on two images.

The static points representing the background were randomly added to both im-

ages based on the magnitude of the intended inlier ratio ε shown in equation (3.2).

All randomly generated image points were perturbed with a Gaussian noise with zero

mean and a standard deviation of σn. We aimed to segment points having motion-a

from the static points using a robust estimator and the fundamental matrix motion

model.

The true fundamental matrix of points having motion-a Fa was calculated using

equation (2.5) by substitution of the known motion parameters and camera matrix

A1 in (4.7). The residuals in terms of Sampson distances d2
i were computed for

all points (both moving and static points) using equation (3.4) and the true Fa.
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Motion segmentation according to the steps in MSSE [6] (shown in equation 3.6) was

performed to identify and segment points having motion-a from the static background.

The segmentation performance was measured by the ratio (ζ) of the number of

segmented points having motion-a over the true number of points having motion-

a. The translational parameters Ta were randomly selected and every set of the

experiments was repeated 1000 times for incremental θz (from 0◦ to 70◦) and for

various values of inlier ratios (from ε = 30% to 80%), measurement noise (σn = 0.25

to 2) and camera parameters according to A1 in equation (4.7) and randomly selected

values of focal length in A2 and A3:

A2 =




492.1 0 256

0 492.1 256

0 0 1




and A3 =




527.3 0 256

0 597.6 256

0 0 1




. (4.8)

The selection of camera matrices A2 and A3 in (4.8) represents both homogenous

(equal focal lengths in X and Y directions) and non-homogenous changes to the

camera matrix A1.

In order to analyse the performance and consistency of the segmentation, the sta-

tistical mean and standard deviation of 1000 ζs (denoted by ζ̄ and σζ) were calculated

and recorded. The segmentations of motion-a were considered to be correct and con-

sistent if ζ̄ ≈ 1 and σζ ≤ 0.01 throughout the 1000 ζs. The pseudo code of the Monte

Carlo experiments is given in figure 4.1.

The first part of the experiments was designed to verify the earlier statement on

the non-separability of pure translational motions from static background in section

4.1. In the experiment, motion segmentation was performed to identify the points

having either a random 2D translation (Ta2D with a zero translational component
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along the camera optical axis Tza = 0) or 3D translation (Ta with Tza 6= 0) from

static points in the background. Specifically, two thousand randomly selected image

points, having either translation Ta2D and Ta, were mixed with random static points

while the inlier ratio was at 80% and the standard deviation of Gaussian noise σn was

equal to one. Motion-background segmentation was performed and the segmentation

performance ζ and two types of scale estimates were calculated; these were the scale

estimates associated with the ground-truth moving points (the inlier scale denoted

by S) and the scale estimate given by all data points (the total scale denoted by Γ).

Figure 4.1: Pseudocode of the Monte Carlo experiments for the analysis of motion-

background segmentation.
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For two instances of the random image points having translations Ta2D and Ta,

we have recorded the corresponding values of S, Γ and segmentation performance ζ

in table 4.1 and plotted the histogram of distances associated with all image points

(moving and static points) in figure 4.2. In both cases, the segmentations were not

successful since a number of static points were segmented as points having either

Ta2D or Ta, indicated by values of ζ larger than one in table 4.1. This is because the

populations of distances associated with moving points could not be distinguished

from the distances associated with static points, as shown in figure 4.2. In addition,

the values of S and Γ were very close to each other, i.e. very close to one or σn, showing

that the distances associated with either moving or static points were overlapping each

other. Hence, the moving points were not distinguishable from the static background.

To examine the effect of inlier ratio to the non-separability of a pure translation

from static points, the experiment was repeated 1000 times while varying ε from

30% to 80% with randomly selected 3D translation Ta. The standard deviation of

the measurement noise was maintained at one. The statistical mean and standard

deviation of inlier scales S and total scales Γ, represented by the symbols S̄, σS , Γ̄ and

σΓ respectively, were calculated throughout the 1000 iterations of each experiment.

Table 4.2 summarises the values of S̄, σS , Γ̄ and σΓ for all inlier ratios.

The values of S̄ and Γ̄ are very close to σn = 1, as observed in table 4.2. In

addition, the values of σS and σΓ in table 4.2 are very small and close to zero, indi-

cating that the values of inlier and total scale (S and Γ) were consistent throughout

the experiments. These observations signify that a pure translational motion is not

separable from the static points, regardless of translational parameters and location

of points (as there were randomly selected throughout the experiments) and inlier
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ratios. These results, which are consistent with our earlier analysis in section 4.1,

show that a pure translational motion cannot be segmented from static points using

the fundamental matrix motion model.

Table 4.1: Results for motion-background segmentation involving pure translations

when ε = 80% and σn = 1.

[Txa Tya Tza]
> cm Inlier scale S Total scale Γ ζ

Ta2D [-9.79 -2.67 0] 1.0066 1.0082 1.22

Ta [-5.65 -2.36 -9.16] 1.0012 1.0075 1.23

−4 −2 0 2 40

50

100

150

200

di, pixels

Fr
eq

ue
nc

y

(a) 2D translation, Ta2D

−4 −2 0 2 40

40

80

120

160

Fr
eq

ue
nc

y

di, pixels

(b) 3D translation, Ta

Figure 4.2: Distribution of Sampson distances for all image points in motion-

background segmentation involving pure translations.
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Table 4.2: Inlier scale and total scale for various inlier ratio ε.

ε, % static points S̄ σS Γ̄ σΓ

80 500 1.0001 0.0156 0.9999 0.0139

70 857 1.0003 0.0161 1.0001 0.0132

60 1333 0.9994 0.0160 0.9995 0.0124

50 2000 0.9994 0.0154 0.9997 0.0113

40 3000 0.9998 0.0159 1.0000 0.0104

30 4667 1.0009 0.0164 1.0002 0.0093

The absence of success in motion-background segmentation when the motion is a

pure translation implies that the feasibility of motion-background segmentation de-

pends on the rotational part of the motion. Hence, the second part of the experiments

was designed to show that the rotation angle of a motion could be used as a measure

for the degree of separation between a motion from static points associated with the

background. The experiments also aimed to determine the condition for correct and

successful motion-background segmentation in terms of minimum rotation angle.

In the experiments, we examined the performance of motion-background segmen-

tation of motion-a, including rotation θz around the camera optical axis and followed

by a random 3D translation. Several scene and motion parameters were varied in the

experiments, namely, the rotation angle θz (from 0◦ to 70◦), the inlier ratio ε (30% to

80%) and the noise levels σn (0.25 to 2). In addition, to examine the effect of camera

variation on the segmentation performance, the experiments were also repeated for

camera matrices A2 and A3 in (4.8) for variation of A1 in (4.7) (the focal length of

camera matrices A2 and A3 were randomly selected to represent both homogenous
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(equal focal lengths in X and Y directions) and non-homogenous changes to camera

matrix A1). The points having motion-a and static points from the background were

randomly selected and motion segmentation was repeated 1000 times for each value

of rotation angle θz, inlier ratio ε, level of noise σn and using camera matrices (A1

to A3). To analyse the performance and consistency of the segmentation, the statis-

tical mean and standard deviation of segmentation performance (ζ̄ and σζ) were also

calculated and recorded.

Figures 4.3 and 4.4 show ζ̄ and σζ versus θz when σn=1 and ε=40% or 80% for

camera matrices A1 to A3. It can be observed from figure 4.3(b) that, for small ro-

tations, i.e. θ less than around 11◦ when ε = 80%, ζ is larger than one, indicating

that some static points were segmented as points having motion-a. In such cases, the

inaccurate dichotomy between moving and background points resulted in an incorrect

motion-estimation and segmentation. As the value of θz increased from 0◦ to 50◦ (in

figures 4.3(a) and 4.3(b)), the values of ζ̄ and σζ reduced to one and zero, respectively.

This indicated perfect and consistent segmentation (ζ around one), which occurred

when the value of θz was larger than around 35◦ when ε was 40%, and 11◦ when ε

was 80%. Good consistency of segmentation, i.e. σζ ≈ 0 when θz > 35◦ and 11◦

for ε = 40% and 80% in figures 4.3(a) and 4.3(b), also signifies that locations (the

coordinates) of image points and translational parameters did not affect the segmen-

tation performance since they were randomly selected throughout the experiments.

These results show that the rotation angle could be used as a measure for the de-

gree of separation in motion-background segmentation problems. In addition, the

identical results seen while comparing figure 4.3(a) with 4.4(a) and figure 4.3(b) with

4.4(b), show that variations of camera parameters do not affect the performance of
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motion-background segmentation.
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Figure 4.3: ζ̄ and σζ vs θz using camera matrix A1.
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Figure 4.4: ζ̄ and σζ vs θz using camera matrix A2 in (a) and A3 in (b).

In the target applications, such as in traffic or video surveillance system, an ac-

curacy of 90% or higher is usually considered a good accuracy. Thus, throughout

the experiments we considered two accuracy thresholds; 95% and 90% accuracies, i.e.
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with acceptable 5% or 10% errors, respectively. Specifically, the motion-background

segmentation were considered successful and consistent when ζ̄1 = 1.05 and ζ̄2 = 1.10,

both with σζ ≈ 0.01. Using these thresholds meant that it was accepted that 5% or

10% of background points with small distances were to be segmented as moving

points. In addition, the segmentation results were expected to be consistent since the

values of σζ associated with both ζ̄1 and ζ̄2 were very close to zero. The conditions for

successful motion-background segmentation, in terms of the minimum rotation angles

(denoted by θ̃z), were then interpolated for both thresholds ζ̄1 and ζ̄2 with σζ ≈ 0.01

from the plots of ζ versus θz for all values of inlier ratio ε and noise levels σn.

A broad picture of the condition for motion-background segmentation (the re-

quired θ̃z) for various inlier ratio and noise levels is shown in figures 4.5 and 4.6.

These results show that the motion-background segmentation becomes more chal-

lenging and difficult, as indicated by the larger values of required θ̃z, when there are

many points associated with the static background (small value of ε) and/or high level

of noise (large value of σn). When the value of the standard deviation of measure-

ment noise was high, the maximum residual associated with moving points became

large. Consequently, more static points with smaller residuals were mixed with the

residuals of moving points, and more background points were likely to be segmented

as moving points. As such, high value of measurement noise would result in a more

difficult motion-background segmentation problem thus, a larger magnitude of θ̃z was

required to produce sufficiently distinct residuals to differentiate between moving and

static points for successful segmentation.
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Figure 4.5: θ̃z vs ε for various σn.
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Figure 4.6: θ̃z vs σn for various ε.

The experimental results show that the rotation angle could be used as a measure

for the degree of separation in motion-background segmentation problems. A set

of sufficient conditions to guarantee successful motion-background segmentation was

proposed and these conditions were shown to be independent of the translational

parameters of the motion, the location of points in image plane and the camera
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parameters. If these conditions are satisfied, i.e. θz larger than or equal to θ̃z, the

segmentation is guaranteed to achieve the targeted accuracies (ζ̄1 = 1.05 and ζ̄2 =

1.10). The relevance of the proposed conditions and its usage in motion-segmentation

applications will be examined via experiments using real-image data in section 4.3.

4.3 Experiments using real images

The relevance of the proposed conditions for motion-background segmentation and

its applicability were examined via experiments using real-image data. We have again

considered a scene containing a moving object and a static object in the background.

The experimental aim was to identify and segment the points having motion from

the mixture of moving and static points.

The experiments focus on investigating the theoretical limit of motion-background

segmentation and how imperfect estimate of the fundamental matrix would affects

the conditions for segmentation is beyond the scope of this work. In practice, the

fundamental matrix can be accurately estimated using a number of robust methods

[3, 101, 124] and the gross outliers can be removed by applying a robust estimator as

part of the motion segmentation process [123]. The issues of estimation including esti-

mating the fundamental matrix in terms of both the feasibility and the accuracy, have

already been thoroughly analysed [42, 44]. Thus, in our experiments using real-image

data — identical to our earlier theoretical analysis and Monte Carlo experiments

— we assumed that an accurate estimate of the fundamental matrix of the motion

was provided by a robust estimator and there were no mismatches (gross outliers) in

the image data. As such we calculated the fundamental matrix of the motion using
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equation (2.5) and manually removed occasional gross outliers in the data. These

assumptions needed to be taken in order to eliminate the effect of potential errors

from the estimation of the fundamental matrix and the presence of gross outliers, to

the experimental results.

