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Abstract 

Autonomous Mobility-on-Demand (AMoD) systems hold great promise for addressing urban 

mobility challenges and realizing sustainable transport solutions in the world’s large and rapidly 

growing cities. The key concept behind these systems is that they utilise fleets of shared self-driving 

vehicles to respond to customer demands in real-time, making them a more cost-effective 

alternative to privately-owned vehicles. Furthermore, and due to the reduced cost of operating 

these fleets, which do not need a human driver, they are increasingly being promoted as an 

alternative mode of public transport with the potential to reduce the number of vehicles on the 

road through car- and ride-sharing. 

This PhD dissertation presents the development of a microscopic agent-based simulation 

approach to investigate the performance of AMoD systems in the context of a case study in 

Melbourne, Australia. The model developed in this research is the first agent-based AMoD model 

in the literature that simulates traffic flows using complex lane changing, car following, and gap-

acceptance algorithms, while also implementing a real-time optimum rebalancing algorithm to 

redistribute the idle autonomous vehicles within the network.  

Unlike currently available agent-based traffic simulation platforms, this model is capable of 

simulating the empty-vehicle-running of self-driving vehicles. This feature of the model is 

particularly important because the success of these shared fleets will rely largely on optimising the 

fleet size and minimising the number of empty runs to manage costs. 

This research also explores the relationship between fleet size and induced Vehicle-Kilometres 

Travelled (VKT) in AMoD systems, finding a strong quadratic relationship between these two 

characteristics. This relationship always holds irrespective of the amount of travel demand. 

Further, the results obtained and presented in this thesis provide an insight into a set of trade-offs 

between different fleet sizes and rebalancing time-steps. The simulation runs show that an AMoD 

system can reduce the current fleet size by 84%, while still meeting the same demand. It, however, 

comes at a cost of more VKT. This increase in VKT is 77% and 29% for the scenarios in which 

vehicles are used as car-sharing and ride-sharing systems respectively. These results suggest that 

the scale of potential benefits of AMoD systems, as reported in the current literature, has generally 

been overstated. The main reasons for this over optimism has also been identified and explored 

in detail. 
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The thesis also proposes a new method to take into account the effects of travel demand patterns 

on the performance of AMoD systems, concluding that the impact of this phenomenon on their 

efficiency is not trivial. Variation in travel demand patterns, however, does not affect the general 

quadratic relationship found in this study.  

The model suggests that deploying an AMoD system during peak hours between suburbs and city 

centres would not be successful in meeting travel demands in a timely manner and would likely 

lead to more congestion on the roads. The discussions and findings of this dissertation could also 

be used by governments in preparing their future transport agendas.  
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Chapter 1 : Introduction 

This chapter provides an overview of the concept of Autonomous Mobility-on-Demand (AMoD) 

systems, which rely on disruptive technologies. Further, the challenges facing governments to 

create sustainable communities are outlined, followed by a discussion of the potential 

opportunities, which can be used to tackle the challenges in a timely fashion. The last two sections 

of the chapter detail the research aims, questions, and present the contributions of the present 

research.   

1.1. Background 

Disruptive transport technologies are introducing new opportunities for providing travellers and 

consumers with more options to meet their travel needs. These prospects are being facilitated by 

the convergence of a number of disruptive technologies, including autonomous driving and mobile 

computing, and the shared (collaborative) economy. Although some of these disruptions are still 

a few years away (e.g. autonomous vehicles), they have already started to shape a vision for a very 

different future. Autonomous vehicles (AVs) are expected to be introduced to urban roads within 

the next 5-10 years. Vehicles with varying levels of self-driving capability are already available to 

consumers today, and transition to full autonomous operation is expected to be gradual taking up 

to 20-30 years. The pace of change will depend in part on acceptance by consumers, regulators 

and the wider industries, which may be disrupted by the changes. 

Shared AMoD systems, in particular, are a novel and transformative mode of transportation 

promoted as an alternative to privately-owned vehicles and aim at reducing carbon emissions as 

well as vehicle accidents. The principal challenge for researchers and practitioners, however, is to 

ensure they produce the same benefits as privately-owned vehicles while also reducing reliance on 

non-renewable resources, minimizing pollution, decreasing the need to construct new roads and 

parking spaces. 

This research is fundamentally an investigation into the potential network impacts of deploying 

AMoD systems in an urban context. The insights obtained through these investigations will 

provide  better guidance for AMoD fleet operators and policy makers, and will result in timely 

actions, a key element in providing an efficient transport system.  
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1.2. Urban mobility challenges 

The reform of urban mobility remains one of the biggest challenges facing policy makers around 

the world. Today, more than half the world’s population lives in towns and cities and the 

percentage is growing. By 2050, 70 percent of the world is expected to live in cities and urban 

areas. According to the McKinsey Global Institute (Dobbs et al., 2011), only 100 cities currently 

account for 30 percent of the world's economy. New York City and London, together, represent 

40 percent of the global market capitalization. In 2025, 600 cities are projected to generate 58 

percent of the global Gross Domestic Product (GDP) and accommodate 25 percent of the world’s 

population (Dia, 2017).  

The MGI also expects that 136 new cities, driven by faster growth in GDP per capita, will make it 

into the top 600 by 2025, all from the developing world, 100 of them from China alone. The 21st 

century appears more likely to be dominated by these global cities, which will become the magnets 

of economy and engines of globalization. The problem is further compounded by ageing 

infrastructures, which in many cities are at a breaking point with governments’ budgets for major 

infrastructure projects under increasing pressure.  

Furthermore, according to the United Nations Road Safety Collaboration (UNRSC, 2016), it is 

estimated that 1.3 million people are killed on the world’s roads each year. If left unchecked, this 

number could reach 1.9 million fatalities worldwide by 2020.  The World Health Organization 

(WHO, 2015) has described road casualty figures as being of ‘epidemic’ proportions, with road-

related trauma being the biggest single killer of those aged between 15 and 29. Over 90% of road 

crashes are associated with human error which imposes a hefty cost in relation to economic burden 

and human suffering  (ITF, 2015b). 

 A number of studies reported in the literature also document evidence showing that the 

environmental footprint of traditional transport systems, and in particular private vehicles with 

combustion engines, is not sustainable (ITFd, 2010). Globally, the transport sector accounts for 

27 percent of the world’s total energy consumption, 75 percent of which is sourced from non-

renewable fossil fuels. Australia’s per capita CO2 emissions are almost twice the Organization for 

Economic Co-operation and Development (OECD) average while transport contributes 14 

percent of greenhouse gas emissions (Godfrey et al., 2015). 
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 Moreover, road traffic continues to account for around 80 percent of transport CO2 emissions 

and is estimated to reach 9,000 megatons per year by 2030 if the current mobility trends are not 

curbed (ITFd, 2010). 

Pursuing conventional approaches and relying on building new infrastructure to respond to 

increased travel demands has so far met with limited success and has proven to be ineffective in 

meeting these challenges. New approaches are needed (Kane and Whitehead, 2018). The following 

sections deal with the challenges faced by cities in providing adequate transport to meet current 

and growing travel demands. 

1.2.1. Soaring urbanisation and its transport implications 

We live in an age where urban areas are considered popular places to live. The population of urban 

areas is on the rise (United Nations, 2014). In 2014, 54% of the world’s population lived in urban 

areas, while this figure was only 3% two centuries ago (Godfrey et al., 2015). 

As shown in Figure 1-1, in 2007, for the first time in history, the global urban population exceeded 

the global rural population. This trend has since continued and it is expected that by 2050, 66% of 

the world’s population will be residing in urban settlements.  

 

Figure 1-1: Percentage of the world population living in urban or rural areas 1950-2050 (Dia, 

2017) 
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The urbanisation pace varies across the globe. Currently, Asia and Africa are predominantly rural, 

but they are urbanising more quickly than other parts of the world. The urban population growth 

rate in Asia and Africa are 1.5% and 1.1% per annum. The UN predicts that by 2050, urban areas 

will attract 2.5 billion people, with almost 90% of the increase happening in Asia and Africa. It 

also predicts that India, China and Nigeria will account for 37% of the projected growth of the 

world’s urban population between 2014 and 2050. That is to say, by 2050, India is projected to 

add 404 million urban dwellers, China 292 million and Nigeria 212 million if the current trends 

persist (United Nations, 2014). 

Rapid urbanisation has also increased the total number of mega-cities across the world. In 1990, 

the globe featured only ten mega-cities each with 10 million inhabitants or more. At the time, these 

cities were occupied by almost 153 million people, accounting for a bit less than 7% of the global 

urban population. In 2014, the number of mega-cities increased to 28 worldwide, accommodating 

almost 453 million people or about 12% of the world’s urban population. By 2030, the number of 

mega-cities in the world is projected to rise to 41, each of which would be home to almost 10 

million people or more (United Nations, 2014). 

Until the end of the century, it is expected that the number of urban dwellers will grow by three 

billion (Seto et al., 2012). The major part of this urban growth is expected to occur in small- and 

medium-sized cities, each with a million or fewer inhabitants. Many of the fastest growing cities in 

the world are relatively small urban settlements. Further, the fastest urbanisation pace is expected 

to occur in the developing world such as India (Godfrey et al., 2015). Many villages in India have 

already transformed into urban areas in just one or two decades (Dia, 2017). 

Rapid urbanisation will also change the way in which wealth is distributed across the world. 

Currently, only 600 urban centres are the producers of around 60% of the global GDP (Dobbs et 

al., 2011). By 2025, it is estimated that 136 cities will join the top 600 wealthiest cities in the world. 

Around 100 of these cities will be within China and 13 within India. These top 600 cities are 

estimated to be producing 60% of the world’s total GDP by 2025, with the top 100 cities alone 

contributing 35% of total GDP. The increase in wealth as a result of this expansion will occur 

mainly in developing nations and will enable more than one billion people to have high enough 

incomes to become significant consumers of goods and services by 2025. These consumers are 

expected to stimulate the global economy by contributing an extra $20 trillion a year in spending 

(Dobbs et al., 2012).  
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Clearly, this rapid growth in urban population and wealth will translate into increased accessibility 

to jobs, services, and opportunities. For example, between 2000 and 2010, the world’s urban 

population increased by roughly 650 million people. The International Energy Agency (IEA) 

estimates that urban passenger travel increased by nearly 3 trillion annual passenger kilometres 

during the same period (IEA, 2013). The IEA predicts that with the current trends, global urban 

passenger mobility will double by 2050 and increase as much as 10-fold between 2010 and 2050 

in rapidly urbanising, fast-growing regions in Southeast Asia and the Middle East. This will have 

substantial implications for the global annual urban transport energy consumption, which by 2050 

will increase by more than 80% over 2010 levels, despite improved vehicle technology and fuel-

economy enhancements.  

The global car fleet is also predicted to reach around 1.7 billion vehicles by 2030 because of rapid 

growth in urban population and wealth. This car fleet expansion will predominantly materialise in 

developing countries. The literature suggests that the total VKT per capita has plateaued or even 

decreased in developed countries (Bouton et al., 2015). 

1.2.2. Road crashes and injuries 

Road traffic accidents claim nearly 1.3 million lives annually. The traffic fatalities worldwide lead 

to more than 3,000 deaths per day. This is the equivalent of 15 wide-body aircrafts, each with a 

capacity of 200 passengers, falling out of the sky every single day and killing everyone on board. 

Obviously, this wouldn’t be accepted in air travel and it is disturbing that this trend is not yet 

curbed in road travel.  

As shown in Figure 1-2, road traffic crashes remain the major cause of death among people aged 

15-29 years. Road traffic trauma is also estimated to be the ninth leading cause of death across all 

age groups globally and is predicted to become the seventh leading cause of death by 2030 if the 

current trends continue. Most road accidents occur in low- and middle-income countries where 

the road infrastructure is not designed to international safety standards, and the levels of 

enforcement have not kept pace with the increasing vehicle use. In contrast, many developed 

countries have been successful in lowering road related injuries through providing high-quality 

infrastructure, improving the safety of vehicles, and introducing other wise interventions. For 

example, Figure 1-3 shows that in Australia, the annual road crash fatalities have declined from 

2006 until 2015  at an average trend rate of 3.7% per annum (BITRE, 2016).  
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Figure 1-2: Top 10 causes of death among people aged 15-29 years (WHO, 2017) 

 

Figure 1-3: Annual road fatalities in Australia, 2006-15 (BITRE, 2016) 

Traffic congestion and rising vehicle emissions ensued from the rapid growth in vehicle ownership, 

especially in developing countries, will result in higher rates of respiratory illnesses and other health 

problems.  

In addition to the pain, suffering and unnecessary loss of life, road traffic crashes impose economic 

costs on nations. These costs are much higher in developing countries where the quality of the 

road infrastructure does not meet safety standards. Globally, it is estimated that road traffic deaths 



Chapter 1: Introduction 

7 
 

and injuries cost countries between 1% and 3% of their GDP, more than $500 billion each year 

globally (WHO, 2015).  

Human error is responsible for 70-90% of motor vehicle crashes (NHTSA, 2015). A large 

proportion of these crashes could be avoided by using semi-automated and automated vehicles 

and there are currently very rapid developments aimed at removing humans, the key source of 

distraction and collision, from the driving equation by providing increasingly sophisticated 

technologies in vehicles. 

1.2.3. Traffic congestion 

Traffic congestion imposes a considerable cost on society by contributing to travel delays and 

environmental emissions. Lost productivity and wasted time are other costs imposed on urban 

communities by congestion.  

The economic costs of congestion include the opportunity cost associated with the lost time spent 

in congestion and the financial costs associated with sitting in traffic, such as fuel consumption 

(Downs, 2005). In the United States, the cost of congestion in American cities has reportedly 

reached $160 billion in 2014 (Schrank et al., 2015). The European Union estimates that congestion 

costs the community 1% of GDP (EC, 2011), whereas in Asia, it is estimated to cost the Asian 

economies around 2-5% of GDP (ADB, 2016). Traffic congestion in some of the world’s mega-

cities like Egypt’s Cairo is also estimated to cost the country 3.6% in GDP, with the annual cost 

of congestion estimated at $7,972 million USD in 2010 (Downs, 2005). In Australia, the cost of 

congestion is estimated to have climbed from $12.8 billion in 2010 to around $16.5 billion in 2015 

(BITRE, 2016). 

It is not clear whether these costs will continue to climb in the future given the growing momentum 

on the provision of public transport and active transport, and the more recent evidence of peak-

car phenomena, which has seen the total kilometres of travel per capita decline in recent years 

(Dia, 2017).  

Congestion on a global scale has grown by 13% since 2008, with Australia being no exception to 

the trend (TomTom, 2016). Australia’s population is projected to increase by 6.4 million people 

until 2031. The four major cities Perth, Melbourne, Sydney, and Brisbane are expected to absorb 

5.9 million people from this projected population growth. This will exacerbate current congestion 
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costs which have been estimated at around $16.5 billion in 2015, having climbed from $12.8 billion 

since 2010. 

1.2.4. Emissions 

The transport sector consumes half of the world’s oil and is one of the key contributors to global 

air pollution (ICCT, 2012). As illustrated in Figure 1-4, in 2010, 25% of greenhouse gas (GHG) 

emissions were released by the energy sector, 24% from agriculture and other land use, 21% by 

industry, 14% by transport and 6.4% by the building sector (IPCC, 2014). 

 

Figure 1-4: Total global anthropogenic greenhouse gas (GHG) emissions by economic sector 

(gigantic of CO2-equivalent per year) in 2010 (IPCC, 2014) 

Emissions from transport have been shown to be growing more rapidly than those from other 

anthropogenic activities (Righi, Hendricks and Sausen, 2013). In the time period 1990-2007, the 

EU-15 CO2-equivalent emissions from land transport comprised 74% of the global CO2 emissions 

from all transport activities (Eyring et al., 2010; Uherek et al., 2010). This growth is expected to 

continue in the future, due to increasing world population, economic activities and related mobility 

(Righi, Hendricks and Sausen, 2013). In the year 2000, there were roughly 625 million passenger 

light-duty vehicles (PLDVs) around the world (IEA, 2013). By 2010, this number had reached 

nearly 850 million PLDVs. Modelling by the International Council on Clean Transportation 

(ICCT, 2012) predicts a doubling of the world’s motor vehicle population over the next 20 years. 
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Modelling by the International Transport Forum, using a carbon dioxide equivalent measure, 

projects that transport emissions will grow by 9 GtCO2eq by 2030and increase by a further 110% 

above 2010 emissions levels by the year 2050. These forecasts underscore the importance of 

current and future policies that target a reduction in oil consumption and GHG emissions from 

the transport sector.  

The effects of growing travel demand and increasing shifts to private motorisation are particularly 

evident in urban areas in developing countries. Motorised vehicle traffic has significant adverse 

effects on environmental quality and health. The IEA expects global travel (in terms of passenger 

and freight-tonne kilometre) to double by 2050 and corresponding transport energy use and 

emissions to increase 70% between 2010 and 2050, despite expected vehicle technology 

improvements. Global motorised vehicle stock is expected to double, and subsequent roadway 

occupancy levels are projected to increase as much as six fold in some countries (IEA, 2013).  

Globally, modelling forecasts a threefold increase in both fuel demand and CO2 emissions for the 

period between the years 2000 and 2030 (Uherek et al., 2010). The modelling also showed that 

emissions of CO2 from land transport and shipping accounted for 13% of the total anthropogenic 

CO2 warming (year 2005). 

In addition to long-lived greenhouse gases, ground-based vehicles also emit aerosol particles as 

well as a wide range of short-lived gases, including also aerosol precursor species (Forster et al., 

2007). Atmospheric aerosol particles have significant impacts on climate, through their interaction 

with solar radiation. In populated areas, they also effect air quality and human health (Pope and 

Dockery, 2006; Forster et al., 2007). 

Transport also accounts for half of the global oil consumption and nearly 20% of world energy 

use, of which approximately 40% is used in urban transport alone (IEA, 2013). The IEA expects 

that increased mobility will impose new challenges and anticipates urban transport energy 

consumption to double by 2050, despite ongoing vehicle technology and fuel-economy 

improvements. Attention to urgent energy-efficiency policies will be required to mitigate 

associated noise, air pollution, congestion, climate and economic impacts, all of which can cost 

countries billions of dollars per year (Dia, 2017).  
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1.2.5. Ageing assets and the infrastructure investment gap 

Inadequate or poorly performing infrastructure are other challenges facing governments around 

the world. The lack of well-maintained and resilient transport infrastructure impedes the economic 

growth of countries. The problem is even further compounded by governments’ tight budgets. 

This problem is not exclusive to developing countries. From the United States through Europe to 

the emerging world, the backlog of projects includes upgrading existing assets and proposals for 

new projects to drive economic growth. Boosting transport infrastructure, which provides 

connectivity and ease of access to jobs and opportunities, is an urgent need in both developed and 

emerging nations.  

Although governments and industry bodies agree that many cities across the globe suffer from an 

infrastructure deficit, there is no consensus on the magnitude of the global infrastructure gap. The 

World Economic Forum estimates a global need for $3.7 trillion in infrastructure investment each 

year, whereas only $2.7 trillion is annually invested, mostly by governments, around the world 

(Maier, 2015). The McKinsey Global Institute (Dobbs et al., 2013) estimates the infrastructure gap 

at around $57 trillion over the next 14 years (up to 2030). This includes transport (roads, rail, ports 

and airports), power, water and telecommunications with transport collectively accounting for 

around 23.8 trillion (Figure 1-5).  

 

Figure 1-5: Demand for global infrastructure (2013-30) (Dobbs et al., 2013) 
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This comes at a time when governments have only planned to invest around $37 trillion in all 

infrastructure assets over the same time period (Dobbs et al., 2013). PwC estimates the gap at 

around $78 trillion in infrastructure needs and forecasts a need for capital project and infrastructure 

spending at more than $9 trillion per year by 2025, up from $4 trillion per year in 2012 (PwC, 2014) 

Investment in infrastructure is hindered by various issues. In developed countries, obstacles are 

mainly public discomfort with privatised or partly privatised models, and governments taking 

measures to reduce debt amid fiscal constraints. In developing nations, the barriers are more about 

skills and economic capability. Countries that lack developed capital markets find it challenging to 

provide long-term finance and currency-exchange protections that investors require. 

The global need for infrastructure is significant, particularly in emerging markets where the levels 

of service are not adequate, and connectivity is largely missing. Going forward, more emphasis 

needs to be given to the maintenance of existing assets and also to more deployment of 

technological solutions to enhance the performance of existing infrastructure while reducing 

reliance on building new assets. Future investments should also prioritise projects, which promote 

low carbon mobility including walking, cycling and public transport. 

1.3. Opportunities 

There is increasing recognition and acceptance that addressing transport issues through building 

additional road capacity is not sustainable and that it fails to fix traffic congestion or enhance 

mobility in cities.  

Sustainable transport policies and intervention measures provide opportunities to meet the needs 

and demands of citizens and businesses in urban environments. Setting a city on a course towards 

sustainable transport requires a roadmap and a holistic vision, which incorporates different 

strategies to meet the demand for travel, including public transport and active policies. In recent 

years, technology has also played a big part in improving the performance of existing assets, 

thereby reducing the need for building additional infrastructure.   

A sustainable transport system is one that meets the mobility and accessibility needs of the people 

while supporting the community’s long-term social, environmental and economic goals and 

aspirations. The Centre for Sustainable Transportation at the University of Winnipeg in Canada 

offers a comprehensive definition (Dia, 2017): 
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A sustainable transportation system is one that accomplishes the following: 

1. Allows the basic access needs of individuals and societies to be met safely and in a manner 

consistent with human and ecosystem health, and with equity within and between 

generations. 

2. Is affordable, operates efficiently, offers choice of transport mode and supports a vibrant 

economy. 

3. Limits emissions and waste within the planet’s ability to absorb them, minimises 

consumption of non-renewable resources, limits consumption of renewable resources to 

the sustainable yield level, reuses and recycles its components, and minimises the use of 

land and the production of noise. 

Sustainable transport and low carbon mobility are closely related and linked. Mobility is the total 

amount of travel that is undertaken on all modes of transport and relates to the physical movement 

from an origin to a destination (Baedeker, Kost and Merforth, 2014). When mobility is undertaken 

using motorised forms of transport, it results in harmful emissions of carbon and other pollutants. 

Transport, on the other hand, is broader than mobility and includes all modes of transport in 

addition to the supply of transport. For physical movement to take place, transport infrastructure 

needs to be supplied. Without the physical infrastructure, travel cannot happen. Infrastructure 

supply does not generate movement but allows it to take place. In this context, mobility can be 

seen as being situated between the demand for transport and the infrastructure that allows this 

demand to be realised (Dia, 2017).  

Decision makers and leaders who run cities across the world are increasingly recognising the role 

of smart technologies in improving the efficiency of existing infrastructure and sweating of assets 

through better utilisation of the available infrastructure. These systems can significantly improve 

operations, reliability, safety, and meet consumer demand for better services with relatively small 

levels of investment. Cities are essentially made up of a complex network of systems that are 

increasingly being instrumented and interconnected, providing an opportunity for better 

infrastructure management. An Internet of Things comprising sensors, monitors, video 

surveillance, and radio frequency identification (RFID) tags, all communicate with each other to 

enhance infrastructure capability and resilience, capturing volumes of data. Through data mining, 

artificial intelligence and predictive analytics tools, smart infrastructure systems can help city 

managers monitor the performance of vital infrastructure, identify key areas where city services 
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are lagging, and inform decision makers on how to manage city growth and make our cities more 

liveable.   

1.4. Thesis objectives and research questions 

The main objective of this research is to develop an agent-based simulation model, which 

investigates the transport network impacts of deploying shared AMoD systems could be possible. 

