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Abstract—A key parameter affecting the operation of differ-
ential evolution (DE) is the crossover rate Cr ∈ [0, 1]. While
very low values are recommended for and used with separable
problems, on non-separable problems, which include most real-
world problems, Cr = 0.9 has become the de facto standard,
working well across a large range of problem domains. Recent
work on separable and non-separable problems has shown that
lower-dimensional searches can play an important role in the
performance of search techniques in higher-dimensional search
spaces. However, the standard value of Cr = 0.9 implies a
very high-dimensional search, which is not effective for other
search techniques. An analysis of Cr across its range [0, 1]
provides insight into how its value affects the performance of
DE and suggests how low values may be used to improve the
performance of DE. This new understanding of the operation of
DE at high and low crossover rates is useful for analysing how
adaptive parameters affect DE performance and leads to new
suggestions for how adaptive DE techniques might be developed.

I. INTRODUCTION

Differential evolution (DE) [1] is a population-based
search technique that has been successfully applied in many
problem domains [2]. A key parameter that affects its per-
formance is its crossover rate (Cr), and a value of Cr = 0.9
has been found to work well across a large range of problems
domains. Consequently, Cr = 0.9 is often used as a default
value in many DE implementations [2], [3], [4].

Although it is claimed that DE has some insensitivity
to the value of its control parameters [2], an increasing
body of work suggests that, especially on difficult or large
problems, the effective range for these parameters is some-
times small [4]. Additionally, recent work [5], [6], [7], [8]
on separable and non-separable problems has shown that
lower-dimensional searches can play an important role in
the performance of search techniques in higher-dimensional
search spaces. However, Cr = 0.9 implies using very high-
dimensional searches, which is not effective for other search
techniques. An analysis of DE applied to the problems from
the CEC2008 Large Scale Global Optimisation competition,
with Cr varied across its range [0, 1], provides insight into
how its value affects the performance of DE. Explanations
are presented why low and high values of Cr can be effective
when values around 0.5 are not. The above analysis suggests
that many existing adaptive DE techniques will likely be
unable to find and exploit both low and high values of
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Cr while avoiding values which adversely affect algorithm
performance. Suggestions on how to incorporate the new
insights on Cr’s effective ranges and their effects on search
behaviour are presented.

A. Differential Evolution

The three main variants of DE are designated DE/rand/1/*,
DE/best/1/* and DE/target-to-best/1/*, which add (respec-
tively) a difference vector generated from two members of
the population to a randomly chosen individual, the best
individual or to some point between the target and best
individual. The most common, and frequently effective [9],
variant is DE/rand/1/*, which is the subject of the remainder
of this work; details of the others are discussed in general
in [2] and in relation to crossover by Zaharie [4]. The * may
be either bin for a uniform crossover, where the probability
of mutating a component follows a binomial distribution,
or exp, where a sequence of vector components is taken,
the length of which follows an inverse exponential distribu-
tion. Although the same value of Cr produces a different
probability that a component is mutated in the bin and exp
variants, when the actual probability of mutation is the same
there are negligible differences between the performance of
the two [4], so only the bin variant is considered here. Let
S = {x1, x2, . . . , x|S|} be the population of solutions. In
each iteration, each solution in S is considered as a target
for replacement by a new solution; denote the current target
by xi. A new point vi is generated according to

vi = xr1 + F · (xr2 − xr3) (1)

where xr1 (also referred to as the base), xr2 and xr3 are
distinct, randomly selected solutions from S \ {xi} and F is
the scaling factor, typically in (0, 1] although larger values
are also possible. Uniform crossover is performed on vi,
controlled by the parameter Cr ∈ [0, 1], to produce the
candidate solution ui, according to

uj
i =

{
vj

i ifRj ≤ Cr or j = Ii,

xj
i ifRj > Cr and j 6= Ii,

(2)

where Rj ∈ [0, 1) is a uniform random number and Ii is
the randomly selected index of a component that must be
mutated, which ensures that ui 6= xi. The target is replaced
if the new solution is as good or better.

Small values of Cr result in exploratory moves parallel to
a small number of axes of the search space, while large values
of Cr produce moves at angles to the search space’s axes.
Consequently, the general consensus, supported by some
empirical studies [3], [4], is that small Cr is useful when
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solving separable problems while large Cr is more useful
when solving non-separable problems.