The experiments consisted of three steps:

1. Camera calibration and image acquisition: The dynamic scene in the experi-

ments consisted of a specially designed and fabricated 3D object having motion-

a and a book to represent the static background. The camera was calibrated

using a publicly available camera-calibration toolbox [16]. The 3D object was

moved according to motion-a parameterised by rotation θz and followed by

translation Ta. The values of θz were from θz = 0◦ to 10◦, with 2◦ in each

increment, and each θz was followed by twenty sets of distinct 3D translation

Ta. The image of the scene was taken both before and after each motion-a (pair

of θz and Ta). In total, 120 pairs of images were used in the experiments.

2. Image-data preparation: Image distortion was reduced from all images using ra-

dial and tangential distortion models suggested by a camera-calibration toolbox

[16]. All corresponding image points associated with either moving objects or

static backgrounds were extracted using a publicly available implementation of

the Scale-Invariant Feature Transform (SIFT) algorithm [58, 56] and occasional

incorrect matches were manually removed. The values of inlier ratio ε in each

pair of images was varied from 35% to 80% by removing some of the points

associated with the background.
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3. Segmentation analysis: The fundamental matrix for motion-a and the distances

di associated with all points in each pair of images were calculated using equa-

tions (2.5) and (3.4) with the known values of θz , Ta and the camera matrix

from camera calibration. Motion segmentation was performed to recover all

points having motion-a from each pair of images using the segmentation steps

according to the Modified Selective Statistical Estimator in (3.6) [6]. The seg-

mentation performance was measured by calculating the value of ζ , i.e. the

ratio of the segmented points over the number of ground-truth points having

motion-a. The standard deviation of measurement noise σn throughout the

experiments was estimated from equation (3.5).

Figure 4.7 shows the mean and standard deviation of ζ (ζ̄ and σζ) versus θz (there

are twenty values of ζs for each θz) for various inlier ratios. It can be observed from

figure 4.7 that, when θz = 0◦, where motion-a is a pure translational motion, the seg-

mentation performance ζ̄ is greater than one, indicating unsuccessful segmentations.

When the values of θz associated with motion-a are increased to 10◦, the values of

ζ̄ and σζ reduced to around one and zero, respectively. This signifies improving and

successful motion-background segmentations. These results imply two main points;

motion-background segmentation is not possible for a pure translational motion and

the magnitude of rotation angle θz could be used as a measure of separability between

moving and static points.

The relevance of the derived condition for segmentation from our Monte Carlo

experiments (in figures 4.5 and 4.6) was examined by comparing them with the results

from experiments using real-image data — where the required θz was interpolated
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Figure 4.7: Mean and standard deviation of ζ vs θz for various ε.
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Figure 4.8: θ̃z vs ε for Monte Carlo and real-image experiments.

at ζ̄ ≈ 1 from figure 4.7. Figure 4.8 shows the conditions for motion-background

segmentation from both synthetic and real-image data with the standard deviation of

noise estimated around 0.4 pixels (from equation (3.5)) throughout the experiments.

Similar trends in θ̃z versus inlier ratios can be observed in figure 4.8 for results from

both experiments using synthetic and real-image data.

To provide an insight into the capability of the derived conditions (in figures 4.5

and 4.6) to predict the outcomes of motion-background segmentations, we have exam-

ined three cases where motion-a was a pure translation (θz = 0◦) and motion-a having

either θz less than or greater than the required threshold. The selected threshold is

θ̃z ≈ 6◦ (extrapolated from figure 4.6(a)) to guarantee successful segmentation with

accuracy of ζ1 = 1.05 when inlier ratio is 35%. It was predicted that the segmenta-

tion would be successful when θz ≥ θ̃z (θz = 8◦) and fail when θz = 0◦ and θz ≤ θ̃z

(θz = 4◦). Figures 4.9(c) and 4.10(c) show that when motion-a is a pure translation

(θz = 0◦) or motion-a includes θz ≤ θ̃z, the segmentations are unsuccessful, indicated

by the values of ζ greater than the expected accuracy, i.e. 1.05% (ζ around 2.40 and
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1.12 when θz = 0◦ and θz ≤ θ̃z). This is because the distances di associated with

moving and static points are overlapping and cannot be easily distinguished from

each other, as shown in figures 4.9(d) and 4.10(d).
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Figure 4.9: The ground-truth when motion-a is a pure translation Ta = [−59 −

82 − 39]>mm (θz = 0◦) and ε = 35% in (a) and (b). The segmented points having

motion-a in (c) and the histogram of di for all points in (d).
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Figure 4.10: The ground-truth when motion-a is parameterised by θz = 4◦ and Ta =

[−59 − 82 − 39]>mm with ε = 35% in (a) and (b). The segmented points having

motion-a in (c) and the histogram of di for all points in (d).
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Figure 4.11: The ground-truth when motion-a is parameterised by θz = 8◦ and Ta =

[−59 − 82 − 39]>mm with ε = 35% in (a) and (b). The segmented points having

motion-a in (c) and the histogram of di for all points in (d).
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As predicted when motion-a consists of θz larger than the required θ̃z, the segmen-

tation was considered successful, since the value ζ was around 1.03, which was better

than the expected accuracy of 1.05% as seen in figure 4.11(c). This is because the

distances di associated with static points were more spread and could be distinguished

from di of moving points by a robust estimator as shown in figure 4.11(d).

These results show that the derived conditions from the Monte Carlo experiments

are very relevant to the problem encountered in real-world applications. They also

demonstrate the capability of the proposed conditions to guarantee successful motion-

background segmentation with accuracies of 105% or 110%.

4.4 Conclusion

The theoretical analysis and the experimental results in this chapter revealed two main

points. Firstly, a pure translational motion is not separable from static background

using fundamental matrix motion model. Secondly, the success of motion-background

segmentation using fundamental matrix depends on the rotation angle of that particu-

lar motion. Sufficient conditions for motion-background segmentation were proposed,

in terms of minimum rotation angle via extensive experiments using synthetic images.

These conditions indicated that the segmentation became more challenging in a scene

including large number of static points and high level of measurement noise. Exper-

iments using real-image data showed that the conditions for segmentation were very

relevant to real motion-background segmentation problems. In practice, the condi-

tions are capable of predicting the outcome of motion-background segmentation using

obtainable amount of rotation associated with a particular motion.
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Chapter 5

Analysis of Translational-Motion

Segmentation

A number of computer-vision applications, such as traffic surveillance system, require

the recovery of a pure translational motion. To develop some guidelines for the de-

sign of these systems, the feasibility of motion segmentation involving translational

3D objects using the translational fundamental matrix is analysed in this chapter.

The focus is on translations of rigid 3D objects viewed by an uncalibrated camera.

The feasibility of segmentation is expressed as a set of conditions for successful seg-

mentation.

The analysis starts with the modelling of a dynamic scene including multiple

translating objects in section 5.1. We then derive a quantifiable measure of separa-

tion between two 2D translations (translations restricted on a plane perpendicular

to the camera optical axis) in section 5.2. The 2D-derivation provides the necessary

foundation for finding the requirements for successful segmentation of an arbitrary
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3D translational-motion (translation including components along the camera optical

axis) in section 5.3. The conditions for successful segmentation are proposed via

theoretical analysis and extensive Monte Carlo experiments using synthetic images.

Section 5.4 details the experiments using real images designed to demonstrate the

application of the proposed conditions to correctly predict the outcome of motion

segmentations. Section 5.5 concludes the chapter.

5.1 Dynamic-scene representation

The analysis considers a dynamic scene including two rigid 3D-objects moved accord-

ing to two distinct translations denoted by Ta and Tb where Ta = [Txa Tya Tza]
> and

Tb = [Txb Tyb Tzb]
>. The background or static features in the scene are not taken into

account as their effect has been considered in chapter 4.

Consider a point in 3D-space with coordinates [Xi Yi Zi]
> and denote its corre-

sponding point in the image plane by m1i = [x1i y
1i
]> which moves to m2i = [x2i y

2i
]>

after a 3D translation. The relationships between the corresponding image-world

coordinate points viewed by a perspective camera A (as shown in equation (2.2)) are

x1i =
fXi

Zi

+ Px, x2i =
f(Xi + Tx)

Zi + Tz

+ Px,

y
1i

=
fYi

Zi

+ Py, y
2i

=
f(Yi + Ty)

Zi + Tz

+ Py,

(5.1)

where the symbols Tx, Ty and Tz in (5.1) represent the translation parameters. All

image points are assumed to be contaminated by independently and identically dis-
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tributed (i.i.d) measurement noise with Gaussian distribution

x1i = x1i + e1
ix, y1i = y

1i
+ e1

iy,

x2i = x2i + e2
ix, and y2i = y

2i
+ e2

iy,

(5.2)

where [e1
ix e1

iy e2
ix e2

iy]
> ∼ N(0, σ2

nI4) in which σn is the unknown scale of noise and

I4 is the 4 × 4 identity matrix. The underlined variables denote the true noise-free

locations of the points in the image plane. In this analysis, translation Ta is considered

as the target motion and Tb is the unwanted or the other translation. Without loss

of generality, in the context of robust estimation, the matching points having Ta are

assumed to be inliers aimed to be segmented from the matching points having Tb,

which are considered as outliers.

The fundamental matrix of translation Ta parameterised by Txa Tya and Tza is

computed using equation (2.5) [3, 39, 124]:

FTa =
1

f 2




0 −Tza Tyaf + TzaPy

Tza 0 −Txaf − TzaPx

−Tyaf − TzaPy Txaf + TzaPx 0




. (5.3)

Similar to chapter 4, motion segmentation is performed using the MSSE [6] and the

square of Sampson distances (shown in equation (3.4)) [101, 119] as residuals.

The analysis of the feasibility of segmentation for arbitrary 3D translational-

motion is relatively complicated. To simplify the presentation of the analysis, we

first concentrate on the case of 2D translation in a plane perpendicular to the camera

optical axis. These results are then used as the basis for presenting the analysis of

arbitrary 3D translational-motion with component along the camera optical axis (Tz).
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5.2 Motion segmentation of 2D translations

In the case of 2D translational-motion segmentation, a dynamic scene including two

2D translations (Ta2D and Tb2D with Tza = Tzb = 0) is considered. The analysis

aims to segment points having Ta2D from a mixture of points having Ta2D and Tb2D.

The true fundamental matrix for motion Ta2D is given as (from equation (5.3) with

Tza = 0):

FTa2D =
1

f




0 0 Tya

0 0 −Txa

−Tya Txa 0




. (5.4)

The Sampson distances of all points (associated with translations Ta2D and Tb2D)

are calculated using equation (3.4) with the substitution of FTa2D in (5.4):

d2Di =
Tya(x2i − x1i) + Txa(y1i − y2i)√

2(T 2
ya + T 2

xa)
. (5.5)

Substitution of point locations and their noise contamination, given in equations (5.1)

and (5.2) into (5.5), yields:

d2Di =
Tya(x2i + e2

ix − x1i − e1
ix) + Txa(y

1i
+ e1

iy − y
2i
− e2

iy)√
2(T 2

ya + T 2
xa)

. (5.6)

For the distance associated with the points having Ta2D (denoted by dTa2Di), the

above equation can be simplified to

dTa2Di =
Tya(e

2
ix − e1

ix) + Txa(e
1
iy − e2

iy)√
2(T 2

ya + T 2
xa)

∼ N(0, σ2
n), (5.7)

because all the expression without noise terms are equal to zero, mandated by equa-

tion (2.3) and using the true FTa2D for the inliers to compute the Sampson distances.
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The distances associated with the points having Ta2D (dTa2Di) or inliers in equation

(5.7) are a linear combination of i.i.d. Gaussian noise variables. Therefore, they are

also normally distributed with zero mean and variance σ2
n, as the numerator and

denominator cancel each other in the variance calculation.