Detailed research questions within this study are as follows: 

1. To what extent could AMoD systems reduce current transport fleet sizes? 

2. What is the relationship between AMoD fleet sizes, empty Vehicle-Kilometres Travelled 

(eVKT), and waiting times of customers? 

3. What is the relationship between rebalancing time-steps, fleet size, customer waiting times, 

and eVKT 

4. What relationship exists between demand distribution within the network and generated 

eVKT? 

5. To what extent could fleet size be reduced through encouraging more people into ride-

sharing? 

6. What benefits could be achieved in different levels of market penetration? 

1.5. Statement of contribution 

This research takes a new approach in terms of modelling techniques and algorithms compared to 

the current literature to investigate and quantify the transport network impacts of AMoD systems. 

This study develops a calibrated and validated model capable of predicting the possible effects of 

AMoD systems on current transport systems, and assists in the understanding of the latent 

behaviours of these systems which have been overlooked in the literature to date. The key findings 

and contributions of this research are as follows: 

1. The benefits of AMoD systems have generally been overstated and shared AMoD systems 

might never be a sustainable transport solution as long as ride-sharing schemes and mass 

pubic transport systems have been dismissed. 

2. Deploying shared AMoD systems during peak hours between suburbs and city centres is 

not an appropriate solution and could lead to more congestion. 
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3. This study is the first in the literature to quantify and discuss the elasticities of induced 

VKT within the network with respect to various fleet sizes and rebalancing time-steps. 

4. A quadratic relationship between AMoD fleet size and induced VKT has been observed, 

which is independent of the amount of travel demand. 

5. Although travel demand patterns can change the amount of induced VKT in the network, 

it never affects the general quadratic relationship between AMoD fleet size and VKT in 

the system.  

6. A new measure, called Travel Demand Heterogeneity is introduced to assess the 

performance of AMoD systems from a different perspective. A method is also proposed 

to evaluate these systems taking into account the effects of demand heterogeneity. 

1.6. Thesis Organisation 

The rest of the thesis is structured as follows. In Chapter 2, a comprehensive review of the 

literature on AMoD systems with related case studies is provided. This chapter provides a detailed 

overview of the literature with identifying the gaps within it. Various definitions of available jargons 

in AMoD studies have also been provided in order to assist readers in comprehending the 

discussions. 

Chapter 3 discusses the modelling approaches available in the literature and their pros and cons. 

This chapter deals with analytical models, macroscopic models and simulation models. The aim of 

this chapter is to show how various modelling approaches differ from each other and why the 

current research has chosen a simulation model.  

In Chapter 4, the pilot study is described. The key purpose of this chapter is to examine the 

feasibility of the approach taken to carry out this PhD research. The pilot study has been 

undertaken within a small area in Melbourne and explored various AMoD scenarios to meet the 

goals of this chapter.  

Chapters 5 and 6 deal with the main model developed for this research and discusses the results 

obtained from running a vast range of AMoD scenarios. These chapters discuss how necessary 

data were collected and used in the modelling process. A detailed description of the network 

deployed for this research, calibration and validation process and rebalancing algorithm has also 

been presented in these chapters. Simulation scenarios, assumptions and all the relevant 
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investigations along with the achieved results have been extensively discussed in Chapter 5 and 

Chapter 6. 

Chapter 7 presents all the findings of this research and discusses policy insights. Finally, Chapter 

8 summarises the key findings of this doctoral research and discusses the future research directions. 
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Chapter 2 : Literature Review 
 

This chapter provides an extensive review of the current literature on disruptive technologies, 

vehicle automation, and shared mobility on demand systems. Section 2.1 explains the notions of 

smart cities, smart mobility and disruptive technologies. It also expresses the available 

terminologies in this area. Section 2.3 discusses the meaning of vehicle automation, different levels 

of autonomy, their capital cost, regulation concerns, and some of the ramifications, which could 

result from these emerging technologies. Section 2.4 deals with some impacts of vehicle 

automation on transport networks and their contribution to traffic efficiency. Section 2.5 through 

2.8 illustrate the concept behind AMoD systems and explains different forms of shared mobility 

systems. Section 2.9 reviews the available AMoD case studies in the literature and discusses their 

advantages and drawbacks. The chapter concludes with a summary of the literature review in 

section 2.10.  

2.1. Smart cities and mobility 

The concept of a smart city usually refers to a city that connects the social, physical, economic, 

and information infrastructure to create a vibrant urban environment that enhances access to 

services, places and economic opportunities, and improves the quality of life for its citizens (Dia, 

2017).  

The operation of urban infrastructure is becoming increasingly dependent on technology. As 

shown in Figure 2-1, the smart infrastructure paradigm includes a vast range of topics such as 

information technology, data mining, smart algorithms, and predictive analytics to improve the 

performance of infrastructure and services. This figure illustrates that technology is merely an 

enabler to achieve a city’s desired objectives such as environmental sustainability, citizen well-

being, and economic viability. To accomplish these objectives, cities need to harness the huge 

amounts of available data being produced by smart infrastructure. Then, these data should be 

mined and analysed to find their patterns and trends so that the optimisation and transformation 

of city services can be realised.  

Smart cities would never materialise without providing their citizens with smart mobility services. 

These systems offer customers real-time and predictive information, enabling travellers to plan 

their journeys ahead, receive notifications of disruptions and avoid possible delays. Smart mobility 
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services also enable customers to choose the travel mode that best suits their needs given their 

budget and the current traffic conditions within the network. 

 

Figure 2-1: Smart cities model (Dia, 2017) 

Figure 2-2 illustrates the key elements of a smart mobility model (Dia, 2017). As shown in this 

graph, developing models capable of predicting the performance of transport systems and the 

behaviour of travellers using these services is essential to for reliable smart mobility. Network 

management, control, and asset optimisation is extremely efficient in these systems as a result of 

having access to real time data and smarter algorithms. Low carbon mobility solutions, which will 

offer the mobility as a service (e.g. AMoD systems), will translate into smarter and more sustainable 

means of travel.  

 

Figure 2-2: Smart mobility model (Dia, 2017) 
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2.2. Disruptive technologies 

Disruptive forces are transforming the mobility landscape and providing consumers with more 

choices to meet their travel needs while reducing reliance on building additional infrastructure. 

Although some of these technologies are still a few years away (e.g. self-driving vehicles), they have 

already started to shape a vision for mobility transformation driven by a number of converging 

forces including autonomous vehicles, mobile internet, internet of things, cloud technology and 

vehicle electrification (Figure 2-3). This section provides more information on each of these 

elements.   

 

Figure 2-3: The disruptive mobility ecosystem (Dia, Javanshour and Hill, 2016) 

2.2.1. Autonomous vehicles 

An autonomous vehicle is one that can manoeuvre with reduced or no human intervention 

(Manyika et al., 2013). The main contributions of these vehicles are a reduction in greenhouse 

emissions and a reduction in road car crashes. Each year, road crashes cause almost 1.24 million 

fatalities and between 20 to 50 million non-fatal injuries across the world (WHO, 2015), ninety per 

cent of which are caused by human error. Vehicle automation has a great potential to significantly 

decrease these numbers by removing the weakest link, the human driver, from the driving 

equation. Although reducing the number of people affected by car accidents is of great importance 
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to the authorities, the main challenge is manufacturing vehicles that will replicate the good driving 

performance of humans (ITF, 2015b). 

The convergence of sensor-based technologies and connected-vehicle communications is required 

to enable truly AVs (Bajpayee and Mathur, 2015). The term connected vehicles refers to the presence 

of devices in a vehicle that connect to other devices within the same vehicle and/or devices, 

networks, applications, and services outside the vehicle (Uhlemann, 2015). Fully autonomous 

vehicles deploying 3D cameras and other sensors, together with pattern recognition programs 

powered by artificial-intelligence knowledge to analyse the input signals, are able to move safely 

between other vehicles, obstacles and pedestrians from one place to a desired destination (Manyika 

et al., 2013). These vehicles are also able to communicate with one another providing an 

appropriate condition to accrue the efficiency and safety benefits for commuters. However, 

designing coordination protocols that ensure safety while improving efficiency is challenging due 

to issues such as sensor range limitation, and reliability degree of wireless communication systems, 

which can result in errors such as lost messages (OHara et al., 2015). 

The key enabling technologies in developing the AVs are as follows: 

- Lidar (Light Detection and Ranging): An optical remote sensing technology that measures 

distance to a target or other properties of the target by illuminating it with light.   

- GPS (The Global Positioning System): a space-based satellite navigation system that 

provides location and time information anywhere on or near the earth. 

- DGPS (Differential Global Positioning System): an enhancement to GPS that improves 

location accuracy from +/- 10 meters to about 10 centimetres.  

- RTK (Real Time Kinematic): Navigation is based on the use of carrier phase measurements 

of the GPS, GLONASS, and/or Galileo signals where a single reference station provides 

real-time corrections. 

- Digital maps: Digital mapping (also called digital cartography) is the process by which a 

collection of data is compiled and formatted into a virtual image (Silberg et al., 2012). 

Autonomous-drive technology is no longer a case of science fiction (Corwin et al., 2015), and 

experts estimate that the circulation of highly automated vehicles in significant numbers on the 

roads will be likely by 2020 (Tannert, 2014), and might impact mobility to the same extent as smart 

phones impacted communication (Boesch and Ciari, 2015). Figure 2-4 illustrates a timeline for the 

introduction of driverless cars into the market by various car manufacturers up until 2030 during 

which the number of companies reaches from one (Tesla) in 2016 to at least ten in 2026. 
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Figure 2-4: Autonomous vehicle release timeline by auto makers cited in (Hillier, Wright and 
Damen, 2015) 

2.2.2. Mobile internet 

Unlike the days when mobile phones had been just introduced and were considered a status 

symbol, smart phones have now become an essential part of people’s lives, enabling the 

management of many tasks such as traveling or commuting through a vast range of applications 

supported by the ubiquitous Wi-Fi internet and GPS systems. The number of smart phone users 

is expected to exceed 2 billion in 2016 worldwide and reach 2.56 billion by 2018 (Emarketer, 2014). 

Today, people are taking advantage of smart phones for their daily trips as well using a multitude 

of mobile apps for monitoring the traffic volume on roads, finding the arrival and departure time 

of public transport systems and choosing the shortest route to their destination. Moreover, smart 

phones are a great source from which to obtain real-time traffic information. Network-based 

solutions, which rely on the passive monitoring of data already being communicated in the mobile 

phone system, have the potential to provide network-wide travel time and origin–destination 

information Big Data (Rose, 2006).  

Today’s world has been swept up in an unprecedented amount of data- so-called Big Data- 

originating from social media, card readers, navigating systems and so forth. Every day, almost 2.5 

quintillion bytes of data are created (Xindong Wu et al., 2014) including tweets on various topics, 

people’s comments about different issues on Facebook, daily money transfers and the number of 

vehicles travelling from one point to another by tracking them through GPS-enabled vehicles and 

smart phones etc.   
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Big Data refers to the amount of data that available technologies fail to store, manage and process 

efficiently and therefore demands the intervention of robust analytics along with powerful 

software and hardware tools (Kaisler et al., 2013). The most fundamental challenge for Big Data 

applications is to explore the large volumes of data and extract useful information or knowledge 

for future actions (Xindong Wu et al., 2014). 

Harnessing such an extreme flow of data will benefit a multitude of sectors, including transport 

systems. Urban areas are equipped with many sensors and actuators, which collect information 

from different aspects of city dwellers’ activities. Smart phones with built-in GPS systems can 

record and transmit their own trails. Transponders can be used to monitor the throughput at toll-

booths, measure vehicle flow along a road or the number of empty spaces in a car park, track the 

progress of buses and trains along a route, and smart tickets can be used to track a passenger’s 

travel. These instruments provide urban managers with abundant dynamic, well-defined and 

relatively cheap data on city activities, enabling them to undertake real-time analytics and establish 

adaptive management and governance systems (Kitchin, 2014). 

2.2.3. Internet of Things 

The Internet of Things (IoT) refers to the use of sensors, actuators, and data communication 

technology built into physical objects from roadways to pacemakers that enable these objects to 

be tracked, coordinated, or controlled across a data network or the Internet (Manyika et al., 2013). 

IoT provides an IT-based infrastructure facilitating the exchange of “things” in a secure and 

reliable way. In other words, its function is to bridge the gap between objects in the physical world 

and their representation in information systems (Weber and Weber, 2010). IoT is a key element 

for intelligent transport systems powered by many sensors and actuators embedded in vehicles, 

pavements and traffic lights to exchange real-time information among one another to create a 

sustainable efficiency across the transport network.  

2.2.4. Cloud technology 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction (Mell and Grance, 2011). Cloud technology has the potential to disrupt 

entire business models, giving rise to new approaches that are asset-light, highly mobile, and 

flexible. Cloud technology allows the delivery of potentially all computer applications and services 
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through networks or the Internet. With cloud resources, the bulk of computational work can be 

done remotely and delivered online, potentially reducing the need for storage and processing 

power on local computers and devices (Manyika et al., 2013). Intelligent transportation clouds can 

provide services such as decision support, a standard development environment for traffic 

management strategies, and so on. With the support of cloud computing technologies, it is able to 

go far beyond other multi-agent traffic management systems, addressing issues such as infinite 

system scalability, an appropriate agent management scheme, reducing the upfront investment and 

risk for users, and minimizing the total cost of ownership (Li, Chen and Wang, 2011).  

2.2.5. Vehicle electrification  

Energy storage systems convert electricity into a form that can be stored and converted back into 

electrical energy for later use, providing energy on demand (Manyika et al., 2013). Lit ion batteries 

are widely used in small applications, such as mobile phones and portable electronic devices. This 

type of battery attracts much interest in the field of material technology and others, in order to 

obtain high power devices for applications like electric vehicles and stationary energy storage (Iaz-

González et al., 2012). 

2.3. Vehicle automation 

The idea of assisting drivers in the process of driving to provide smoother, safe and appropriate 

driving patterns has always been of interest to scientists and car manufacturers. As a result, this 

has led to various advancements in vehicle automation from the automatic transmission, steering 

or parking technologies to AVs. In this section, current technologies and different levels of 

autonomy, fixed costs of available and future automated vehicles, as well as policy and regulation 

issues, will be discussed.  

2.3.1. Technology and levels of autonomy 

Automated vehicles engage state-of-the-art technologies such as Lidar, GPS and digital maps to 

sense their surrounding environment and act based on the retrieved information. Many of the key 

technologies, which guide the vehicles or even perform the driving task with minimal human 

intervention, are already in place. Other infrastructure developments, however, need more 

attention to accelerate the process of vehicle automation such as Vehicle-to-X connectivity (V2X), 

decision and control algorithms, and digital infrastructure (ITF, 2015a).  
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The Society of Automotive Engineers (SAE) has recommended a 5-level description of autonomy 

for on-road motor vehicles, which includes functional definitions for advanced levels of driving 

automation and related terms and definitions (SAE, 2016). These levels describe the percentage of 

human and machine intervention in the dynamic driving task ranging from Level 0 (no automation) 

up to Level 5 (full automation) (Figure 2-5).  

 

Figure 2-5: Levels of driving automation according to the Society of Automotive Engineers 
(ITF, 2015a) 

2.3.2. Capital cost of autonomous vehicles 

Driverless vehicles feature high-tech components, which make them prohibitively expensive and 

prevents them from gaining a sizable market penetration. LIDAR is one of these expensive 

components which acts like an eye for the driverless car. In 2014, an advanced Lidar system for 

AVs cost between $30,000 and $85,000 apiece (Shchetko, 2014). This price, however, could be cut 

by 90% in 2017 thanks to recent advancements in Lidar technologies (Amadeo, 2017).  A study 

conducted by HIS Automotive (HIS, 2014) estimates that a driverless vehicle will cost $7,000 to 

$10,000 more than a similar human-driven car in 2025. This price, however, will drop by $5000 in 

2030 and about $3000 in 2035. 
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There has also been growing government awareness to invest in this area with the Obama 

administration proposing spending $4 billion to accelerate autonomous- car technology over the 

next decade (Stoll, 2016). This will be of significant help for car manufacturers to keep the capital 

cost of their products low and will help facilitate large-scale market AV adoption. One of these 

companies to be successful in releasing affordable cars capable of driving themselves is Honda 

who prices this product at $20,440 (Stoll, 2016).  

2.3.3. Regulation 

Thanks to automation, the role of drivers in the driving process is gradually diminishing with new 

cars featuring automatic steering, cruising and lane-keeping technologies as well as cars with the 

full capability of driving themselves along with a manual driving mode. This trend has raised 

questions regarding the litigation and liability of drivers in the event of an accident and prompted 

regulators to rethink how they can move with the same pace as technological advancements in a 

manner that encourage this innovation.  

The International Transport Forum (ITF, 2015a) recommends two types of approaches in 

regulating automated vehicles namely, the general method and the specific method. In the general 

method, a government modifies the current laws for traditional vehicles to make them compatible 

with automatic vehicles. In the specific method, on the other hand, a government enacts special 

rules for automatic vehicles and articulates exclusively which rules should be applied in the case of 

an accident.   

There are currently various jurisdictions worldwide (e.g. Australia, United States, United Kingdom, 

France, Finland, The Netherlands) dealing with the regulation and on-road testing of AVs 

worldwide in order to provide an appropriate condition within the community which is necessary 

for a smooth transition from the current mobility systems to a fully automated environment. 

2.4. Network impacts of vehicle automation  

Vehicle automation and AVs are considered potential solutions for addressing road safety 

problems, boosting environmental conditions, and enhancing network throughput (Talebpour and 

Mahmassani, 2016) by providing more connectivity between vehicles and the infrastructure. Real-

time data sharing between vehicles and the infrastructure could be realised through establishing a 

connected Vehicle-to-Vehicle (V2V), and Vehicle-to-Infrastructure (V2I) environment. Achieving 
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system efficiency due to automation, however, might induce more travel demand and lead to more 

congestion in the network and affect land use patterns.  

Connected vehicles and infrastructure can contribute to collaborative techniques to enhance the 

capacity of current transport networks and attenuate congestion levels. Cooperative Adaptive 

Cruise Control (CACC) systems are one of the achievements provided by a connected 

environment. Researchers in the Institute of Transport Studies at the University of California 

Berkley (Milanes et al., 2014) suggest improvements in highway capacity and traffic flow stability 

through deploying a CACC system which was also tested on public roads to confirm its real 

performance. Another study conducted in this university (Shladover, Su and Lu, 2012) also 

suggests that freeway capacity-increase could be realised by deploying a CACC system with 

moderate-to-high market penetration rates. 

Research shows that intersection traffic control could also benefit from connected environments. 

Lee and Park (2012) propose a Cooperative Vehicle Intersection Control (CVIC) system for a fully 

automated-vehicle fleet. The CVIC system removes the need to install traffic signals through 

establishing cooperation between vehicles and infrastructure thereby vehicles are able to pass 

through the intersection without a need to stop. They developed a simulation model representing 

a hypothetical four-way single-lane approach intersection under varying congestion conditions to 

evaluate the performance of their algorithm. The results suggested that not only stop delay could 

drop by 99% but also total travel time could be reduced by 33% by deploying the proposed CVIC 

system (Lee and Park, 2012).  

Other research (Goodall, Smith and Park, 2013) develops a predictive microscopic traffic 

simulation algorithm fed with real-time data retrieved from connected vehicles. This algorithm 

optimises the traffic signal timing via receiving the present vehicles’ positions, headings, and 

speeds. The results suggest that the proposed algorithm could improve the performance of the 

signalised intersection at low and mid-level volumes. 

Given that this research only looks at the network impacts of vehicle automation, in this section, 

only studies of the same scope are discussed. For a comprehensive review of the implications of 

vehicle automation and connectivity, readers are referred to (Milakis, van Arem and van Wee, 

2017). 
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2.5. Autonomous Mobility-on-Demand  

In the past century, private cars have been the most popular mode of transport in urban areas by 

providing rapid, comfortable and door-to-door travels without confining consumers to a specific 

time-schedule.  However, experts assert that the high dependency on oil; soaring traffic congestion 

and the ever-increasing demand for land to pave more roads and build new parking spaces make 

private cars an unsustainable mobility system for urban areas (Mitchell, Borroni-Bird and Burns, 

2010). 

 In addition, according to the National Highway Traffic Safety Administration (2008), 93 per cent 

of road crashes are associated with human error. In addition, several studies summarised in 

(Salmon et al., 2005) indicate that human error contributes to as much as 75% of all roadway 

crashes. The ageing of the population also poses a challenge to communities in terms of road 

safety. Figure 2-6 shows that by 2031, the percentage of the population aged 65 years and older 

will escalate to 23 percent equivalent or one in four Victorians. As shown in Figure 2-7, the relative 

risk of being involved in a casualty crash on Melbourne’s arterial roads (per distance travelled) is 

around 1.5 times greater for drivers aged 60-74 years compared to drivers aged 40-49, and about 

4.7 times for those aged 75 years and older. 

 

Figure 2-6: Population growth and age profile of Victoria’s population, 1971-2031 (VISTA, 
2016) 
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Figure 2-7: Relative risk of a driver being involved in a casualty crash by age group, Victoria 
2001 (VISTA, 2016) 

On the other hand, new research like Zipcar’s annual millennial survey substantiate the claim that 

the younger generation is less keen to own a private car than their older counterparts as the 

popularity of new technologies like smart phones is growing. Further, more than half of all 

millennials say they would prefer public transit and car sharing systems to privately-owned cars 

(Zipcar, 2014). As shown in Figure 2-8, even in the United States where cars are greatly popular, 

ownership rates are declining, and drivers are driving less. Moreover, in most families, cars are 

underutilised commodities which cost an unnecessary amount of money. Private cars meet the 

mobility needs of families typically during peak hours and are usually used less than one hour a 

day (ITF, 2015c). 

 

Figure 2-8: Vehicle ownership rates in USA (Bouton et al., 2015) 
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With the aforementioned issues in mind, exploiting one-way shareable electric vehicles in which 

electricity is produced through clean resources (e.g. wind turbines or solar systems), and vehicles 

are distributed at convenient locations across the urban area to enable travellers to pick them up 

them at short notice seems a promising way to decrease the overall number of private cars. This 

system, referred to as mobility-on-demand or MoD systems in the literature, is seen by many 

experts to be a sustainable solution to the problems of oil dependency, pollution, and parking lot 

sprawls (Zhang et al., 2015).  

Having assets (e.g. private cars) shared  within a community could reduce the necessity to own 

them (Stephany, 2015). As shown in Figure 2-9, ubiquitous wireless internet networks could 

provide a suitable platform to enhance the accessibility of assets and promote the culture of 

sharing. This new business model would distribute the overall expenses of owning the asset within 

the community rather than placing the burden on a single individual.  

Figure 2-9 illustrates that an appropriate shared system enabled with omnipresent internet 

technology that provides convenient services to consumers leads to a substantial increase in the 

utilization of assets.   

 

Figure 2-9: The sharing economy, increasing asset utilization (Stephany, 2015) 
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However, two dominant challenges are facing MoD systems. Firstly, due to the spatiotemporal 

nature of urban mobility, certain locations tend to be more popular destinations than others, which 

leads to unbalanced vehicle fleets. Secondly, MoD systems are not able to address increased traffic 

congestion directly. In actual fact, the need to rebalance vehicles creates additional trips that 

increases the overall mileage driven (Zhang et al., 2015).  