The following sections examine previous findings on the
effect of Cr on DE’s performance in problems up to 100
dimensions (Section II) and then describe new experiments
on the CEC2008 Large Scale Global Optimisation (LSGO)
competition problems [10] up to 1000 dimensions (Sec-
tion III). Effects on DE’s search behaviour, including con-
vergence rate, and size and quality of moves made, is then
examined (Section III-A). A broad range of adaptive (and
self-adaptive) DE algorithms are considered in light of these
results in Section IV before recommendations concerning
DE’s application and automatic adaptation are given in
Section V.

II. PREVIOUS FINDINGS

Despite the important role that crossover plays in the DE
algorithm, there are relatively few studies that have examined
the algorithm’s performance as Cr is varied. Price, Storn and
Lampinen [2] present, for a number of benchmark problems,
phase portraits in which “successful” combinations of F
and Cr are plotted across the 2D space of the values. The
portraits reveal good combinations of the two parameters
for the selected problems but do not illuminate the reasons
for this good performance. Mezura-Montes, Velázquez-Reyes
and Coello Coello [9] performed a sensitivity analysis to
pick the “best” setting for Cr for another set of problems.
They do not report DE’s performance across all settings
tested, but a low value of Cr = 0.1 was often chosen as
the best performing. Rönkkönen, Kukkonen and Price [3]
examined the relationship between Cr and DE’s perfor-
mance on different problems, concluding that Cr ≤ 0.2
was appropriate for separable problems and Cr > 0.9
was best for non-separable problems. Zaharie [4] presents
a detailed exploration of the differences between bin and
exp crossover regimes, the actual mutation probability in
each for a given value of Cr and performance results
for different settings on 50- and 100-dimension separable
and non-separable versions of the frequently-used Rastri-
gin and Griewank problems. Cr is varied across the set
{0, 0.01, 0.03, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. Considering
just the bin variant those results may be summarised as
follows:

• on the separable problems, performance is best when
Cr is near zero, degrades as it increases towards 0.5–
0.7 and then improves again as Cr approaches but does
not reach 1;

• on the non-rotated Griewank instance, a similar pattern
is observed, but high values of Cr are as effective as
smaller values;

• on the rotated Griewank instance, performance is best
when Cr is near the middle of its range; and

• as Cr gets very close to 1, performance degrades, even
when values above 0.9 performed well.

III. ALGORITHM PERFORMANCE WITH VARYING Cr

This section presents results for DE/rand/1/bin applied to
the CEC2008 LSGO competition problems [10]: Sphere (f1),
Schwefel’s Problem 2.21 (f2), Rosenbrock (f3), Rastrigin
(f4), Griewank (f5), Ackley (f6) and “FastFractal” (f7).
Problems f1 and f3 − f6 are shifted versions of the classic
functions of the same name, while the last consists of an
irregular, fractal search landscape. The number of dimensions
D of each problem is 100, 500 and 1000. As in the
competition, the number of function evaluations was set to
5000×D and the algorithm was run on each problem using
25 random seeds.

As the effect of Cr is being studied, the population size
and value of F must be held constant. There are broadly
two options: a small population (e.g., 50) with F ≥ 0.8 or a
population of D individuals with smaller F [11]. Although it
has been found that F ∈ [0.3, 1] can be effective [12], the use
of a large population in conjunction with large F will cause
the algorithm to converge too slowly to produce a good result
by the end of its run [13]. This is due to the interaction of the
population’s spread and the related size of difference vectors,
an interaction that is explored in a companion work [11]. In
this study, the population size was set to D, with F = 0.5 for
100D instances other than f4 and f7 and F = 0.3 for those
two 100D instances and all 500D and 1000D instances.1 Cr
was varied across {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}.

Tables I through III present the average final result for
different Cr settings for 100-, 500- and 1000-dimension
instances, respectively. Results are expressed as the relative
percentage deviation (RPD) from the optimal or, in the case
of f7, the best reported solutions (see [14] for best in 100D
and 500D, and [8] for best in 1000D). RPD is calculated
according to

RPD =
|f(x)− f(x∗)|

f(x∗)
· 100

where f(x) is the value of the solution being evaluated and
f(x∗) is the value of the optimal or best known solution.

