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Abstract—Event-triggered consensus of multiagent systems
(MASs) has attracted tremendous attention from both theoret-
ical and practical perspectives due to the fact that it enables
all agents eventually to reach an agreement upon a common
quantity of interest while significantly alleviating utilization of
communication and computation resources. This paper aims
to provide an overview of recent advances in event-triggered
consensus of MASs. First, a basic framework of multiagent event-
triggered operational mechanisms is established. Second, repre-
sentative results and methodologies reported in the literature are
reviewed and some in-depth analysis is made on several event-
triggered schemes, including event-based sampling schemes,
model-based event-triggered schemes, sampled-data-based event-
triggered schemes, and self-triggered sampling schemes. Third,
two examples are outlined to show applicability of event-triggered
consensus in power sharing of microgrids and formation con-
trol of multirobot systems, respectively. Finally, some challenging
issues on event-triggered consensus are proposed for future
research.

Index Terms—Consensus, even-based sampling, model-based
event-triggered scheme, multiagent systems (MASs), sampled-
data-based event-triggered scheme, self-triggered sampling
scheme.

I. INTRODUCTION

MULTIAGENT systems (MASs), in which distributed
sensing, communication, computing, and control are

integrated, are usually employed to achieve coordinated tasks
by letting a group of agents work cooperatively with each
other [1], [2]. As a fundamental problem of cooperative con-
trol of MASs, consensus has attracted an interest of researchers
due to their widespread applications in various areas, such
as attitude alignment of satellites [3], formation of multiple
robots [4]–[6], estimation over sensor networks [7]–[11],
power management in power networks [12]–[14], distributed
optimization [15]–[17], and so on. An essential issue on con-
sensus of MASs is how to design a suitable control scheme
such that the states of all agents can reach a common quantity
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of interest. Large-scale participation of agents makes it costly
or even impractical to control and manage MASs in a cen-
tralized manner. To solve this problem as well as to improve
reliability and scalability of MASs, it is preferable to carry out
distributed control by utilizing local information exchanges
among neighbors via shared communication networks. As a
result, numerous research on distributed consensus control for
MASs has been conducted in recent years, see [1], [18]–[27].
Some related research topics on consensus control problems
are surveyed in [28].

In conventional consensus control settings, it is assumed
that MASs can access to continuous measurements and/or
control signals. Such an assumption mandates support from
sufficient computation resources and an ideal communica-
tion environment for MASs. Obviously, it is unrealistic in
some practical applications, especially when agents them-
selves or their internal devices are powered by batteries; or
communication bandwidth and channels are limited. Thus, an
important criterion on designing a suitable distributed con-
trol scheme for MASs should not only guarantee the desirable
control performance but also be capable of saving lim-
ited communication and computation resources. One possible
approach is to use sampled-data control in an MAS [29]–[33],
where sampling is triggered after the elapse of a fixed time
interval. However, it is generally acknowledged that such a
time-triggered sampling scheme may lead to excessive con-
sumption of both communication and computation resources
of MASs, especially when the system states nearly approach
their equilibriums and there are no disturbances imposed on
the systems [34], [35]. On the other hand, notwithstand-
ing beneficial control performance in the sense that fast
sampling can efficiently capture useful states of systems,
time-triggered sampling results in a high frequency of data
updates along with detrimental consequences, such as rising
costs and traffic congestion, thereby imposing restrictions on
other critical system monitoring and protection functions. It
is well recognized that communication congestion may cause
long latency, increased packet loss and reduced throughput,
inevitably degrading system stability, performance and reliabil-
ity [36]–[38]. Therefore, one important issue to be addressed
is how to design suitable control schemes which can sustain
the satisfactory control performance of MASs while sig-
nificantly reducing over-consumption of communication and
computation resources.

The introduction of event-triggered consensus control pro-
vides a positive solution to the above issue. Compared with
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a traditional time-triggered control scheme with a fixed sam-
pling period, a remarkable feature of an event-triggered control
scheme is that the time instants when sampling actions and
control updates should be performed are determined by a
predefined event triggering condition (ETC) related closely
to system measurements (e.g., system states or outputs) or
performance levels [34]. If the ETC is violated, which means
that the current system measurement exceeds a certain thresh-
old, the current system measurement should be sampled and
transmitted. This adequately establishes a link between sam-
pling and control actions and system measurement. In this
sense, an event-triggered scheme is advantageous over a
time-triggered scheme in reducing unnecessary utilization of
limited communication and computation resources [39], [40].
Thanks to this advantage, event-triggered control has been
widely investigated in the past decade and some theoretical
methodologies have been developed to address several control
issues [34], [36], [41]–[52]. From these results, it is verified
that the frequency of sampling and control executions can be
significantly decreased while maintaining the prescribed con-
trol performance. Deep analysis and investigations on event-
triggered control and filtering in networked control systems
are referred to some recent survey papers [38], [53].

In the context of MASs, it is found that designing a suit-
able event-triggered consensus control scheme is more com-
plicated and challenging compared with single-agent-based
systems. The difficulties primarily come from the following
three aspects: 1) strong information coupling in distributed
control protocols involving information from both individual
agents and their neighbors specified by a fixed or time-
varying interaction/network topology; 2) high complexity in
designing distributed ETCs; and 3) analysis on excluding
the Zeno behavior in the sense that infinite events happen
over a finite time interval. Inspired by an idea in [34], both
centralized and distributed event-triggered control schemes
are presented in [54] such that average consensus of single-
integrator networks can be achieved by employing Lyapunov
stability theory. It is shown in [54] that the proposed event-
triggered scheme requires fewer control updates for agents
while eliminating Zeno behavior. Subsequently, a great number
of research results on distributed event-triggered consensus of
MASs have been reported from various perspectives [55]–[61],
which have been briefly reviewed in [62]–[64].

Different from [28] and [62]–[64], this paper aims to pro-
vide a state-of-the-art overview on event-triggered consensus
control of MASs. Detailed analysis is made and insight-
ful understanding is given with respect to recent results on
event-triggered multiagent consensus control reported in the
literature. The remainder of this paper is organized as follows.
A general framework for event-triggered consensus control
in an MAS is described in Section II, where an opera-
tional mechanism of an event-triggered scheme is concisely
explained. Section III focuses on reviewing the latest theoret-
ical results and their respective advantages and disadvantages.
Practicability of distributed event-triggered consensus schemes
is shown in Section IV through two practical examples, such
as reactive power sharing of microgrids and formation control
of multirobot systems. Section VI presents some challenging
issues.