In a similar fashion, the Sampson distances for points having Tb2D (denoted by

dTb2Di) are derived from equation (5.6) by replacing the coordinate of the image point

having Tb2D (5.1) and their noise components in (5.2)

dTb2Di =
f(TyaTxb − TxaTyb)

Zbi

√
2(T 2

ya + T 2
xa)

+ e, (5.8)

where e ∼ N(0, σ2
n) (Note that, in the above equation, the subscript b is added to

the term Zi (Zbi) to indicate that it is only associated with the depth of outliers, i.e.

the points having Tb2D). It can be observed from equations (5.7) and (5.8) that, the

Sampson distances of the points having 2D translations Ta2D and Tb2D (dTa2Di and

dTb2Di) are two Gaussian populations with the same variance but different means:

N(µa, σ
2
n) with µa = 0 for Ta2D and,

N(µb, σ
2
n) with µb = W2D for Tb2D where:

W2D =
f(TyaTxb − TxaTyb)

Zbi

√
2(T 2

ya + T 2
xa)σn

.

(5.9)

The term W2D in (5.9) represents the degree of separation between the manifolds

of two translations in the parameter space. The magnitude of W2D is small for

similar translations and is large for different translations. Thus, W2D can be used as

a quantifiable measure for the similarity between two 2D translational-motions.

Alternatively, the term W2D could be expressed in terms of the direction of trans-
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lations Ta2D and Tb2D as

W2D =
f

Zbi

√
2σn

‖Tb2D‖ sin (φa − φb), (5.10)

where φa and φb denote the directions of Ta2D and Tb2D, respectively (i.e. Tya =

‖Ta2D‖ sin φa and Tyb = ‖Tb2D‖ sin φb), and ‖Tb2D‖ is the magnitude of Tb2D or

‖Tb2D‖ =
√

T 2
yb + T 2

xb.

Generally, two Gaussian populations N(µa, σn) and N(µb, σn) would have neg-

ligible overlap when their means are more than 5σn away from each other. More

precisely, if |µb − µa| ≥ 5σn, only 0.6% of the two populations would overlap. The

above amount of separation is commonly used as the threshold of correct segmenta-

tion [76, 77]. Therefore, using this threshold we assume the points having Ta2D will

be correctly segmented if:

|W2D| ≥ 5 or
f(TyaTxb − TxaTyb)

Z̄b

√
2(T 2

ya + T 2
xa)σn

≥ 5. (5.11)

In the above equation, we assume that the term Zbi (the depth of points associated

with object having Tb2D (outliers)) can be replaced by Z̄b, the average distance be-

tween the camera and the outliers. The justifications are twofold. First, in the target

applications, the distance between the camera and the object in motion is roughly

known. For example, in a traffic surveillance application, we usually know the dis-

tance between the camera and the road. Secondly, our experimental results, presented

in the next section, show that the depth of the object having Tb2D does not have a

significant effect on the segmentation performance. It is important to note that, us-

ing the term Z̄b to simplify Zbi (in equation (5.11)) does not change the Sampson

distances associated with the target translation (Ta2D) and only affect the calculation
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of the unwanted motion (outliers) residuals . The distances (dTa2Di) associated with

the points having translation Ta2D are independent of their locations in 3D-space, as

shown in equation (5.7).

In summary, we proposed the theoretical condition for segmentation (in (5.11))

of 2D translational motion. The condition is based on obtainable motion and scene

parameters, in equation (5.10) i.e. the difference between translational directions (φa

and φb), the level of noise (σn) and the desired sensitivity of the system in terms

of the amount of translation. If the condition in (5.11) is satisfied, at least 99.4%

of the points having Ta2D can be correctly segmented from points having Tb2D. In

practice, the measurement values are always bounded and the above condition would

represent perfect segmentation. In section 5.2.1 and 5.4, we will verify the validity of

the condition in equation (5.11) via experiments using both synthetic and real-image

data.

5.2.1 Monte Carlo experiments for 2D translational-motion

segmentation

The Monte Carlo experiments for the verification of the condition for 2D translational-

motion segmentation were divided into two parts. The first part of the experiments

aimed to show that the term W2D can be used as a measure for the degree of separation

between two 2D translations. Specifically, we aimed to show that the points having

Ta2D can be successfully segmented from the points having Tb2D, when the condition

given in (5.11) is satisfied, i.e. W2D ≥ 5. The second part of the experiments aimed

to establish sets of necessary conditions to guarantee (in terms of W2D) successful
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segmentation and to examine how these conditions changed when the noise level σn,

depth of outliers (object having Tb2D) and inlier ratio ε (ratio of the number of points

having target motion over the total number of points, in equation (3.2)) were varied.

In each iteration of our Monte Carlo experiments, 2000 randomly generated points

in the world-coordinate system having Ta2D were mixed with the pairs of matching

points having Tb2D (the number of points having Tb2D depends on the value of inlier

ratio ε in equation (3.2)). For matching points having Tb2D, their X and Y coordi-

nates were randomly generated while their Z coordinates were uniformly distributed

according to Z̄b ± δZ

Z̄b

where δZ

Z̄b

= 5%, 10% or 20% to represent different depth (i.e.

10%, 20% or 40%) of the object along camera optical axis. All matching points (hav-

ing Ta2D and Tb2D) were projected to two images using a synthetic camera according

to the camera matrix A1 in equation (4.7), which represents a camera with a field of

view around 40◦, focal length of 703 pixels, principal point coordinate of (256,256)

and image size of 512×512 pixels.

The points having translations Ta2D and Tb2D could be anywhere in the image

plane, since the distances d2Di did not depend on locations of the points (xi and yi)

according to equations (5.7) and (5.8). All generated image-points were then per-

turbed with Gaussian noise of N(0, σn) and the Sampson distances were calculated

using equation (3.4) based on the true fundamental matrix of translation Ta2D. Mo-

tion segmentation was performed to identify and segment points having Ta2D using

the MSSE [6] with d2
i as residuals. Although we used the segmentation step of the

MSSE, the analysis was general and similar results can be expected if other robust

estimators are used [42, 44].
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The segmentation performance was measured by the ratio (ζ) of the number of

segmented points having Ta2D over the true number of points having Ta2D. The

value of ζ = 1 indicated correct segmentation while ζ > 1 meant over-segmentation,

where some of the points having Tb2D were segmented as points having Ta2D. Each

experimental trial consisted of 1000 iterations and the mean and standard deviation of

1000 ζs, denoted by ζ̄ and σζ , were recorded. These experiments were then repeated

for various values of W2D, inlier ratio ε, level of noise σn and δZ

Z̄b

representing different

depths of object having Tb2D. The pseudocode of the Monte Carlo experiments is

given in figure 5.1.

Figure 5.1: Pseudocode of the Monte Carlo experiments for the analysis of 2D

translational-motion segmentation.
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To demonstrate that the term W2D can be used as a measure for the degree of

separation, the first part of the experiments was performed by analysing the distribu-

tion of the residuals in three cases where W2D is less than, close to or larger than the

theoretical threshold of W2D = 5 (in equation 5.11). The parameters for translations

Ta2D and Tb2D were randomly selected such that W2D = 3 (W2D < 5), 4 (W2D close

to 5) and 6 (W2D > 5) while the inlier ratio ε was set to 50%, the measurement

noise σn = 1 and using the object having Tb2D with depth of 20% ( δZ

Z̄b

= 10%). The

histogram of the residuals associated with all image points, in terms of d2
i s, and the

segmentation performance ζ (ratio of the number of segmented points having Ta2D

over the true points having Ta2D) for all cases ware recorded. Figure 5.2 shows that

when W2D is less than and close to five (W2D = 3 and W2D = 4), the values of ζs

are around two, indicating incorrect segmentation. It can be observed from figure

5.2 that the segmentation is incorrect because the distributions of the residuals of

the points having Ta2D and Tb2D overlap and can’t be distinguished from each other.

When the value of W2D is larger than five (W2D = 6), the distributions of the residuals

are distinct and the value of ζ is very close to one, indicating correct segmentation,

as shown in figure 5.2(c). These results were consistent with our earlier theoretical

condition for segmentation in (5.11) and showed that the term W2D can be used as a

measure for the degree of separation between two 2D translations.

In the second part of the experiments, we examined the effect of varying param-

eters including W2D (from 0 to 10), inlier ratio (from ε= 30% to 80%), level of noise

(from σn= 0.25 to 1) and depth of object having Tb2D (from 10% to 40% or δZ

Z̄b

=

5% to 20%) (note that the depth of object having the target translation, Ta2D, was

random since their distances are independent to object size, depth and location as
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(c) W2D > 5 and ζ = 0.99

Figure 5.2: Histogram of the residuals for 2D translations when the inlier ratio ε =

50%, the measurement noise σn = 1 and using the object having Tb2D with depth of

20% ( δZ

Z̄b

= 10%).

shown in equation (5.7)). Each experiment was repeated 1000 times and the mean

ζ̄ and standard deviation σζ of 1000 experiments were recorded. Figure 5.3 shows ζ̄

and σζ versus W2D for inlier ratios of 80% and 50%, while the scale of measurement

noise σn = 1 and the depth of object having Tb2D is 20% ( δZ

Z̄b

= 10%).
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It can be observed from figure 5.3, that for small values of W2D, the values of

ζs are greater than one, indicating unsuccessful segmentation — some points having

Tb2D are segmented as points having Ta2D. Thus, in these situations, an inaccurate

inlier-outlier dichotomy resulted in incorrect motion-estimation and segmentation.

Figure 5.3 also shows that when W2D increases, the value of ζ̄ reduces to around 0.99

and σζ reduces to zero when W2D is greater than five. The value of ζ̄ ≈ 0.99 indicates

that the points having Ta2D are correctly segmented and σζ ≈ 0 confirms that the

results are consistent throughout the experiments. In addition, the segmentation

results are independent of the locations of points having either of the translations,

since the points (Xi and Yi) were randomly chosen in those experiments. Assuming

that the points having Ta2D are correctly and consistently segmented when the values

of ζ̄ ≈ 1 and σζ ≤ 0.01, the minimum value of W2D required for correct and consistent

segmentation (denoted by W̃ ) can be interpolated from figure 5.3(b) to be around

W̃ ≈ 5 when ε = 50%.

A broad picture of the required W̃ to guarantee correct segmentation of Ta2D for

different values of inlier ratio ε, measurement noise σn and depth of object having

Tb2D
δZ

Z̄b

is shown in figure 5.4. Importantly, it can be observed in figure 5.4 that the

values of W̃ are around five, when ε, σn and δZ

Z̄b

are varied in a fairly broad range.

This observation indicates that inlier ratio, measurement noise and depth of object

having Tb2D (outliers) have little effect on the segmentation performance. In addi-

tion, this observation also support the validity of using the term Z̄b (average distance

between camera and object having Tb2D) to represent the depth Zbi of points asso-

ciated with the object having Tb2D in the condition for segmentation (equation (5.11)).
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Figure 5.3: Segmentation performance for 2D translational-motion segmentation from

Monte Carlo experiments, when using the object having Tb2D with depth of 20%

( δZ

Z̄b

= 10%).
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In summary, the results of our experiments demonstrate that the term W2D in

equations (5.10) and (5.11) can be used as a quantitative measure for the degree of

separation between two 2D translations. They also show that, consistent with the

earlier theoretical analysis, a 2D translation is guaranteed to be correctly segmented

if W2D is around five (5.11), irrespective of the inlier ratio, the measurement noise

and the size and location of the translating objects.

5.3 Motion segmentation of 3D translations

In a more general case of motion segmentation involving arbitrary 3D translations

including components along camera optical axis (Ta and Tb with Tza 6= 0 and Tzb 6= 0),

we would again like to segment points having Ta from a mixture of points having Ta

and Tb. Similar to the previous analysis, the points associated with Ta were considered

as inliers aimed to be segmented from points having Tb (outliers) and the residual

for the segmentation was in terms of Sampson distance measure.

The residuals of the segmentation in terms of Sampson distances di for all image

points (associated with either Ta or Tb) can be computed using equation (3.4) with the

assumption that an estimator provides the true fundamental matrix given in (5.3).