Emerging AMoD systems  have a great potential for rebalancing trips (Chong et al., 2012) and 

alleviating the drawbacks of MoD systems. For instance, robotic vehicles can rebalance 

themselves, autonomously monitor and recharge their batteries, and coordinate their actions at a 

system-wide level to optimize throughput. Furthermore, robotic vehicles would free passengers 

from the task of driving especially those unable or unwilling to drive, and boost the safety level of 

urban transport networks (Zhang et al., 2015). However, the principal challenge for researchers is 

to ensure the same benefits of privately-owned cars in parallel with reducing private car ownership 

(Pavone, 2015). In addition, the security of these new systems will be an issue. For example, the 

security of AMoD systems against cyber-attacks was investigated in a recent study (Yuan, Thai and 

Bayen, 2016) where the authors proposed a tractable block-coordinate descent algorithm to 

compute attack strategies in the Manhattan road network.  

Another challenge in deploying AVs is defining moral decision-making algorithms for them such 

as running over pedestrians or sacrificing themselves and their passengers to save pedestrians in a 

case where an automated system malfunctions. The results of a recent study (Bonnefon, Shariff 

and Rahwan, 2016) suggest that moral algorithms for AVs create a social dilemma.  

Although people tend to agree that everyone would be better off if AVs were utilitarian (in the 

sense of minimizing the number of casualties on the road), these same people have a personal 

incentive to ride in AVs that will protect them at all costs. This study concludes that regulators will 

be faced with two difficulties: first, most people seem to disapprove of a regulation that would 

enforce utilitarian AVs; second, such regulation could substantially delay the adoption of AVs, 

which means that the lives saved by making AVs utilitarian may be outnumbered by the deaths 

caused by delaying the adoption of AVs altogether.   

2.6. Ride-sharing 

Ride-sharing refers to sharing rides between drivers and passengers with similar origins and 

destinations. Traditionally defined, ridesharing includes vanpooling and carpooling, which have 

been alternative transport options for decades. In vanpooling schemes, customers are clustered 
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into groups of 7 to 15 people commuting together in one van, while in carpooling models, 

travelling clusters consist of fewer than 7 individuals. Shaheen et al., 2017, offer a very clever 

classification to clarify the difference between carpooling or vanpooling schemes and other 

emerging ride-sharing models. This article classifies carpooling and vanpooling systems as 

traditional ride-sharing models or for short ride-sharing, while emerging business models fall into 

the category of for-hire driver services. The following section discusses various types of for-hire 

driver models in detail.    

2.7. For-hire driver services 

In for-hire driver services, passengers request a ride through a mobile app installed on their phone. 

Unlike traditional ride-sharing, in these services drivers do not necessarily have the same origins 

and destinations as passengers. For-hire driver services are categorised into three distinct models: 

ride-sourcing, ride-splitting or pooling, and e-Hail services for taxis with medallions (Shaheen et 

al., 2017). These models are explained thoroughly in the next sections. 

For-hire driver services have their own weaknesses as well. Drawbacks include concerns about the 

safety and security of anonymous matching, as well as problems with stranded riders if they cannot 

find a match for the return trip. Additionally, program costs and financing, as well as overall 

program business models, must be considered. Costs include start-up and ongoing operations and 

staffing, marketing, incentives to participants, software and hardware for ride-share matching, and 

program monitoring and evaluation.  

2.7.1. Ride-sourcing 

Ride-sourcing services use mobile apps to match potential passengers with drivers. Using these 

apps, passengers can specify their desired point for pick up, final destination, time to be served, 

maximum time to be delivered, number of travellers and their favourite fare. Then, matching 

vehicles to riders is carried out by a server, which receives information and defines the routes 

(Santos and Xavier, 2015). 

These emerging technologies are known by various terms by different stakeholders: ride-sourcing 

by transportation academics, Transportation Network Companies (TNC) by practitioners, and 

ride-hailing or ride-booking by the popular press (Shaheen et al., 2017). Examples of these services 

include Lyft and Uber (specifically, UberX, UberXL, and UberSELECT), as well as specialised 

services for children and the older population.  Ride-sourcing services usually implement surge-

pricing schemes to charge their customers to incentivise more drivers to take ride requests.  
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Lift hero is a ride-sourcing company established to service elderly individuals and the disabled in 

the San Francisco Bay Area. Concierge is another company operated by Lyft to provide non-

emergency medical transportation in New York City. HopSkipDrive facilitates rides for children 

either to or from school or afterschool activities. In this scheme, drivers are either mothers or 

those with a background in childcare. HopSkipDrive services the Los Angeles and San Francisco 

Bay areas.  Ride-sourcing services are also promoted by many as a complementary system to the 

existing public transit systems and reduce parking demand (Winter et al., 2016; Scheltes and de 

Almeida Correia, 2017). 

2.7.2. Ride-splitting or pooling 

Ride-splitting (pooling) is another type of for-hire driver service. Through this system, passengers 

not only share ride with other travellers with similar routes but also split the ride fare between each 

other.  LyftLine and UberPool are examples of companies that offer ride-splitting services. 

LyftLine encourages passengers to gather at specific points in the city in order to smooth their 

operation and provide a more efficient system. In return for walking to pick-up points, customers 

are offered discounted fares. Similarly, UberPool launched Smart Routes, where customers can get 

a discounted fare starting at US$1 off the normal UberPool price in return for walking to a major 

arterial street. This strategy leads to drivers picking up their passengers faster.  

Uber launched UberHOP in Seattle, Washington, and Toronto, Canada, an on-demand pooling 

service tailored for peak hours. This system pools more riders together and uses predetermined 

pick-up and drop-off locations. The closest drivers are sent to pick-up stations to service travel 

demand.   

2.7.3. e-Hail services 

The taxi industry has developed specific mobile apps known as e-Hail to avoid lagging behind ride-

sourcing companies. These apps are maintained either by the taxi company itself or a third-party 

provider. Given the increasing popularity of e-Hail services in the US, various e-Hail apps have 

emerged recently across the country. Arro, Bandwagon, Curb, Flywheel, Gett, Hailo, and iTaxi, 

are some of these services. For instance, as of October 2014, Flywheel was used by 80% of San 

Francisco taxis (1450 taxis). This application has reduced taxi wait times to the same level as that 

of ride-sourcing services.  

The Bandwagon app combines ride-splitting with e-Hail to facilitate taxi splitting. It matches taxi 

rides going in a similar direction and provides a platform for splitting the fare. Since Spring 2016, 
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Bandwagon has operated at LaGuardia Airport and John F. Kennedy International Airport in New 

York City. In April 2016, the Gett app introduced a fare splitting feature for use in over 15,000 

black cabs in London. Because regulated taxis charge static fares, e-Hail services also employ locally 

regulated taxi rates and do not implement surge pricing during periods of high demand, as ride-

sourcing services often do. 

The development of e-Hail apps has recently gained momentum with public bodies, taxi 

companies, and app developers forging partnerships. UpTop is an international taxi network 

developed by a partnership of IRU and the Taxicab, Limousine and Paratransit Association. 

UpTop has been partnering with app companies. More recently, it added Curb, The ride, and zTrip 

apps to its network, and it covers 500,000 taxis or 10% of all taxis worldwide.  

2.8. Car-sharing 

The car-sharing system, which emerged in Switzerland, dates back to 1948. It has expanded to 

approximately 1,100 cities worldwide, in 26 nations on five continents (Shaheen and Cohen, 2013; 

Lazarus et al., 2018). Car-sharing is a service that provides members with access to a fleet of vehicles 

on an hourly basis. Members reserve a car online or by phone, walk to the nearest parking space, 

open the doors with an electronic key card, and drive off. They are billed at the end of the month 

for time and/or mileage (Millard-Ball, 2005).  

To date, different studies have suggested the substantial role of car-sharing in diminishing the 

negative environmental and social impacts of private cars on urban areas worldwide. Table 2-1 

summarises some of the results of these studies across Europe, North America and Australia. As 

shown in Table 2-1, thanks to deploying car-sharing systems, carbon dioxide emission and the 

number of privately-owned cars have decreased in all places and has had a considerable effect on 

convincing people to relinquish their private cars.  

It is worth mentioning that according to the literature, high density areas are the best candidate to 

implement car-sharing systems as it implies more potential members within walking distance (1/3 

miles) of a car-sharing vehicle (Barrios and Godier, 2014).  
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Table 2-1: Reported social and environmental impacts due to car-sharing (Shaheen and Cohen, 
2013) 

Impact Europe North America Australia 

Carbon dioxide emission reduction (Observed impact) 39 to 54% 27% N/A 

Number of private cars that a car-sharing vehicle 

replaces (sold or forgone purchase) 
4-10 Cars 9-13 Cars 7-10 Cars 

Sold vehicle due to car sharing 15.6 to 34% 25% 21.3% 

Forgone vehicle purchase due to car sharing N/A 25% 28.1% 

There are three types of car-sharing systems namely, round trip car-sharing, one-way car-sharing, 

and personal vehicle sharing. The following sections discuss these business models in detail. 

2.8.1. Round-trip car-sharing 

In round-trip car-sharing, users make a reservation for a car through smart phones or the internet 

just before their desired time for travel  and designate the start time and trip duration. In this 

system, users must pay for the entire time between trip commencement and returning the car to 

the point where it was first accessed. The vehicles are allocated to dedicated parking spots including 

off-street and on-street parking places. A professional car-sharing operator is usually in charge of 

this task. The main role of a car-sharing operator in this system is matching car owners with car 

seekers through an online platform. Zipcar is the largest provider of round-trip car-sharing services 

worldwide. 

2.8.2. One-way car-sharing 

One-way car-sharing, also known as point-to point or free-floating car-sharing, provides one-way 

journeys within a specified geographical zone with the advantage of being able to make the 

reservation only a few minutes ahead of the journey. In this system, contracts with authorities 

enable consumers to drop the cars at any place within the operating area without having to leave 

them in a specific parking place. These services are also recommended as a complement to public 

transport systems (Becker, Ciari and Axhausen, 2017). 
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 The largest operator of point-to-point free-floating car sharing services worldwide is car2go. Some 

point-to-point car sharing systems are station-based (e.g. Autolib in France) in which cars start 

their journey from one station and end up in another one. This system is less flexible than free-

floating system; however, consumers are still not required to return the cars to the first place (Vine, 

Zolfaghari and Polak, 2014).   

One of the major problems in operating one-way car-sharing systems is vehicle fleet rebalancing. 

This challenge is caused by the spatiotemporal characteristic of travel demand, which makes some 

parts of the city more attractive than other areas. Upon arriving at the destination, customers leave 

the car in the street or designated station for shared-cars. If the area is popular, vehicles would 

accumulate there and be depleted in others. Thus, rebalancing idle vehicles is essential to maintain 

a specific quality of service within the area without causing further VKT.  

Rebalancing traditional vehicles requires hired drivers to perform the task and requires well-

defined rebalancing strategies to avoid the unbalancing of drivers themselves (Smith et al., 2013). 

This problem, however, could be resolved for a fleet of shared AVs in which no driver is required 

to rebalance the system.  

One-way car-sharing systems began in Europe in the 1970s. In 2012, one-way car-sharing 

expanded rapidly to seven countries worldwide. As of October 2014, there were 851,988 one-way 

car-sharing members globally, 372,466 of which were in Europe, 445,722 were in North America, 

29,600 in Asia, 3,500 in South America, and 700 in Oceania. As of January 2015, 35.7% of North 

American fleets allowed one-way trips, and 30.8% of members had access to such fleets (Shaheen 

et al., 2017).  

Procotip was the first one-way car-sharing company, launched in Montpellier, France in 1971. It 

featured 35 cars with 19 stations. This company was forced to close down in 1973 due to 

operational and financial problems. Liselec launched in 1993 in La Rochelle, France with 50 EVs 

at seven stations. This company was successful and today, it has been rebranded as Yelmobile. 

Praxitele launched in 1997 as a last mile solution in Saint-Quentin-enYvelines, France. This one-

way car-sharing company had 500 members and provided access to 14 stations, located in 

neighbourhoods, near offices, and at public transit stations. Praxitele ceased operations in July 

1999 due to financial issues (Shaheen et al., 2017).  

In Japan, car manufacturers brought car-sharing systems into operation. In 1998, the Honda Motor 

Company deployed the Intelligent Community Vehicle System, which included both round-trip 
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and one-way carsharing with connections to public transit. In 1999, the Toyota Motor Company 

launched the Crayon System in Toyota City, Japan. This company was made up of 50 EVs located 

at various places including public transit stations. Nowadays, these companies employ emerging 

technologies such as smart cards, automatic vehicle location, vehicle information and 

communication systems, and a management system for reservations and recharging (Shaheen et 

al., 2017). 

In the United States, one-way car-sharing services were first used as a supplement for public transit 

systems. In 1999, CarLink I launched at the Dublin/Pleasanton Bay Area Rapid Transit (BART) 

station in the East Bay of the San Francisco Bay Area. This scheme consisted of 12 cars 

transporting customers between the BART station and the Lawrence Livermore National 

Laboratory. Similarly, CarLink II was based at the Caltrain station in Palo Alto, California with 27 

cars. Once CarLink II pilot came to an end, Flexicar took over the service in 2002. However, it 

stopped operations in 2003 due to concerns with cost recovery and its limited scale. 

The Zero Emission Vehicle Network Enabled Transport (ZEV.NET) is another one-way car-

sharing project piloted by the UC Irvine. This system, launched in 2002, provides trips between 

the Irvine Transportation Centre commuter rail terminal, four employers, and the UC Irvine 

campus. Its fleet is entirely comprised of EVs. More recently, 30 Toyota iQ EVs were added in 

March 2013, and the system still operates today (Shaheen et al., 2017).  

Since the 1970s, despite many successful one-way car-sharing projects (e.g. Yelomobile), some 

have ceased operations. The main reasons include economic viability (e.g. CarLink), underuse (e.g. 

Praxitele), and insufficient technology (e.g. Procotip). Early one-way car-sharing attempts 

established the foundation for existing car-sharing services today. 

2.8.3. Personal vehicle sharing 

Personal vehicle sharing (PVS) is another car-sharing model in which private vehicle owners rent 

their cars to customers. In this business model, the process of vehicle booking is facilitated by an 

authorised company usually through an online platform. There are four distinct models of PVS: 

(a) peer-to-peer (P2P) car-sharing, (b) hybrid P2P traditional car-sharing, (c) P2P marketplace, and 

(d) fractional ownership (Shaheen, Mallery and Kingsley, 2012). 

 P2P car-sharing 
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In the P2P business model, privately-owned vehicles are available to members of a P2P company 

for a short period. In P2P systems, users are allowed to drop cars wherever needed, hence the 

operation area for these models is usually much wider than other car-sharing systems. 

Getaround and Turo are examples of P2P car-sharing companies in the United States. Pricing and 

rental terms for these services are usually determined by owners. P2P operators charge a specific 

amount of money in return for facilitating the exchange and providing third-party insurance.  

 Hybrid P2P-roundtrip car-sharing 

In the hybrid P2P-roundtrip car-sharing model, individuals access vehicles by joining an 

organisation that maintains its own fleet, but it also includes private vehicles throughout a network 

of locations.  

 P2P marketplace 

The P2P marketplace enables direct exchange among individuals via the internet, including pricing 

agreements. Terms are generally decided among the parties of a transaction, and disputes are 

subject to private resolution. 

 Fractional ownership 

In the fractional ownership model, members subscribe to or sublease a vehicle owned by a third 

party. In this model, the customers bear part of the operating and maintenance expenses in 

exchange for being able to use this system. This system enables individuals to have access to 

vehicles, which might be unaffordable otherwise. Fractional ownership is typically used for luxury 

cars and recreational vehicles. This system is currently in its early stages and needs more time to 

evaluate whether it can compete with existing car-sharing systems. Examples of fractional 

ownership companies in the US are Curvy Road, Gotham Dream Cars, and CoachShare. In 

December 2014, Audi launched its Audi Unite fractional ownership model in Stockholm, Sweden. 

Audi Unite offers multiparty leases with pricing based on model, yearly mileage, and the number 

of drivers ranges from two to five. In February 2016, Ford launched a fractional ownership scheme 

in Austin, Texas that leases vehicles to self-organised groups of up to six people. Co-owners can 

reserve a vehicle, check on its status, exchange, exchange messages, make vehicle payments, and 

monitor their accounts via an app and in-vehicle device.  

2.9. AMoD case studies 

As discussed in section 2.5, AMoD systems are seen as holding great promise for addressing urban 

mobility challenges (Kornhauser et al., 2013; Brownell and Kornhauser, 2014). In these systems, 
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road safety is reported to be addressed through removing the main source of error, the driver, 

from the driving equation. By making cars electric, carbon emissions are reduced hence the 

environmental quality of cities is improved. Most importantly, by sharing cars, the cost per 

kilometre would ultimately be reduced to a level that is competitive with car ownership and could 

in the long-term result in a substantial reduction in the vehicle fleet sizes required to serve the 

mobility needs of city residents (RMI, 2016). 

In recent times, the literature on AMoD systems has grown at a rapid pace. Each study investigates 

the impacts of these novel systems from various viewpoints such as their effects on capacity, travel 

cost, vehicle use, environmental issues and so forth (Bösch et al., 2018). A comprehensive review 

of the literature on all these implications was provided in (Milakis, van Arem and van Wee, 2017). 

Given this study merely looks at the network impacts of shared AMoD systems, especially their 

effect on fleet size, and induced VKT, the literature review also focuses on articles of the same 

scope as the current study. This review is conducted in two sections: analytical and simulation 

models. 

2.9.1. Analytical models 

A case study conducted in Singapore (Spieser et al., 2014) provided analytical guidelines for the 

design of AMoD systems. They used a mathematical network-modelling framework known as the 

Jackson Network. This concept is discussed thoroughly in chapter 3, section 3.1.6 and 3.1.7. 

The researchers used Singapore’s household travel survey and taxi data to retrieve the travel 

demand and traffic characteristics. The results of their study showed that an AMoD system 

featuring a third of the current number of passenger vehicles could meet the same personal 

mobility needs of the population. However, the research assumed that the distances between 

origins and destinations are represented by Euclidean distances, which results in less realism 

around the network impacts of AMoD systems. 

Zhang and Pavone (2016) presented a queuing-theoretical method for modelling and evaluating 

AMoD systems. Similar to the previous study, this research group also used Jackson network 

concepts for their investigations. They conducted the study in the context of a case study of New 

York City and showed that the current taxi demand in Manhattan can be met using only 70% of 

the current taxi fleet.  
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A recent study published in Nature (Vazifeh et al., 2018) deploys an analytical approach to explore 

its AMoD scenarios. The model uses travel demand consisting of 150 million trips undertaken in 

New York City over the calendar year of 2011. It also utilised historical data to estimate travel 

times between the origins and destinations. The results of this research suggest a 30% reduction 

in fleet size compared to the current taxi fleet in New York City.  

Another analytical study (Burns, Jordan and Scarborough, 2012) conducted cost analyses and 

measured potential savings due to deploying AMoD systems in comparison with traditional 

personal owned vehicles. The researchers also validated their analytical model against a simulation 

model. However, the amount of information provided by the authors regarding their simulation 

model is insufficient. In particular, the algorithms used for simulating the agents is unspecified.  

The major drawback of all the studies reported in this section is that they underestimate induced 

VKT, a key decision variable in assessing the performance of AMoD systems, and the performance 

of these systems has only been assessed based on trip success rates and passenger waiting times. 

2.9.2. Simulation models 

Lisbon Study: 

In a study conducted for the city of Lisbon in Portugal (ITF, 2015c), the authors developed an 

agent-based simulation model to explore the impacts of AMoD systems. They used 1.2 million 

trips to represent the travel demand based on the Lisbon travel survey and aggregated the demand 

to a grid of cells measuring 200 metres by 200 metres. The major finding of their study was that 

AMoD systems would meet the demand for travel using only 10% of the existing number of 

vehicles, if supported by a high capacity public transport system. Their study also suggested that 

this would be at a cost of 6% more VKT. Further, they showed that VKT could increase up to 

89% if no ride-sharing is allowed, and the city lacks a high-capacity public transport system. It is 

not clear, however, how the authors performed the redistribution of empty vehicles to service the 

waiting customers. Moreover, they did not use a dynamic traffic model to simulate the variation 

of traffic conditions due to changes in current transport fleet size. 

Austin Studies: 

Researchers at the University of Texas (Fagnant and Kockelman, 2014) used MATSim1 to model 

a non-realistic gridded city that includes a ten-mile by ten-mile square area, about twice the size of 

                                                             
1 MATSim is widely discussed in Chapter 3, section 3.3.3.1. 
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Austin city. They divided the whole area into 1,600 different zones, each of which represent a 0.25-

mi-by-0.25-mi square area, and aggregated the travel demand into these cells. The results of this 

study indicated that each shared AV can replace around eleven conventional vehicles at the cost 

of adding 10% more travel distance compared to conventional trips. The temporal distribution of 

trips was based on National Household Travel Survey (NHTS) data, and the redistribution of 

empty vehicles was performed through a heuristic method. Another limitation in this study is that 

they used an average speed for the whole area during peak and off-peak periods based on 2009 

NHTS data instead of having the speeds produced by a traffic simulation model. 

The authors also conducted other research (Fagnant, Kockelman and Bansal, 2015) to quantify 

the potential impacts of the AMoD systems at low levels of market penetration. The MATSim 

model represented a 12-mile by 24-mile regional core area of Austin with link-level travel speeds 

which varied by time of day to take into account the changes in traffic conditions over the course 

of the day. A 100,000-trip subset was then randomly drawn, with 57,161 of these travellers having 

both origins and destinations with a centrally located 12-mile by 24-mile geofence.  

The spatial distribution of demand was based on a zoning system introduced in the Capital Area 

Metropolitan Planning Organisation (CAMPO) in which the distribution of trip origins are at half-

mile resolutions. As for the temporal distribution of demand, the authors used another city’s travel 

survey data (Washington’s household travel diaries) on the grounds that the Austin data’s departure 

times seemed inaccurate.  

The results of this study suggest that each shared AV could replace around nine conventional 

vehicles within the study area while maintaining an acceptable level of service, but adds up to 8% 

new VKT. Unlike their previous study (Fagnant and Kockelman, 2014), the authors in this case 

used MATSim estimated travel times to account for the dynamic nature of traffic flow. 

The same researchers also leveraged the model developed for Austin to investigate the network 

impacts of AMoD systems with ride-sharing (Fagnant and Kockelman, 2016). The results 

suggested that a Dynamic Ride Sharing (DRS) system could reduce the empty VKT and had the 

potential to improve passenger satisfaction through decreasing waiting times. This study 

implemented a heuristic DRS method. There are other papers in the literature (Agatz et al., 2010, 

2011; Nourinejad and Roorda, 2016) which propose optimum DRS algorithms. However, these 

algorithms have only been tested using an optimisation studio called CPLEX and therefore, future 

works in this area could implement them in an agent-based simulation framework to test the 
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performance of optimum DRS methods in a dynamic environment as well. Greedy DRS 

algorithms have also been proposed in the literature (Shuo Ma, Yu Zheng and Wolfson, 2013) to 

investigate the efficiency of these systems. 

Another study (Levin et al., 2017) conducted in Austin city developed a simulation model in Java 

and showed that shared AMoD systems could increase current congestion levels. They suggested 

that implementing these systems without dynamic ride-sharing schemes would not prove 

sustainable.  

Chen et al. (2016) developed an agent-based model for Austin which took into account the effects 

of electric vehicle charging infrastructure and vehicle range on the efficiency of the AMoD 

systems. Their research suggests that fleet size is highly dependent on the charging characteristics 

of the system. In addition, they concluded that a shared AMoD system could serve 96-98% of 

trips with average passenger wait-times between 7 and 10 minutes. However, this system induced 

7-14% more VKT. 

Finally, Liu et al. (2017) evaluated AMoD systems for a region, located in Austin defining four 

different fare levels for shared AVs. They developed a model in MATSim and deployed discrete 

choice models (Chen and Kockelman, 2016) to model travellers’ travel preferences. Their AMoD 

model suggests a 7.8% to 14.2% increase in VKT. However, ride-sharing was allowed in their 

scenarios. 