II. EVENT-TRIGGERED CONSENSUS

CONTROL FRAMEWORK

In this section, we first introduce a consensus control
protocol for a linear MAS. Then, we present a general
event-triggered consensus control framework for MASs.

A. System Dynamics and Consensus Protocol

In order to conveniently summarize some exiting results
in a unified way, we consider a general linear MAS, where
single-integrator and double-integrator can be viewed as its
special cases. The MAS consists of N agents whose dynamics
is modeled by [25], [65]

ẋi(t) = Axi(t) + Bui(t), i = 1, 2, . . . , N (1)

where A ∈ R
n×n and B ∈ R

n×m are constant matrices; xi ∈ R
n

and ui ∈ R
m are the state and the control input of agent

i, respectively. It is assumed that (A, B) is stabilizable. The
initial condition of (1) is given by xi(0) = x0

i . The com-
munication topology is modeled as a weighted directed or
undirected graph G = {V, E,W}, where V = {v1, v2, . . . , vN}
and E ⊆ V × V , which stand for the set of nodes and the set
of edges, respectively; and W = [wij] ∈ R

N×N is a weighted
adjacency matrix with wii = 0 for any i. If node vi can receive
information from node vj, then node vj is considered as a
neighbor of node vi, and node vi is in turn called an out-
neighbor of node vj. Denote Ni the set of neighbors of node
vi. It is assumed that wij > 0 if j ∈ Ni, otherwise, wij = 0.
In a directed graph, if there exists a directed path from one
node to any other nodes, then the graph G is said to have a
spanning tree. In an undirected graph, the graph G is said to
be connected if there exists a path between any nodes.

For the MAS (1), it is said to achieve consensus if
there exists a suitable control protocol ui(t) such that all
the agents’ states xi(t) reach a common value or vector,
i.e., limt→+∞ ‖xi(t) − xj(t)‖ ≤ ε, where ε ≥ 0 is a very
small constant [1]. If ε = 0, it is referred to as accu-
rate consensus [1], [18]; otherwise, bounded consensus or
practical consensus [23], [32]. In order to solve the con-
sensus problem, the following distributed control protocol is
commonly used [65]:

ui(t) = K
∑

j∈Ni

wij
(
xj(t) − xi(t)

)
(2)

where K is a control gain matrix.
In practical implementation of (2), it is unrealistic to have

access to continuous signals from agents and their neighbors.
To overcome this problem, a sampled-data control method
is used. Generally, there exist two sampling ways: 1) time-
triggered sampling and 2) even-triggered sampling. Since the
even-triggered sampling has attractive advantages in reducing
utilization of communication and computation resources, much
attention has been paid to event-triggered control of MASs. In
what follows, we show its basic framework.

B. Event-Triggered Mechanism

A general event-triggered control configuration for each
agent can be shown in Fig. 1. Different from traditional MASs,
an event detector is introduced and installed between the
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Fig. 1. Basic event-triggered control configuration for agent i.

sensor and the controller of agent i. The event detector, as
a core component in the event-triggered control, is respon-
sible for determining when agent i’s measurement should be
triggered for controller updates of itself and its neighbors. The
principle of making such a decision is based on an ETC preset
or embedded in the event detector of agent i [54]. Suppose
that the measurement of agent i can be constantly acquired by
sensor i and sent to event detector i. Then, the ETC can be
checked at all times. Once the ETC is not satisfied, the cur-
rent measurement of agent i will be “requested” for the MAS
and it should be broadcast. According to the above mecha-
nism, the tasks of event detector i include: 1) collecting all
the measurements (from itself or its neighbors) required by its
ETC; 2) making a decision on when the measurement should
be sampled and broadcasted by using the received informa-
tion; and 3) generating an execution signal if the ETC is
violated. After the trigger of agent i receives the triggering sig-
nal, agent i’s measurement will be authorized to be broadcast
and then be used to update the control inputs of its own and its
neighbors.

In order to ensure the effectiveness of the above mechanism,
some important issues need to be carefully addressed.

1) ETC: In an event-triggered control scheme, the ETC is
a key component for determining event time instants,
which is closely related to reducing the number of con-
trol updates and communication among neighbors. In
principle, the selection of ETCs should be physically
explained. Besides, ETCs should be easy to imple-
ment from a practical perspective. These two points
raise difficulties in designing a suitable ETC for MASs.
Note that ETCs used in the literature are mainly: a)
centralized [54]: using all the agents’ measurement
information; b) decentralized [55], [66], [67]: using its
own information; and c) distributed [56], [57], [60]:
using the information from itself and its neighbors.
Since it is not practical to use information of all agents’
states to design ETCs, the decentralized and distributed
event-triggered schemes are attractive for MASs.

2) Control Protocol: When an event-triggered scheme is
applied to an MAS, the measurements of agents and their
neighbors can be available only at event time instants.
Hence, an important issue on consensus protocol design

is how to efficiently make use of such information avail-
able for control updates under the designed ETCs. In
fact, different ETCs may lead to a great variety of con-
sensus protocols (see Section III in detail). Furthermore,
it is really a challenging issue to design both the
controller gain K in (2) and threshold parameters of
event-triggered schemes in a unified framework [60].

3) Interevent Time: When the interevent time is zero, Zeno
behavior occurs. In this case, the event-triggered scheme
fails to be used [34]. Thus, it is compulsive to guaran-
tee that the lower bound of the interevent-time is strictly
greater than zero. However, it is in fact not an easy task,
especially when agents are affected by external distur-
bances and/or the thresholds in ETCs heavily depend on
the measurements of agents and their neighbors [54].

The above three issues should be taken into account in
designing an appropriate event-triggered control scheme for
MASs. Up to date, a plenty of notable results on event-
triggered control schemes have been derived in the literature,
which are briefly reviewed in the next section.

III. EVENT-TRIGGERED CONSENSUS CONTROL SCHEMES

As mentioned in Section II, the key points of event-triggered
schemes lie in the design of control protocols and ETCs.
Recalling some existing results on MASs, there are mainly
four types of event-triggered schemes: 1) event-based sampling
scheme [54]; 2) model-based event-triggered scheme [66];
3) sampled-data-based event-triggered scheme [60]; and 4)
self-triggered sampling scheme [68]. In what follows, in-depth
analysis on them is made.