Substitution of equation (5.3) into (3.4) yields

di =
d2Di(1 + α)√

1 + β
, where:

α =
Tza[y2i(x1i − Px) − x2i(y1i − Py) + y1iPx − x1iPy]

f [Tya(x2i − x1i) − Txa(y2i − y1i)]
,

β =
T 2

za[(x1i − Px)
2 + (y1i − Py)

2 + (x2i − Px)
2 + (y2i − Py)

2]

2f 2(T 2
ya + T 2

xa)
· · ·

− Tza[Txa((x1i − Px)
2 + (x2i − Px)

2) + Tya((y1i − Py)
2 + (y2i − Py)

2)]

f(T 2
ya + T 2

xa)
.

(5.12)

76



Theoretically, a noise-free point having a particular motion should have zero Sampson

distances if the true fundamental matrix of that motion is used — as indicated by

equations (2.3) and (3.4), respectively. Taking the measurement noise into account,

we expect that, similar to the case of 2D translations, the di of the points having Ta

(inliers) will have zero mean and the same standard deviation as the measurement

noise σn. In addition, our experimental results, presented in the following section,

show that the distances of points having Ta are similar to the distribution of mea-

surement noise regardless of translational parameters, object-size and location on the

image plane. Thus, the feasibility of segmentation of the points having Ta (inliers)

depends on the distances associated with the points having Tb (outliers).

For points having Tb (outliers), equations (5.1), (5.2), and (5.12) show that the

value of di depends on various factors including the translations parameters (Tx, Ty, Tz

for both Ta and Tb), locations of the translated points having Tb in the image plane

(x1, y1, x2 and y2), measurement noise σn, terms associated with the distances for 2D

translation (d2Di), and camera parameters (f and [Px Py]). Derivation of a closed-form

solution for the segmentation feasibility of 3D translations appears to be intractable

due to the complex nature of equation (5.12). However, we can generalise and extend

the condition derived for segmentation of 2D translations to the case involving multi-

ple 3D translations by examining all parameters that affect the value of di associated

with the point having Tb, in (5.12), and determining the ones which significantly affect

the segmentation performance of points having Ta. We use the theoretical degree of

separation for 2D translations (W2D in equations (5.10) and (5.11)) to establish the

conditions for arbitrary 3D translational-motion segmentation. These form the basis

of the Monte Carlo experiments presented in section 5.3.1.
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5.3.1 Monte Carlo experiments for 3D translational-motion

segmentation

The Monte Carlo experiments for 3D translational-motion segmentation consisted

of two main parts. The first part aimed to verify that the distribution of Sampson

distances of the points having 3D translation Ta = [Txa Tya Tza]
> (the inliers or target

translation) is similar to the distribution of the measurement noise. The second part

of the experiments was designed to evaluate the usefulness of the term W2D as the

degree of separation between two 3D translations, and to develop sets of sufficient

conditions that guarantee successful segmentation of a 3D translation. In addition,

we examined the effect of the following quantities, as shown in (5.12), on successful

segmentation:

• the magnitude and the direction of Tz (for both translations Ta and Tb), the scale

of noise and the distance between camera and object associated with outliers

Tb (merged in one quantity Tz

Z̄bσn

),

• the size, depth and location of object/points having translation Tb,

• the camera parameters and

• the inlier ratio ε.

The 3D Monte Carlo experimental set-up was similar to the 2D case and started

by mixing 2000 randomly selected points in the world-coordinate system having 3D

translation Ta, with the pairs of matching points having another 3D translation (i.e.

Tb). For points having Tb, the Z coordinates were uniformly distributed according to

Z̄b ± δZ

Z̄b

to represent different object depth or the size of object in Z direction. Then,
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all matching points (having Ta or Tb) were projected to two images using a synthetic

camera according to A1 in (4.7). Throughout the experiment, the camera parameters

were changed by varying the focal length f and image principal point [Px Py] (with

a smaller focal length, the camera has a higher focus for the same Z̄b and the objects

appear larger on the image, thus increasing the effect of motion in the image). We

assumed that the images were square with the principal point [Px Py] located at their

center, hence larger values of [Px Py] represented images with larger dimension.

In many computer-vision applications, image points having a motion are asso-

ciated with a moving object and are largely confined to one part of an image. As

such, to examine the effect of the size and location of object having Tb (outliers), we

designed our experiments in such a way that the points having Tb were confined to a

square. The length of each side of the square was denoted by l% of the image size and

the symbol Dp denoted the distance from the center of the square to the image prin-

cipal point. Higher values of l (size) and δZ

Z̄b

(depth) represented a larger 3D object as

its associated feature points cover a larger area in the image while larger magnitude

of Dp indicated that the points were located further away from image principal point.

The ground-truth for the matching pairs were perturbed with Gaussian noise

of N(0, σn), the Sampson distances were calculated using equation (3.4) based on

the true FTa, and segmentation was performed using the MSSE [6]. To quantify

the segmentation performance, we computed the ratio of the number of segmented

points having Ta over the true number of points having Ta (denoted by ζ). Each

experiment was repeated 1000 times and the mean (ζ̄) and the standard deviation (σζ)

of segmentation-performance measure were recorded. The magnitude and direction

of Tz (in both Ta and Tb), the scale of measurement noise and the distance between
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camera and object associated with outliers Tb (merged into one parameter Tz

Z̄bσn

), the

inlier ratio ε, the size, depth and location of object having Tb (parameterised by l,

δZ

Z̄b

and Dp), and the camera parameters (f and [Px Py]) were all varied to measure

their effect on the segmentation performance. The pseudocode for the Monte Carlo

experiments is shown in figure 5.5.

In the first part of the experiments, we recorded the histogram of di associated

with random points having Ta and compared it with the distribution of measurement

noise. Figure 5.6 shows the histograms of di for randomly selected points (for all X, Y

and Z coordinate in 3D-space) having a random translation Ta when the measurement

noise is distributed according to a normal distribution with σn = 1, while the object

size l and location Dp on the images are varied (l from 20% to 40% of the image

and Dp from 10% to 30% of the image). We also recorded the mean and standard

deviation of di associated with the points having Ta, denoted by the symbols M and

S, respectively. It can be observed from figure 5.6 that the histograms of di for the

the points having Ta appear as normal distributions and the values of M and S for

both cases are very close to the mean and standard deviation of measurement noise

(zero mean and σn = 1, respectively).

The above experiments were repeated 1000 times for different size (l) of object

having Ta, measurement noise signal (N(0, σn)) and random location Dp. We calcu-

lated the statistical mean and standard deviation of the 1000 recorded values of M

and S (denoted by M̄ , σM , S̄ and σS) as shown in table 5.1. The values of M̄ and S̄

for the points having Ta are overall very close to the mean and standard deviation of

the measurement noise (zero mean and S̄ ≈ σn). In addition, the standard deviation

of M and S values (σM and σS) are very close to zero, indicating consistent values
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Figure 5.5: Pseudocode of the Monte Carlo experiments for 3D translational-motion

segmentation.

of M and S throughout the experiments. The above results demonstrate that, irre-

spective of the size, depth and location of an object in an image, the distribution of

residuals for the points having Ta is identical to the distribution of the measurement

noise when the latter is Gaussian.

The second part of the Monte Carlo experiments focused on evaluating the use-

fulness of W2D as a measure for the degree of separation between two 3D translations

and developing a set of sufficient conditions for successful segmentation of a transla-
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tion (Ta) from another translation (Tb). In this part, we examined the effect of the

following factors on the validity of the proposed conditions:

• the magnitude and direction of Tz (for both Ta and Tb),

• the scale of measurement noise and the distance between camera and object

associated with outliers Tb (merged into Tz

Z̄bσn

),

• the inlier ratio ε,

• the camera parameters (f and [Px Py]), and

• the size, depth and location of the object having Tb (l, δZ

Z̄b

and Dp) (note that

the size, depth and location of points associated with the object having target

translation, Ta, was randomly selected since their distances are according to

zero mean and standard deviation of σn as shown in the earlier results).

The segmentation performance was again measured in terms of ζ (ratio of the number

of segmented over the true number of points having Ta) and its mean and standard

deviation (ζ̄ and σζ) were also recorded for all iterations.

Figure 5.7 shows the segmentation performance ζ versus W2D when the parameter

Tz

Z̄bσn

= −5% and using the object having Tb with size (l = 30%), depth of 20%

( δZ

Z̄b

= 10%), located at Dp = 10% while the scene is viewed by a camera with f = 703

and image principal point [Px Py] = [256 256]. In both cases, it can be observed that,

for small W2D values, some of the points associated with Tb are incorrectly segmented

as having Ta indicated by ζ > 1. By increasing W2D, the segmentation performance

indicators ζ̄ and σζ are converged and reduced to around 0.99 and zero, respectively.
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Figure 5.6: Histogram of residuals associated with points having random Ta when

σn = 1 and located at Dp = 20% with size l = 20% in (a) and Dp = 10% and l = 30%

in (b).

This demonstrates the usefulness of the term W2D as a measure for the degree of

separation for 3D translational-motion segmentation.

To develop the conditions to guarantee correct segmentation of 3D translational

motions, in terms of the required W2D, we assumed that a correct and consistent seg-

mentation was prescribed by ζ̄ ≈ 1 and σζ ≤ 0.01. From figure 5.7(a), the minimum

required value of W2D for correct segmentation, denoted by W̃ , is around 11 if the

value of the inlier ratio is around 80%.

Broad pictures of the W̃ value required to guarantee correct segmentation of the

points having Ta with different motion parameters ( Tz

Z̄bσn

and direction of Tz for both

Ta and Tb), size, depth and location (l, δZ

Z̄b

and Dp) of object having Tb, camera

parameters (f and [Px Py]) and inlier ratio ε are shown in figures 5.8, 5.9 and 5.10.

The results in figure 5.8 show that the segmentation becomes more challenging and
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Table 5.1: Mean and standard deviation of M and S associated with random points

having random translation Ta and location, when the size of object having Ta (l) and

measurement noise (σn) were varied.

σn l 20% 30% 40% 50% Random

1

M̄ -0.007 -0.006 -0.005 -0.004 -0.001

σM 0.016 0.022 0.025 0.016 0.022

S̄ 0.997 0.999 0.991 1.004 1.000

σS 0.015 0.014 0.013 0.011 0.016

0.5

M̄ 0.000 0.001 0.000 0.000 0.000

σM 0.011 0.011 0.011 0.010 0.011

S̄ 0.500 0.500 0.500 0.500 0.500

σS 0.008 0.008 0.009 0.008 0.008

0.25

M̄ 0.000 0.000 0.000 0.000 0.000

σM 0.005 0.006 0.005 0.005 0.006

S̄ 0.250 0.250 0.250 0.250 0.250

σS 0.004 0.004 0.004 0.004 0.004

difficult, as indicated by larger values of the required W̃ , when there are many points

having Tb (small value of ε), or when the location of points having Tb are farther away

from the image principal point (large value of Dp), or when the effect of Tz is more

pronounced (large value of | Tz

Z̄bσn

|). Importantly, by comparing figure 5.8(a) to 5.9(a),

5.8(a) to 5.9(b) and 5.8(b) to 5.10, we observe that the size and depth (l and δZ

Z̄b

) of

object having Tb (outliers), the camera parameters (f and [Px Py]) and the direction

of Tz (in both Ta and Tb) have little effect on the segmentation performance of points
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having translation Ta.