Fig. 1 presents the relative performance of each Cr setting
within each problem instance. Performance measures have
been scaled such that 1 represents the maximum value
(i.e., worst result) within Cr from [0, 0.9]; many results for
Cr = 1 are too high to be meaningfully plotted. It should be
noted that the most effective DE variants employ additional
techniques to improve performance; the results here are to
illustrate the kind of performance likely to result from a
standard DE algorithm and so are, in some cases, poor.

On the 100D and 500D f1, f5 and f6 instances, most
Cr settings less than 1 performed well. However, on these
same functions in 1000 dimensions, a pattern emerges in
which Cr = 0 is less effective than 0.1, performance then
degrades up to 0.5 before improving towards 0.75 or 0.9,
finally degrading, sometimes quite severely, at 1. A similar
pattern is also evident in the results for f3, f4 and f7 across

1The performance across all Cr values was improved for the 100D f4

and f7 instances when the lower F value was used.
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TABLE I
PERFORMANCE (RPD) ACROSS Cr VALUES ON 100D INSTANCES

Cr f1 f2 f3 f4 f5 f6 f7

0 0 9 32 0 0 0 6
0.1 0 0 26 48 0 0 23
0.25 0 1 27 109 0 0 32
0.5 0 4 210 156 0 0 38
0.75 0 3 31 139 0 0 40
0.9 0 10 40 45 0 0 9
1 5.1× 104 18 1.1× 1010 417 1053 14 38

TABLE II
PERFORMANCE (RPD) ACROSS Cr VALUES ON 500D INSTANCES

Cr f1 f2 f3 f4 f5 f6 f7

0.00 14 35 8.9× 104 177 1 3 17
0.10 0 9 285 1027 0 0 43
0.25 0 13 2572 1277 0 0 48
0.50 1 19 5.8× 105 1465 0 0 50
0.75 0 15 313 1437 0 0 51
0.90 0 22 1248 239 0 2 51
1.00 3.4× 105 22 1.3× 1011 2240 6618 15 43

all sizes, and to some extent in those for f2 (500D and
1000D). Performance is generally poor across all values of
Cr on f2 and f7, problems in which global structure and
exploitable gradients are less prevalent, which suggests that
on the other problems DE is exploiting global structure in
its search. These results accord with those of Zaharie [4].

A related metric of algorithm behaviour is the proportion
of new solutions that were improving, an indication of the
utility of the search mechanism used. This is highly important
in DE, as the particular new solutions it generates are a
function of both the control parameters F and Cr and
the set of solutions in the current population, from which
difference vectors are drawn. If, after some time, the search
has arranged its population in such a way that subsequent
moves are unlikely to be improving, then it will stagnate.
(Conceivably certain configurations could also start their runs
this way.) Low overall acceptance rate can indicate situations
where the search has stagnated. Fig. 2 presents the proportion
of new solutions that were accepted by the algorithm for the
runs whose performance is given above. There is generally
an inverse relationship between the quality of final solutions
produced and the acceptance rate.

TABLE III
PERFORMANCE (RPD) ACROSS Cr VALUES ON 1000D INSTANCES

Cr f1 f2 f3 f4 f5 f6 f7

0.00 1.4× 104 39 1.5× 109 1282 316 10 24
0.10 2 19 3.7× 105 2587 0 0 48
0.25 246 24 1.6× 108 3031 6 3 51
0.50 7135 30 2.2× 109 3346 163 6 53
0.75 6 21 3.5× 105 3131 1 1 54
0.90 10 23 1.4× 106 688 1 3 54
1.00 6× 105 23 2.8× 1011 4643 1.5× 104 15 46
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Fig. 1. Relative performance within problem instance. Results have been
scaled within each problem such that the worst result for Cr ∈ [0, 0.9] is
1. Values for Cr = 1 are not plotted when they exceed 2.5
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Fig. 2. Average proportion of accepted (improving) moves over entire run
by problem instance and Cr value.

A. Rate of Convergence and Population Evolution

Typical explanations [2], [4] of DE’s differing exploratory
behaviour at the extreme values of Cr focus on the direction-
ality of the search: low values search along axes and are good
for separable problems, high values search at angles and are
good for non-separable problems. While there are situations
where this is the case, such explanations are insufficient to
explain why both high and low Cr values can be effective
on the same problem.