A. Event-Based Sampling Schemes

A key feature of an event-based sampling scheme is that
whether or not the current measurement is sampled is deter-
mined by a predefined ETC. This implies that event-based
sampling can reduce unnecessary samplings significantly, thus
having more potential in saving the lifespan of energy-based
devices. The event-based sampling scheme is initially tailored
in a centralized way for single-integrator MASs [54], where
the ETC is dependent on the global state measurement errors
between the last event and current instants as well as network
topology. Such a centralized event-based sampling scheme is
difficult to implement, particularly when the number of agents
is huge and communication resources are limited. Thus, the
centralized event-based sampling scheme should give way to a
distributed event-based sampling scheme, which is introduced
in [54] and [69] for consensus control of MASs. In such a
scheme, the state measurement error for agent i is defined as
ei(t) = xi(tik) − xi(t), t ∈ [tik, tik+1), where tik (k = 1, 2, . . .)

denotes the event instants for agent i. Then, a distributed
event-based consensus control scheme for agent i is given
by [54], [69]

�1 :

{
Protocol: ui(t) = −K

∑
j∈Ni

wij

(
xi(tik) − xj(t

j
k′(t))

)

ETC: fi(ei(t)) ≤ �i(zi(t))
(3)

where tj
k′

(t)
� arg minp∈N{t − tjp|t ≥ tjp}; K is the con-

troller gain matrix; fi(·) and �i(·) are the error function and
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the threshold function of agent i, respectively, and zi(t) =∑
j∈Ni

wij(xi(t) − xj(t)). If the threshold function �i is related
to the states of agents, it is called a state-dependent threshold,
otherwise, a state-independent threshold. In the distributed set-
ting, agent i’s event time instants tik are determined once its
triggering condition in (3) is violated. A reasonable explana-
tion is that the state change between the consecutive sampling
instants is not allowed to go beyond a threshold. Since the dis-
tributed event-based consensus control scheme in (3) is only
dependent on its own and neighbors’ information, it is suit-
able for MASs. Moreover, in [54] and [69], it is shown that
the proposed distributed event-based sampling scheme (3) can
exclude Zeno behavior efficiently and decrease the frequency
of agents’ control actuation significantly.

Although, the distributed event-triggered control scheme (3)
offers some advantages in reducing the number of control
updates, there are several limitations to its practical imple-
mentation, which are shown as follows.
L1) High Frequency of Control Updates: Notice that from

the consensus control protocol in (3), the control input
updates of agent i are triggered at its own event instants
tik and its neighbors’ event instants tj

k′
(t)

as well. As a
result, if the agent has a larger number of neighbors,
the minimum time-interval between any two consecutive
control updates may become smaller and smaller, even-
tually leading to Zeno behavior [57], [70]. In this case,
efficiency and applicability of the event-based sampling
scheme will be definitely degraded.

L2) Requirement on Continuous Communication: From (3),
one can see clearly that the threshold function �i of
agent i relies on the real-time state information from
itself and its neighbors, which means that continuous
communication among neighbors is necessary. Hence,
more communication resources are required to imple-
ment the event-based sampling scheme (3), which sub-
stantially augments the operational costs and contradicts
the intention of event-triggered strategies.

L3) Limitations of System Dynamics: In [54] and [69], it
is shown that, the distributed event-based consensus
control scheme (3) is effective for an MAS whose
agents’ states eventually converge to an equilibrium
point. However, it fails to work when all the agents’
states are synchronized to a time-varying trajectory.
More specifically, when the system dynamics of the
MAS (1) reach consensus under the ETC of (3), the
threshold �i(zi(t)) approaches to zero as zi(t) → 0.
But the state error ei(t) does not converge to zero since
the final consensus state trajectory is time-varying. As
a result, the ETC in (3) will be violated at every time,
unavoidably leading to Zeno behavior.

In order to overcome the above limitations, significant effort
has been made to improve the distributed event-based consen-
sus control scheme (3) for MASs. Regarding the limitation
L1), the following distributed even-based consensus scheme
is proposed [57], [70], [71]:

�2 :

{
Protocol: ui(t) = −K

∑
j∈Ni

wij
(
xi

(
tik

) − xj
(
tik

))

ETC: fi
(
ei(t), eij(t)

) ≤ �i(zi(t), t) + δi
(4)

where eij(t) = ej(tik)−ej(t) and δi ≥ 0 is a constant. Intuitively,
the event-based consensus scheme (4) can reduce the number
of control updates compared with (3) due to the fact that the
control updates of agent i occur only at its own event instants
tik. In the case of δi = 0, the event-triggered consensus problem
is investigated for MASs with single-integrators [72], double
integrators [70], linear dynamics [73], and nonlinear dynam-
ics [71], [74]. It should be pointed out that, as analyzed in L3),
the event-based consensus scheme (4) is no longer effective
for double-integrator networks since the Zeno behavior may
occur after consensus is reached. To cope with the problem,
a small constant δi �= 0 is introduced in [57] to the thresh-
old function �i. This leads to the event-based scheme (4) to
a relaxed constraint that the system matrix A does not need
to be stable. It should be emphasized that when the threshold
function �i includes a positive constant δi, the event-triggered
scheme (4) can achieve only bounded consensus rather than
complete consensus [57].

It should be mentioned that a combinational measurement
approach to designing the event-triggered scheme is developed
in [56] and [75] to overcome the limitation in L1), where
the combinational measurement error is defined by z̃i(t) =
zi(t) − zi(tik), and the ETC in (4) is modified as

fi(z̃i(t)) ≤ �i(zi(t), t) + δi. (5)

Based on the ETC (5), some research work is conducted for
leader-following consensus [76], consensus with input time
delay [78], and output consensus [79]. Besides the reduction
of control updates, the other advantages of the ETC (5) lie in
that it can avoid the effects of system dynamics as stated in
L3) on the event-triggered scheme because the combinational
measurement error will converge to zero as the consensus is
completed. Note that the relative measurement errors among
neighbors in the ETC (5) are available to each agent. It is
commonplace to access to these combinational states via a
communication layer. Therefore, although ETCs (4) and (5)
can decrease the control updates of each agent, they still
depend on continuous communication. In some special cases,
the relative measurement can be either taken directly by
sensor devices, or generated indirectly by complicated com-
putation [56], [76]. For example, in a vehicle platoon the
measurement sensors are embedded on each vehicle to obtain
the relative positions and velocities between vehicles. It is clear
that such the direct and undirected measurement requires sup-
port from extra hardwares, thus, it will cause additional cost
when implementing ETC (5).

In a state-dependent event-triggered scheme, one solution
to relax constraints on continuous communication is that it
uses only triggered state information from neighbors. Then, a
modified version of the event-based consensus scheme (4) is
proposed in [57], where each agent uses only the latest con-
trol information updated from its neighbors. However, control
information of agents sometimes is private or unavailable to
others due to malicious attacks. For example, the typical DoS
attacks jam the shared network medium to prevent agents from
communicating with others [77]. Thus, this modified event-
triggered scheme may not be practical from the perspective of
information privacy or security. Moreover, from the protocol
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in (4), it is known that the sampled states of neighbors at the
event time tik are requested for the control updates. In real-
ity, such a mechanism requires additional processing devices,
leading to extra running cost of the whole MAS.