Zurich Study: 

Boesch et al. (2016) conducted a study in Zurich to investigate the required fleet sizes for different 

levels of demand. The travel demand for the study included 3.6 million trips. The authors 

investigated the relationship between AV fleet sizes for different levels of demand ranging from 

1% to 10%. They concluded that the relationship between served demand and required fleet size 

is nonlinear and the ratio increases as demand grows. Further, their study found that if the 

customers accepted waiting times of a maximum 10 minutes, the current fleet size could be 

reduced by up to 90% even without empty vehicle redistribution. The study, however, did not 

redistribute the idle vehicles to service the waiting customers, and used static rather than dynamic 

travel demands. 

Stockholm: 

Researchers at the university of KTH (Burghout, Rigole and Andreasson, 2015) developed a 

simulation AMoD model to explore the efficiency of these systems for the city of Stockholm. 
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Their study revealed that a fleet of shared AVs without ride-sharing, which is 92% smaller than 

the current private vehicle fleet, can completely meet the travel demand while inducing 24% more 

VKT.  

Berlin Study: 

Berlin is another city for which performance of AMoD systems has been investigated using 

MATSim. The results of this research (Bischoff and Maciejewski, 2016a) show that the current 

private vehicle demand (1.1 million cars) in Berlin could be met by only 100,000 AVs. However, 

their AMoD model suggests that the empty rides are less than 10% in the city. This study also 

believes reducing the service area enhances the efficiency of the system. 

New York Studies: 

The New York study (Shen and Lopes, 2015) introduced the Expand and Target algorithm, which 

was integrated with three different scheduling strategies for dispatching AVs. The study also 

implemented an agent-based simulation platform and empirically evaluated the proposed 

approaches using the New York City taxi data. The experiment results demonstrated that the 

algorithms significantly improved the passengers' experience by reducing the average passenger 

waiting-time by around 30% and increasing the trip success rate (i.e. the number of trips can be 

serviced without exceeding the customer-waiting time threshold) by around 8%.  

In another study (Alonso-Mora et al. 2017), the authors investigated the effects of AMoD systems 

using AVs with different capacities and ride-sharing capabilities via dynamic trip-vehicle 

assignment. The research proposed a highly scalable optimal algorithm, which was experimentally 

validated using New York City taxi data and information from a shared vehicle fleet with a capacity 

of up to ten passengers. The results of their study showed that a fleet of 3,000 AVs with a capacity 

of four passengers could serve 98% of taxi rides, which are currently served by over 13,000 single 

occupant taxis. This article, however, does not report on the induced VKT in the system.  

The review of the current literature indicates that although these studies show that replacing the 

current person trips with shared AMoD systems would result in more VKT, there is no consensus 

on the degree of the expected increase. ITFa (2015) suggests that a shared AMoD system without 

any ride-sharing has the potential to serve all demand at the expense of 89% more VKT. However, 

(Fagnant and Kockelman, 2014), (Fagnant, Kockelman and Bansal, 2015), (Bischoff and 

Maciejewski, 2016a) and (Chen, Kockelman and Hanna, 2016) estimated this increase between 7% 

to 14%. Boesch et al (2016), on the other hand, suggested that 90% of trips could be met using a 
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shared AMoD system without induced VKT provided that passengers accepted waiting times up 

to 10 minutes.  

2.10. Chapter summary 

This chapter started with an elaboration of the concepts of smart cities and mobility. Then, vehicle 

automation, disruptive technologies, and their main constituents were explained. Further, some 

applications of these technologies in different urban contexts were provided to show how smart 

mobility could improve the efficiency of our cities. This chapter also illustrates concepts of AMoD 

systems, ride-sharing, car-sharing and their various forms.  

The final section of this chapter provided a comprehensive review of the available AMoD case 

studies in the literature. This chapter categorises these case studies into two distinct groups namely, 

analytical models and simulation models. 

Analytical models, which are based on the method proposed by James R. Jackson in 1957 (Jackson, 

1957), utilise mathematical techniques to model transport networks. The main drawback of 

analytical models is their reliance on quite unrealistic assumptions such as disregarding the effects 

of congestion in the network. Although using such models could have been justifiable back in the 

time when powerful computers did not exist, deploying them to answer today’s transport questions 

does not make sense. 

One of the analytical models was developed for Singapore (Spieser et al., 2014) in which researchers 

showed a fleet of AMoD system could meet the same travel demand as today using only a third of 

the current number of passenger vehicles. Another analytical model (Zhang and Pavone, 2016) 

also suggests that an AMoD system could meet the current taxi demand in Manhattan using only 

70% of the current New York taxi fleet.  

Neither of these models, however, explored the effects of AMoD systems on VKT. Further, they 

assumed Euclidean distances between their origins and destinations rather than utilising the real 

road network, which ultimately led to less realism.  

There are also many simulation models in the literature which have suggested AMoD systems 

could meet the current demand using much fewer vehicles than that of today at the expense of an 

increase in VKT.  
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Many studies suggest very small potential increases in VKT, ranging from 6% to 14% (Fagnant 

and Kockelman, 2014; Fagnant, Kockelman and Bansal, 2015; Bischoff and Maciejewski, 2016b; 

Boesch, Ciari and Axhausen, 2016; Chen, Kockelman and Hanna, 2016; Liu et al., 2017). The 

Stockholm study (Burghout, Rigole and Andreasson, 2015) also predicts a 24% increase in VKT 

when AMoD systems are operational. However, studies such as (ITF, 2015c; Levin et al., 2017) 

suggest AMoD studies could translate into high induced VKT in the system.  

Various other simulation models also exist (Shen and Lopes, 2015; Alonso-Mora et al., 2017) 

which, although having shown the potential impact of AMoD services on reducing the current 

private vehicle fleet size, they do not report on the amount of increase in VKT. 
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Chapter 3 : Modelling Approaches: Selection of Suitable 

Frameworks for the Evaluation of Technology-Driven 

Transport Initiatives 
 

Supply modelling in transport engineering endeavours to put forward concepts, methods, and 

algorithms to provide a platform where investigating the performance and implications of various 

transport scenarios becomes feasible. Transport supply modelling (also known as transport 

network modelling) techniques always try to trade-off the accuracy of models with computational 

efficiency. This trade-off is mainly determined by the scope of the project at hand, availability of 

data, and budget constraints.  

Initially, transport supply modelling techniques were heavily based upon mathematical algorithms 

and concepts and far simplistic assumptions to provide a tractable solution. This category of 

modelling is known as the analytical modelling approach. 

The advent of computers suitable for use in personal offices at an acceptable price led to the rise 

of new modelling tools that were much more sophisticated than their analytical counterparts, and 

could remove many of the simplifying assumptions, which was the case in analytical models. These 

models are known as simulation models and provide a more realistic representation of transport 

networks, an essential component for producing reliable outcomes.  

Section 3.1 provides a comprehensive discussion of analytical models, their underlying concepts 

and limitations.  Section 3.2 deals with macroscopic models also known as static methods. Section 

3.3 illustrates simulation models, agent-based simulation and associated packages as well as their 

advantages and limitations.  A summary of all modelling approaches is presented in section 3.4. 

3.1. Analytical models 

This section discusses the Jackson Network concept, which have been used as an analytical 

modelling tool in many studies attempting to analyse AMoD systems. The limitations of this 

method has also been outlined. 

3.1.1. Jackson networks 

In practice, an arrival will pass through various queues rather than passing only one queue. For 

instance, a transport network is made up of several road segments that can be modelled as various 
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queues in which vehicles have to wait to pass a node (intersection). Generally, some simplifying 

assumptions should be made to overcome the quite difficult nature of the queuing networks. One 

of these networks is called Jackson networks, first put forward by J. R. Jackson in 1957 (Jackson, 

1957).  

A network of queues is called a Jackson network if the following conditions are satisfied, 

1. All outside arrivals at each queuing station in the network must follow a Poisson process 

2. All service times must be exponentially distributed 

3. All queues must have unlimited capacity 

4. When a job leaves one station, the probability that it will go to another station is 

independent of its history, and of the location of any other job (Markovian property). 

The first three conditions represent the assumptions made for an M/M/s queue. The fourth 

condition implies that in such systems, real-time decision-making is not possible. For instance, in 

a transport network, if a road segment becomes congested, the new arrivals do not switch to the 

route with the highest level of service, rather they choose a random route according to some 

probability distribution.  

It has been proved by (Jackson, 1957) that when a system holds these conditions, each queue can 

be analysed as separate queues by the equations discussed earlier in this chapter and the results can 

be aggregated at the end. 

To illustrate how these discussions can be deployed to analyse different networks, consider a 

system with ν parallel processing stations that feed a final packaging station  j as shown in Figure 

3-7.  
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Figure 3-1: Two-stage queuing network (Jensen, P and Bard, J, 2003) 

In this system, each station receives input from only an external source and a fraction of its output 

goes to station j , while the remainder leaves the system. Station  j  receives inputs from outside 

the network at a rate of 𝛾𝑗 as well as from the ν processing stations with probability 𝜙𝑖𝑗 , 𝑖 =

1, 2, … , 𝜈. In other words, if the flow rate through station i  is λi, then the flow rate into station  j  

is the sum of all these sources. 

𝝀𝒋 = 𝜸𝒋 + ∑ 𝝓𝒊𝒋𝝀𝒊
𝒗
𝒊=𝟏                                                                                             Equation 3-1 

In this example, the steady-state probability distribution for the number at each station and Little’s 

law discussed for the M/M/s model can be used, provided that all the external arrival processes 

and all the service processes are Poisson. Note that steady-state results are only valid for queues 

with unlimited capacity, Poisson input and service processes, and independent transfer 

probabilities 𝜙𝑖𝑗 . 

To compute the input rate to each queuing station, let λi denote the total input to station i. 

Assuming that input to the station equals output, it can be stated that the total output from station 

i is λi as well. Given that the input to any station i must equal the input from outside the system 

plus any output from the other stations routed to i, for an arbitrary network with m stations, the 

general relationship can be written as follows, 

𝝀𝒊 = 𝜸𝒊 + ∑ 𝝓𝒌𝒊𝝀𝒌
𝒎
𝒌=𝟏          𝒊 = 𝟏, 𝟐, … , 𝒎                                                          Equation 3-2 
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In this equation, 𝛾𝑖 is the rate of arrival at station i from outside the network and 𝜙𝑘𝑖 is the 

probability that the output from station k will be routed to station i. The system of m linear 

equations given by this formula can be solved to determine the net input rate λi for each station. 

Let Φ be the 𝑚 × 𝑚 probability matrix that describes the routing of units within a Jackson 

network, and let 𝛾𝑖 denote the mean arrival rate of units going directly to station i from outside 

the system. Then 

𝝀 = 𝜸(𝟏 − 𝚽)−𝟏                                                                                                  Equation 3-3 

where 𝛾 = (𝛾1, … , 𝛾𝑚) and the components of the vector λ denote the arrival rates into the various 

stations that is λi is the net rate into station i. 

After the net rate into each node is known, the network can be decomposed and each node treated 

as if it were an independent queuing system with Poisson input.  

3.1.2. Limitations 

As discussed in the previous section, analytical models established on queuing theory are mainly 

restricted by various limitations attempting to turn these models into a tractable solution. The most 

prominent analytical model that has been manipulated to represent transport networks is called 

Jackson networks, discussed previously in this chapter.  

Jackson networks are limited by the constraints obliging the transport modellers to resort to very 

unrealistic assumptions, discussed as follows,  

1. First constraint: All outside arrivals at each queuing station in the network must follow a Poisson 

process.  

The Poisson process assumes a constant rate of occurrence for a specific random variable such 

as passenger arrival times. That is, it assumes passengers arrive at a constant rate to a taxi 

station over a specific course of time (or simulation time). In other words, it fails to capture 

the time-variant nature of arrival rates which happens in real life, thereby leading to less realism. 

2. Second constraint: Service times are exponentially distributed.  

Exponential distributions assume constant expected times between various events of a random 

variable. For instance, if a random variable is the time a vehicle needs to traverse a road 

segment (i.e. service times), an exponential distribution will assume the expected travel time 
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required to pass that road segment is always the same for all vehicles regardless of the volume 

of traffic on that road. This feature is also referred to as the memoryless property of an 

exponential distribution.  

In simple terms, this constraint disregards the congestion effects on a real transport network. 

Moreover, the study shows that travel times on a transport network do not follow an 

exponential distribution (Chalumuri and Yasuo, 2014). 

3. Third constraint: All queues must have unlimited capacity 

In Jackson models, each road segment is modelled as a queue starting from a node that 

represents the intersection. This constraint implies that the capacity of a specific road segment 

is infinite and can take as many vehicles as arrives at that road segment. In reality, a specific 

road has a limited capacity exceeding which will result in queue spillback affecting the capacity 

of the following road segment as well.  

4. Fourth constraint: When a job leaves one station, the probability that it will go to another station is 

independent of its history and of the location of any other job 

This constraint rules out the real-time decision-making process entirely. That is, in a transport 

network context, if a road segment becomes congested, the new arrivals would not switch to 

the route with the highest level of service, rather they choose a random route according to 

some probability distribution.  

In addition to the limitations discussed in this chapter, another simplifying assumption that 

Jackson networks make is the fact each queue (a queue of vehicles on a road segment, or a 

queue of customers waiting at a taxi rank in a transport network context) can be analysed as 

separate systems and the results can be aggregated at the end.  

It is a very coarse assumption that rules out the interactions of different components of a 

system with each other. As (Barcelo, 2010) states, a system is a collection of entities that act 

and interact together toward the accomplishment of some logical end. Wholes cannot be 

reduced to the sum of their part, and a system is more than the mere sum of its parts. 
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3.2. Macroscopic models 

Macroscopic models (also known as aggregate or static models) represent the dynamics of traffic 

flow regarding their analogy with fluids. These models consider the spatiotemporal evolution of 

the macroscopic variables, volume q(x, t), speed u(x, t), and density k(x, t) in order to explore the 

behaviour of transport systems (Barcelo, 2010).  

Fundamental relationships between traffic flow parameters are speed-sensity, speed-flow, and 

flow-density relationships, called the Greenshield’s models, which are shown in Figure 3-8. It 

should be noted that the slope of any line drawn from the origin of the speed-flow curve to any 

point on the curve represents density. Similarly, the slope of any drawn line from the origin of the 

flow-density curve to any point on the curve represents speed. 

It is clear from Figure 3-8 that flow rate is zero when density is either zero (no vehicle is on the 

road) or maximum (Jam density (Dj) in which the number of vehicles is more than the road 

capacity). For the zero density condition, speed is equal to Sf (speed for the free flow condition in 

which traffic flow is unaffected by upstream or downstream conditions) and should be considered 

as a theoretical amount and is selected by the first driver.  

Figure 3-8 illustrates that flow and density increase from zero in parallel as speed declines 

constantly over this period up to a point called road capacity. This condition is shown as optimum 

speed , So (often called critical speed), optimum density, Do (sometimes referred to as critical 

density), and maximum flow Vm (HCM, 2010). 

 

Figure 3-2: Relationships between speed, density, and flow rate (HCM, 2010) 



Chapter 3: Modelling approaches: selection of suitable frameworks for the evaluation of technology-
driven transport initiatives 

50 
 

Macroscopic models are appropriate for analysing large-scale areas such as an entire city, where 

realizing the minor interactions between entities does not affect the final results of simulation. For 

instance, in a metropolitan area, the overall effects on the transport network due to obstructing 

one arterial route in order to perform some essential maintenance can be examined by developing 

a macroscopic model which provides a sound insight into how traffic characteristics alter on 

neighbouring suburbs. Examples of macroscopic simulation models are Visum (PTV Visum, 2017) 

and Aimsun (TSS, 2017). 

Some of the most significant characteristics of macroscopic models are as follows, 

1. Macroscopic models describe the most important properties of traffic flows, such as the 

formation and dissipation of queues, shock waves etc. 

2. They enable the determination of average travel times, the mean fuel consumption and 

emissions in relation to traffic flow operations. 

3. These models are generally deterministic and less sensitive to small disturbances of input 

(TUD, 2014).  

The application of macroscopic models is extensive and ranges from signal optimization models 

(Chen and Chang, 2014), traffic flow predictions (Abadi, Rajabioun and Ioannou, 2014) to 

assessing the environmental impacts of traffic management methods (Uzunova and Djemai, 2014). 

For example, the study by (Uzunova and Djemai, 2014) incorporated a macroscopic traffic 

simulation model in combination with a CO2 emission model to investigate the effect of traffic 

control on CO2 emissions for a case study situated downstream on a toll plaza. This study proposes 

a general conceptual framework for evaluating the CO2 emissions on the highways, depending on 

the driving speed and the density on the road. The macroscopic lighthill, Whitham and Richards’s 

model, was utilised to model the toll plaza traffic flow, which uses the Greenshield’s function 

method and is presented by a non-linear hyperbolic partial differential equation.   

This study proved that improved traffic flow does not necessarily result in lower vehicle emission. 

In other words, traffic control strategies can have a constructive impact on CO2 emissions 

provided that they ensure high density and high velocity on the highways. In contrast, if traffic 

control strategies end up with low density and high velocity or high density and low velocity on 

highways they will lead to high CO2 emissions. 
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3.3. Simulation models 

With the advent of more powerful computers, transport modellers are provided with novel tools 

whose capabilities goes beyond that of traditional analytical models, which were merely based upon 

simplistic and sometimes unrealistic assumptions.  

Simulation provides a platform for studying the behaviour of specific real-world systems in various 

circumstances in a simple and economical manner. Most of the subsequent effects due to any 

modification in a system can be assessed in a computer without any need to establish high-cost 

experiments in the field which is also impossible in some cases. In other words, simulation is a 

technique which permits the study of complex systems such as transport networks in the 

laboratory rather than in the field. Some reasons why simulation methods are utilised, especially in 

the transport modelling domain are as follows:  

a) Simulation provides a condition in which gathering the data in a systematic way becomes 

possible thereby the study of traffic characteristics and operation become much more possible.  

b) The simulation of complex traffic operations clarifies the importance degree of different 

variables and how they relate. This may lead to significant analytic formulations.  

c) Simulation is a method to test the authenticity of analytical solutions (Drew, D, 1968). 

One of the powerful aspects of transport simulation tools is their ability to represent the dynamic 

nature of supply and demand processes, a key feature in all stochastic systems. The dynamic 

propagation of traffic flow within the network, varying traffic control strategies such as traffic 

signals, various capacity of links within a day, and the effects of public transport systems on traffic 

flow are examples of various phenomena that can easily be modelled and explored in simulation 

models. 

Transport simulation models fall into two categories, namely, microscopic and mesoscopic 

models. These classifications are based on the way the traffic simulation models treat the traffic 

flow. Sections 3.2.1 and 3.2.2 discuss these models in more detail. Section 3.2.3 illustrates the 

notion of agent-based modelling and describes the related programs, MATSim and Commuter. 

MATSim is an agent-based simulation tool that has been widely used in the literature by many 

researchers to investigate the behaviours of AMoD systems. This section provides more details on 

the algorithms that MATSim and Commuter deploy and their associated limitations.  
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3.3.1. Microscopic models 

Microscopic simulation models consider each vehicle through the network and apply its interaction 

with other vehicles and road infrastructure. In other words, microsimulation models are dynamic, 

stochastic and discrete time modelling techniques that simulate the movement of individual 

vehicles based on car following, lane changing and gap acceptance algorithms that are updated 

several times every second (NSWG, 2013). Additionally, given microscopic models can better 

capture the dynamic nature of traffic flow, analysing the small part (e.g. intersection, merging 

ramps etc.) of a large network utilizing microscopic simulation models can lead to more precise 

results. 

Generally, vehicle-behaviour models can be divided into car-following, lane-change, and route-

choice models. The car-following model describes the breaking and accelerating patterns as a result 

of the interaction between the driver and the following vehicle as well as other objects such as 

speed limits, road curvature, etc. The lane-changing model determines when a driver should 

change lanes based on the driver’s preferences, speed of the following vehicle, a sufficiently large 

gap in the adjacent lane, etc. The route-choice model describes how drivers determine which path 

to take from their starting location to their destination, and how they react to traffic and route 

information along the way (Burghout, Koutsopoulos and Andréasson, 2005).  

Demand in microscopic models is determined in two ways. The first method is to designate the 

traffic flow entering the network in combination with the percentage of vehicles that turn left, 

right or go straight for each intersection approach. The second method is to divide the entire 

modelled network into different zones and define the number of vehicles that intend to travel 

from each zone to others using an origin-destination (OD) matrix (Burghout, Koutsopoulos and 

Andréasson, 2005).  

Microscopic models have a great capability to analyse a specific part of a whole transport network 

(e.g. merging ramps, signalized intersections, roundabouts, etc.) in considerable detail. For 

example, the effect of a bus stop on the capacity of an intersection, signal timing optimization or 

the delays which are being experienced by each type of vehicle due to a cross walk can be 

investigated exploiting a microscopic model. Moreover, microscopic models can be used to assess 

the emission of green-house gases due to transport activities (EC, 2009). Another advantage of 

microscopic simulation models is their ability to interact online with external real time applications, 

as for example SCOOT, SCATS, Real-Time Ramp Metering, or actuated systems (TSS, 2017). 

Examples of microscopic simulation models are Vissim (PTV Vissim, 2017), Paramics (Paramics, 
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2017) and AIMSUN (TSS, 2017). However, microscopic simulation models have their own 

shortcomings, including high sensitivity to input parameters and geometric properties as well as a 

cumbersome calibration and validation process due to the many parameters that are part of the 

microscopic model (Burghout, Koutsopoulos and Andréasson, 2005). 

Many studies have dealt with transport issues utilizing microscopic models. For instance, Alterawi 

and Yousif (2014) developed a micro simulation model to examine complex drivers’ behaviour at 

shuttle-lane urban roadwork where one lane of a single carriageway road is closed while leaving 

the other for use by both directions in an alternating way. The model development for this study 

is made up of two parts. The first part defines a car following (CF) model calculating the 

acceleration/deceleration rates of successive vehicles with respect to their leader. To develop the 

CF model, the authors took into account used by previous studies with some modifications to 

account for the driver’s compliance at the TTSs and the effects of a dilemma zone (DZ). In the 

second part, the behaviour of a driver approaching an SL roadwork zone is modelled inspired by 

the available concepts in normal signalized intersections. Moreover, the compliance of a driver 

with TTSs in terms of responding to the presence of DZ was examined. The study which was 

based on real observations collected from six SL road works within Greater Manchester, UK, 

divided drivers into four categories given their intention to cross the red light as follows,  

Category 1—DZ: Drivers choose to cross during amber/red light due to the presence of a DZ. 

• Category 2—DZ follower: Drivers choose to follow a leader that crossed during amber/red light 

due to the presence of a DZ. 

• Category 3—Group violations: Drivers choose to violate the red light due to frustration/long 

waiting time caused by microwave vehicle detector failure. 

• Category 4—Single violation: Drivers choose to violate the red light because of the available 

opportunity of a gap in traffic. 

All parts of the microscopic model were tested using real data collected from site observations, 

and the calibration and validation of the model led to acceptable results (Alterawi and Yousif, 

2014). 
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3.3.2. Mesoscopic models 

Mesoscopic models refer to mathematical models for the movement of clusters or platoons of 

vehicles, incorporating equations to indicate how these clusters interact (HCM, 2010). Mesoscopic 

models lie between macroscopic and microscopic models aimed at decreasing the computational 

burden of microscopic models for calibration and validation in parallel with shrinking gaps of 

macroscopic models. In general, under the mesoscopic traffic flow, models should be understood 

as models where traffic flow is described with a high level of detail, but at the same time, flow 

behaviour and flow interaction are presented at a low level of description (Savrasovs, 2011). 