This section illustrates differences in the manner of search
when Cr is set to 0, 0.5, 0.9 or 1. The measures used are the
average magnitude of moves (both attempted and accepted,
normalised to be a fraction of the main space diagonal),
the average quality of population members, the average
distance of population members from the population centroid
(i.e., diversity) and the proportion of moves accepted. Two
example runs are taken to illustrate the key differences:
1000D Sphere (f1) in Fig. 3 and 100D FastFractal (f7)
in Fig. 4. The data for the average move magnitude and
proportion of new solutions accepted (top left and bottom
right, respectively, in Figs. 3 and 4) have been smoothed by
taking a running average over 100 iterations.

On 1000D Sphere, the convergence rate is inversely related
to the value of Cr, with Cr = 1 showing exceptionally
fast convergence. Concomitantly, the mean move magnitude
decreases as the run continues—this clearly demonstrates
the self-scaling property of the algorithm that has long
been lauded as a key benefit [2]. It is also evident that
Cr = 0 makes very small moves during the entire run,
whereas higher values of Cr lead to relatively large moves
at the beginning. Related to the size of moves is the rate of
change in the quality of solutions. For Cr ∈ {0.5, 0.9, 1},
rapid initial improvements are shown, while Cr = 0 shows
gradual, but steady improvement over time. It is also worth
noting the acceptance rate of new solutions. This is near 50%
for Cr = 0 for the entire run, around 20% for 0.9 for much
of the run and dropping to 5% for Cr = 0.5. The extremely
low rate of improving solutions when Cr = 0.5 may indicate
that the population has not converged sufficiently for smaller
exploratory moves, which may be more successful, to be
made [11]. Cr = 1 is a special case, with rapid convergence
leading to a loss of diversity so early that it cannot make
further progress. This is discussed further below.

On 100D FastFractal, for all but Cr = 0.5, the con-
vergence rate is also inversely related to Cr. Again, the
low value of Cr produces very small moves and a gradual,
smooth decline in the value of the function. Very few moves
with Cr = 0.5 are successful, so the search languishes,
unable to make improvements. With Cr = 0.9 the search
proceeds in a staggered fashion, with a relatively small
number of successful moves producing good quality im-
provements in solutions; the acceptance rate rises once the
population has converged, but subsequent improvements are
slight. Cr = 1 again converges prematurely to an inferior
solution.

The cause of DE’s premature convergence when Cr = 1
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1000D Sphere results
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Fig. 3. From a sample run on 1000D f1: normalised move magnitude, average f(x), population spread and proportion of moves accepted, by iteration.
Move magnitude and population spread are strongly related when Cr is high. A low acceptance rate after initial successes may indicate that the population
has not converged sufficiently for smaller exploratory moves to be made [11]

likely lies in the nature of DE/rand/1’s mutation mechanism,
which generates a new point by displacing a base solution
that is not the target for replacement. Previous work [13],
[15] has found that relatively small difference vectors applied
to base solutions at some distance from their respective
targets can contribute to population convergence, as the
new solutions, if accepted, are frequently nearer to another
member of the population in the next iteration. In the case of
Cr = 1, newly generated points are guaranteed to be within
F × ||xr2 − xr3|| units of the base, while they are likely to
be further away from the base if any value of Cr less than
1 is used (as the target keeps some of its own components).

With regards to the search behaviour when Cr < 1 the
following general statements may be made:
• When Cr ≈ 0, DE makes very small exploratory

moves, aligned with a small number of axes. The search
proceeds in a gradual but consistent fashion as the
likelihood of making an improving move is higher when
moves are small, even if the change in solution quality
is not great [11]. It is worth noting that in results not
included here, in which a population size of 50 was
used, Cr = 0 outperformed Cr = 0.1. This is because,
with a fixed number of function evaluations, a small
population allows for a greater number of iterations

over which DE with Cr = 0 may progress slowly but
steadily.

• When Cr ≈ 0.9, DE makes large exploratory moves
that, while being less likely to be improving, can yield
large improvements in solution quality. These large
moves also reduce population diversity, which is a
necessary step so that subsequent moves are scaled
appropriately for performing a more fine-grained search
of the solution space.