In order to circumvent continuous communication among
agents, the following distributed event-triggered scheme is
presented [58]:

�3 :

{
Protocol: ui(t) = −K

∑
j∈Ni

wij

(
xi

(
tik

) − xj

(
tjk′(t)

))

ETC: fi(ei(t)) ≤ �i
(
ẑi(t)

) (6)

where ẑi(t) = xi(tik) − xj(t
j
k′(t)). It is clear that the threshold

of ETC in (6) depends on both the discrete signals x(tik) and
xj(t

j
k′(t)) from agent i and its neighbors, respectively, which

implies that an individual agent is not required to have con-
tinuous access to its neighbors’ information. Based on the
scheme (6), practical asymptotic tracking of the dynamic aver-
age of the time-varying agents’ reference inputs over networks
with time-varying connected undirected graphs is achieved
in [80]. The scheme (6) is extended in [81] to address the
event-based consensus problem for linear MASs with time
delay and a directed graph. In [82], output synchronization of
networked passive systems without or with network induced
delays is investigated. Different from [80]–[82], a fully dis-
tributed event-triggered scheme is proposed to achieve average
consensus of single-integrator networks in [58] by employing
the Lyapunov method. As such a fully distributed event-
triggered scheme does not need any knowledge of global
network topology for each agent, it is very attractive to prac-
tical implementation, especially in the presence of large-scale
networks. However, only single-integrator MASs are consid-
ered in [58] and the analysis method therein may be difficult to
accommodate general linear MASs. For this reason, it would
be appealing to further investigate a distributed even-triggered
scheme in more complicated cases of agent dynamics.

Another effective approach to avoiding continuous com-
munication is to use a state-independent threshold for the
relative error ei(t). In contrast to the state-dependent thresh-
olds in (3)–(6), a state-independent threshold has a simpler
form. Then, the distributed event-triggered scheme is given
by [55], [83]

�4 :

{
Protocol: ui(t) = −K

∑
j∈Ni

wij

(
xi

(
tik

) − xj

(
tjk′(t)

))

ETC: fi(ei(t)) ≤ �i(t) = ci
0 + ci

1e−αit
(7)

where ci
0, ci

1, and αi are constants satisfying ci
0 ≥ 0, ci

1 ≥ 0,
ci

0 + ci
1 > 0, and αi > 0. Clearly, the threshold function

�i(t) is independent of agents’ states. For MASs with single-
integrators and double-integrators, the scheme (7) is used
in [55] to achieve consensus with convergence to a neighbor
ball of equilibrium if ci

0 �= 0. For linear MASs, unbounded
consensus is considered in [83] by using the scheme (7). The
merits of such a state-independent threshold include: 1) when
each agent broadcasts its state to neighbors depends only on
the change of its own state, but not on that of its neighbors.
As a result, continuous communication among neighbors is no
longer required; 2) the lower bound of the interevent time can
be easily computed so that Zeno behavior can be excluded,

Fig. 2. Model-based event-triggered scheme for agent i with di+1 estimators.

especially for ci
0 �= 0; and 3) there is no need to consider the

limitation of system dynamics aforementioned. Nevertheless,
compared with the state dependent thresholds in (3)–(6), state-
independent thresholds also have some disadvantages. On the
one hand, the sampling action cannot reflect the nature of
system dynamics explicitly due to the fact that the thresholds
are totally independent of system states. On the other hand,
when ci

0 �= 0, the distributed event-triggered scheme (7) can
only guarantee bounded consensus.

B. Model-Based Event-Triggered Schemes

Apart from event-based sampling schemes, a model-based
event-triggered control strategy is proposed [84]. Based on the
periodic event-trigger scheme, a model-based event-triggered
predictive control is constructed first in [85] for the net-
worked control systems considering the effect of data dropout.
With the model-based event-triggered scheme, an estimate
of system states on update intervals is made. Based on the
estimate errors, an ETC is defined to determine when the
actual system states should be transmitted. Such a model-based
event-triggered control scheme tailored for an MAS is shown
in Fig. 2, see detail in [59]. Recalling existing results, there are
two approaches to dealing with model-based event-triggered
consensus control problems: an open-loop estimation approach
and a closed-loop estimation approach.

1) Open-Loop Estimation Approach: In this fashion, each
agent needs to equip di + 1 estimators for agent i to complete
the estimates of its own and neighbors’ states based on their
state information at the latest triggered times, where di is the
number of agent i’ neighbors. Denote by x̂j(t) the estimates of
the agent j’s states. Then the dynamics of estimators in agent
i can be described by

{ ˙̂xj(t) = Ax̂j(t), t ∈ [
tjk, tjk+1

)

x̂j

(
tjk

)
= xj

(
tjk

)
, j ∈ Ni.

(8)

Since all the agents have an identical system matrix A, the
estimates of agent i’s states made by agent i and its neighbor
agents j ∈ Ni are identical. Let x̃i(t) = x̂i(t) − xi(t) denote the
error between the actual state of agent i and its estimate. Then
a distributed model-based event-triggered consensus scheme is
presented by

�5 :

{
Protocol: ui(t) = −K

∑
j∈Ni

wij
(
x̂i(t) − x̂j(t)

)

ETC: fi(x̃i(t)) ≤ �i
(
ẑi(t), t

) + δi
(9)
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where ẑi(t) = ∑
j∈Ni

wij(x̂i(t) − x̂j(t)). From (9), the control
input of agent i is updated continuously by using all the esti-
mates available from (8). Note that the ETC of agent i only
uses local information from its di + 1 estimators. Thus, the
event-triggered consensus scheme (9) is decentralized [59].
Since agent i can predict its neighbors’ states based on (8),
it is reasonable to use the estimate x̂j(t) in the combinational
states ẑ(t) even though there is no continuous communication.
When the triggering condition of agent i in (9) is violated at
times tik, its state xi(tik) will be transmitted to its out-neighbors.
Once its neighbors j receive the new state information from
agent i, they will update the corresponding estimate of agent
i in terms of (8).