Aimsun, DYNAMIT, DYNEMO and DYNASMART are some examples of mesoscopic 

simulation models (Boxhill and Yu, 2000). The main application area of mesoscopic models is 

where the detail of microscopic simulation might be desirable but infeasible due to a large network, 

or limited resources available to be spent on the coding and debugging of the network (Burghout, 

Koutsopoulos and Andréasson, 2005). 

Different programs incorporate varying techniques for defining mesoscopic models. Programs 

such as CONTRAM (Leonard, 1989) receive input demand as a time-sliced Origin-Destination 

matrix and divide them up into a stream of small packets which are routed independently (Taylor, 

2003). The speed for each packet on any road is derived from a speed-density function, which is 

special for that link. However, the lane changes and acceleration/deceleration of vehicles is not 

modelled (Burghout, Koutsopoulos and Andréasson, 2005). 

Another mesoscopic model called DYNAMIT (Ben-Akiva, 1996) simulates driver-behaviour at a 

disaggregate level while OD matrix estimation and prediction take place at an aggregate level. In 

this model, a deterministic queuing model and a speed model are utilised to capture traffic 

dynamics (Ben-akiva et al., 1998).  

Exploiting mesoscopic models can aid researchers cope with transport challenges. As an example, 

Li et al. (2015) developed a mesoscopic model to simulate the dynamics of vehicles on an urban 

expressway network under variable speed limit strategies. This study took the Jinan expressway 

network as a case study, which is the main traffic artery of this city, and focused on finding the 

discipline of traffic jam propagation and characteristic congestion propagation to seek a solution 

to ease traffic congestion by a variable speed limit method. The results of the simulation showed 

that the variable speed limit strategy can improve the traffic condition of an area where there is an 

accident which causes traffic jams on the traffic network (Li, Fu and Dang, 2015). 
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3.3.3. Agent-based simulation  

All traffic simulation programs regardless of their traffic flow models (microscopic or mesoscopic), 

are described as agent-based packages. However, the key difference between agent-based 

simulation tools is the fact that in some of them, such as Vissim or Aimsun, only vehicles are 

considered to be agents, whereas in others such as MATSim or Commuter, individual travellers 

are also considered agents. In other words, in the former type, only vehicles’ information can be 

retrieved while in the latter, travellers’ information can also be generated.  

Tracking individual travellers within the simulation framework enables software to store the travel 

information of each customer moving from one point to another across the transport network. 

This information can be customer waiting times at taxi stations, or the success rate of a transport 

system in servicing customers in time. In particular, models that evaluate AMoD, car-sharing or 

ride-sharing scenarios need to have access to individual travellers’ information in order to gain a 

realistic insight into the performance of the proposed transport system.  

MATSim is one of the most famous agent-based programs and is capable of tracking travellers 

within transport network. This program, however, suffers from some significant limitations, which 

led the current research team to choose a different agent-based program called Commuter. The 

following sections illustrate MATSim and Commuter in detail along with their limitations.  

3.3.3.1. MATSim 

MATSim (Multi-Agent Transport Simulation) is an open-source agent-based simulation platform 

tailored for large-scale scenarios. This has been realised through stripping down the model’s 

features such as deploying a very simple queue-based approach to represent the traffic flow within 

the network rather than using very complex car-following and lane-changing models.  

Each agent in MATSim repeatedly optimises its daily activity schedule while in competition for 

space-time slots with all the other agents in the model. This is based on a co-evolutionary algorithm 

and is analogous to the dynamic route assignment technique with some additional choice 

dimensions such as departure-time and mode-choice models. 

In MATSim, initial demand is based on the daily activity chains of the populations involved in the 

study area and is derived from empirical data through sampling or discrete choice modelling. As 

shown in Figure 3-9, this initial demand is optimised individually by each agent through a process 

known as MATSim loop or MATSim cycle. 
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In MATSim, each person has a number of daily plans, which are scored through simulation and 

calculate the performance of each plan. In other words, every agent initially selects a plan and 

executes that plan through simulation. At the end of the simulation, if the agent finds that the 

chosen plan incurred a penalty (e.g. arrived late at workplace), the agent chooses another plan for 

the next day. This process is referred to as re-planning (Horni, Nagel and Axhausen, 2016). 

 

Figure 3-3: MATSim loop, sometimes called the MATSim cycle (Horni, Nagel and Axhausen, 
2016) 

 

a. MATSim Traffic Flow Model 

As MATSim is developed to model large-scale scenarios, it utilises a computationally efficient 

queue-based approach. In this model, cars queue up in front of the intersection and new entrants 

to the link are added to the end of the waiting queue. This method disregards the state of traffic 

on the link itself and analyses traffic flow looking only at the intersections. In other words, in this 

method, traffic is either flowing freely on the links or cars are queuing up in front of the next 

intersection and waiting for the car in front of them to move. Travel time is equivalent to the time 

needed to travel down the street at free speed. That is, when a car enters a link, it keeps traveling 

at free flow speed as long as it confronts a queue where it must stop as long as the preceding cars 

move forward. This model accelerates the simulation process by reducing the amount of 

information processed by the program by virtue of disregarding the fine-grained stop-and go 

interactions between following vehicles (Charypar, Axhausen and Nagel, 2007). 

MATSim uses an event-driven simulation approach in which information regarding a link is 

processed whenever a car enters or leaves a link (i.e. an event occurs) as opposed to the time-step 

based approaches that store the information in every time-step.  
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The inefficiency of time-step approaches become visible when flow density is very low on a link 

such as during off-peak periods or at nights. During these periods, the program has to conduct 

many computations for empty links, which will translate into a slower simulation process.  

Event-based approaches, on the other hand, process the links whenever they enter or leave them. 

That is, the computational effort is proportional to the traffic load, and the most computational 

time is spent where traffic flow is maximal and almost no time is spent where the traffic network 

is empty (Charypar, Axhausen and Nagel, 2007). 

b. MATSim’s Co-Evolutionary Algorithm 

In MATSim, each person represents a species with a specified daily plan. A co-evolutionary 

algorithm co-evolves different species regarding their attributed plans, and people compete to 

optimise their plans, taking into account the interactions between various agents (Figure 3-10). 

Note that this equilibrium is more than traditional traffic flow equilibria, which ignores activities.  

The main difference between evolutionary and co-evolutionary algorithms is that the evolutionary 

algorithm results in system optimum as optimisation is conducted using a global fitness function, 

whereas the co-evolutionary algorithm leads to user equilibrium since optimisation is realised in 

terms of individual scoring functions, and within an agent’s set of plans.  

 

Figure 3-4: The co-evolutionary algorithm in MATSim (Horni, Nagel and Axhausen, 2016) 



Chapter 3: Modelling approaches: selection of suitable frameworks for the evaluation of technology-
driven transport initiatives 

58 
 

c. Score and Utility 

As previously discussed, in MATSim, agents learn by executing multiple plans in the simulation 

environment and scoring them accordingly. Scoring is a central component of MATSim and only 

solutions with the highest score will survive. That is, if an agent’s plans exceed the maximum 

number of plans he or she is allowed to have, MATSim will remove the plan with the lowest score 

from the agent’s memory. 

The performance of the plans is selected by the agents at the end of simulation. Some may prefer 

a congested car trip, others may prefer a crowded but affordable trip by public transit, while others 

may prefer using a bicycle even in bad weather. To replicate this, MATSim uses random utility 

models for the score, as discussed in (Ben-Akiva and Lerman, 1985). 

MATSim’s basic scoring function was formulated by (Charypar and Nagel, 2005) in which the 

utility of a plan Splan is computed as the sum of all activity utilities Sact,q plus the sum of all travel dis-

utilities Strav,mode(q).  

𝑺𝒑𝒍𝒂𝒏 = ∑ 𝑺𝒂𝒄𝒕,𝒒
𝑵−𝟏
𝒒=𝟎 + ∑ 𝑺𝒕𝒓𝒂𝒗,𝒎𝒐𝒅𝒆(𝒒)

𝑵−𝟏
𝒒=𝟎                                                            Equation 3-4 

where N is the number of activities, and Trip q is the trip that follows activity q. For more 

information regarding the scoring functions, refer to (Horni, Nagel and Axhausen, 2016). 

3.3.3.2. Commuter 

The agent-based simulation program used for this research is called Commuter. To build a model 

in Commuter, one needs to start by constructing the network objects which define the surfaces on 

which the agents move, such as lanes and intersections for road vehicles, tracks for trains and 

trams, and walking surfaces for pedestrian movement.  

After defining the required objects to represent the network, mode-change areas need to be 

specified within the model. For instance, a parking area represents a mode change from driving to 

walking or vice versa. Mode-change locations supported in Commuter are as follows: 

 Parking areas on-street, in bays, and off-street and in single-story or multi-storey lots; 

 Public transit stands for buses, trams, and trains; 

 Drop-off areas applying to private vehicles and taxis; 

 Pick-up areas for private vehicles and prearranged collection points, and 
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 Taxi ranks. 

Parking bays can be defined on either side of a street with bays parallel to the direction of traffic 

flow or perpendicular. 

a. Demand definition in Commuter 

The next stage in developing a model in Commuter is designating travellers’ origin points  and also 

their destinations, when people are to be directed. For directed cases, Commuter uses OD matrices 

similar to other vehicle-oriented simulation programs with the difference that the areas refer to 

places that might not be accessible by vehicles. This feature adds some interesting functionalities 

into the modelling system such as the capability of defining a multi-story building specifying the 

base and ceiling for each area (Duncan, 2010). 

In Commuter, demand consists of three components, namely, demand division, profiles, matrices 

(directed) or origin volumes and splits (undirected). 

A demand division defines a group of types and assigns a proportion to each type, with the 

proportions summing to 100 percent (e.g. 30% of people travel to the city centre, 40% travel to 

the northern suburbs, and 30% travel to the eastern suburbs). The demand division is then 

associated with a demand matrix or origin volume. 

A profile can be utilised to specify the demand distribution over time using different demand 

release rates into the model during different terms, say peak periods or off-peak periods. A profile 

has a term, defining start time and end time, a number of intervals, and a weight for each interval, 

specified as a percentage. The weights for all intervals must sum to 100%. For example, in a 

motorway model with a term of 08:00 to 09:00, automated traffic count data is used to determine 

the profile of the northbound traffic released from the motorway South zone. This data shows: 

• 800 vehicles 08:00 to 08:15; 

• 2000 vehicles 08:15 to 08:30; 

• 800 vehicles 08:30 to 08:45, and 

• 400 vehicles 08:45 to 09:00. 
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The total number of northbound vehicles in the modelled period is 4000. The profile applied to 

the South zone would have a term of 08:00 to 09:00, interval of 4, and demand release percentages 

of: 

20% (08:00 to 08:15) 

50% (08:15 to 08:30) 

20% (08:30 to 08:45) 

10% (08:45 to 09:00) 

If defining the directed demand in such a way as to assign predefined origins and destinations to 

each person is of interest, this demand can be entered into the model as a two-dimensional table 

known as an OD matrix. In commuter, each matrix can be for people, vehicles or freight. A person 

matrix generates people from each area who can choose any available transport mode to their 

desired destination. A vehicle matrix releases vehicles into the model in which mode change is not 

possible. Vehicle OD matrices can be used to generate background traffic where no mode switch 

is required. Freight is modelled as an agent in Commuter with no walk speed, the freight has a 

route choice and moves along moving walkways and on available modes of transport (Duncan, 

2013). 

Once the origin and destination areas are defined, the model builds a routing decision tree to each 

possible destination from every possible origin. This routing tree uses all available mode choice 

segment as its branches. The routing tree is based on cost and each person has a behaviour type 

that assigns costs to time, distance, and price (Duncan, 2010). 

Another method for defining demand in Commuter is called undirected demand in which a one-

dimensional origin volume and a set of splits are to be specified in the program. The origin volume 

specifies the number of people or vehicles to be released from each area or zone, respectively. The 

splits are used for route assignment at each route choice location – for example at intersections or 

walkway junctions. Undirected demand can be used for smaller networks to speed up the demand 

building process. When using undirected demand, it is important to recognise that each person or 

vehicle does not have a destination while travelling through the network; it discovers its destination 

only when it arrives. Each route choice location automatically creates a split object that, by default, 

assigns an equal proportion of all incoming traffic to each of the available exit options. At a 4-way 
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intersection, an incoming agent has a choice of left, right or straight ahead, and the default split 

object will stochastically assign the agent to one of those exits, each with equal probability of 1/3. 

The split function is very simple; if more complex routing rules are required, then the route choice 

tool allows rules to be created that assign the exit (left, ahead, right) based on origin area, agent 

type, sign settings, etc. The outcome of a route choice rule can be a single exit or a stochastic 

distribution across multiple exits, similar to a split (Duncan, 2013). 

b. Behavioural definitions in Commuter  

Another valuable function of Commuter is assigning different behaviours that define which modes 

of transport (walking, driving, riding, etc.) a person can take to get to the desired destination. For 

instance, if a person has been assigned  behaviours called Can Walk, Can Drive, Can Ride, he can 

start his trip walking from his home to his own car and drive it to the train station and park it there 

and take a train to his final destination. Different behaviours available in Commuter are as follows, 

 Can Walk: True if a person with this behaviour can use walking as a mode of travel in the 

model; 

 Can Drive: True if a person with this behaviour can drive to a parking zone or a transition 

zone in the model; 

 Can Ride: True if a person with this behaviour can take public transport; 

 Can Taxi: True if a person with this behaviour can take a taxi, if taxis are available. Even 

if this is true, the cost of taking a taxi will still be taken into account in the calculation of 

the lowest-cost route to the destination. Setting this to false will rule out the option of 

taking a taxi. 

 Can Cycle: True if a person with this behaviour will cycle, and a cycle vehicle type exists 

 Can Be Dropped Off: True if a person with this behaviour can be dropped off at a 

designated drop-off zone. This implies that this person has a car and driver available to 

drive them to their destination, thus will not need to spend money on parking. This may 

often be the cheapest option for travelling to a destination with pay parking, but in many 

cases only a small fraction of the population will have a car and driver available to them. 

 Will Be Picked Up: True if a person of this behaviour will be picked up at a designated 

pick-up zone. If this flag is true, then no other mode will be considered (apart from walking 

from the origin to the point of pick-up). 
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c. Traffic flow in Commuter 

As for car-following modelling, Commuter proposes three popular models, namely, the Gipps, 

Wiedemann, and Fritszche models. The Gipps model is used by default, being the simplest of 

three to calibrate. Users can also define their own car-following algorithms by deploying the 

Application Programming Interface (API) tool provided by Commuter to enable user-defined 

extensions. 

To investigate the feasibility of Commuter creating a model and running it successfully within a 

reasonable time to produce results suitable for analysis, Duncan (2010) conducted a study based 

on Edinburgh Airport, United Kingdom. The study area consists of two ODs for people (areas) 

one representing the city, the other representing the airport concourse for check-in and arrivals. 

There are seven different transport modes available for travellers as follows, 

1. Train: People use a train to get to the airport 

2. Taxi: People take a taxi to get to the airport 

3. Drop-off: People have someone to drop them off at the airport  

4. Short-term parking: People use their own private car to get to the airport and use short-

term parking to park their cars 

5. Medium-term open-air parking: People use their own cars to get to the airport and park 

their cars in the medium-term open-air parking. 

6. Medium-term multi-story parking: People use their own cars to get to the airport and 

park their cars in the medium-term multi-story parking. 

7. Long-term parking: People use their own cars to get to the airport and park their cars in 

the long-term multi-story parking. 

Six travellers are defined with various behaviours and value of times, and the desired modes are 

chosen based on their behaviours and the cost of travel. 

The model simulated a 4-h morning peak period (06:00 to 10:00am) in an average time of just 

under 25 minutes. A total of 5335 trips were generated, consisting of 4400 person trips, 845 

vehicle-only trips, and 90 public transit trips.  

Ten repeated runs with the same input and random seed produced identical results, and when a 

couple of small network geometry variations were introduced, the variations observed in some key 
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measurements (total travel time and total distance travelled) were not significant. Thus, the model 

showed excellent repeatability. 

In conclusion, the pilot study was successful in that it illustrated that it was possible to model all 

people in a transport network from origin to destination through a number of mode-changes. 

Moreover, as shown in Figure 3-11 and Figure 3-12, Commuter provides an appropriate visual 

platform which allows analysts and even non-experts to well-grasp the interactions between 

different agents and also the mode-switching of travellers within the network. To date, Commuter 

has been utilized to investigate several real transport networks in different cities such as Tokyo, 

Perth, Shanghai (Azalient, 2013). 

Further, Commuter enables analysts to explore the environmental effects of vehicles in terms of 

the amount of exhaust emissions (CO2_NO_PM10) they produce when the number of standard 

engines is defined. Commuter uses some standard definitions of engines retrieved from the UK 

Transport Research Laboratory (TRL). However, using the local emission values in order to define 

the available environmental models of a region is also possible in Commuter (Duncan, 2013). 

 

Figure 3-5: Taxi rank in the model where people change mode from walking to passenger 
(Duncan, 2010) 
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Figure 3-6: Shuttle bus stopping to pick up passengers from long-term parking area (Duncan, 
2010) 

3.3.3.3. Advantages and limitations 

MATSim uses a queue-based approach to simulate traffic flow within the network to reduce 

computational burden (Horni, Nagel and Axhausen, 2016). Therefore, it does not capture the 

complex car following and lane changing effects and results in reduced model resolution. Another 

limitation of MATSim is that simulating empty self-driving vehicle-kilometres-of-travel (VKT) (i.e. 

those vehicles travelling on the road network searching for a customer or needing to travel to 

service a particular demand) is not possible. MATSim, therefore, only estimates the empty VKTs 

(eVKT) through unrealistic assumptions in which the AVs are moved virtually between stations 

based on Euclidean distances from origins to destinations (Boesch, Ciari and Axhausen, 2016), 

and not on the physical road links. It is worth noting that these limitations are the state of MATSim 

at the time of writing this dissertation. 

On the other hand, Commuter deploys a microscopic traffic flow model, which leads to a more 

realistic propagation of traffic in a network. Further, Commuter is able to simulate the movement 

of empty AVs within the network, which helps modellers obtain a better insight into the impact 

of these empty travels on traffic conditions. However, in Commuter, unlike MATSim, demand 

can only be introduced at an aggregate level by a demand matrix. This means dynamic destination 

choice is not possible in Commuter, and people can only head towards a destination ordered by a 
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demand matrix. Added to this, the high resolution of Commuter’s traffic flow model prevents it 

from modelling large areas on a typical PC. 

3.4.  Chapter summary 

This chapter outlines the available supply modelling techniques along with their limitations and 

divides them into three groups: 1. analytical models, 2. macroscopic models and 3. simulation 

models.  

Although analytical models implement computationally efficient methods to analyse transport 

systems, their reliance on simplistic assumptions results in a less realistic perspective. Their main 

limitations include disregarding the effects of congestion and dynamic route choice on traffic 

conditions in a network as well as modelling transport networks using Euclidean distances. 

Macroscopic models use more realistic algorithms and assumptions to evaluate transport systems 

in comparison with analytical models. Although macroscopic models similar to analytical models 

implement static methods to assign traffic to the network, their algorithms, to some extent, can 

capture the effects of congestion on the performance of transport scenarios. Moreover, 

macroscopic models use real transport networks for their evaluations as opposed to analytical 

models. Macroscopic models are usually used for strategic planning where detailed traffic flow 

characteristics do not play a crucial role. 

Simulation models can be differentiated according to their traffic flow models and are categorised 

into two groups: 1. microscopic models and 2. mesoscopic models. Microscopic models use more 

complex traffic flow models than mesoscopic ones. Although microscopic models give transport 

modellers a better understanding of traffic conditions on roads, their high resolution does not 

allow large areas to be modelled on a typical office computer. 

All simulation models are agent-based. However, the definition of agent differs in each model. 

The first group of agent-based simulation models only provide users with information on vehicles 

travelling within the network, while the second group in addition to vehicle data, records travellers’ 

information and provides them at the end of the simulation. 

Given the objectives of the current PhD research, an agent-based simulation model with the latter 

features would be more helpful. MATSim is one of the most well-known agent-based simulation 

tools with this characteristic. However, it is not able to simulate empty AVs travelling in the 
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network to pick up customers. Added to this, MATSim’s traffic flow model is not able to take into 

account the interactions between vehicles as it utilises a mesoscopic model. Given the current 

research aims for exploring the network effects of AMoD systems, implementing a microscopic 

model which is capable of replicating interactions among vehicles would make more sense. 

Further, as none of the current AMoD studies in the literature have looked into these systems at 

a micro level, it would be useful to analyse AMoD systems from this new perspective as well. 

With respect to all the aforementioned shortcomings of MATSim, Commuter was chosen as the 

modelling platform in this research. Commuter uses a microscopic traffic flow model and is able 

to simulate the empty travels of AVs. That is to say, Commuter produces a more realistic traffic 

flow in comparison with MATSim. However, modelling large areas in Commuter using a typical 

PC is not possible due to its more detailed traffic flow models.
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Chapter 4 : Pilot Study- Exploration of the Feasibility of 

Agent-Based Simulation for AMoD Studies 

This chapter describes the initial steps undertaken to commence the research process and obtain 

the knowledge necessary to establish a reliable test bed. The remainder of this chapter is organised 

as follows. Section 4.1 describes the study area, and sections 4.2 through 4.6 discuss six different 

scenarios and the simulation results associated with each of them. Finally, section 4.7 offers the 

concluding remarks for the pilot study.  

4.1. Pilot study area 

To develop a proof-of-concept, a pilot study is conducted on a real transport network located in 

Melbourne (Figure 4-1). The pilot explores the feasibility of using Commuter for this project. It 

also helps to develop a better understanding of the capabilities of the tool and the various 

functionalities required to enable the investigation of a vast range of AMoD scenarios across a 

much larger study area.  

The study area is located in Stonington and covers an area equivalent to 6 km2 (Figure 4-1). It 

features 11 signalised intersections, and 10 arterial roads. Travel demand is aggregated into nine 

distinct areas representing the ODs for the travellers (Figure 4-2). Travellers enter the model 

according to a stochastic approach from these areas. Note that no public transport is modelled in 

the pilot study area, and the whole traffic flow contains only private vehicles.  

Travel demand in this model is based on Victorian Integrated Survey of Travel and Activity, which 

will be discussed in detail in chapter 5. VISTA provides a detailed image of Victorian household 

travel. All members of surveyed households are asked to fill in a travel diary for one specified day 

of the year. The survey administered in a similar way to the Census, with survey staff dropping off 

and picking up the self-completed travel diaries. VISTA helps the government in making better 

transport and land-use decisions. The survey is conducted in Greater Melbourne, Geelong and 

some regional centres (VISTA, 2016).  
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Figure 4-1: Pilot study area 

 

Figure 4-2: Origins and destinations in the pilot study area 
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4.2. Scenario 1: autonomous shared mobility with zero passenger waiting times 

A base case (BC) scenario and a scenario using a simple AMoD system (AMoD1) were developed 

in Commuter. In the BC scenario, all trips are undertaken during the AM-Peak (7am-9am) using 

private cars. Table 4-1 describes the demand distribution among different ODs. The information 

in Table 4-1 assumes single-occupant vehicles and shows a BC scenario with a total number of 

2,136 privately-owned vehicles. Assuming an area of 16.8 square meters is needed (on average) to 

accommodate every single private vehicle at the destination, it is estimated that these vehicles will 

require an area of around 35,885 square meters as parking lots in the proximity of destinations. 