To provide an insight into the predictive capability of the term W̃ in a particular

situation, we analysed the distribution of residuals in three cases where W2D is less

than, close to or larger than the required threshold. The selected threshold is W̃ ≈ 19

when Tz

Z̄bσn

= −5%, ε = 50%, size of object having Tb (outliers) l = 30% and δZ

Z̄b

= 10%

located at Dp = 10% of the image, extracted from figure 5.8(a). Motion segmentations

were performed to recover points having Ta when the parameters of translations Ta

and Tb were randomly selected in such a way that W2D = 5 (W2D < W̃ ), W2D = 17

(W2D ≈ W̃ ) and W2D = 22 (W2D > W̃ ) while Tz

Z̄bσn

= −5%, ε = 50%, l = 30%,

δZ

Z̄b

= 10% and Dp = 10%. The histogram of the residuals for all image points (Ta

and Tb) and their corresponding values of segmentation performance ζ for all cases
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Figure 5.7: Segmentation performance for 3D translational-motion segmentation

when Tz

Z̄bσn

= −5% from Monte Carlo experiments, using the object having Tb with

size (l = 30%), depth of 20% ( δZ

Z̄b

= 10%) and located at Dp = 10% from image

principal point.
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Figure 5.8: Conditions for 3D translational-motion segmentation for various Tz

Z̄bσn

using the object having Tb with size (l = 30%), depth of 20% ( δZ

Z̄b

= 10%) and camera

parameters of f = 703 and [Px Py] = [256 256].
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Figure 5.9: Conditions for 3D translational-motion segmentation for Tz

Z̄bσn

= −5%

when camera parameters and size, depth and location of object having Tb are varied.
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Figure 5.10: Conditions for 3D translational-motion segmentation for all directions

of Tz when Tz

Z̄bσn

= 10% using the object having Tb with size (l = 30%), depth of 20%

( δZ

Z̄b

= 10%), located at Dp = 30% from image principal point and camera parameters

of f = 703 and [Px Py] = [256 256].
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Figure 5.11: Histogram of the residuals for 3D translational-motion segmentation

when Tz

Z̄bσn

= −5% and inlier ratio ε = 50% using the object having Tb with size

(l = 30%), depth of 20% ( δZ

Z̄b

= 10%) and located at Dp = 10% from image principal

point.
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are shown in figure 5.11. The results in figures 5.11(a) and 5.11(b) show that when

W2D is less than or close to W̃ , the segmentations are unsuccessful (ζ ≥ 1) and the

distribution of the residuals associated with Ta and Tb are too close to be distinguished

from each other. When the value of W2D is greater than W̃ , the distributions of

the residuals are distinct and the value of ζ is around one, which indicates correct

segmentation as shown in figure 5.11(c).

These results show the term W2D can be used as a measure for the degree of

separation between two 3D translations. The derived conditions, in terms of the

required W2D (W̃ ) for segmentation can be applied as a performance predictor for

translational-motion segmentation. In addition, the proposed sufficient conditions for

segmentation were not significantly affected by the variation of camera parameters,

direction of Tz, size and depth of outliers. In practice, the term W2D can be estimated

using equation (5.10) based on the difference between translation angles, the scale of

noise and the desired sensitivity of the system in terms of the amount of translation.

Hence, we can predict the outcome of a translational-motion segmentation problem

for the expected inlier ratio of a scene. Therefore, these conditions provide practical

guidelines for practitioners in designing motion-segmentation solutions for computer-

vision applications.

5.4 Experiments using real images

Experiments using real-image data were set up to demonstrate the relevance of the

conditions for segmentation derived from the Monte Carlo experiments. We envisaged

a scene containing two objects having either two different 2D translations (Ta2D and
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Tb2D) or 3D translations (Ta and Tb). The points associated with Ta2D or Ta were the

target translation (inliers) whereas the points having Tb2D or Tb were the unwanted

translations (outliers).

The experimental aim is to investigate the theoretical limit of motion segmenta-

tion involving 2D and 3D translational motions. The effect of imperfect estimate of

the fundamental matrix to the conditions for segmentation is beyond the scope of

this work. In practice, the fundamental matrix can be accurately estimated using

a number of robust methods [3, 101, 124] and the gross outliers can be removed by

applying robust estimators as part of motion segmentation process [123]. The estima-

tion issues including the estimation of fundamental matrix in terms of feasibility and

accuracy, have already been thoroughly analysed [42, 44]. As such in our experiments

using real-image data — identical to our earlier theoretical analysis and Monte Carlo

experiments — we assumed that an accurate estimate of the fundamental matrix of

Ta2D or Ta was provided by a robust estimator and there were no mismatches (gross

outliers) in the image data. Thus, the fundamental matrix of Ta2D or Ta was calcu-

lated using equation (2.5) and occasional gross outliers were manually removed from

the data. These assumptions needed to be taken in order to eliminate the effect of

potential errors from the estimation of the fundamental matrix and the presence of

gross outliers, to the experimental results.

In our experiments, a camera was calibrated using a publicly available camera-

calibration toolbox [16] to determine the camera parameters in terms of focal length,

the image principal point and image distortion. These parameters were used to cal-

culate the fundamental matrix of the target motions and to determine the location

of the object (Dp) — associated with the unwanted motion (outliers) — with respect
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to the image principal point.

A specially designed and fabricated triangular-shaped 3D object was used as the

target object (object-a) and another two similar objects (object-b1 and object-b2) as

the unwanted objects. The side of each object that was visible to the camera consisted

of non-repeating patterns to ensure maximum number of image point can be extracted

from their images. In addition, the non-repeating patterns reduced the possibility of

having gross outliers in the data. The dimensions of object-b1 and object-b2 were

designed such that the value of δZ

Z̄b

was around 10% to represent object with depth of

around 20% for object-b1 and δZ

Z̄b

≈ 5% or depth around 10% for object-b2.

Camera images were recorded, before and after, object-a and either object-b1 or

object-b2 were displaced according to various pairs of 2D translation (Ta2D and Tb2D)

or 3D translation (Ta and Tb). The distortions of all images were reduced using

radial and tangential distortion models suggested by the camera-calibration toolbox

[16]. The corresponding feature points in each pair of images were extracted and

determined using the Scale-Invariant Feature Transform (SIFT) algorithm [58, 56].

The inlier ratio ε in each pair of images was varied from 30% to 80% by removing

some of the points having unwanted translations (Tb2D and Tb) while maintaining the

points having the target translations (Ta2D and Ta). In order to vary the relative

size of object having 3D translation Tb, the points associated with Tb (outliers) were

cropped to be within the appropriate part (i.e. l × l ≈ 30% × 30% or 40%× 40%) of

the image.

The fundamental matrix associated with target translations (Ta2D or Ta) and the

Sampson distances for all points in each pair of images were calculated using equations

(2.5) and (3.4) by substitution of known Ta2D or Ta and the estimated camera matrix.
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Segmentation was performed to identify the points associated with Ta2D or Ta from

the points having Tb2D or Tb, respectively, in each pair of images using the MSSE [6].

The ratio of the segmented points over the true number of points having Ta2D or Ta

(ζ) was recorded and the noise level σn was estimated using equation (3.5) for each

pair of images. The experiments involving 2D translations were repeated using the

pair of object-a and object-b2 (depth of around 10% or δZ

Z̄b

≈ 5%) to see the effect of

changing the depth of object having Tb2D on the segmentation results. Meanwhile,

experiments for 3D translational-motions segmentation were repeated for the different

values of: Tz

Z̄bσn

(for both Ta and Tb), size and location of object, having translation

Tb, (l and Dp) in the image plane.

Figures 5.12 and 5.13 show the values of segmentation performance ζ versus W2D

for both cases involving 2D and 3D translational motions when the depth of object

having Tb2D or Tb is around 20% ( δZ

Z̄b

≈ 10%) and inlier ratio ε = 80% or 50%. For

the 3D case in figure 5.13, the size and location of object having Tb were selected to

be around l ≈ 30% and Dp ≈ 10% of the image, while the estimated scale of noise

σn ≈ 0.6 pixel (estimated using equation (3.5)) and Tz

Z̄bσn

≈ −5% for both Ta and Tb.

We observed a similar trend of the segmentation performance ζ in both the results

of Monte Carlo and real-image experiments as shown in figures 5.3(a) and 5.12(a),

5.3(b) and 5.12(b), 5.7(a) and 5.13(a) and 5.7(b) and 5.13(b) when ε = 80% and

50%. Intuitively, the segmentation of points having Ta2D and Ta are incorrect (ζ > 1)

when the value of W2D is small, and it improves (ζ ≈ 1) with the larger value of W2D.

The conditions for segmentation in terms of the minimum W2D (W̃ ) were extracted

assuming that a correct segmentation was mandated by the value of ζ ≈ 1. From

figures 5.12(b) and 5.13(b), these conditions from real image data are W̃ ≈ 6 for 2D
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translations and W̃ ≈ 22 for 3D translations when the inlier ratio is around 50%.
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Figure 5.12: Segmentation performance for 2D translational-motion segmentation

from experiments using real images, when the depth of object having Tb2D is around

20% δZ

Z̄b

≈ 10%.

The conditions for segmentation of 2D and 3D translations observed in these ex-

periments were comparable to the relevant results from the Monte Carlo experiments

and are shown in figures 5.14, 5.15 and 5.16 for the different values of Tz

Z̄bσn

, the size,

depth and location of objects having Tb2D or Tb (l, δZ

Z̄b

and Dp). It was observed that,

consistent with the previous results of the Monte Carlo experiments, the magnitude of

W̃ increases while ε decreases and does not significantly depend on the size and depth

of object having Tb2D and Tb (l and δZ

Z̄b

) for both 2D (figure 5.14) and 3D translations

(figure 5.16). In addition, for the case of 3D translational-motion segmentation, the

value of W̃ also increases with increasing | Tz

Z̄bσn

| or increasing Dp, as shown in figure

5.15 and from the comparison of figures 5.15(a) and 5.16(a). This means that the
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Figure 5.13: Segmentation performance for 3D translational-motion segmentation

when Tz

Z̄bσn

≈ −5% from experiment using real images. The size, depth and location

of object having Tb are l ≈ 30%, 20% or δZ

Z̄b

≈ 10% and Dp ≈ 10% of the image.
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Figure 5.14: Conditions for 2D translational-motion segmentation from Monte Carlo

experiments and real-image data for different depth δZ

Z̄b

of object having Tb2D.
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Figure 5.15: Conditions for 3D translational-motion segmentation when Tz

Z̄bσn

≈ −5%

are varied. The size, depth and location of object having Tb are according to l = 30%,

20% or δZ

Z̄b

≈ 10% and Dp = 10% of the image.
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(a) l ≈ 30% and δZ
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Figure 5.16: Conditions for 3D translational-motion segmentation when the object-

sizes are varied. The parameter Tz

Z̄bσn

≈ −5% and object-location is according to

Dp = 30% of the image.
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segmentation of points having Ta becomes more difficult when the value of | Tz

Z̄bσn

| is

large or when the points having Tb are located farther away from the image principal

point.

To provide some insight into the applicability of the proposed conditions, we

examined the histogram of residuals and the segmentation performance when W2D

was either less or greater than the required thresholds. The selected thresholds were

W̃ ≈ 5 for 2D case (when ε = 50% and δZ

Z̄b

= 10%) and W̃ ≈ 33 for 3D case

(ε = 50%, Tz

Z̄bσn

≈ −5%, l = 30%, δZ

Z̄b

≈ 10% and Dp = 30%), both from Monte

Carlo experimental results in figures 5.4 and 5.8(a). Figures 5.17(c) and 5.18(c) show

that for W2D less than W̃ (W2D ≈ 3.5 for 2D translations and W2D ≈ 10 for 3D

translations) the distributions of residuals are not distinguishable and the values of ζ

are around two, indicating incorrect segmentations. However, when the value of W2D

is increased to be greater than W̃ (W2D ≈ 9 for 2D translations and W2D ≈ 41 for 3D

translations), the points having Ta or Ta2D are correctly segmented (ζ ≈ 1), as shown

in figures 5.17(d) and 5.18(d), respectively. The segmentation is successful because

the residuals associated with the target motion, i.e. Ta2D or Ta, can be distinguished

from the overall population of d2
i , as shown in figures 5.17(f) and 5.18(f).

These results show the capability of the proposed conditions to guarantee success-

ful segmentation and enable one to correctly predict the success of a segmentation

scenario. They also show that the Monte Carlo experimental results are very relevant

to the problem encountered in real-world applications.
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Figure 5.17: The ground-truth points having Ta2D and Tb2D are superimposed onto

first image ((a) and (b)) when ε = 50% and δZ

Z̄b

= 10%. Segmented points ((c) and

(d)) and the histogram for residuals ((e) and (f)).
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Figure 5.18: The ground-truth points having Ta and Tb are superimposed onto first

image ((a) and (b)) when ε = 50%, Tz

Z̄bσn

≈ −5%, Dp = 30%, l = 30% and δZ

Z̄b

= 10%.