There are lots of results on the event-triggered consen-
sus scheme (9) reported in [59], [67], and [86]–[93]. For
MASs with an undirected and connected topology graph, sev-
eral sufficient conditions on achieving consensus are presented
in [59], [89], and [91], where the ETCs are state-dependent.
It is shown in [59] that, if δi = 0, accurate consensus
can be completed while Zeno behavior may happen; other-
wise, only bounded consensus can be achieved with Zeno
behavior excluded. The scheme is then extended to a leader-
following framework with fixed and switching network topolo-
gies [91]. Considering a directed graph with a spanning tree,
some conditions on event-triggered consensus are obtained
in [67] and [90], where a state-independent ETC is introduced.
From (8), one has

x̂i(t) = eA
(
t−tik

)
xi

(
tik

)
, t ∈ [

tik, tik+1

)
. (10)

The estimate error is rewritten as

x̃i(t) = eA
(
t−tik

)
xi

(
tik

) − xi(t). (11)

Based on the event-triggered scheme (9) with (10) and (11),
the consensus problem for MAS with general linear dynam-
ics under a general directed graph is investigated in [67],
where the threshold function of ECT is time-dependent.
Different from [67], event-triggered consensus of linear
MASs with undirected topology is completed in [86] by an
observer-based output feedback control protocol. By using the
event-triggered (9) with (10) and (11), the leader-following
consensus problems of MASs under fixed and switching
directed topology are dealt with in [92]. Then, the event-
triggered control scheme is extended in [93] to accommodate
the case of quantization communication for leader-following
consensus of MASs.

Following the line of (8), some edge state estimators are
introduced in [94] to estimate the relative state errors between
neighbors. For a connected edge (i, j), the point-to-point com-
munication link between agents i and j is available only when
an edge event is triggered. Let tijk be the event times when the
edge triggering condition of (i, j) is not satisfied. If the graph
of network topology is undirected, one has tijk = tjik . Define a
connected edge (i, j) as zij(t) = xi(t) − xj(t). Similar to (8),
the estimate ẑij(t) of the edge zij(t) satisfies

{ ˙̂zij(t) = Aẑij(t), t ∈ [
tijk , tijk+1

)

ẑij

(
tijk

)
= zij

(
tijk

)
, j ∈ Ni.

(12)

Then, based on the edge estimate (12), the following event-
triggered consensus scheme is proposed [94]:

�6 :

⎧
⎨

⎩

Protocol: ui(t) = −K
∑

j∈Ni
wijẑij(t)

ETC:

(
fij(hij(t),�i(t, δi)) ≤ 0
fji(hji(t),�i(t, δi)) ≤ 0

)
(13)

where hij(t) = ‖ ∫ t
tijk

eA(t−τ)Bui(τ )dτ‖. Due to the fact that

hij(t) is a function of control input ui(t), the ETC in (13) is
called an input-based triggering condition [94]. Note that the
scheme (9) has similar properties to (13). Both of them have
common advantages and disadvantages.

1) Advantages: a) Communication among agents only
occurs at event times, which implies that continuous
communication is no longer necessary and b) the system
matrix A is allowed to be unstable due to the use of
model-based estimates.

2) Disadvantages: a) The control updates are continuously
performed. Thus, agents’ on-board energy for computa-
tion cannot be saved, which is unfavorable for MASs
with battery-powered nodes; b) to implement the event-
triggered scheme (9) and (13), it is required to deploy
extra di + 1 estimators for agent i. The number of such
estimators will become large as agent i’s neighbors grow,
thus leading to much cost and high complexity of imple-
mentation; and c) the necessary assumption that the
system matrix A should be identical and known a prior
is required in (9), which limits the application scope of
the event-triggered scheme.

2) Closed-Loop Estimation Approach: In [95] and [96], a
closed-loop estimate approach is developed. It is assumed that
each agent can access to the control update values of its neigh-
bors. Then, agent i can take state estimate for its neighbor
agent j by

˙̂xj(t) = Ax̂j(t) + Buj

(
tijk

)
, j ∈ Ni. (14)

Define the auxiliary state of edge (i, j) by ẑij(t) = x̂i(t) −
x̂j(t) and the estimate mismatch between its current and last
triggered states by z̃ij(t) = ẑij(t

ij
k ) − ẑij(t), t ∈ [tijk , tijk+1). Then,

the following event-triggered consensus scheme is given as:

�7 :

{
Protocol: ui(t) = −K

∑
j∈Ni

wij

(
x̂i

(
tijk

)
− x̂j

(
tijk

))

ETC: fi
(
z̃ij(t)

) ≤ �i
(
ẑij(t), t

) + δi.
(15)

When the ETC in (15) is violated at times tijk , agent i will
compute its control input ui(t

ij
k ) and then send it to its respec-

tive neighbors for estimating according to (14). Based on
this scheme, both complete and bounded synchronization for
MASs under an undirected and fixed network topology are
investigated in [96] by setting the state-independent threshold
functions with δi = 0 or δi �= 0, respectively. For switch-
ing networks, an event-triggered pinning control problem
under (15) is studied in [95].

Analogous to (9) and (13), the implementation of (15)
can ensure that information between neighbors is only
exchanged at each event time, which is beneficial to com-
munication resources saving. In addition, different from (9)
with continuous control signals, the scheme (15) only uses
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Fig. 3. Sampled-data-based event-triggered mechanism for agent i [60].

piecewise-constant signals for control updates, further reduc-
ing consumption of computation resources. From (14), one
can see clearly that each agent requires its neighbors’ control
input values at event times to predict the states of its neigh-
bors. In general, information of controller updates for each
agent is regarded as being private and may be inaccessible
to other agents. This will make it impossible to carry out the
event-triggered scheme (15) in some practical applications.

C. Sampled-Data-Based Event-Triggered Schemes

Note that the event-triggered schemes mentioned in
Sections III-A and III-B have one common feature that the
triggering conditions are needed to be constantly checked and
computed. On the one hand, it is because of such real-time
detection and computation that these event-triggered schemes
in essence cannot accomplish the purpose of reducing the
computational resources in entire systems, even though the
control updates are only triggered at event times. On the other
hand, undertaking the continuous event detection requires sup-
port from extra hardwares, which definitely increases costs of
system design, operation, and maintenance. In order to over-
come this drawback, motivated by [45], a distributed sampled-
data-based event-triggered consensus protocol is proposed
in [60], whose framework is shown in Fig. 3. The core idea
of the sampled-data-based event-triggered strategy is that the
event detection is only carried out at sampling times rather
than at continuous times. Besides, the minimum of interevent
times is inherently lower bounded by one sampling period,
implying that Zeno behavior is absolutely excluded [97].