In the autonomous shared mobility scenario (AMoD1), it is assumed that privately-owned AVs 

and shared AVs with capacities ranging from two to four people are available to replace all private 

vehicle travel. This scenario also assumes that passengers will have a vehicle immediately available 

for their travel and that their waiting times are zero. This scenario was investigated as it represented 

the closest conditions to owning and driving a private vehicle, which is immediately available to 

travellers. Twenty-five percent of travellers were assumed to be using privately-owned AVs, and 

the other seventy-five percent were assumed to travel in groups of two, three or four. In both 

cases, passengers are picked up and dropped-off at their destinations by the AVs. After dropping 

their passengers off, the privately-owned AVs head back to their starting point (Home) and wait 

for further instructions from their owners. The self-driving shared cars, on the other hand, are 

typically owned by a commercial fleet company, which directs the vehicles to nearby waiting areas 

where they wait for further instructions.  

An initial analysis of the autonomous mobility scenario (Table 4-2) shows that people travelling in 

groups and being dropped-off by the AVs results in both a decreased number of required vehicles 

(more than 40% compared to the BC) and parking space (around 58% compared to the BC). This 

frees up a substantial amount of land and space, which can be used for different purposes. 

However, the simulation also shows that the total VKT by the AVs increased by around 29% 

because the vehicles needed to reposition according to the heuristic rebalancing method will be 

described in Section 4.4 . This increase is largely due to the privately-owned vehicles, which were 

assumed to return to their point of origin. Finally, it is assumed in the analysis that no public 

parking space is needed for the privately-owned cars because they wait at home rather than in a 

public parking space. 
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Table 4-1: Total number of trips between different ODs during AM-peak (07:00-09:00am) 

        Destination 

Origin 
H7 H8 H9 Total 

H1 100 120 89 309 

H2 147 90 126 363 

H3 125 100 109 334 

H4 160 100 140 400 

H5 120 160 100 380 

H6 110 120 120 350 

Total 762 690 684 2,136 

 

Table 4-2: Comparative evaluation of base case and AMoD1 scenarios 

Scenario name 
Number of vehicles 

on the road network 

Mean VKT 

travelled 

(Km) 

Parking space 

required (m2) 

Base Case – human-driven single-

occupant vehicles (BC) 
2,136 4.04 35,885 

Autonomous mobility scenario 

(AMoD1) 
1,217 5.20 15,238 

Percent difference between BC 

and AMoD1 
43% decrease 29% increase 58% reduction 

 

4.3. Scenario 2: Autonomous shared mobility with maximum 5-minute passenger 
waiting times 

This scenario comprises the same origins and destinations as the first scenario within the study 

area shown in Figure 4-1 with a different demand matrix (Table 4-3). 

In the BC scenario, it is assumed that all trips originate from home (where required on-street 

parking space is zero assuming all vehicles are parked on-site) and travel toward destinations where 

off-street parking is also available. All trips are assumed to be undertaken during the period 07:00- 

09:00am using single-occupant traditional privately-owned vehicles (therefore, the waiting time for 

travellers is zero). 
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Table 4-3: Total number of trips between different ODs during AM-peak (07:00-09:00am) 

Origin\   

Destination 
H1 H2 H3 H4 H5 H6 H7 H8 H9 Total 

H1       50 60 68 178 

H2       78 40 47 165 

H3       64 60 68 192 

H4       70 65 70 205 

H5       80 75 80 235 

H6       50 84 90 224 

H7 50 43 50 60 40 35    278 

H8 30 50 45 35 25 45    230 

H9 40 56 36 70 80 70    352 

Total 120 149 131 165 145 150 392 384 423 2,059 

 
In this second scenario (AMoD2), the waiting times for passengers are assumed to be longer than 

in AMoD1. This reflects situations in which the AV needs some time to travel to the customer’s 

location. The only constraint is that the waiting times should not exceed 5 minutes. It is assumed 

that all ODs have at least one taxi rank in close proximity and one drop-off lane at their 

destinations. In this scenario, an AV picks up  customers at the taxi rank, and as soon as it drops 

off the customers, the vehicle proceeds to the nearest taxi rank where it is needed to meet the 

maximum 5 minutes waiting constraint defined by the system. The following section explains the 

methodology used to determine the required initial AMoD fleet size and a heuristic rebalancing 

strategy to reduce the empty travel and idle times for AMoD vehicles. 

4.4. Determination of fleet size and rebalancing strategy 

The goal is to find the minimum number of AMoD vehicles required to meet the same demand 

as the BC scenario such that passengers do not wait more than 5 minutes for their pick-up vehicle. 

To achieve this, the area (3km x 2km) is divided into two equal blocks of 1.5km by 2km (Figure 

4-3). 

The first challenge is to determine the initial number of AMoD vehicles which should be fed into 

the taxi ranks. To this end, the difference between the number of generated and attracted trips is 

calculated for each origin. If the number of outgoing vehicles exceeds the number of in-coming 

AMoD vehicles, this number is chosen as the initially required number of vehicles for the origin 

at the start of the simulation. For the first simulation run, no AMoD vehicles were allocated to the 

origins in which the number of attracted trips was greater than the generated ones. The premise is 

that as the trip attraction rate for these areas is higher, AMoD vehicles leaving other areas with 

greater trip generation rates will have enough time to arrive at these taxi ranks. Then, vehicles are 

released into the model within 30 minutes and afterwards no new vehicles are generated and the 
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fleet size remains fixed until the end of the simulation time (07:00-09:00am).  This period at the 

start of simulations (e.g. 30 minutes in our model) is referred as “Warm-up” time within the 

literature. The warm-up time allows us figure out the approximate fleet size suitable to meet travel 

demand. 

After the first run, the waiting times for all passengers are calculated and the number of initial 

AMoD vehicles for the taxi ranks where passengers experience waiting times more than 5 minutes 

within the first 30 minutes of the simulation are increased proportional to the length of waiting 

times. This process is repeated until all traveller’s waiting times are less than 5 minutes during the 

first 30 minutes of the simulation period. Thereafter, attempts are made to reduce the waiting 

times by rebalancing the AMoD vehicles between various taxi ranks rather than generating new 

vehicles to meet the demand.  

 
Figure 4-3: The pilot area divided into two equal blocks, namely block 1 and block 2 for AMoD 

rebalancing purposes 

 
The waiting times for each taxi rank over the simulation period are recorded and the periods during 

which waiting times are longer than 5 minutes are identified. The waiting times in excess of 5 

minutes are reduced by redirecting the AVs parked in the areas with waiting times less than 3 

minutes (i.e. the areas with the surplus AVs) within the same block. An iterative process is 

undertaken until all waiting times are under 5 minutes within the same block. This is repeated for 

Block 2 and this process repeats until the waiting times for all passengers across the whole network 

falls to below 5 minutes. 
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The results, shown in Table 4-4, illustrate that deploying the AMoD system leads to a dramatic 

decrease in not only the total number of vehicles required to meet the demand (88% compared to 

the base case scenario) but also the required parking space (83% compared to base case scenario) 

at the expense of a 10% increase in the total VKT incurred by empty AVs repositioning themselves 

to better serve the demand at the taxi ranks. This demonstrates that the same demand can be met 

using only 12% of the total number of vehicles required in the BC scenario with an average waiting 

time of 1 minute and a maximum waiting time of 4 minutes (lower than the 5-minute constraint). 

Table 4-4: Comparative evaluation of base case and AMoD2 scenarios 

Scenario name 

Number of vehicles 

on the road 

network 

 

Total VKT 

(Km) 

Parking space 

required (m2) 

Base case – human-driven 

single-occupant vehicles (BC) 
2059 4660.38 34591 

Autonomous mobility scenario 2 

(AMoD2) 
247 5204.16 6048 

Percent difference between BC 

and AMoD2 
88% decrease 10% increase 83% reduction 

To sum up, as shown in Table 4-5, using the AMoD system results in a significant reduction in 

both the number of vehicles on the road (43% in scenario 1 and 88% in scenario 2), and the 

required parking space (58% in scenario 1 and 83% in scenario 2) at the expense of a less significant 

increase in the total VKT (29% in scenario 1 and 10% in scenario 2). 

Table 4-5: Comparative evaluation of base case and AMoD scenarios 

Scenario name 
Reduction in number 

of vehicles 

Increase in the 

total VKT 

Reduction in required 

parking space  

Scenario 1 (AMoD1) 

compared to base case (BC) 
43% 29% 58% 

Scenario 2 (AMoD2) 

compared to base case (BC) 
88% 10% 83% 

 
4.5. Scenarios 3-5: Autonomous shared mobility with car-share and ride-share mode 

choice preferences 

In Scenario 2, a homogeneous population of travellers is assumed where all travellers have identical 

mode-choice preferences and use only car-sharing with single-occupant AVs to reach their 

destinations. In reality, the value of travel time is generally distributed heterogeneously across 

individuals within a population, and according to time of day and trip purpose (Brownstone and 

Small, 2005; Cirillo and Axhausen, 2005). It is therefore expected that the  preference for car-
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sharing versus ride-sharing will differ between travellers based on the increased travel time required 

to ride-share.  

In this section, we explore the effects of travel cost on mode choice behaviour of four categories 

of travellers. These are travellers with a high value of time (HVoT) who choose car-sharing systems 

(single-occupant AVs with zero waiting time for passengers). This necessitates that a sufficient 

number of AVs are available all the time to serve these customers (at a premium cost).  Travellers 

with a low value of time (LVoT), on the other hand, share their ride with other passengers using 

AVs with capacities of 2, 3 and 4 people. For the ride-sharing system, it is assumed that travellers 

need to wait until a vehicle is available. After dropping their passengers off, vehicles available for 

HVoT customers stay at the taxi rank to pick up other customers even if there is no current 

demand. Vehicles servicing LVoT customers may relocate to other taxi ranks if there is a need. 

The same rebalancing system used in Scenario 2 is utilized for rebalancing the empty vehicles in 

these scenarios.  

To develop a better understanding of the impacts of mode choice preferences, three scenarios are 

simulated in which the proportion of ride-sharing travellers varies between 40% and 90%, as 

shown in Table 4-6. The simulation results are reported in Figure 4-4. As expected, the results 

show marked reductions in the total number of vehicles, total VKT traveled and parking space 

requirements when more people choose to ride-share instead of car-share. For example, the results 

show that the total number of required vehicles increased by 132% (from 273 in AMoD3 to 632 

in AMoD5) as a result of a 50% decrease in the proportion of ride-share travellers (from 90% to 

40%). However, the number of vehicles in AMoD5 is still substantially lower (69% less) than the 

BC. 
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Figure 4-4: Impacts of variable proportions of ride-share and car-share 

Table 4-6: Proportions of ride-share and car-share travellers in scenarios AMoD 3-5 

System 

Car-sharing 

(For travellers with 

HVoT) 

Ride-sharing 

(For travellers with LVoT) 

                        Capacity(person) 

Scenario 1 2 3 4 

AMoD3 10% 30% 30% 30% 

AMoD4 20% 20% 30% 30% 

AMoD5 60% 0% 20% 20% 

 

A comparison of the results for AMoD5 and BC also suggests that shifting 40% of the population 

to autonomous on-demand ride-sharing will result in a 70% decrease in the total vehicle fleet size 

(from 2059 to 632); 14% reduction in the total VKT (from 4,660 to 4,027) and 57% reduction in 

the required parking space.  

Table 4-7 provides some additional insights. For example, a comparison of AMoD5 and BC shows 

that the same demand for travel can be met using only 31% of the total number of AVs required 

in the BC, with an average passenger waiting time of 4 minutes and a maximum waiting time of 

12 minutes. 
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Table 4-7: Mean and maximum waiting times 

Scenario 
Proportion of ride-

sharing travellers 

Percentage of 

vehicles compared 

to BC scenario 

Passenger mean 

waiting time 

(minutes) 

Passenger 

maximum waiting 

time 

(minutes) 

AMoD3 90% 13% 3 10 

AMoD4 80% 19% 2 10 

AMoD5 40% 31% 4 12 

 
 
4.6. Scenario 6: Autonomous shared mobility supported by public transport  

One of the major drawbacks of AMoD systems is the need to rebalance empty vehicles on a regular 

basis to minimize empty travel. Public transport (PT) systems in the form of on-road buses or rail 

have the potential to minimize such negative effects by moving large numbers of people around a 

city more efficiently (Kelly and Zhu, 2016). To explore the impacts of AMoD when supported by 

a PT system, the same ODs and travel demand as Scenario 2 (Table 4-3) are used to run a 

simulation scenario, which includes AMoD and bus services. The AMoD is assumed to have 

single-occupant passengers with an average passenger waiting time of 3 minutes (maximum 10 

minutes). A bus service is defined in the simulation with 10 min frequency to transport customers 

across the network. Each bus is defined to have a maximum capacity of 48 passengers. It is 

assumed that all ODs have at least one taxi rank in close proximity, and at least one drop-off lane 

at their destinations. The AMoD vehicle picks up the customer at the taxi rank and after dropping 

the passenger off, the vehicle proceeds to the nearest taxi rank where it is needed. The rebalancing 

of vehicles to ensure the passenger waiting times is as small as possible was undertaken in the same 

way as scenario 2. The operation of the PT service in Commuter includes the designation of stops, 

routes, schedules with departure times and service timetables.  

Four scenarios are developed with different AMoD and PT user percentages. Note these 

percentages have been selected randomly without deploying any specific mode choice model. The 

results, shown in Table 4-8, indicate that shifting 30% to 70% of AMoD users to the public bus 

service results in an 8%-15% decrease in the total VKT of AMoD systems. Integrating AMoD 

systems with PT reduces the rebalancing burden of empty vehicles and leads to a decrease in total 

VKT. 
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Table 4-8: Comparative evaluation of fleet size and VKT for different PT scenarios 

Scenario name Number of shared vehicles Total VKT 
(Km) 

100% AMoD (0% PT) 115 6,190 

70% AMoD (30% PT) 90 5,697 

50% AMoD (50% PT) 80 5,312 

30% AMoD (70% PT) 80 5,281 

 

The environmental impact of these scenarios is also examined. It is assumed that existing (base 

case) private vehicle and public transport travel are undertaken using traditional vehicles with 

combustion engines, and that all futuristic AVs are electric (or hydrogen-fuel cells, i.e. non-

polluting). Commuter includes a number of standard engine definitions, using data from the UK 

Transport Research Laboratory (TRL). An engine definition includes maximum speed, 

acceleration and braking rates, and emission levels for a range of exhaust gases (CO2, NOx, 

PM10). Each vehicle type has an associated engine definition (Duncan, 2013). For this study, the 

engine definitions for autonomous, traditional private vehicles and public transport buses are 

selected as electric, petrol car under 1300cc, and diesel bus, respectively. All coefficients are kept 

as the default values defined in Commuter.  

In addition to the scenarios presented in Table 4-8, a new scenario using traditional single-occupant 

private vehicles is undertaken including 2,059 vehicles. Table 4-9 shows the total emitted exhaust 

gases from the vehicles in different scenarios. As shown in the table, the scenario which produces 

the largest amount of CO2 emissions is where the total demand is met using single-occupant 

private vehicles.  However, there are zero emissions when all the vehicles in the scenario are 

autonomous and electric assuming that the electricity needed for vehicle operations is derived 

entirely from renewable energy. There is no improvement for the scenario with AMoD and diesel 

buses  mainly because of the high level of emissions from diesel buses. These results indicate that 

although the integration of AMoD systems with traditional public transport systems has the 

potential to reduce fleet size and the number of rebalancing trips, it does not result in better 

environmental output unless the vehicles are fully electric. As expected, this suggests that a 

dramatic reduction in the environmental footprint requires the complete transition of all current 

traditional transport systems into fully electric vehicle fleets.  
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Table 4-9: Comparative evaluation of pollutant emissions under different scenarios 

Scenario name CO2 (kg) NO (g) PM10 (g) 

100% traditional single-occupant private 

vehicles 

905 1,512 6.8 

100% AMoD (0% PT) 0 0 0 

70% AMoD (30% PT) 728 7,093 190 

4.7. Chapter summary  

The pilot study reported in this chapter demonstrated the feasibility of using the agent-based 

approach to evaluate the impact of AMoD systems. A base case scenario (current situation relying 

on traditional privately-owned vehicles) and five AMoD scenarios were simulated on a real 

transport network in Melbourne, Australia. The results showed that incorporating shared AVs can 

significantly reduce the total number of vehicles required to meet the transport needs of a 

community. It also significantly decreased the parking requirements which frees up this space for 

other purposes. The results, however, showed that there are likely to be some negative impacts 

such as increased total kilometres of travel due to repositioning. 

The pilot study showed that rebalancing shared AVs poses a significant challenge for fleet 

operators. Therefore, in the main study, a more scientific rebalancing algorithm will be deployed 

to optimise the performance of the system. Note given the scope of this chapter, which was 

developing a proof of concept, we only deployed one rebalancing method as opposed to exploring 

various rebalancing algorithms. Investigating a vast range of AV redistribution approaches can be 

a potential future research direction. 

The pilot study also raised many new questions which will be explored in the next chapters of this 

PhD dissertation. Some of these questions are as follows, 

1. Would implementing an optimum rebalancing algorithm lead to an efficient shared AMoD 

system? 

2. How do various rebalancing time-steps affect the performance of AMoD systems? 

3. How sensitive is an AMoD system to fleet size? 

4. How does the initial number of AVs at stations affect the efficacy of AMoD systems? 

5. How can travel demand distribution affect the efficiency of AMoD systems? 

6. Is there any specific relationship between fleet size and VKT? 
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Chapter 5 : Model Testing and Evaluations- Investigating 

the Network Impacts of AMoD Systems 

A pilot study was conducted to obtain knowledge on the modelling framework chosen for this 

study and to identify potential modelling challenges. As the pilot study was carried out as a proof 

of concept, it had various limitations such as a small study area, non-calibrated travel demand, and 

a heuristic rebalancing model. Further, the variety of scenarios implemented in the pilot study was 

not sufficient to obtain comprehensive insight into the implications of AMoD systems. This was 

mainly due to the fact that many tasks in this stage of the study were performed manually, such as 

calculating the total increase in VKT, or dispatching idle driverless vehicles for rebalancing 

purposes.   

After the completion of the pilot study, sufficient experience was gained to explore the behaviours 

of AMoD systems in a larger area using a larger data set. Moreover, the rebalancing process and 

related calculations will become automatic to produce a more feasible research platform to 

investigate the ramifications of AMoD systems thoroughly. In addition, travel demand in this stage 

of research will be calibrated and validated to generate a more realistic travel pattern within the 

network.  

It is noteworthy that this study only investigates the performance of AMoD systems in terms of 

four measures: 1. fleet size 2. induced VKT 3. customer-waiting times 4. percentage of trip-

requests serviced. AMoD systems are believed to have various impacts on urban areas (Milakis, 

van Arem and van Wee, 2017), such as decreasing the space need for parking and reducing 

greenhouse gas emissions. This study, however, does not explore these implications as they are 

beyond the scope of this research. 

As discussed in chapter 2, section 2.9, models that have been developed in the literature to explore 

the implications of AMoD systems can be categorised into two groups: analytical models and 

simulation models. 

Analytical models suffer from inherent limitations that prevent the modellers from producing 

more realistic transport models to study the problem at hand (see section 3.1.7). Their limitations 

mainly are rooted in the underlying assumptions proposed by the developers of these algorithms 

to circumvent the computational obstacles.  
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On the other hand, all the reported simulation models investigate the effects of AMoD systems 

disregarding the interactions between vehicles. The main agent-based simulation tool for the 

majority of these studies is MATSim, which has been used for large-scale scenarios. As per 

discussions in section 3.3.3.1, MATSim uses a queue-based approach to simulate traffic flow within 

the network to reduce computational burden (Horni, Nagel and Axhausen, 2016). It, therefore, 

fails to capture very complex car following and lane changing effects and leads to reduced model 

resolution.  

Another limitation of MATSim is that the simulation of empty self-driving vehicles (e.g. those 

vehicles travelling within the road network searching for a customer or needing to travel to service 

a particular demand) is not possible. These studies, therefore, only estimate the empty VKTs 

through unrealistic assumptions in which vehicles are moved virtually between stations based on 

Euclidean distances from origins to destinations (Boesch, Ciari and Axhausen, 2016).   

It should be noted that MATSim is open access software and experts from across the world can 

continually contribute to enhancing its capabilities (Horni, Nagel and Axhausen, 2016). In recent 

times, in particular, various modules have been added to MATSim, such as the dynamic 

dispatching of taxicabs or the scheduling of battery re-charging as well as models that capture the 

parking search behaviour of drivers (Bischoff and Maciejewski, 2014, 2016b; Fagnant and 

Kockelman, 2016; Bischoff and Nagel, 2017; Horl, 2017) which enables transport modellers to 

investigate a vast range of AMoD scenarios on a large scale.  

To bridge this gap in the knowledge and address these limitations, this study takes a different 

approach and explores the quantitative contributions of AMoD systems at a microscopic level 

utilising Commuter (Duncan, 2010; Azalient, 2013). This tool is agent-based traffic simulation 

software, which features lane changing, gap acceptance, and car following algorithms to simulate 

the movements of vehicles in the network. It also includes microscopic features that enable the 

modelling of individual driver behaviour. Commuter is also capable of simulating the travel of 

empty vehicles on a real transport network (instead of assuming Euclidean distances between 

origins and destinations). Therefore, the travel times of both occupied and empty rebalancing AVs 

are calculated by Commuter. 

Another contribution of this work is that for the first time, an optimum real-time rebalancing 

model is deployed in an agent-based AMoD simulation model to redistribute idle AVs across the 

network (unlike the existing agent-based simulation models in the literature that use a heuristic 
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method). This real-time rebalancing model developed by (Pavone et al., 2012) was only tested in 

MATLAB that lacks the key capabilities required for the realistic simulation of traffic. This study, 

therefore, shows how this rebalancing model contributes to the efficiency of AMoD systems on a 

real transport network. Note given the aforementioned paper proves this algorithm yields an 

optimum solution, we have refrained from repeating the same discussions in this dissertation. 

In the literature, only one study (Boesch, Ciari and Axhausen, 2016) explores the effects of 

different fleet sizes on the level of service. However, none of the current studies investigate the 

elasticity of induced VKT with respect to different fleet sizes and rebalancing time-steps, which is 

an important criterion for the success of these systems. To address this gap, various scenarios are 

explored in this study to provide an insight into the sensitivity of levels of service and induced 

VKT to various fleet sizes and optimisation time-steps. The insights from this analysis will be 

useful for researchers interested in formulating the relationships between various system 

characteristics, and the policy makers who want to understand how different fleet sizes affect 

mobility in urban environments.  

In addition, this research explores for the first time the impacts of travel demand heterogeneity on 

the efficiency of AMoD systems. The results reported later in this thesis suggest that the impact 

of this phenomenon is not trivial.  

The remainder of this chapter is organised as follows. Section 5.1 deals with the data used to 

develop the present model. Section 5.2 describes the study area and its characteristics. Section 5.3 

explains the calibration and validation process used in this study. Section 5.4 expresses the 

optimum real-time rebalancing model implemented in the simulation framework. Section 5.5 and 

5.6 discuss the scenarios used in the simulation context and the associated results. Then, in section 

5.7, a sensitivity analysis has been undertaken to explore the effects of initial AVs at stations on 

the overall performance of the AMoD system. In section 5.8, the effects of travel demand 

heterogeneity on the performance of AMoD systems are discussed and compared with the results 

of the preceding section. Section 5.9 outlines the limitations of the current study. Section 5.10 

provides the overall conclusions that are derived to this point of the study.  

5.1. Data collection and collation 

This section discusses the data used to prepare the current model. Section 5.1.1 deals with the 

travel demand data used for conducting this research. It elaborates on the nature of this dataset 
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and how it was derived. Section 5.1.2 explains how traffic signal information, vehicle count and 

road geometry data were obtained.  