• When Cr ≈ 0.5, DE behaves more similarly to when
Cr = 0.9 than when Cr = 0. Large moves with large
improvements also result in a reduction in population
diversity, yet it appears plausible that the population
is often still too spread for difference vectors to be
scaled appropriately to continue the search. Thus, the
exploratory moves made after initial improvements are
neither gradual enough (as with Cr ≈ 0) nor large
enough (as with Cr ≈ 0.9) to continue the search
productively.

IV. INSIGHTS INTO ADAPTIVE DE ALGORITHMS

Given that selecting an appropriate value for Cr (and,
indeed, F and the population size) is not necessarily straight-
forward, a range of approaches have been developed to allow
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100D Fast Fractal
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Fig. 4. From a sample run on 100D f7: Normalised move magnitude, average f(x), population spread and proportion of moves accepted, by iteration.
Move magnitude and population spread are strongly related when Cr is high. A low acceptance rate after initial successes may indicate that the population
has not converged sufficiently for smaller exploratory moves to be made [11]

the algorithm to select these values itself. Discussion of these
adaptive and self-adaptive techniques has been left until this
point so that they may be discussed in light of the results of
the preceding sections.

Adaptive techniques include Fuzzy Adaptive DE
(FADE) [16], which uses fuzzy logic controllers to change
the values of F and Cr; while the decisions are based
on fuzzy sets, the rules for changing their values are
predetermined by the algorithm designer. Self-adaptive
approaches are more numerous and employ a variety of
techniques to adjust the values of the control parameters
in response to changes in the algorithm’s behaviour, or to
allow the algorithm to manipulate their values in a similar
manner to the way solutions are modified. Self-adaptive
DE (SaDE) [17] keeps track of F and Cr values used in
successful moves; at the end of each successive learning
period their values are reset within a normal distribution
centred on the average of these successful values. A similar
approach is used by Tvrdik [18], whose algorithm selects
probabilistically from a small set of F − Cr combinations
based on which have performed best most recently. After
a number of successful moves (when the probability of
selecting some of the combinations falls below a specified

threshold) the probabilities are reset.

Other approaches adapt F and Cr separately for each
individual. Brest et al.’s [19], [20] jDE periodically (on
10% of iterations) resets the values of F and Cr using a
uniform random distribution. Unlike the adaptive algorithms
described above, this technique does not learn the most
effective values, instead exploring a wide range of values
over the course of its run. Brest et al. [21] and Brest and
Sepesy Maučec [22] also consider a deterministic population
size reduction mechanism, which focuses the population on
its most successful individuals (and, consequently, likely
decreases move size due to accelerated population conver-
gence).

In all of these it is unclear what values the algorithms
settled on, if any. Indeed, techniques such as jDE’s periodic
resetting of values appear unlikely to select any particular
values for a long period.

Salman, Engelbrecht and Omran [23] describe a self-
adpative DE (SDE) that adapts F and Cr for individuals
using the same mechanisms as used by the DE algorithm,
by adding a weighted difference between two of the values
in use to a randomly selected other. SDE does settle on
fairly consistent values: F ≈ 0.35 and Cr ≈ 0.5. Zamuda et
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al. [24]’s DE with self-adaptation and cooperative coevolu-
tion (DEwSAcc) is a derivative of jDE, but uses log-normal
adaptation of F and Cr to make gradual adjustments to
their values. Their final values are not given in the cited
work, but correspondence with the author suggests that, on
most of the CEC2008 LSGO instances the best solution’s
value of F drops to below 0.1 while Cr varies considerably
around 0.5.2 The algorithm’s cooperative coevolution com-
ponent implicitly further reduces the value of Cr, as each
subpopulation explores a subset of the problem’s dimensions.
Although not reported in [24], the adaptation mechanism will
tend to produce diminishing values over time, due to the hard
upper bound imposed on F and Cr. Without a mechanism
to preserve values associated with improving moves, this
downward bias may be undesirable.

The results from Section III suggest that, on many prob-
lems, both low and high values of Cr can perform well,
with low values frequently a robust choice as the algorithm
makes gradual, small improvements to all solutions. They
also suggest that, on some difficult problems, middling
values of Cr prevent the algorithm from either making
gradual improvements or achieving the necessary leaps in
order to scale its subsequent moves appropriately for further
successful exploration. Self-adaptive techniques that reset Cr
within a large range are thus unlikely to spend much time in
either of the two good positions.