To be more specific, it is assumed that the state of each agent
i is sampled by a sampler at a constant sampling period h > 0.
The measurement error of sampled-data at the kth sampling
time is defined as ei(kh) � xi(kh) − xi(timh), tim ≤ k < tim+1.
Then, a sampled-data-based event-triggered consensus scheme
is given by [60]

�8 :

⎧
⎪⎪⎨

⎪⎪⎩

Protocol:

ui(t) = −K
∑

j∈Ni
wij

(
xi

(
timh

) − xj

(
tjm′

j(t)
h

))

ETC: fi(ei(kh)) ≤ �i
(
ẑi(kh)

)
(16)

where ẑi(kh) = ∑N
j=1 wij[xi(timh) − xj(t

j
m′

j
h)] with m′

j �
arg minp{tim + li − tjp|tim + li ≥ tjp, p ∈ N}. Whether or not

sampled-data of agent i should be broadcast or used at the sam-
pling instant kh (k ∈ N) depends on when its ETC is violated.
It is clear to know from (16) that, at the kth sampling instant,
the event-triggered condition for agent i is closely related to the
sampled-data error ei(kh) and the sampled-data ẑi(kh) includ-
ing the latest transmitted sampled-data xi(timh) of agent i and
the latest transmitted sampled-data xj(t

j
m′

j
h) of its neighbors. If

the ETC in (16) is satisfied, the sampled-data of agent i is not
needed to be transmitted to its neighbor agents. It is worth
mentioning that, when the ETC in (16) is always violated at
each sampling time, it means that the sampled-data of agent
i at each sampling time is required to be broadcasted. In this
case, the event-triggered control scheme (16) is reduced to the
standard periodic sampled-data one. In this sense, it is clear
that the sampled-date-based event-triggered scheme (16) has
remarkable advantages in reducing frequency of both sample-
data transmission and control input updates compared with a
traditional periodic sampling scheme.

Under the event-triggered scheme (16), sufficient conditions
guaranteeing average consensus of multiple single integrators
over fixed or switching undirected and connected communi-
cation topology [58], [98] are derived by using the Lyapunov
theory. For linear MASs with a directed graph containing a
spanning tree, the sampled-data-based event-triggered consen-
sus problem is dealt with in [60], where the ETC is set as
eT

i (kh)�ei(kh) ≤ σiẑT
i (kh)�ẑi(kh) with σi > 0 being a thresh-

old parameter and � > 0 being a weighting matrix. By divid-
ing the event intervals, a closed-loop error system with time
delays is obtained. Then, by using a Lyapunov–Krasoviskii
method, the MAS (1) achieves asymptotic consensus. Along
the method used in [60], an adaptive event-triggered scheme
is proposed in [99], where the threshold parameters σi are
no longer static but dynamically varying with the relative
sampled-data errors.

Since there is a tradeoff between control performance and
resource utilization, how to design the suitable controller
gain and the threshold parameters in event-triggered control
scheme (16) becomes one important issue. Another contribu-
tion of [60] is to address this issue by introducing an average
transmission rate J on a finite interval [0, Th) as

J � 1

T
∑N

i=1 Ni

T−1∑

k=0

N∑

i=1

Niρ
i
k (17)

where T is the sampling number, Ni is the total sampled-data
number of the agent i broadcasted to other agents and

ρi
k =

{
1, if xi(kh) is transmitted
0, otherwise

(18)

stands for the sampled-data transmission signal of agent i
at each sampling time kh. Consequently, the co-design issue
comes to simultaneously designing the parameters σi and �

and the controller gain K by minimizing � = |J − J∗|, where
J∗ is the expected average transmission rate. It should be
emphasized that there are few related results considering the
co-design of consensus controller and the threshold parameters
of ETCs except [60].

Recently, sampled-data-based event detections are
also introduced to edge-event triggered control of
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TABLE I
ADVANTAGES AND DISADVANTAGES OF EVENT-TRIGGERED CONTROL SCHEMES

MASs [100]–[106]. Under such a periodic edge-event
triggered scheme, average consensus of single-integrator
networks is investigated in [100], which is extended to some
more complicated cases with measurement errors, quantized
data, and time delays in [102]. For double-integrator networks,
edge event hybrid-driven rules to ensure state consensus are,
respectively, proposed in a leader-following framework [103]
and in a leaderless framework [109]. Furthermore, consensus
of double-integrator networks with communication delays is
achieved in [104] and [105] by using periodic edge-event
triggered schemes. It should be pointed out, the existing
results on edge-event triggered control schemes are mainly
concerned with undirected single/double-integrator networks
and it remains an open issue to develop a suitable periodic
edge-event triggered scheme for general linear or nonlinear
MASs with directed network topologies.

While the sampled-data-based event-triggered scheme
shows its appealing advantages in preventing continuous event
monitoring and precluding Zeno behavior, its implementation
may suffer from some restrictions listed below.

1) In some existing results [60], [98], [100]–[106], all the
agents are assumed to be synchronously sampled at a
constant sampling period. In practice, such sampling
clock synchronization is very difficult to implement for
large-scale networks. Thus, it is more practical to use
sampled-data-based event-triggered schemes in which
each agent has its own sampling period.

2) Since events are only detected at sampling times,
the sampled-data-based event-triggered schemes will
inherit the properties of sampled-data systems, espe-
cially including their shortcomings. For instance, some
useful states may be ignored in the process of sampling
when they are fluctuating between a large range.

D. Self-Triggered Sampling Schemes

Besides sampled-date-based event-triggered schemes,
another effective policy avoiding continuous event monitoring
is self-triggered sampling, where the next sampling time is
predicted at control update instants based on the last triggered
data and knowledge of plant dynamics [39], [110]–[114].
Following this idea, a distributed self-triggered control

scheme is presented in [54] to achieve asymptotic consen-
sus of single-integrator MASs and the next time tik+1 is
computed by

tik+1 = tik + hi(xi
(
tik

)
, xj

(
tjkj(t)

)
(19)

where h(·) is the function depending on agent’s and its neigh-
bors’ states at their last event times. In [54], it is demonstrated
that the self-triggered sampling scheme results in more con-
troller updates than the event-triggered scheme, but it seems
more robust. This is mainly because the self-triggered sam-
pling scheme includes the over-approximation by individual
agent on the state of environment and the network [108].
It is also pointed out in [54] that zero interexecution times,
i.e., hi = 0, are allowed when the local average value of an
agent approach to zero in finite time. In order to solve this
problem, a self-triggered algorithm with Zeno free triggers is
given in [68]. Moreover, compared with [54], the self-triggered
scheme in [68] can provide a simpler and more efficient way
to compute and determine the events. Self-triggered practical
consensus with ternary controllers is achieved in [107] and it is
verified that such a self-triggered scheme has high robustness
against various uncertainties and disturbances, such as inac-
curacy of clock, delays, and restrictions in data rates. Taking
advantage of both the strengths of event- and self-triggered
control, a so-called team-triggered coordination scheme is
presented in [108] for networked cyber-physical systems.