5.1.1. Travel demand data 

The Victorian Integrated Survey of Travel and Activity (VISTA, 2016) is one of several datasets 

that provides an ongoing survey of travel and activity. This travel data repository, used for the 

current research is based on a sample of personal travel activities across the Victorian state that 

occur from home to access various activities. The currently available data covers the period from 

May 2007 to June 2010 and includes 11400 households for metropolitan Melbourne. Households 

are randomly selected from a listing of all residential addresses in the study areas and are asked to 

fill in a travel diary for one specified day of the year. All personal travel outside the home is 

reported, from a walk around the block through to a trip interstate. 

Firstly, all the survey participants are asked to provide basic household information including 

number of family members, type of dwelling in which they live, type of ownership of dwelling 

(owned or rented), duration of stay at this dwelling, and number of vehicles and bicycles owned 

by the family. They are also asked to provide details of all household members (e.g. date of birth, 

gender, country of birth, having a driver’s licence, employment details, etc.).  

Secondly, all members of the family aged 5 and over are asked to complete a travel diary form 

which details their travel and activities on one particular travel day. For this survey, even short 

trips like walking to lunch or going for a jog are important.  

Before advancing, it should be noted that based on VISTA, the terms stop, trip, and journey are 

defined as follows, 

1. Stop: 

Stop is the base record of individual travel stages. During travel, whenever there is a change of 

mode, vehicle or purpose, a new stop is defined. As an example, a drive to school to drop children 

off, followed by a drive to the train station, a train ride to the city, and a walk to work, would be 

recorded as four stops. The distances and times for these stops would be counted separately and 

attributed to the actual modes of travel.  

2. Trip: 
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A trip refers to the overall travel between main activities. Trips are created by combining ‘change 

mode’ stops together. Trips therefore allow multi-modal definitions of travel to be described. 

Recalling the previous example (a drive to school to drop children off, followed by a drive to the 

train station, a train ride to the city, and a walk to work), the four stops would be combined to 

create two trips. 

3. Journey: 

There are two types of journeys predefined and available for analysis through the VISTA online 

tool: journeys between home and education, and journeys between home and work. Similar to the 

way stops are combined to create trips, journeys are created by linking individual trips together 

(VISTA, 2016). 

The travel day for this survey starts at 4:00am and participants are asked to report where they were 

at this time, and when they first left this place from 4:00am on. Then, they are asked to provide 

information on their first stop (Stop1) after leaving the first place,  which can be a bus stop, work 

place, university, restaurant, petrol station etc.  After this, participants are required to answer the 

following questions: name of stop1, address of stop1, who they travelled with to stop1, the reason 

they travelled to Stop1, how they got to stop1 etc. These questions are repeated for the next stops 

as well. Figure 5-1 details all the questions regarding each stop in the survey.  

This information provides a detailed picture of the travel including distribution of trips, trip rate, 

median trip distance, median trip time, mode share of travel, main method of travel etc., which 

helps the government make better transport and land-use planning decisions (VISTA, 2016).  

Currently, VISTA online, a web-based tool, provides these data for the period 2007 to 2010. It is 

a stand-alone interface for accessing and interrogating data collected as part of VISTA. The 

analysis tool, built on a SuperWeb2 platform, is in a beta testing phase. This beta-version is focused 

on the creation of custom data tables and associated reporting of relative standard errors.  
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Figure 5-1: Stop properties in VISTA survey (VISTA, 2016) 
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VISTA data is packaged into a number of different databases, as shown in Table 5-1. Database 

selection depends on both the type of travel and the day of travel required. Once a database has 

been chosen, construction of a customised data table can begin. In this process, classification 

variables (e.g. gender, mode of travel, year of travel, home location etc.) can also be added to the 

rows and columns of the table.  

Table 5-1: Description of the VISTA database (VISTA, 2016) 

Database name Database description 

Stops- Average Weekday/ Weekend Day Stops made on an average weekday or average 

weekend day. 

Stops- Average day Stops made on an average day of the year 

Trips- Average Weekday/ Weekend Day Trips made on an average weekday or average 

weekend day 

Trips- Average Day Trips made on an average day of the year 

Journey to/ from Work- Average Weekday Journey made between home and work on an 

average weekday 

Journey to/ from Education- Average School 

day 

Journeys made between home and education 

on an average school day 

 

Transport for Victoria (TfV, 2016) also provides spreadsheets describing the detailed diary of each 

person from his origin to his destination using Census Collection Districts (CCDs). CCDs are 

areas designated by the Australian Standard Geographical Classification (ASGC) to define the areas 

a census collector can cover to deliver and collect census forms over about a ten-day period.  

For the 2006 census, there are about 38200 CCDs throughout Australia, each including almost 225 

dwellings in urban areas. This CCD is the second smallest geographic area defined in the ASGC, 

the smallest being the Mesh Block. Both significant changes in population within a given area and 

changes in boundaries of geographic areas are the principle impetus to create CCDs. In other 

words, if the population in a specific CCD reaches a point, which poses difficulty for the collectors 

or results in the expansion of the boundaries of the area, the CCD will be split into several CCDs. 

The Australian Bureau of Statistics (ABS) website provides shapefiles of every CCD in Australia 

online, which has been used to map these areas using a web-based program called CartoDB (ABS, 

2011). This program assisted us in determining which CCDs fall within our study area.    
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The base travel demand according to VISTA data for the current model is shown in Table 5-2. It 

describes the travel demand within each Local Government Area (LGA) and between them by 

mode of transport. The study area covers four various LGAs in Melbourne namely: Yarra, 

Stonnington, Port Philip, and Glen Eira. Each LGA is made of several CCDs and the numbers 

shown in Table 5-2 are the sum of travel demands in each CCD. 

Table 5-2: Base travel demand as per VISTA data used in the model 

Private Transport 

LGA Yarra Stonnington Port Philip Glen Eira 

Yarra 1396 150 96 92 

Stonnington 1180 7453 1557 1162 

Port Philip 348 314 3165 347 

Glen Eira 407 1639 1351 8662 

Public Transport 

 Yarra Stonnington Port Philip Glen Eira 

Yarra 183 43 88 69 

Stonnington 121 65 124 110 

Port Philip 89 143 508 111 

Glen Eira 139 143 319 63 

Others 

 Yarra Stonnington Port Philip Glen Eira 

Yarra 0 13 0 0 

Stonnington 0 112 0 0 

Port Philip 0 0 0 0 

Glen Eira 0 0 0 113 

 

5.1.2. Traffic signal, vehicle counts and road geometry data 

In this research, signal timing information was derived through SCATS (Sydney Coordinated 

Adaptive Traffic System). SCATS is an adaptive urban traffic management system that 

synchronises traffic signals to optimise traffic flow across a whole city, region or corridor (SCATS, 

2018).  

SCATS data is available to the University through a Virtual Private Network (VPN) connection to 

VicRoads. In total, the model contains 134 signalised intersections whose traffic signal data is 

based on SCATS. Figure 5-2 illustrate the location of signalised intersections along with their 

SCATS site information. 
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SCATS data available ranged from July 17 to August 17, 2015. Data for every Tuesday, Wednesday 

and Thursday has been used to generate an average of a typical day. The same process has been 

used for SCATS group and phasing configurations and it has been imported hourly into the model. 

Once signalised intersections are imported into the model, other intersections and the roads 

between them are also imported. However, sometimes the geometry of roads are not entered 

properly and differ from the original one in the field. To fix this problem, all road segments’ 

geometries were checked through Google Maps and amended if necessary. Note that vehicle 

counts derived through SCATS (based on loop detectors) were also used for calibrating and 

validating the model.  

 

 

Figure 5-2: Location of signalised intersections by region obtained via SCATS 

Regions Count Color

BRI 27

CA1 4

GLI 11

KEW 2

MC2 22

SK1 43

SK2 25

Total 134
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5.2. Network specifications  

The study area selected for this research features parts of four different local government areas 

(LGA) in Melbourne: Yarra, Stonnington, Port Phillip, Glen Eira with a total area of 88.75 km2 

(Figure 5-3).  

This area includes 134 signalised intersections and various main arterials. The study area also 

comprises public transport facilities such as buses, trams, and trains. All public transport modes 

are simulated in Commuter according to their real operational time-tables available from Public 

Transprt Victoria (PTV, 2017). 

The main reasons for choosing this part of Melbourne for the present study are as follows, 

1. This area includes major bottleneck arterials such as Hoddle street and Punt road, which 

are the busiest corridors in Melbourne. If an area with low congestion levels had been selected, 

the real performance of the AMoD systems might have been overstated. 

2. The selected area features all sorts of public transport modes such as train, tram, and bus. 

This, as a result, makes the area look more like a mid-sized city.  

3. Data availability is another issue that limits the study to this part of Melbourne. The 

researcher only had access to vehicle count data, which is necessary for calibrating and validating 

the model, for this part of Melbourne. 

As shown in Figure 5-3, the study area is grid-based and comprises various cells of different 

dimensions. The travel demand is aggregated into areas located at the centre of these blocks 

(centroids) with the sides of each block ranging from 200m up to 700m. These represent the main 

streets for which the observed vehicle counts are available for model calibration purposes. The 

study area consists of 53 centroids (ODs) located at the centre of these blocks, which are assumed 

to attract or generate the travel demand in that area (Figure 5-3). The study simulates a two-hour 

period for an average weekday during AM-Peak hours (07:00-09:00). 
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Figure 5-3: Study area and locations of the travel demand origins and destinations (ODs) 

5.3. Model calibration and validation 

To determine the spatial distribution of travel demand within the study area, vehicle count was 

chosen as the performance measure, and calibration and validation were undertaken based on this 

measure for the BC scenario.  Note that the calibration and validation of AMoD scenarios is not 

possible as they are not operational yet.  

The initial demand matrix used in this study is based on the available VISTA travel survey data 

(see Table 5-2). Two sets of count data are available for this study: 07:00-08:00am and 08:00-

09:00am. The first data set is used for calibration purposes while the second is used to validate the 

model. The count data is based on the loop detectors, installed on each approach of any 

intersection in Melbourne.  
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Over the whole network, observed vehicle counts are collected for 225 points covering the entire 

area. Commuter uses an iterative proportional fitting (IPF) technique (also known as furnessing) 

to distribute the initial travel demand between different ODs across the network considering the 

observed traffic counts. This iterative process is followed until the travel demand converges to an 

acceptable confidence level. In the current model, this process takes around 25 hours. 

To validate the accuracy of the model, two widely used measures are used: GEH value, and r-

square test. The GEH statistic is a formula used in traffic engineering to compare two sets of 

traffic data (Lianyu Chu et al., 2003). Its mathematical form is similar to an x-square test. Equation 

5-1 is used to calculate the GEH statistic. 

𝑮𝑬𝑯 = √𝟐(𝑴−𝑪)𝟐

𝑴+𝑪
                                                                                                    Equation 5-1                                                                

where 

M: hourly traffic volume from the traffic model 

C: real-world hourly traffic count 

The GEH statistic is recognised as a useful validation measure as it considers both the absolute 

values of the observations being compared and their relative differences. Generally, a GEH value 

under 10 is considered a good replication of reality in traffic engineering applications. GEH values 

are valid only for hourly volumes. Table 5-3 shows that 80% of all selected points have GEH 

values under 10 for both periods.  

As previously mentioned, Commuter uses the IPF technique to distribute demand between 

different areas. This method distributes the travel demand such that it captures the observed travel 

pattern in the field. Given the attractiveness of areas is the same during the whole simulation time, 

travel patterns within the study area remain similar over both periods. As a result, the obtained 

GEH values for these two periods are close to each other (Table 5-3). 

Table 5-3: The GEH values for all the observations across the network 

Time period GEH <= 10 10<GEH<20 20<= GEH 

07:00-08:00 80% 17% 3% 

08:00-09:00 80% 15% 5% 
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R-squared is another performance measure which has been widely used in the literature, e.g. 

(Antoniou et al., 2016), to quantify the difference among observed and simulated vehicle counts. 

Its mathematical representation is as follows, 

𝑹𝟐 = (
∑ (𝒙𝒊−�̅�)(𝒚𝒊−�̅�)𝑵

𝒊=𝟏

𝑵𝒔𝒙𝒔𝒚
)

𝟐

                                                                                         Equation 5-2              

 
where 

𝑥𝑖 : observed count 

�̅�  : mean of observed counts 

𝑦𝑖 : modelled count 

�̅�  : mean of modelled counts 

𝑁 : total number of observed counts 

𝑠𝑥 : standard deviation of observed counts 

𝑠𝑦 : standard deviation of modelled counts 

 
Figure 5-4 shows that the modelled traffic counts replicate the observed field data with almost 

90% accuracy for the periods between 07:00 - 08:00am and 08:00 - 09:00am. 

It is a common practice in statistics to examine the fit of the regression line through residuals 

(Moore, McCabe and Craig, 2012). In our study, a residual is identified as the difference between 

the observed and modelled counts as follows, 

𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍 = 𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅 𝒄𝒐𝒖𝒏𝒕 − 𝒎𝒐𝒅𝒆𝒍𝒍𝒆𝒅 𝒄𝒐𝒖𝒏𝒕                                        Equation 5-3 

If the residuals of all counts are plotted in one graph, the resulting diagram is called the residual 

plot and it is used to assess the suitability of a linear regression model for the data. If the points in 

a residual plot are randomly dispersed around the horizontal axis, a linear regression model is 

appropriate for the data; otherwise, a non-linear model is more suitable (Stat Treck, 2017).  

The residual plots for this study are shown in Figure 5-5. Given there is no special pattern in the 

residuals, it can be deduced that the regression line catches the overall pattern of data. In other 

words, the linear regression model is appropriate for this data set.  
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            Figure 5-4: Modelled versus observed traffic counts for 07:00-08:00am, and 08:00-
09:00am periods 
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Figure 5-5: The residual plots for 07:00-08:00am, and 08:00-09:00am periods 

The calibration and validation process ultimately revealed the distribution of the current travel 

demand within the study area. Note, a total of 150,095 private vehicle trips occur in the study area 

of which only 20,392 trips have both their origins and destinations within the area. To speed up 

the simulation, after calibration and validation, only the latter trips are kept in the model. The 

average, minimum, and maximum trip lengths are 3.90, 0.91, 13.97 km respectively.  

Given Commuter utilises a dynamic route choice model, which is a function of the level of 

congestion in the network, the removal of through traffic might lead to less realism in the network. 

In the current model, once the network is not congested, vehicles choose the shortest route. As 

the congestion level grows, vehicles switch to longer routes with less traffic to decrease their travel 

times. Clearly, through traffic increases the congestion level on the network, which results in new 

routes being chosen by vehicles. However, these routes, in the presence of through traffic, will 

certainly be equal or longer (in terms of distance) than the condition in which through traffic has 
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been eliminated. Therefore, the VKTs reported in this paper might increase if through traffic is 

included. Longer trips therefore lead to longer customer waiting times. As a result, the fleet 

operator might be obliged to scale up the fleet size such that customer waiting times remain 

unchanged.  

5.4. Real-time optimum rebalancing model 

The efficient supply and demand alignment procedures are vital for future AMoD systems 

(Maciejewski and Bischoff, 2015; Horl, 2016, 2017). The spatiotemporal nature of travel demand 

for these services poses a great challenge to fleet operators of AMoD systems. This phenomenon 

causes AVs to accumulate in attractive areas of the city and become depleted at others.  

This study uses a real-time optimum rebalancing model to redistribute the idle AVs between 

AMoD stands. The model is based on the work reported in Pavone et al. (2012) who proposed an 

optimum real-time model to redistribute the shared AVs across the network in order to improve 

customers’ access to vehicles and reduce the need to scale up the fleet size to a point where it 

becomes unprofitable.  

For this purpose, a code was written in Java and the optimum rebalancing model developed by 

(Pavone et al., 2012) was embedded in Commuter as a new plugin. At the end of each specific 

time-step (e.g. each 5 minutes), an optimal linear program (LP) is solved by the simplex method 

based on the current information the model receives from the network and sends idle AVs from 

where they are accumulated to where they are needed. This time-step is referred to as optimisation 

time-steps (OTS) throughout the thesis. In other words, OTS is the amount of time the fleet 

operator has to wait before AVs are rebalanced. As discussed later, the optimisation process aims 

at minimising the total induced eVKT within the network. 

Rebalancing AVs can be undertaken either with information on the upcoming demand (Spiecer et 

al., 2015; Miller and How, 2017) or without (Pavone et al., 2012). The rebalancing algorithm, which 

is deployed in this model, assumes demand is unknown to the fleet operator and rebalancing is 

performed without any priori information. Note, although demand has already been introduced to 

the model, the rebalancing algorithm takes no account of this while redistributing the idle AVs 

across the network. That is, it performs the rebalancing task merely with the data it receives at the 

time.  
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Let vi(t) be the total number of AVs available at station i. Now, if station i has ci(t) customers, then 

the excess vehicles at station i is 𝑣𝑖
𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) =  𝑣𝑖(𝑡) − 𝑐𝑖(𝑡). These are the vehicles that station i 

has currently available to send to other stations in need. Thus, the total number of excess vehicles 

in the system is ∑ 𝑣𝑖
𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) = 𝑉 − ∑ 𝑐𝑖(𝑡)𝑖𝑖 . Note that by definition, ∑ 𝑣𝑖𝑖 (𝑡) = 𝑉.  At the end 

of an OTS, the excess vehicles are sent by solving the objective function described as Equation 5-

4. This objective function represents the minimisation of the total induced eVKT in the system.  

𝐦𝐢𝐧 𝒆𝑽𝑲𝑻 = 𝒎𝒊𝒏 ∑ 𝑻𝒊𝒋𝒏𝒖𝒎𝒊𝒋           𝒊,𝒋                                                                  Equation 5-4 

 

Subject to, 

 

𝒗𝒊
𝒆𝒙𝒄𝒆𝒔𝒔(𝒕) + ∑ (𝒏𝒖𝒎𝒋𝒊 − 𝒏𝒖𝒎𝒊𝒋𝒋≠𝒊 ) ≥ 𝒗𝒊

𝒅(𝒕)        ∀𝒊 ∈ 𝑵                                    Equation 5-5 

𝒏𝒖𝒎𝒊𝒋 ∈ 𝑵   ∀𝒊, 𝒋 ∈ 𝑵, 𝒊 ≠ 𝒋                                                                    

 

where, 

𝑛𝑢𝑚𝑖𝑗 : number of rebalancing vehicles from station i to station j (𝑛𝑢𝑚𝑖𝑗 is the reverse for 𝑛𝑢𝑚𝑗𝑖) 

𝑇𝑖𝑗 : travel time from station i to station j 

𝑣𝑖
𝑑(𝑡): desired number of vehicles at station i at time t following rebalancing 

𝑣𝑖
𝑒𝑥𝑐𝑒𝑠𝑠(𝑡): excess vehicles at station i at time t 

For this study, vi
d (t) is assumed to be zero, which means at the time of solving the LP, stations 

with an excess number of vehicles send all their idle AVs upon request and stations with a deficit 

number of AVs receive as many AVs as pick-up requests are logged at these taxi AMoD stands. 

In other words, if vi
d (t) is assumed one for a sender station, it sends all its idle AVs except one AV, 

which remains at the station. Similarly, if vi
d (t) is assumed one for a receiver station, it receives as 

many AVs as it needs plus one more AV. 

It is obvious that the proper determination of vi
d (t) can only happen when demand is certain, which 

is difficult to predict. For example, if it is known that there is an upcoming demand at a station 

(say one person will come in 2 minutes’ time), the system will keep one idle vehicle to service this 

forthcoming request. Similarly, this pre-emptive action can also apply to receiver taxi ranks. Note 

that investigating the optimum approaches of determining vi
d (t) is out of the scope of this paper. 
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If Equation 5-5 is rewritten considering that vi
d (t) is zero, and 𝑣𝑖

𝑒𝑥𝑐𝑒𝑠𝑠(𝑡) =  𝑣𝑖(𝑡) − 𝑐𝑖(𝑡),  

Equation 5-6 becomes: 

∑ (𝒏𝒖𝒎𝒋𝒊 − 𝒏𝒖𝒎𝒊𝒋𝒋≠𝒊 ) ≥  𝒄𝒊(𝒕) − 𝒗𝒊(𝒕)        ∀𝒊 ∈ 𝑵                                           Equation 5-6 

𝒏𝒖𝒎𝒊𝒋 ∈ 𝑵   ∀𝒊, 𝒋 ∈ 𝑵, 𝒊 ≠ 𝒋       

                    

An illustrative example: 

To grasp the formula given in the previous section, consider a simple network (Figure 5-6) 

consisting of five stations, S1, S2, S3, S4, S5, all of which are connected via two-way, two-lane 

roads and AVs can move between them and pick-up or drop-off customers at any station. Table 

5-4 shows the number of available vehicles and customers at the end of one specific OTS. At this 

point in time, there are two and five customers at stations S1 and S2, respectively but no AV exists 

there. Table 5-4 describes the status of these stations as Deficit. On the other hand, there are 10, 2, 

and 3 idle AVs at station S3, S4, and S5 where no customer is present. The status of these stations 

are designated as Excess in Table 5-4.  