Self-adaptive approaches that make gradual changes are
potentially handicapped depending on the initial value of
Cr: if the frequently-recommended value of Cr = 0.9 were
used as an initial starting point, such techniques would be
unlikely to explore the region around Cr = 0.1 unless no
selection pressure is applied to which values are evolved and
the algorithm is willing to endure a period of few successful
solutions being produced. Interestingly, the two variants for
which the evolved values of Cr have been reported [23] or
discovered [24] appear to choose values of Cr around 0.5.3

Both techniques appear to select small values of F , however,
which may serve to attract solutions to the location of the best
individuals when they are used as the bases for exploratory
moves [13], [15].

Finally, adaptive algorithms that learn the best parameter
settings by monitoring their relative success rates (e.g., [17],
[18]) will likely be biased towards low values of Cr, as
(small) improving moves are more likely to result with
low Cr [11]. While results here and elsewhere [4], [9]
show that low Cr can be effective, moves resulting from
high Cr can produce large improvements in solution quality
quickly, despite having a generally lower rate of success.
Such implicit biases should be considered when developing
a learning self-adaptive algorithm.

2A. Zamuda, personal communication, 22 January 2010.
3It is possible that individual solutions in DEwSAcc [24] actually explore

a wide range of values for Cr, with its apparent preference for 0.5 an artefact
of taking the average value used by the best individual across multiple runs.

V. FUTURE DIRECTIONS

Experiments with other search techniques [5], [6], [7]
have demonstrated that lower-dimensional searches can im-
prove performance on both separable and non-separable
high-dimensional functions. The experiments conducted here
demonstrate that lower-dimensional searches in DE (i.e., with
Cr ≤ 0.1) can lead to superior DE performance on separable
functions. On the non-separable problems—Schwefel 2.21
(f2), Rosenbrock (f3), Griewank (f5), and FastFractal (f7)—
DE with Cr ≤ 0.1 achieved results as good as or better than
DE with Cr = 0.9, suggesting low-dimensional searches can
also help improve the performance of DE on non-separable
problems. Future tests are required, however, to determine
how best to make use of low Cr values on such problems,
since DE progress becomes slow.

DE with Cr = 0.1 is an almost entirely different algo-
rithm to DE with Cr = 0.9. Population dynamics, move
characteristics and convergence rates are all highly different.
While DE with Cr = 0.9 relies on the population converging
so that its moves may be scaled for finer-grained search,
DE with Cr ≤ 0.1 maintains a highly diverse population
throughout its course, especially in complex landscapes, as
individual solutions conduct largely independent searches of
the solution space.

Given this new understanding of how DE generates suc-
cessful moves, the development of an adaptive DE that can
exploit both high and low values of Cr in a non-random
fashion is a promising area for further research. Such an
algorithm will not be able to rely solely on the number of
successful moves produced, as high values of Cr will tend to
produce fewer, but larger improvements in solution quality.
Nor should it explore the (restricted) space of Cr values
blindly: some selection pressure must exist so that effective
values are identified and maintained. Finding an appropriate
balance between these requirements will be a challenging
and fruitful area of study.

VI. CONCLUSIONS

Of the three main parameters controlling DE’s
behaviour—population size, scaling factor F and crossover
rate Cr—Cr is perhaps the most important. At its extremes
Cr leads to vastly different search behaviours. Low values
of Cr result in a search that is not just aligned with a
small number of search space axes, but which is gradual,
slow and robust. High values of Cr result in searches
where fewer generated solutions may be improving, but
the improvements can be large. Those searches rely on the
population contracting in order to scale subsequent moves
for finer-grained search. Both F and the population size
have roles to play in controlling this convergence rate.

Finding the most appropriate settings for a problem can
be time-consuming and error-prone, so adaptive and self-
adaptive techniques are an attractive solution. However, due
to the disjoint nature of DE’s search behaviour as Cr is var-
ied, techniques that sample values across Cr’s entire range
will use the best values only some of the time, techniques
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that learn appropriate values based on success rate will likely
select low values only, and techniques that make gradual
changes will, if appropriate selection pressure is applied, be
unable to move from one extreme to the other. With this new
understanding of DE’s operation at high and low crossover
rates, future work—given the complex interaction of control
parameters it would be premature do so here—will examine
rules-based approaches to exploit and accommodate for the
strengths and weaknesses of the two kinds of DE search.
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