Segmented points ((c) and (d)) and the histogram for residuals ((e) and (f)).
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5.5 Conclusion

A measure for the degree of separation (W2D in (5.10)) between two 2D translations

was theoretically derived to analyse the feasibility of translational-motion segmenta-

tion. The measure was then generalised to cases involving 3D translational motions.

To guarantee correct and successful segmentation, a set of sufficient conditions in

terms of the required W2D (denoted by W̃ ) was developed, for cases involving both

2D or 3D translational motions, via extensive experiments using synthetic images. In

addition, the proposed conditions were not significantly affected by the variation of

camera parameters, direction of translations in Z direction, size and depth objects

in motion. The relevance of these conditions to the problems encountered in real-

image applications was demonstrated by using those conditions to correctly predict

the outcome of different translational-motion segmentation scenarios. In practice,

these conditions can be used as a performance predictor for translational-motion seg-

mentation since the term W2D can be estimated using obtainable scene parameters,

i.e. the expected inlier ratio, the difference between direction of translations, the

desired sensitivity of the system in terms of the amount of translation and the scale

of noise. These conditions serve as a guideline for practitioners in designing motion-

segmentation solutions for computer-vision applications.
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Chapter 6

Analysis of Planar-Motion

Segmentation

Many computer-vision applications involve 3D objects having planar motions. The

motions in these applications are commonly assumed to be restricted to a single or

multiple planes perpendicular to the camera optical axis. This is a common scenario

because the distances between the camera and the objects, in those applications, are

often much larger than the object motions along the camera optical axis [39, 70, 83,

121]. This chapter studies the feasibility of motion segmentation in a scene containing

3D-rigid objects having multiple planar motions. Assuming that the scene is viewed

by an uncalibrated camera and the motion parameters are not known in advance, the

most suitable motion model is the affine fundamental matrix [104].

The analysis starts by deriving the theoretical conditions to guarantee successful

planar-motion segmentation using affine fundamental matrix in section 6.1. The

validity of these conditions are examined via experiments using synthetic images (in
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section 6.2) and their usefulness is demonstrated in experiments using real image data

(in section 6.3). Finally section 6.4 concludes the chapter.

6.1 Segmentation of motion with affine fundamen-

tal matrix

To analyse the motion-segmentation problem, we consider a dynamic scene includ-

ing two rigid 3D-objects with distinct planar motions and viewed by an uncalibrated

camera. These two motions are denoted as motion-a and motion-b. Each motion con-

sists of a rotation θ around the camera optical axis followed by a non-zero translation

T i.e. θa and Ta for motion-a and θb and Tb for motion-b where Ta = [Txa Tya 0]>

and Tb = [Txb Tyb 0]>. The aim of the analysis is to determine the theoretical limit

of planar-motion segmentation — segmentation of points associated with motion-a

from mixture of points having either motion-a and motion-b. Stationary points are

not considered in this analysis, as the sufficient conditions for motion-background

segmentation have already been established in chapter 4.

Similar to the previous analysis, we consider a point in 3D-space with coordinates

[Xi Yi Zi]
> and denote its corresponding point in the image plane m1i = [x1i y

1i
]>,

which moves to m2i = [x2i y
2i
]> after a motion characterised by (θ Tx Ty). Then,

using a camera with camera matrix A (in equation (2.2)), we have

x1i =
fXi

Zi

+ Px, x2i = x1i cos θ − y
1i

sin θ +
fTx

Zi

+ P̃x,

y
1i

=
fYi

Zi

+ Py, y
2i

= x1i sin θ + y
1i

cos θ +
fTy

Zi

+ P̃y,

(6.1)
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where:

P̃x =Px(1 − cos θ) + Py sin θ,

P̃y =Py(1 − cos θ) − Px sin θ.

(6.2)

The symbols θ, Tx and Ty in equations (6.1) and (6.2) represent the motion parameters

and the subscript a and b are used to identify the associated motion (motion-a and

motion-b). The measured coordinates of points in the image plane are assumed to be

contaminated by independently and identically-distributed (i.i.d) measurement noise

e having a Gaussian distribution with zero mean and standard deviation σn:

x1i = x1i + e1
ix, y1i = y

1i
+ e1

iy,

x2i = x2i + e2
ix, and y2i = y

2i
+ e2

iy.

(6.3)

Without loss of generality, motion-a is considered as the target motion while motion-b

is the unwanted one and, in terms of robust estimation, the matching points associated

with motion-a are considered inliers, aimed to be separated from the points having

motion-b, which are considered outliers.

The fundamental matrix of motion-a parameterised by θa, Txa and Tya is computed

using equation (2.5) [3, 39, 124]

Fa =
1

f




0 0 Tya

0 0 −Txa

Txa sin θa − Tya cos θa Tya sin θa + Txa cos θa Q




, (6.4)

where:

Q = (Tya cos θa − Txa sin θa − Tya)Px + (Txa − Tya sin θa − Txa cos θa)Py. (6.5)

Assuming that a robust estimator provides the true fundamental matrix given in

(6.4), the Sampson distances di for all image points can be computed by substitution
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of equations (6.1) and (6.4) in (3.4) [101, 104, 119], which yields:

di =
1√

2(T 2
ya + T 2

xa)
[(x1i + e1

ix)(Txa sin θa − Tya cos θa) + (y
1i

+ e1
iy) · · ·

(Tya sin θa + Txa cos θa) + (x2i + e2
ix)Tya − (y

2i
+ e2

iy)Txa + Q].

(6.6)

For the distances associated with points having motion-a, (denoted as dai) the

expressions without noise terms in the above equation are equal to zero. This is

because theoretically the numerator of the Sampson distance (in (3.4)) is zero for the

target motion, according to equation (2.3). Thus, equation (6.6) can be simplified to

dai =
1√

2(T 2
ya + T 2

xa)
[e1

ix(Txa sin θa − Tya cos θa) + e1
iy(Tya sin θa + · · ·

Txa cos θa) + e2
ixTya − e2

iyTxa],

(6.7)

for points having motion-a. The distances given in (6.7) are a linear combinations of

noise term e and the squared coefficients can be summed to one. Therefore, their dis-

tribution is identical to e, which is normally distributed with zero mean and standard

deviation of σn i.e:

dai = e ≈ N(0, σ2
n). (6.8)

Meanwhile, the Sampson distances associated with the points having motion-b

(denoted by dbi) can be expressed as

dbi =
1√

2(T 2
ya + T 2

xa)
[x1i(Txa sin θa − Tya cos θa) + y

1i
(Tya sin θa + · · ·

Txa cos θa) + x2iTya − y
2i
Txa + Q] + e,

(6.9)

from equation (6.6). Combining the above equation with the world-to-image points

relationship in (6.1) for points having motion-b, we obtain

dbi =
Sx́1i + Uý

1i
+ V

√
2(T 2

ya + T 2
xa)

+ e, (6.10)
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where the terms S, U and V are:

S = Txa(sin θa − sin θb) − Tya(cos θa − cos θb),

U = Txa(cos θa − cos θb) + Tya(sin θa − sin θb),

V =
f(TyaTxb − TxaTyb)

Zbi

,

x́1i = x1i − Px, and ý
1i

= y
1i
− Py.

(6.11)

Note that, in the above equation, the subscript b is added to the term Zi (Zbi) to

indicate that it is only associated with the depth of outliers, i.e. the points having

motion-b. To simplify equation (6.10), all symbols associated with both motions are

expressed in terms of its magnitude and direction — φa and φb denote the directions

of Ta and Tb, respectively, where Tya = ‖Ta‖ sin φa and Tyb = ‖Tb‖ sin φb — and

rewritten, after algebraic manipulations using several trigonometric identities, as

dbi =
√

2 sin
∆θ

2
(x́1i cos Θ + ý

1i
sin Θ) +

Kb

Zbi

sin ∆φ + e, (6.12)

where the symbols ∆θ, ∆φ, Θ and Kb are:

∆θ = θa − θb, ∆φ = φa − φb,

Θ = φa −
θa + θb

2
, and Kb =

f‖Tb‖√
2

.

(6.13)

The trigonometric terms in equation (6.12) are further simplified using the harmonic

addition theorem [118] and expressed as

dbi = Gbi cos Θ̆i sin
∆θ

2
+

Kb

Zbi

sin ∆φ + e, (6.14)

where the term Gb and Θ̆ are:

Gbi =
√

2(x́2

1i + ý2

1i
), and

Θ̆i = Θ + tan−1(− x́1i

ý
1i

) +





0 if x́1i ≥ 0

π if x́1i < 0





.

(6.15)
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The term Gb in the above equations is associated with the location of points (hav-

ing motion-b) appearing on the image plane and it is always positive. The values of

cos Θ̆ in equation (6.14) range from negative one to positive one based on the mini-

mum and maximum values of the cosine term; thus, the range of the term Gbi cos Θ̆i

is

−Ĝb ≤ Gbi cos Θ̆i ≤ Ĝb, (6.16)

where Ĝb is the maximum value of Gbi depending on the locations of points associated

with motion-b. Thus, the range of noise-free distances dbi (denoted by dbi) associated

with motion-b, from equations (6.14) and (6.16), can be expressed as:

−Ĝb| sin
∆θ

2
| + Kb

Zbi

sin ∆φ ≤ dbi ≤ Ĝb| sin
∆θ

2
| + Kb

Zbi

sin ∆φ. (6.17)

Since the distribution of dai is the same as the distribution of noise term e, i.e.

N(0, σ2
n) (as shown in equation (6.8)), the feasibility of identifying and segment-

ing points having motion-a depends on the distribution of distances associated with

motion-b (dbi). If both populations of distances dbi and dai overlap each other, those

motions would not be separable. Non-overlapping populations of distances (dbi and

dai) can ensure that those motions will be separable, as a robust estimator should

be able to correctly segment all points having motion-a. Hence, in order to ensure

that both populations of distances do not overlap, the following conditions must be

satisfied

dbi ≥ 5σn or dbi ≤ −5σn, (6.18)

where dbi is the noise-free dbi in equation (6.9). The condition in the above equation

shows that the minimum or maximum value of dbi needs to be far from the mean of
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dai to minimise the possibility of overlapping distances and ensure successful segmen-

tation. The threshold of 5σn in equation (6.18) is common in probability theory if

the measurement noise is normally distributed (i.e. N(0, σ2
n)) [22]. If this assumption

is satisfied, theoretically only about 0.6% of dai and dbi would overlap and at least

99.4% of points having motion-a will be correctly segmented [22]. In practice, the

measurement values are always bounded and the above threshold would represent a

perfect segmentation.

In order to link the condition for segmentation in (6.18) with the scene and motion

parameters, the inequalities in (6.18) and (6.17) are combined and expressed as:

Ĝb| sin
∆θ

2
| ≤ −5σn +

Kb

Zbi

sin ∆φ or Ĝb| sin
∆θ

2
| ≤ −5σn − Kb

Zbi

sin ∆φ. (6.19)

The above inequalities can only be satisfied if the term Kb

Zbi

sin ∆φ or −Kb

Zbi

sin ∆φ is

greater than or equal to 5σn, since the term Ĝb is always positive. In other words,

one of the above conditions can only be satisfied if:

Kb

Zbi

| sin ∆φ| ≥ 5σn. (6.20)

As such, the inequalities in equations (6.19) and (6.20) are expressed as:

Ĝb| sin
∆θ

2
| ≤ Kb

Zbi

| sin∆φ| − 5σn. (6.21)

Solving the inequalities in equations (6.21) and (6.20) for ∆θ and ∆φ, the sufficient

conditions for segmentation of motion-a are expressed as:

|∆θ

2
| ≤ arcsin

−5σn + Kb

Z̄b

| sin ∆φ|
Ĝb

and,

|∆φ| ≥ arcsin
5σnZ̄b

Kb

.

(6.22)
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In the above equation, we assume that the term Zbi (the depth of points associated

with object having motion-b (outliers)) can be replaced by Z̄b, the average distance

between the camera and the outliers. The justifications are twofold. First, in the

target applications, we usually know the distance between the camera and the object

in motion. For example, in a surveillance application, the distance between the camera

and the surveillance area is known. Secondly, our experimental results, presented in

the next section, show that the depth of the object having motion-b does not have

a significant effect on the segmentation performance. It is important to note that,

using the term Z̄b to simplify Zbi (in equation (6.22)) does not change the Sampson

distances associated with the target motion (motion-a) and only affect the calculation

of outliers residual (dbi associated with motion-b). The distances (dai) associated with

the points having motion-a are independent of their locations, as shown in (6.8).