E. Summary

In this section, we mainly review four types of the
event-triggered schemes proposed in the literature, namely,
event-based sampling schemes, model-based event-triggered
schemes, sampled-date-based event-triggered schemes, and
self-triggered sampling schemes. Based on the review above,
the key characteristics of these schemes are listed in Table I,
which can explicitly shows the advantages and disadvantages
of the event-triggered schemes. From Table I it is easy to
know that, although various event-triggered schemes for MASs
have been presented in the literature to reduce consumption
of resources, there are still many critical issues to be further
addressed in the future work.
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IV. PRACTICAL EXAMPLES OF EVENT-TRIGGERED

CONSENSUS STRATEGIES

In this section, we provide a brief discussion on how an
event-triggered consensus algorithm is applied to deal with
some seemingly different problems but closely to consensus
in various areas which have gained increasing interest from
researchers in recent years.

A. Distributed Event-Triggered Power Sharing in Microgrids

A microgrid, as a new-style power grid with integra-
tion of distributed generation (DG), smart infrastructure,
advanced communication, and management technology, has
gained much attention due to its advantages of high reliability,
efficiency sustainability. Since a microgrid usually includes
a large number of DGs, achieving power control and man-
agement of microgrids in a centralized way is usually costly
in communication and computation. To reduce the cost and to
enhance expandability, distributed control strategies have been
introduced into microgrids. For example, in [115] an MAS-
based hierarchical hybrid control is initially proposed to solve
optimal control of smart microgrids, which is more flexible
and more effective than most existing methods. Moreover, the
above method is further extended in [116] and [117] to solve
security control of hybrid energy generation systems by using
a security-evaluation-based event-triggered scheme, which is
verified to have remarkable efficiency in controlling complex
power systems, especially with a wider access of new energy,
such as PV and wind power. In a microgrid, a fundamental
concern is how to efficiently dispatch power supply of DGs to
distributed loads, which refers to power sharing issues includ-
ing economic dispatch [118]–[120] and proportional power
sharing [12], [13]. Considering limited bandwidth of commu-
nication network, distributed event-triggered communication
schemes are introduced in [14], [121], and [122] to achieve
power sharing in microgrids. In what follows, we briefly
present a recent case study on distributed event-triggered
reactive power sharing in microgrids.

Consider a Kron-reduced microgrid consisting of N DGs
interfaced via an ac inverter, where each DG can be viewed as
a node of undirected and connected graph G. Nodes i and m are
connected by a physical power line with a complex admittance
Yim. It is assumed that all the power lines are lossless, i.e.,
admittances of all lines are purely inductive. Then, we denote
the admittance between node i and m by Yim = jBim, where
Bim < 0 is the inductive susceptance. If there is no connection
between i and m, then Yim = 0. At node i, the apparent power
flow is represented by Si = Pi + jQi, where Pi and Qi are
the active and reactive power, respectively. It is well known
that the reactive power distribution can be achieved by voltage
control. By means of model simplification, the Q−V dynamics
for node i are given by

V̇i = ui (20)

Qi = |Bii|V2
i −

∑

m∈Ni

|Bim|ViVk (21)

where Vi is the voltage amplitude of node i; ui is the volt-
age control input; Bii is the shunt susceptance at node i and

Ni is the neighbor set of node i in the electrical network
G. The simplified form (21) of reactive power flow Qi is
obtained by using a standard decoupling assumption [13]. The
microgrid is said to achieve proportional reactive power shar-
ing if (Qs

i /χi) = (Qs
m/χm), where Qs

i and Qs
m are the reactive

power flows at the steady states for node i and m, respectively,
as well as χi and χm are the proportional coefficients.

Let the graph G be a communication topology. The com-
munication network topology G can be identical but not
necessarily to the electrical counterpart G. For (20) and (21), a
distributed event-triggered voltage control law for proportional
reactive power sharing is given in [14] by

ui(t) = − κ

χi
Vi(t)

∑

m∈Ni

wij

⎛

⎝
Qi

(
tiki(t)

)

χi
−

Qm

(
tikm(t)

)

χm

⎞

⎠ (22)

where ki(t) � arg maxk{tik|tik ≤ t} and Ni is the neighbor set of
node i in the communication network G. The ETC determining
the event times tik of node i, is designed as [14]

|ei(t)r| ≤ ηχi

∣∣∣∣∣∣

∑

m∈Ni

wij

⎛

⎝
Qi

(
tiki(t)

)

χi
−

Qm

(
tikm(t)

)

χm

⎞

⎠

∣∣∣∣∣∣
(23)

where ei(t) = Qi(tik)−Qi(t) and 0 < η < λN with λN being the
maximum eigenvalues of Laplacian matrix of the communica-
tion topology G. Clearly, the voltage controller updates (22)
and the ETC (23) are formally similar to (6). By the simula-
tion of [14], it is verified that the event-triggered scheme (22)
and (23) is able to efficiently decrease the total number of
communication in microgrids while maintaining the nearly
identical precision for reactive power sharing as that in a
periodic sampling scheme. However, it is noteworthy that the
voltage controller input (22) of node i is continuously updated
since it needs the real-time voltage measurement Vi(t), which
shows the limitation of the event-triggered scheme in [14].

B. Distributed Event-Triggered Formation Control of
Multirobot Systems

Recently, formation control of multirobot systems, aiming
at driving a group of robots to realize and preserve a desired
geometric structure, has been well explored in both robotics
and control communities [4]. Up till now, several approaches
have been developed to tackle the problem of multiagent for-
mation control in the literature, such as the behavior-based
approach [123], the virtual structure approach [124], [125],
the leader-following approach [126], [127], and the con-
sensus approach [4]–[6]. One of the major challenges for
multirobot formation lies in how inter-robot communication
should be performed such that information among the robots
can be shared and exchanged efficiently in terms of time and
energy. In order to overcome this challenge, event-triggered
control scheme is employed to regulate the frequency of
inter-robot information exchange. In what follows, from a
control perspective, we briefly describe an application of
event-triggered consensus strategies to deal with the formation
control problem of a multirobot system.
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Consider a team of nonholonomic mobile robots of uni-
cycle type. The ith robot’s kinematic model is represented
by [6], [126], [128]

˙̄xi(t) = νi(t) cos(φi(t)), ˙̄yi(t) = νi(t) sin(φi(t)), φ̇i(t) = υi(t)

for any i ∈ V = {1, 2, . . . , N}, where [x̄i(t), ȳi(t)]T ∈ R
2 is

the Cartesian coordinates of the center of mass; νi(t) ∈ R

is the linear velocity; φi(t) ∈ R is the heading angle in the
inertial frame; and υi(t) ∈ R is the angular velocity. Denote
xi(t) = [x̄i(t), ν̄x

i (t), ȳi(t), ν̄
y
i (t)]