In summary, we proposed the theoretical condition to guarantee successful segmen-

tation (in (6.22)) of planar motion using affine fundamental matrix. The condition

is based on obtainable motion and scene parameters i.e. the difference between rota-

tion angles and translational directions (∆θ and ∆φ), the location of points having

motion-b (Ĝb), the level of noise (σn) and the desired sensitivity of the system in

terms of the amount of translation (Kb

Z̄b

). The validity of the above condition will be

verified via experiments using synthetic images in section 6.2 and its usefulness as

a performance predictor for planar-motion segmentation will be demonstrated using

real-image data (in section 6.3).
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6.2 Monte Carlo experiments using synthetic im-

ages

The Monte Carlo experiments for the analysis of planar-motion segmentation were

divided into two parts. The first part of the experiments aimed to verify the theoret-

ical conditions for successful segmentation of two planar motions in equation (6.22).

The second part of the experiments was designed to examine the performance of the

condition in terms of predicting the outcome of the segmentation under the variation

of several scene parameters including inlier ratio ε (the ratio of the number of points

having target motion, motion-a, over the total number of points, in equation (3.2)),

size and depth of object associated with outliers (motion-b).

In each iteration in the Monte Carlo experiments, 2000 randomly generated points

in the world-coordinate system having motion-a were mixed with the pairs of match-

ing points undergoing motion-b. The number of points having motion-b was con-

trolled by the value of ε in (3.2). The X and Y coordinates of the matching points

having motion-b were randomly generated, while their Z coordinates were uniformly

distributed according to Z̄b ± δZ

Z̄b

where δZ

Z̄b

= 5%, 10% and 20%, representing the

different depth (i.e. 10%, 20% and 40%) of object along the camera optical axis. All

matching points having motion-a and b were projected on top of two images using a

synthetic camera according to A4

A4 =




703 0 320

0 703 240

0 0 1




, (6.23)

representing a camera with field of view around 50◦, focal length of 703 pixels, prin-

108



cipal point coordinate of [320 240] and image size of 640×480 pixels.

The motion and scene parameters in the experiments were based on two typical

scenarios that are commonly encountered in real applications where the magnitude

of ‖Tb‖ and noise level σn are relatively small (‖Tb‖

Z̄b

is around 10% and σn is 0.5 or

1 pixel), and the locations of the points having motion-b are allowed to be in a wide

region of the image (Ĝb = 0.75Gmax). The selected parameters for both scenarios are:

• Scenario-I with the parameters of Kb

Z̄b

=50, σn = 0.5 and Ĝb = 0.75Gmax

• Scenario-II with the parameters of Kb

Z̄b

=40, σn = 1 and Ĝb = 0.75Gmax

The values of Kb

Z̄b

=50 and 40 in both scenarios correspond to ‖Tb‖ = 1m and 0.8m

respectively, when average distance (Z̄b) between camera and object having motion-

b is around 10 meter and camera matrix is according to A4 in (6.23). Meanwhile,

the term Gbi in (6.15) is at its maximum (Gmax) when [x́1i ý
1i
]=[320 240], i.e. the

point located at each corner of the image, since the image size is 640 × 480 with the

principal point at image center. Generally smaller values of Ĝb correspond to the

points associated with motion-b located closer to the principal point of the image.

The locations of points having motion-a could be anywhere in the image plane,

since their distances are independent of their locations, as indicated by equations (6.7)

and (6.8). However, the locations of points having motion-b are mandated by the value

of Ĝb and are assumed to be within l% × l% of the image, representing the size of

object appearing on the image plane (in X and Y directions). This assumption is

based on the fact that, in variety of computer-vision applications, the image/feature

points associated with every moving object are largely confined to one part of an

image. Concisely, by varying the values of l and δZ

Z̄b

, the size and the depth of object
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having motion-b can be varied, along X, Y and Z axes.

The ground-truth matching points were perturbed by random noise assumed to be

normally distributed N(0, σ2
n). The residuals for segmentation, in terms of Sampson

distances d2
i , associated with all points were calculated using equation (3.4) and the

true fundamental matrix of target motion Fa. We assumed that an accurate estimate

of Fa was provided by a robust estimator, hence it was calculated using equation (2.5)

and given by equation (6.4). The segmentation was performed using the segmentation

step of the MSSE [6] and again, the segmentation performance was measured by

the ratio of the number of segmented points associated with motion-a over the true

number of points having motion-a (denoted by ζ). Each experiment was repeated 1000

times and the statistical mean ζ̄ and standard deviation σζ of 1000 ζs were recorded.

Throughout the experiments several scene parameters were varied to examine their

effect on the segmentation performance. The scene parameters included the inlier

ratio (ε), the size (l) and depth ( δZ

Z̄b

) of object associated with outliers (motion-b).

The pseudocode of the Monte Carlo experiments is shown in figure 6.1.

The first part of the experiment started with plotting of the theoretical conditions

for segmentation of motion-a for Scenario-I and II using equation (6.22), and there

are shown in figure 6.2. From our earlier analysis, the segmentation was expected

to be successful when the values of ∆θ and ∆φ are from the white regions of figure

6.2, because in this region, the populations of di associated with both motions do not

overlap. However, if ∆θ and ∆φ were outside the white regions in figure 6.2, there

was no guarantee that points having motion-a would be successfully segmented. It is

observed that the white regions in figure 6.2 are symmetrical, thus in the experiments

we considered the range of ∆θ and ∆φ are between 0◦ to 90◦ with the conditions for
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segmentation shown in figure 6.3.

Figure 6.1: Pseudocode of Monte Carlo experiments for the analysis of planar-motion

segmentation.

To verify the predictions in figure 6.3, we conducted thorough segmentation anal-

ysis for four different cases — where the values of ∆θs and ∆φs were selected from

the white (∆θ = 6◦ and ∆φ = 50◦ or ∆θ = 10◦ and ∆φ = 80◦) and black regions

(∆θ = 2◦ and ∆φ = 5◦ or ∆θ = 4◦ and ∆φ = 10◦) — of Scenario-I as shown in figure

6.3(a), by examining the segmentation performance ζ and the histogram of Sampson
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Figure 6.2: Theoretical conditions for segmentation of Scenario-I and II.
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Figure 6.3: Theoretical conditions for segmentation of Scenario-I and II for ∆θ and

∆φ from 0◦ to 90◦.
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(a) ∆θ = 6◦ and ∆φ = 50◦, ζ = 0.98
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Figure 6.4: Histogram of di associated with all image points when ∆θ and ∆φ are

from the white region of figure 6.3(a) (Scenario-I). The size of object having motion-b

is according to l = 20% and depth of 20% ( δZ

Z̄b

= 10%).

distances. The values of inlier ratio ε was around 50% while the locations and depth

of object having motion-b were confined within 20% × 20% (l = 20%) of the image

and 20% ( δZ

Z̄b

= 10%), respectively.

The histogram of all distances and the associated segmentation performance ζs

for all cases in Scenario-I are shown in figures 6.4 and 6.5. It can be observed in

figure 6.4 that, when the values of ∆θs and ∆φs are selected from the white regions

of figure 6.3(a), motion-a is correctly segmented as indicated by the values of ζ around

one for both cases. As predicted, motion-a was successfully segmented because the

populations of the distances associated with motion-a and motion-b did not overlap

as shown in figure 6.4(a) and 6.4(b).
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Figure 6.5: Histogram of di associated with all image points when ∆θ and ∆φ are

from the black region of figure 6.3(a) (Scenario-I), The size of object having motion-b

is according to l = 20% and depth of 20% ( δZ

Z̄b

= 10%).

When the values of ∆θ and ∆φ were selected from the black region of figure 6.3(a),

the values of ζ were larger than one indicating incorrect segmentation. As shown in

figures 6.5(a) and 6.5(b), the failure to segment motion-a in these cases was due to

the overlapping populations of distances associated with both motions.

The above results show that, in line with our theoretical predictions in equation

(6.22), successful segmentation is guaranteed when the values of ∆θ and ∆φ are in

the white regions of figure 6.3.

In the second part of the experiments, the effects of changing the following param-

eters to the sufficient conditions for segmentation — prescribed by equation (6.22) —

of motions in Scenario-I and II were examined:

• the inlier ratio ε (from 30% to 80%),

• the size (from l × l = 10% × 10% to 30% × 30% of the image) of object having
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motion-b, and

• the depth (from 10% to 40% i.e. δZ

Z̄b

= 5% to 20%) of object having motion-b.

Note that the size, depth and location of the points associated with the object having

motion-a, were randomly selected since their distances are independent of object-

size, depth and location as shown in equations (6.7) and (6.8). The experiment was

repeated 1000 times and the mean and standard deviation of ζs (denoted by ζ̄ and

σζ) were recorded for each pair of ∆θ and ∆φ and we again assumed that successful

and consistent segmentation occurs when ζ̄ ≈ 1 and σζ ≤ 0.01.

The values of ζ̄ and σζ for all ∆θs and ∆φs are plotted in figures 6.6(a) and 6.6(b)

when inlier ratio is 50% and the size of object having motion-b is 20% with depth

of 20% ( δZ

Z̄b

= 10%). These figures show that for small ∆θ and ∆φ (both < 5◦),

the segmentations were unsuccessful (denoted by ζ̄ > 1). As both ∆φ and ∆θ were

gradually increased toward 90◦, both the values of ζ̄s and σζs reduced to around one

and zero respectively, which indicated successful and consistent segmentations.

Assuming that correct and consistent segmentation occurs when ζ̄ ≈ 1 and σζ ≤

0.01, the values of ∆θ and ∆φ for segmentation are extracted from figures 6.6(a) and

6.6(b) and represented by white regions in figure 6.7(b) when inlier ratio is 50% and

the size of object having motion-b is 20% with depth of 20% ( δZ

Z̄b

= 10%). A broad

picture of the areas where the segmentations are correct and consistent for different

values of inlier ratios, size and depth of object having motion-b is shown as white

regions in figures 6.7 and 6.8.

Similar areas of white regions (areas where the segmentations were successful

and consistent) are observed when the experimental results are compared with the
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Figure 6.6: ζ vs ∆θ and ∆φ for Scenario-I when inlier ratio ε = 50% and the size of

object having motion-b is according to l = 20% and depth of 20% ( δZ

Z̄b

= 10%).
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(d) ε = 30% using larger object

Figure 6.7: Regions for successful segmentation (white region) for Scenario-I for var-

ious values of inlier ratio ε and size of object. Figures (a), (b) and (c) are the results

when the size of object having motion-b is according to l = 20% and depth of 20%

( δZ

Z̄b

= 10%). Figure (d) is the result when using larger object having motion-b with

size (l = 30%) and depth of 40% ( δZ

Z̄b

= 20%).
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Figure 6.8: Regions for successful segmentation (white region) for Scenario-II for

various values of inlier ratio ε and size of object. Figures (a), (b) and (c) are the

results when the size of object having motion-b is according to l = 20% and depth of

20% ( δZ

Z̄b

= 10%). Figure (d) is the result when using smaller object having motion-b

with size (l = 10%) and depth of 10% ( δZ

Z̄b

= 5%).
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theoretical predictions for both scenarios — figures 6.7(a), 6.7(b) and 6.7(c) with

6.3(a) and figures 6.8(a), 6.8(b) and 6.8(c) with 6.3(b). In addition, when the inlier

ratios are large (ε around 80%), motion-a was also successfully segmented when ∆θ >

20◦ (for Scenario-I in figure 6.7(c)) and ∆θ > 45◦ (for Scenario-II in figure 6.8(c)),

indicating that the segmentations were relatively less challenging when relatively small

number of points associated with motion-b were present.

To examine the effect of varying object size on the segmentation performance, the

experiments were repeated for object (having motion-b) with larger size and depth

(l×l = 30%×30% and 40% or δZ

Z̄b

= 20%) and smaller size and depth (l×l = 10%×10%

and 10% or δZ

Z̄b

= 5%). The areas for successful segmentation of motion-a when

the size and depth of object having motion-b are varied are shown as the white

regions in figures 6.7(d) and 6.8(d). Comparison of the experimental results and the

analytical predictions for both scenarios (i.e. figure 6.7(d) with 6.3(a) and 6.8(d) with

figure 6.3(b)) indicates no significant variation to the predicted region for successful

segmentation when the size and depth of object having motion-b (l and δZ

Z̄b

) were

varied in a fairly broad range. These observations also support the validity of using

the term Z̄b (average distance between the camera and the outliers (object having

motion-b)), in deriving the sufficient condition for segmentation (in 6.22), to represent

the depth Zbi of points associated with object having motion-b (in 6.19).

These results show the relevance of the theoretical conditions for segmentation

in predicting the outcome of motion segmentation involving planar motions. If the

inequalities in (6.22) are satisfied, the segmentation is guaranteed to be successful,

irrespective of the inlier ratios, size and depth of objects in motion.
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6.3 Experiments using real images

The usefulness of the derived conditions to predict the outcome of motion segmen-

tations was further demonstrated via experiments using real-image data. In these

experiments, we again considered a scene containing two objects having two different

planar motions, motion-a and motion-b. The points associated with motion-a were

considered as inliers aimed to be segmented from points having motion-b (outliers).

The experimental aim here is to investigate the theoretical limit of motion seg-

mentation and how imperfect estimate of the fundamental matrix would affects the

conditions for segmentation is beyond the scope of this work. In practice, the fun-

damental matrix can be accurately estimated using a number of robust methods

[3, 101, 124] and the gross outliers can be removed by applying a robust estimator

as part of the motion segmentation process [123]. The issues of estimation including

estimating the fundamental matrix in terms of both the feasibility and the accuracy,

have already been thoroughly analysed [42, 44]. As such in our experiments using

real-image data — identical to our earlier theoretical analysis and Monte Carlo ex-

periments — we assumed that an accurate estimate of the fundamental matrix of

motion-a was provided by a robust estimator and there were no mismatches (gross

outliers) in the image data. Thus, we calculated the fundamental matrix of motion-a

using equation (2.5) and manually removed the gross outliers in the data. These

assumptions needed to be taken in order to eliminate potential errors, from the es-

timation of the fundamental matrix and from the presence of gross outliers in the

data, in the experimental results.

The experiments started with calibration of the camera using a camera-calibration
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toolbox [16]. Two specially designed and fabricated triangular-shaped 3D objects —

consisted of non-repeating patterns on each side of the object that was visible to

the camera — were used to represent the objects having planar motions. The non-

repeating patterns on both 3D objects ensured maximum number of image point can

be extracted from their images and minimised the possibility of having gross outliers

in the data. Each 3D object was moved according to either motion-a or motion-b

and their images before and after each pair of motions (motion-a and motion-b) were

acquired. The experiment was designed to represent a situation in Scenario-I; thus

the scene parameters and location of the object having motion-b were selected such

that the values of Kb

Z̄b

= 50 and Ĝb = 0.75Gmax. In addition, the values of ∆θ and ∆φ

for each pair of motion-a and motion-b were varied from 0◦ to 90◦.

All corresponding feature points from all images were determined using the SIFT

algorithm [58, 56] after the reduction of image distortion using radial and tangential-

distortion models suggested by the camera-calibration toolbox [16]. Incorrect matches

and static points from the background were manually eliminated. The inlier ratio ε in

each pair of images was varied from 30% to 80% by removing some of the points hav-

ing motion-b while maintaining all points having motion-a. The standard deviation

of measurement noise σn throughout the experiment was around 0.5 pixel estimated

from equation (3.5). Motion segmentation was performed using the squares of the

Sampson-distance measure as the residuals, computed using the calculated funda-

mental matrix of motion-a. Again, we followed the segmentation steps of the MSSE

[6] and the segmentation performance was measured by the ratio of segmented points

over the true number of points having motion-a (denoted by the symbol ζ).

The experiments were conducted by performing segmentation for motions with
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four different values of ∆θ and ∆φ selected from both white (∆θ = 6◦ and ∆φ =

50◦ or ∆θ = 10◦ and ∆φ = 80◦) and black regions (∆θ = 2◦ and ∆φ = 5◦ or

∆θ = 4◦ and ∆φ = 10◦) of the theoretical conditions for segmentation — prescribed

by equation (6.22) — for Scenario-I, shown in figure 6.3(a). The outcome of the

segmentation, when the values of ∆θ and ∆φ fall in the white region of figure 6.3(a),

were predicted to be successful. Figures 6.9(c), 6.9(d) and the corresponding values of

segmentation performance ζ of around one indicate that points having motion-a are

successfully segmented. As predicted, the segmentations are successful because the

populations of the distances di associated with both motions do not overlap and are

easily distinguished from each other, as shown in figures 6.9(e) and 6.9(f), respectively.

When the values of ∆θ and ∆φ were selected from the black region of figure

6.3(a) (∆θ = 2◦ and ∆φ = 5◦ or ∆θ = 4◦ and ∆φ = 10◦), the segmentation results

are incorrect in both cases as shown in figures 6.10(c), 6.10(d) and indicated by the

values of ζ larger than one. The failure to segment the target motion in both cases

are due to the overlapping populations of distances associated with both motions, as

evidenced by the histograms in figures 6.10(e) and 6.10(f).

The segmentation performance (ζ) was plotted versus all values of ∆θ and ∆φ to

examine its trend over variation of motion parameters. Figure 6.11 shows ζ versus

∆θ and ∆φ from our experiment using real-image data when inlier ratio is around

50%. It can be observed from figure 6.11 — similar to the earlier results from our

Monte Carlo experiments in figure 6.6 — that the segmentation is not successful

(ζ > 1) when the angle differences ∆θ and ∆φ are small (i.e. both less than 5◦) and

the segmentation performance improves (ζ ≈ 1) when both ∆θ and ∆φ increase to

around 90◦.
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Figure 6.9: Segmentation results for motions with ∆θ and ∆φ in white region of

figure 6.3(a). The ground-truth image points are superimposed onto the first image

in (a) and (b) with ε = 50%, segmented points having motion-a in (c) and (d) and

the histogram of di in (e) and (f).
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Figure 6.10: Segmentation results for motions with ∆θ and ∆φ in black region of

figure 6.3(a). The ground-truth image points are superimposed onto the first image

in (a) and (b) with ε = 50%, segmented points having motion-a in (c) and (d) and

the histogram of di in (e) and (f).
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Figure 6.11: ζ vs ∆θ and ∆φ for Scenario-I when ε = 50% from experiments using

real-image data.
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Figure 6.12: Regions for successful segmentation (white region) for Scenario-I for

various ε from experiments using real-image data.
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The white regions in figure 6.12 represent the corresponding values of ∆θ and ∆φ

when the segmentation performance ζ are around one for all inlier ratios. We can

observe the similarities of the white regions, where the segmentations are guaranteed

to be successful, when the results from experiments using real and synthetic images

were compared to the analytical condition for segmentation — figures 6.12(a)-6.7(a),

figures 6.12(b)-6.7(b) and figures 6.12(c)-6.7(c), all with figure 6.3(a). In addition,

we notice that the white regions in figure 6.12 appear larger when the inlier ratio is

around 80%, since the segmentation is relatively less challenging and more feasible

when inlier ratio is large.

These results demonstrate the capability of the derived conditions to correctly

predict the outcome of motion segmentation involving planar motions. They also show

that the theoretical derivation and the results of the Monte Carlo experiments are

very relevant to the motion-segmentation problem in computer-vision applications.

6.4 Conclusion

Sufficient conditions for the segmentation of planar motions were theoretically de-

rived to guarantee correct and successful segmentation. The validity of the derived

conditions was examined via experiments using both synthetic and real images. The

experimental results showed that those conditions were very relevant to the prob-

lems encountered in real-world applications and they were not significantly affected

by variation of inlier ratio, size and depth of objects in motion. In practice, the de-

rived conditions are capable of predicting the outcome of planar-motion segmentation,

since they are expressed in terms of obtainable scene parameters as shown in equa-
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tion (6.22), i.e. angle difference between both translational and rotational motions,

location of points associated with objects having unwanted motion, estimated noise

level and the desired sensitivity of the system in terms of the magnitude of trans-

lation. These conditions serve as guidelines for practitioners involved in designing

computer-vision applications.
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Chapter 7

Conclusions

In this work, we have considered the feasibility analysis of motion segmentation us-

ing the fundamental matrix motion model. The focus was on the motions of rigid

3D objects viewed by an uncalibrated camera. The quantitative measures for the

degree of separation for motion-background, translational-motion and planar-motion

segmentation were theoretically derived; and the feasibility of segmentation was ex-

pressed as a set of sufficient conditions for segmentation determined via extensive

Monte Carlo experiments using synthetic images. The usability of these conditions

were then demonstrated by experiments using real-image data to correctly predict

the outcome of segmentation for different types of motions.

In summary, the contribution of this thesis for applications of motion segmentation

are as follows:

1. We have shown that a pure translation is not separable from static points

associated with the background, and that the success of motion-background

segmentation using the fundamental matrix depends on the rotation angle of
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that particular motion. Additionally, a set of sufficient conditions for motion-

background segmentation has been proposed in terms of minimum required

rotation angle.

2. We have theoretically derived a measure for the degree of separation (called

W2D) between two 2D translations and have proposed this measure to guarantee

the success of translational-motion segmentation for cases involving both 2D

and 3D translations. A set of sufficient conditions for translational-motion

segmentation in terms of the minimum required W2D has been established via

extensive experiments using synthetic images.

3. We have theoretically determined the degree of separation between two planar

motions of 3D objects in terms of their motion and scene parameters. To

guarantee successful planar-motion segmentation, a set of sufficient conditions

in terms of rotational and translational angles (∆θ and ∆φ) for a particular

scene has been proposed.

4. We have designed the experiments using synthetic images based on the Monte

Carlo statistical method to examine the validity of the degree of separation and

to develop the conditions for segmentation for motion-background, translational-

motion and planar-motion segmentation. The experiments have been used to

analyse motion-segmentation performance when several scene and motion pa-

rameters were varied — including translational and rotational parameters, size

and location of object, inlier ratio, measurement noise and camera parameters.

5. We have carried out several experiments using real-image data to demonstrate
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the capability of the proposed conditions to correctly predict the outcomes of

different segmentation scenarios. The experimental results show that these con-

ditions are very relevant to the problems encountered in real-world applications.

In practice, the value of the degree of separation between two motions can be es-

timated using obtainable scene and motion parameters thus, the outcome of motion

segmentation can be predicted using the derived separability conditions. As such

these conditions serve as a guideline for practitioners designing motion-segmentation

solutions for computer-vision problems. In the work carried out in this thesis, suf-

ficient conditions for motion segmentation for different types of motions using the

fundamental matrix were developed and some of the results were presented in peer

reviewed publications [7, 8, 9, 10].

7.1 Future work

This thesis has initiated a relatively new line of research in the feasibility analy-

sis of motion segmentation and there are still a number of interesting problems to

be addressed. First, the derived feasibility for segmentation — motion-background,

translational-motion and planar-motion segmentation in chapter 4, 5 and 6, respec-

tively — involving 3D objects are all in terms of sufficient conditions. It would be

interesting to study the feasibility of the development of necessary conditions for

motion segmentation.

Secondly, the fundamental matrix associated with the target motion can be accu-

rately estimated using many available robust methods [3, 101, 124]. However, a robust

method is not perfect and occasionally it may produce inaccurate estimate of the fun-
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damental matrix. As such, it would be desirable to study the effect of inaccuracies

in estimation of the fundamental matrix on the conditions for segmentation.

Finally, while we consider the cases of motion-background, translational-motion

and planar-motion segmentations, the more general motion includes translation and

rotation along and around all axes in 3D-space. Thus, it would be useful to expand

the theoretical analysis of planar-motion segmentation to include motion parameters

along the camera optical axis (Tz, θx and θy). Particular attention would be on

establishing an effective way to theoretically derive the impact of those motions (Tz,

θx and θy) on the location of points in the image plane.
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