T and ui(t) = [ūx
i (t), ūy

i (t)]
T

along the x and y axes. The above multirobot model can
be represented by (1) using a dynamic feedback linearization
method [126], where the system parameter matrices in (1) are

given by A = I2 ⊗
[

0 1
0 0

]
and B = I2 ⊗ [0, 1]T . Denote an

augmented column vector by F = [f T
1 , f T

2 , . . . , f T
N ]T ∈ R

4N ,
where fi ∈ R

4, i ∈ V , is a formation vector of robot i. The
multirobot system is said to be formable specified by F if
limt→∞{(xi(t)−xj(t))} = (fi−fj), i ∈ V , for any given bounded
initial condition [4]. Define zi(t) = xi(t)−fi. It follows that the
multirobot system is formable if limt→∞{zi(t)−zj(t)} = 0, i ∈
V , for any given bounded initial. Thus, the distributed forma-
tion control problem for the above multirobot system reduces
to a consensus problem with regard to zi(t) for all i ∈ V .

In [4], the following formation control protocol is studied:

ui(t) = K
∑

j∈Ni

wij

(
zi
(
tikh

) − zj

(
tj
k̃j

h

))
+ Hfi

for any i ∈ V and t ∈ [tikh, tik+1h), where xj(t
j

k̃j
h) denotes the

recently transmitted local measurement received from robot
i’s neighbor j with k̃j � arg mink̃{ϑ − tj

k̃
| ϑ > tj

k̃
, k̃ ∈ N}

and h > 0 representing the sampling period. The consensus
term zi − zj stands for the desired offset committed by robot
i and its neighbors, enabling one to adopt the desired forma-
tion information (e.g., relative position) between robots. To
schedule inter-robot communication, the following dynamic
event-triggered communication mechanism is proposed for
robot i in [4] so as to determine whether robot i’s current
measurement xi(ϑh) should be transmitted to its neighboring
robots

tik+1h = inf
{
ϑh > tikh | fi(ϑh) > 0, ϑ = tik, . . . , tik+1 − 1

}

where fi(ϑh) = eT
i (ϑh)�ei(ϑh) − ξ(ϑh)xT

i (tikh)�xi(tikh) with
ei(ϑh) = xi(tikh) − xi(ϑh); � and � are positive symmetric
weighting matrices to be designed; and ξ(ϑh) is a dynamic
threshold parameter whose value is computed according to the
following dynamic rule:

ξ(kh) = ξ(kh − h) − θξ(kh)ξ(kh − h)es(kh − h)

with es(kh − h) = ∑N
i=1 eT

i (kh − h)�ei(kh − h); θ denoting a
given positive scalar; and σ(0) ∈ [0, 1) representing the initial
condition. In [4], it is proved that the above dynamic thresh-
old parameter is monotonically nonincreasing and satisfies
0 ≤ ξ(kh) ≤ ξ(0) < 1. Then, applying a model transformation,
the event-triggered formation control problem is converted into
an asymptotic stability problem of a reduced-order system. It
is also shown in [4] that, by using the dynamic event-triggered

communication mechanism, one may find a better tradeoff
between preserving formation and/or consensus performance
and reducing inter-robot communication frequency than using
some existing static counterparts.

V. FUTURE RESEARCH PROSPECT

An overview of multiagent event-triggered consensus con-
trol has been provided. Although some event-triggered control
issues of MASs have been well addressed in the literature,
there are still limitations from strict assumptions and special
requirements, which potentially bring some space for improve-
ment over the existing results and methodologies. In what
follows, some important and yet challenging research topics
worthy of further investigations are suggested.

1) Dynamic Event Triggering Mechanism: It has been
shown in [129]–[131] that the proposed dynamic trig-
gering mechanism, wherein the threshold involves an
internal dynamic variable, can allow for the larger mini-
mum interevent times than a static counterpart. However,
it becomes much more difficult when dynamical event
triggering mechanisms are applied to deal with consen-
sus control for MASs due to the fact that ETCs generally
involve coupled information among the agents while
requiring to be implemented in a fully distributed fash-
ion. Up to date, it remains an open issue on distributed
dynamic event-triggered schemes for MASs.

2) Finite-Time Event-Triggered Consensus: It is notewor-
thy that most existing event-triggered schemes guarantee
asymptotic consensus of MASs. In practice, as conver-
gence rate is a significant performance metric of the
proposed consensus protocols, it is much expected that
practical MASs can achieve event-triggered consensus
in a finite time, referred to as finite-time event-triggered
consensus [132]. Nevertheless, an event-triggered con-
sensus scheme aims to reduce the sampling actions
and/or control updates, which in turn may decrease the
convergence rate. Hence, it would be a promising topic
to design a suitable finite-time event-triggered consensus
protocol for MASs, which ensures a fast convergence
rate while decreasing utilization of computation and
communication resources. Furthermore, the settling time
of the finite-time consensus cannot be preset since it
closely depends on both the initial conditions and some
design parameters. Therefore, it is more desirable to
develop a fixed-time event-triggered consensus protocol
such that MASs can reach consensus within a preset
settling time while reducing resource usage.

3) Event-Triggered Consensus in the Presence of
Stochasticity: In practical MASs, the stochasticity
may exist in many different forms, such as stochastic
process noise, stochastic measurement noise, stochas-
tic communication noise, stochastic communication
topologies, and so forth. These stochastic phenomena
pose significant challenges for the event-triggered
consensus control of MASs. This is because that most
studies of event-triggered consensus are concerned
with deterministic agent dynamics and/or deterministic
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communication channels, thus the consensus protocols
therein are no longer applicable due to the existence
of stochasticity. To the best of our knowledge, the
problem of event-triggered consensus under stochastic
phenomena has been not been adequately investigated.

4) Event-Triggered Consensus and Distributed
Optimization of Constrained MASs: Recently, dis-
tributed optimization in MASs, which aims at finding
an optimal control strategy subject to some given
constraints concerning consensus convergence speed or
some specific cost functions, has sparked considerable
interest due to its wide applications in areas, such as
power control, sensor networks, and source localiza-
tion [133]–[135]. However, most of the existing results
along this line of research have not considered issues on
resource utilization of communication and computation.
Essentially, it would be challenging to explicitly reveal
the relationship between constrained objective functions
and utilization of resources in multiagent optimization
problems, which deserves deep investigation.
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