 

Figure 5-6: A transport network comprising five AMoD stations 

Table 5-4: Status of the transport network at the end of one specific OTS 

Station name Available number of 
AVs (v) 

Available number 
of passengers (c) 

v-c Status 

S1 0 2 -2 Deficit 

S2 0 5 -5 Deficit  

S3 10 0 10 Excess  

S4 2 0 2 Excess 

S5 3 0 3 Excess 



Chapter 5: Model testing and evaluations- Investigating the network impacts of AMoD systems  
 
 

97 
 

If the speed limit within the network is 50 km/h, and considering the distances between different 

stations shown in Figure 5-6, to find the optimal number of rebalancing AVs, which must be sent 

from excess stations (S3, S4, S5) to deficit ones (S1 and S2) such that the induced eVKT becomes 

minimum, the LP for this network is written as follows, 

𝑚𝑖𝑛 ((
12 𝑘𝑚

50
× 𝑛𝑢𝑚12 +

9 𝑘𝑚

50
× 𝑛𝑢𝑚13 +

15 𝑘𝑚

50
𝑛𝑢𝑚14 +

27 𝑘𝑚

50
× 𝑛𝑢𝑚15)

+ (
12 𝑘𝑚

50
× 𝑛𝑢𝑚21 +

7 𝑘𝑚

50
× 𝑛𝑢𝑚23 +

27 𝑘𝑚

50
× 𝑛𝑢𝑚24 +

15 𝑘𝑚

50

× 𝑛𝑢𝑚25)

+ (
9 𝑘𝑚

50
× 𝑛𝑢𝑚31 +

7 𝑘𝑚

50
× 𝑛𝑢𝑚32 +

24 𝑘𝑚

50
× 𝑛𝑢𝑚34 +

22 𝑘𝑚

50
× 𝑛𝑢𝑚35)

+ (
15 𝑘𝑚

50
× 𝑛𝑢𝑚41 +

27 𝑘𝑚

50
× 𝑛𝑢𝑚42 +

24 𝑘𝑚

50
× 𝑛𝑢𝑚43 +

12 𝑘𝑚

50

× 𝑛𝑢𝑚45)

+ (
27 𝑘𝑚

50
× 𝑛𝑢𝑚51 +

15 𝑘𝑚

50
× 𝑛𝑢𝑚52 +

22 𝑘𝑚

50
× 𝑛𝑢𝑚53 +

12 𝑘𝑚

50

× 𝑛𝑢𝑚54)) 

Subject to, 

For station 1: (𝑛𝑢𝑚21 − 𝑛𝑢𝑚12) + (𝑛𝑢𝑚31 − 𝑛𝑢𝑚13) + (𝑛𝑢𝑚41 − 𝑛𝑢𝑚14) + (𝑛𝑢𝑚51 −
𝑛𝑢𝑚15) ≥ 2 − 0 
 
For station 2: (𝑛𝑢𝑚12 − 𝑛𝑢𝑚21) + (𝑛𝑢𝑚32 − 𝑛𝑢𝑚23) + (𝑛𝑢𝑚42 − 𝑛𝑢𝑚24) + (𝑛𝑢𝑚52 −
𝑛𝑢𝑚25) ≥ 5 − 0 
 
For station 3: (𝑛𝑢𝑚13 − 𝑛𝑢𝑚31) + (𝑛𝑢𝑚23 − 𝑛𝑢𝑚32) + (𝑛𝑢𝑚43 − 𝑛𝑢𝑚34) + (𝑛𝑢𝑚53 −
𝑛𝑢𝑚35) ≥ 0 − 10 
 
For station 4: (𝑛𝑢𝑚14 − 𝑛𝑢𝑚41) + (𝑛𝑢𝑚24 − 𝑛𝑢𝑚42) + (𝑛𝑢𝑚34 − 𝑛𝑢𝑚43) + (𝑛𝑢𝑚54 −
𝑛𝑢𝑚45) ≥ 0 − 2 
 
For station 5: (𝑛𝑢𝑚15 − 𝑛𝑢𝑚51) + (𝑛𝑢𝑚25 − 𝑛𝑢𝑚52) + (𝑛𝑢𝑚35 − 𝑛𝑢𝑚53) + (𝑛𝑢𝑚45 −
𝑛𝑢𝑚54) ≥ 0 − 3 

For solving this LP, Excel’s LP solver is used and yielded the following results,   

𝑛𝑢𝑚12 = 𝑛𝑢𝑚13 = 𝑛𝑢𝑚14 = 𝑛𝑢𝑚15 = 𝑛𝑢𝑚21 = 𝑛𝑢𝑚23 = 𝑛𝑢𝑚24 = 𝑛𝑢𝑚25 = 𝑛𝑢𝑚34

= 𝑛𝑢𝑚35 = 𝑛𝑢𝑚41 = 𝑛𝑢𝑚42 = 𝑛𝑢𝑚43 = 𝑛𝑢𝑚45 = 𝑛𝑢𝑚51 = 𝑛𝑢𝑚52

= 𝑛𝑢𝑚53 = 𝑛𝑢𝑚54 = 0 

𝑛𝑢𝑚31 = 2; 𝑛𝑢𝑚32=5 
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As can be seen from the LP outputs, the rebalancing algorithm sends the idle AVs to station S1 

and S2 from the nearest station (i.e. S3) to minimise the total induced eVKT. The same rebalancing 

procedure is followed in this study and idle AVs are sent in accordance with the outputs of LP at 

the end of each OTS. The objective function, however, is much larger than the one discussed 

herein and features 2756 variables with 53 constraints. 

Please note that although the example uses fixed speeds to compute travel times across the 

network, in practice and for our real-life application, travel times are calculated based on the real-

time speeds within the network.   

5.5. Simulation framework, assumptions and scenarios  

As previously mentioned, a total of 20,392 complete trips are undertaken in the study area using 

privately-owned vehicles during AM-Peak hours (07:00-09:00am). The model developed in this 

study assumes that market penetration is 10% and the remaining trips continue to rely on privately-

owned vehicles. Therefore, the travel demand for the AMoD system comprises 2,039 trips that 

use a shared AMoD to reach their destinations. In other words, in AMoD scenarios, there are 2039 

less private vehicles compared to the base case scenario as their owners have moved to the new 

AMoD system. It is worth repeating here that the results reported in this paper do not include 

ride-sharing; rather it assumed that travellers continue to ride alone using a fleet of shared vehicles. 

In other words, the AMoD system modelled in this study represents a car-sharing rather than a 

ride-sharing scheme.  

Furthermore, it is assumed that the service is a station-based AMoD system in which each centroid 

(OD) has a station where shared AVs are located to service the customers. That is, at the centre 

of each block (area), there is only one AMoD rank where AVs pick-up or drop-off their customers 

or wait if no trip request is received. The reason for choosing a station-based AMoD system as 

opposed to a door-to-door one is because an aggregate demand is used in this model. This means 

customers are imported into the model from only one point (i.e. from the ODs, shown in Figure 

5-3), located at the centre of each area. The AMoD stations are placed at these points to service 

the imported demand into the model. In other words, if investigating a door-to-door AMoD 

system is of interest, a disaggregate demand should be used in which people enter the model from 

different points within each area rather than just one point. In this model, it is assumed that people 

need to walk a distance from their residences to the AMoD station. However, walk times are not 

taken into account in this study.  
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All travel is assumed to be one-way between the origin and the destination. Given the uncertainty 

in travel demand, the initial number of AVs (at the start of the simulation) is assumed equal at all 

stations. The passenger waiting time threshold is assumed to be 15 minutes: once a customer 

arrives at an AMoD stand (where AVs are available for pick-up and drop-off), the maximum 

amount of time they are willing to wait is 15 minutes – otherwise, they leave the AMoD stand and 

look for alternative transport. In this model, when a customer arrives at an AMoD stand, if no AV 

is available, there are only two ways the customer might receive an AV to travel:  

There is an occupied AV on the way to the station in which the customer is waiting. In this case, 

the AV can pick up the waiting customer after having its on-board passenger dropped off. 

Otherwise, the customer waits until the next rebalancing process is performed, which means, in 

the meantime, no AV is assigned from the neighbouring stations to service the waiting customer.  

Although the second case might sound unrealistic, in practice, this can be resolved by taking very 

short OTS (say OTS=30 seconds). This means the LP can be solved every 30 seconds and idle 

AVs are dispatched accordingly. The shorter the OTS, the more responsive the AMoD system. In 

this study, an OTS shorter than 5 minutes is not chosen in order to avoid computing burden.  

It is worth noting that the model takes into account the time passengers need to board or alight 

from an AV. The manoeuvre time each AV needs to get out of the rank or park inside this area is 

also considered. However, the manoeuvre times are based on conventional vehicles not AVs, as 

this data is not yet available. 

A number of scenarios are investigated in this research. The key assumption in these scenarios is 

that market penetration does not exceed 10% (i.e. only 2,039 trips out of the 20,392 trips in the 

study area are undertaken using the AMoD system). In the base case (BC) scenario, all travellers 

(20,392 trips) were modelled using their own conventional vehicles. The BC scenario was followed 

by a total of 25 AMoD scenarios featuring five different fleet sizes (318, 424, 530, 636, and 848 

vehicles) with different OTS (5, 15, 30, and 60 minutes). To determine the aforementioned fleet 

sizes, the following process was followed. 

First, the minimum fleet size (318 AVs) was selected such that the total travel demand could be 

met when the OTS was set to minimum (i.e. 5 minutes in this study). Therefore, a number of fleet 

sizes were simulated, and finally it became clear that 318 AVs were enough to this end. Afterwards, 

the fleet size was gradually increased in order to capture the general trend of change in the 
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performance of the AMoD system as the fleet size grows. Note, the fleet sizes must be chosen 

such that the equal distribution of AVs between 53 AMoD stations is possible. For instance, when 

fleet size is 848, each station has 16 vehicles (i.e. 848/53=16) at the start of the simulation. 

Similarly, if the fleet size is 318, 424, 530, 636, each station has 6, 8, 10, 12 AVs at the start of the 

simulation, respectively.  

Given that 10% of the BC scenario (i.e. 10% market penetration) includes 2,039 traditional private 

vehicles (which are assumed to shift to the AMoD system), the fleet sizes selected comprised 16, 

21, 26, 31, and 42 percent of the BC fleet size. A scenario without vehicle rebalancing was also 

conducted. 

5.6. Simulation results 

This section presents the results obtained from the simulation runs and reports on the elasticities 

of trips serviced (i.e. level of service) and VKT with respect to various fleet sizes and OTS. In 

total, in this section, 26 scenarios were run, each of which took almost 10 minutes to finish.  

The results in Figure 5-7 and Figure 5-8 show that all the selected fleet sizes were successful in 

meeting the demand for travel when the OTS was 5 minutes. The results also show that, for each 

fleet size, the percentage of trips serviced decreases as the OTS increases. The decrease is steeper 

for smaller fleet sizes, which indicates that the system becomes less sensitive to OTS with larger 

fleet sizes. 

The results in Figure 5-7 also show that as the fleet size increases, the percentage of trips serviced 

also increases. This increase, however, is more rapid for scenarios with longer OTS, which 

indicates that the system becomes more sensitive to fleet size with longer OTS. This can be 

observed, for example, through a comparison of the increase in percentage of trips serviced for a 

fleet size of 318 vehicles to a fleet size of 848 vehicles for different OTS, as shown in Figure 5-7. 

The scenarios in which no rebalancing strategy is implemented meet 65% of the total demand at 

best. (This happens for a fleet size of 848 vehicles). 

Regarding customer waiting times, Figure 5-9 shows that the average passenger waiting time for 

the scenarios that meet the demand was around 4 minutes. For all scenarios, the average customer 

waiting time was between 3 to 7 minutes. 
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Figures 5-10 and 5-11 show that all AMoD scenarios contribute to more VKT compared to the 

BC scenario. Of the scenarios that meet the demand for travel, the scenario with 318 vehicles (16% 

of the base case fleet size) induced the largest increase in VKT (77%). As expected, the least 

increase in VKT (47%) was for the scenario with 848 vehicles (42% of the base case fleet size). 

This increase in VKT shows that shared AMoD systems lead to a significant amount of traffic 

congestion within the network.  

Although these results are in line with the findings in (ITFa, 2015) and (Levin et al., 2017), there 

is a substantial discrepancy between these figures and the findings available in some other studies, 

as previously described. For instance, Fagnant and Kockelman (2014) reported that each shared 

AV can replace around eleven traditional vehicles while adding only 10% more VKT. In another 

study conducted in Austin by the same researchers, the results suggested that each shared AV 

could replace around nine conventional vehicles at the cost of only 8% more VKT (Fagnant, 

Kockelman and Bansal, 2015). Similarly, a Berlin study (Bischoff and Maciejewski, 2016a) showed 

that AMoD systems can reduce the fleet size up to 90% while generally only incurring 10% more 

in VKT in the city centre. A Stockholm study (Burghout, Rigole and Andreasson, 2015) suggested 

almost the same fleet reduction with 24% more VKT compared to the BC scenario. Another study 

(Boesch, Ciari and Axhausen, 2016) showed that an AV spent 4% of the day travelling empty to 

pick up the customers. Further, they suggested that the current fleet size could be cut by 90% by 

a fleet of shared AMoD systems without including any VKT provided that waiting times of 10 

minutes were accepted.  

Note that the study area used in this research is smaller than the ones mentioned herein. Given 

that the Berlin study (Bischoff and Maciejewski, 2016a) suggests the performance of AMoD 

systems deteriorates as the study area scales up, the results obtained in this study might deteriorate 

if the current study area is expanded. 
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Figure 5-7: Relationship between fleet size and trips serviced for different OTSs 

 

Figure 5-8: Relationship between OTSs and trips serviced for different fleet sizes    

 

Figure 5-9: Average waiting times for the scenarios which were successful in meeting demand 
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This study identifiesd four potential causes of these discrepencies as follows: 

1. One reason that could lead to these discrepencies is the fact that in these studies, the 

rebalancing AVs have only been moved on the shortest Euclidian distance rather than being 

simulated on the real transport network, which results in less VKT. 

2. Another explanation for these discrepencies might be that these studies include a high 

percentage of ride-sharing cases in their scenarios, which decreases fleet size and total VKT 

considerably. For instance, there is a substantial difference between the fleet size and total 

generated VKT in cases where travellers only want to use car-sharing systems (i.e. the proportion 

of ride sharers is zero) compared to cases where all travellers use ride-sharing schemes in groups 

of four. The aforementioned studies do not clearly discuss whether they include ride-sharing cases 

in their simulation environments, and if so, what is the exact proportion of car and ride sharers in 

their scenarios.  

3. Another source of difference could be that these studies assume demand certainty and 

provide the required number of AVs at the start of the simulation at the designated pick-up points, 

which makes it less realistic. In this research, however, demand is assumed uncertain and the initial 

number of AVs (i.e. at the start of the simulation) at AMoD stands are distributed equally between 

different areas, regardless of the number of requests that might be logged at each of these places.  

4. Furthermore, the distribution of travel demand within the study area might be different in 

these studies which also contributes to these discrepencies. The effects of this phenomenon are 

discussed in the next section. 

The results in Figure 5-10 show that as the fleet size increases, the system experiences less VKT 

for all OTS. The slope of change for VKT as a function of fleet size (Figure 5-10) is steeper than 

that for the percentage of trips serviced (Figure 5-7). This indicates that for a specific change in 

fleet size, VKT changes faster than the total percentage of trips serviced.  

A comparison of Figure 5-8 and Figure 5-11 sheds some light on how the induced VKT is a key 

measure in assessing the efficacy of AMoD systems, rather than considering only the percentage 

of requests serviced and passenger waiting times as decision variables, which is the case in some 

studies in the literature e.g. (Spieser et al., 2014; Shen and Lopes, 2015; Zhang and Pavone, 2016; 

Alonso-Mora et al., 2017). 
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Figure 5-8 shows that for a specific OTS, the percentage of serviced trips for different fleet sizes 

is very close to each other, especially for shorter OTS. However, Figure 5-11 shows for the same 

OTS, there is a considerable difference between the induced VKT for different fleet sizes. 

 

 
Figure 5-10: Relationship between fleet size and VKT increase for different OTSs 

 

 

Figure 5-11: Relationship between different optimisation time-steps and VKT increase for 
different fleet sizes 
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that if the current fleet size is decreased by 84% as a result of the introduction of an AMoD system, 

it induce 77% more VKT when proofread the total travel demand is met completely. This increase 

in VKT is 47% for cases  where demand is completely met by a fleet size comprising 848 AVs 

(denoted by  on the graph) which reduces the current fleet size by 58%. 

 

Figure 5-12: Percentage of increase in VKT as a function of the percentage of decrease in 
current fleet size when the aim is to meet demand completely 

5.7. Sensitivity of AMoD Systems to Initial AVs at Stations 

In this study, it is assumed that for each AMoD scenario, the same number of AVs are available 

at each station at the start of simulation. This section investigates how the performance of AMoD 

systems are impacted based on the initial travel demand assigned to each station. To this end, the 

number of available AVs at the beginning of the simulation at each station is determined in 

proportion to the number of trip requests logged in that station within the first 30 min of the 

simulation. In other words, the highest number of AVs is assigned to stations whose travel demand 

within the first 30 min is the highest. To do this, the following equation is used to estimate the 

number of AVs required at each station at the start of simulation,  

𝑵𝒊 =  
𝒂𝒊 

∑ 𝒂𝒊
𝟓𝟑
𝒊=𝟏

× 𝑭𝑺                                                                                                   Equation 5-7 

where 

𝑁𝑖 : number of AVs assigned to station i at the start of the simulation  
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𝑎𝑖 : total number of trip requests at station i within the first 30 min of the simulation 

𝐹𝑆 : total number of AVs available in the system (i.e. fleet size) 

Having assigned the initial AVs based on this approach, the simulations were run and the results 

were recorded for all the fleet sizes chosen as discussed in the previous section. Note that in this 

section, OTS was set to 5 min.  

The results show that in this case, the percentage of trips serviced and average customer waiting 

times remain almost unchanged compared to the former approach in which AVs were distributed 

equally between the different stations.  

As for the induced eVKT, Figure 5-13 shows that, on average, the new approach (i.e. unequal AV 

assignment technique) reduces eVKT by up to 4% in comparison to the previous method in which 

initial AVs were distributed equally. The AMoD scenarios, however, still lead to a significant 

increase in VKT ranging from 40% to 77%. While the performance of AMoD systems does not 

appear to be significantly sensitive to the initial number of AVs at stations, it can lead to a modest 

decrease (up to 4%) in the eVKT induced.  

 

Figure 5-13: Comparison of induced empty VKT when initial AVs are distributed between 
different stations either equally or unequally 
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areas). This phenomenon poses a challenge for AMoD fleet operators: in order to meet demand 

and maintain an acceptable quality of service in terms of customer waiting times, the fleet size 

needs to be increased to a level where it may become unprofitable. This section examines how the 

distribution of travel demand between different areas affects the efficiency of an AMoD system. 

In this study, the distribution of travel demand is identified according to a measure called the Net 

Trip-Rate Ratio (NTRR). As shown in Equation 5-8, this is the proportion of the total number of 

incoming trips (I) to an area over the total number of outgoing trips (O) from that area over a 

specific period. 

Equation 5-8 

𝑵𝒆𝒕 𝑻𝒓𝒊𝒑 − 𝑹𝒂𝒕𝒆 𝑹𝒂𝒕𝒊𝒐 (𝑵𝑻𝑹𝑹) =  
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒄𝒐𝒎𝒊𝒏𝒈 𝒕𝒓𝒊𝒑𝒔 𝒕𝒐 𝒂𝒏 𝒂𝒓𝒆𝒂 (𝑰)

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒖𝒕𝒈𝒐𝒊𝒏𝒈 𝒕𝒓𝒊𝒑𝒔 𝒇𝒓𝒐𝒎 𝒂𝒏 𝒂𝒓𝒆𝒂 (𝑶)
                                                                          

 

This definition means if the NTRR for an area is equal to 1, it attracts as many trips as it generates. 

On the other hand, if the NTRR is zero, this indicates that this area does not attract any trips. 

Similarly, an area will attract more trips than it generates if its NTRR is more than 1. For this 

research, the distribution of the NTRR within the study area is shown in Figure 5-14. 

 

Figure 5-14: Distribution of NTRR within the study area for the current condition 
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attracts 106 trips while generating only 1 trip), while the rest attracts very few trips. Case 2 is 

representative of travel patterns between suburbs and city centres during AM-peak hours when 

the majority of trips are undertaken from the suburbs (NTRR is almost zero) towards the city 

centre (NTRR is very high).  

As shown in Figure 5-15, the currently designated fleet sizes do not meet the demand for travel in 

Case 2. At best, these fleets manage to meet around 92% of the travel demand (note that OTS is 

set to 5 minutes). However, for Case 1, the AMoD systems are always successful in meeting 

demand.  

 

Figure 5-15: Percentage of trips serviced using different fleet sizes for BC, case 1, and case 2 
 

Figure 5-16 and Figure 5-17 illustrate that VKT dramatically decreases (between 35-47%) in Case 

1 compared to the BC for the same fleet sizes. In Figure 5-17, consider, for example, points 

denoted by blue (  ) for BC and orange (  ) for case 1. Although both fleet sizes are 84% smaller 
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The simulation runs reveal that the main reason for the deterioration in the performance of the 

AMoD system in Case 2 is the fact that customers in non-attractive areas always have to wait for 

the rebalancing process to occur before an AV arrives. In other words, AMoD’s poor performance 

in Case 2 is not related to the level of congestion within the network, whereas in the BC, customers 

do not necessarily have to wait for rebalancing to find an AV because in this case, there may be 

customers who are travelling from other areas to this area, and the AV carrying them can pick up 

these waiting customers after dropping off their on-board passengers. 

Note that in all these cases (BC, Case 1, and Case 2), travel demand is the same (2,039 requests are 

made to use the AMoD system). The only difference between these cases is the distribution of the 

NTRR within the study area. These findings suggest that the negative impact of demand 

heterogeneity on VKT is not trivial and should be considered more thoroughly before deploying 

these systems. It is also worth mentioning that using a homogenous travel demand for the pilot 

study is the key reason for the very small induced VKT in the pilot study as well. 

 

 

Figure 5-16: Percentage of VKT increase with different fleet sizes 
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Figure 5-17: Percentage of increase in VKT as a function of percentage of decrease in fleet size 
for scenarios which meet 100% of demand 
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can be concluded that it will also succeed in alleviating congestion at other times of the 

day. For these reasons, this study carries out a simulation for the morning peak hours 

(07:00-09:00am) as the most severe congestion occurs over this period in Melbourne 

(VISTA, 2016).  

Further, it should be noted that modelling the whole Melbourne would certainly yield 

longer trips compared to this study in which just part of Melbourne was modelled. The 

longer trips become, the longer AVs are occupied, and as a result, the fleet operator will 

need to deploy more AVs to service the upcoming customers within a reasonable time. In 

other words, the more widespread the study area, the more AVs will be required by AMoD 

systems (Bischoff and Maciejewski, 2016a). 

2. The current work only considers the empty AV relocations undertaken for servicing the 

customers. That is to say, the relocation of AVs to recharge the battery, or for maintenance 

or cleaning is not taken into account, similar to (Bischoff and Maciejewski, 2014; Chen, 

Kockelman and Hanna, 2016; Loeb, 2016). 

5.10. Chapter summary 

This chapter investigated the quantitative trade-offs between different AMoD fleet sizes and OTS 

using a microscopic agent-based simulation model, which included a real-time optimum 

rebalancing algorithm. The results suggest that the total travel demand in the study area can be 

serviced by an AMoD system  using a fleet size which is 58% to 84% smaller than the current fleet 

size. The study also found that the reduction in the total number of vehicles comes at the expense 

of inducing 47% to 77% more vehicle kilometres travelled within the network, which contributes 

to more traffic congestion. These findings are not in line with what is suggested in some of the 

existing studies in the literature and indicates that the benefits of AMoD systems have generally 

been overstated in terms of their potential to mitigate congestion. The increase in VKT uncovered 

in this thesis shows that shared AMoD systems, without ride-sharing, might not be a sustainable 

transport solution for morning peak-hours.  

Note that the eVKT reported in this chapter is only due to rebalancing the empty AVs. AVs also 

need to undertake other empty travels for recharging or refuelling purposes. Adding this type of 

empty driving to the ones, which occur due to rebalancing leads to even more VKT. In addition, 

the AMoD system used in this study is assumed to be a station-based type. Deploying door-to-

door AMoD systems will definitely induce more VKT than the station-based system. This is 
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because in door-to-door AMoD systems, people are picked up and dropped off at their residences 

rather than walking to an AMoD station, hence the walking trips in station-based systems are  

replaced with AV trips in door-to-door systems which results in more VKT. 

In this chapter, the effects of travel demand heterogeneity on the efficiency of AMoD systems 

were also explored and the results show that this phenomenon has a significant impact on the 

efficacy of the system, suggesting that operating an AMoD system during peak hours between city 

centres and suburbs can result in additional congestion while also failing to completely service the 

travel demand.   

Other findings of this study are as follows: 

- The system becomes less sensitive to OTS with larger fleet sizes. 

- The system becomes more sensitive to fleet size with longer OTS. 

- For a specific change in fleet size, VKT changes more rapidly than the percentage of trips 

serviced 
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Chapter 6 : Model Testing and Evaluations- Formulating 

the Relationship between Fleet Size and VKT 

In Chapter 5, the performance of shared AMoD systems was analysed and the results uncovered 

some negative implications of such systems caused by the empty repositioning of AVs. This occurs 

when no ride-sharing is allowed in the modelling context and AMoD systems operate as car-

sharing systems. This chapter quantifies the transport implications of AMoD systems under both 

car- and ride-sharing scenarios. Further, in this chapter, an attempt is made to formulate the 

relationship between AMoD fleet size and the corresponding induced VKT by examining various 

scenarios that reveal the behaviour of these systems on a real transport network.  

This chapter is structured as follows. Section 6.1 describes the simulation scenarios and 

assumptions used for the study. The simulation results and associated discussions are provided in 

section 6.2. Section 6.3 illustrates the process undertaken to formulate the relationship between 

fleet size and VKT. In section 6.4, the effects of travel demand heterogeneity on this general 

relationship are explored. Finally, section 6.5 summarises the overall findings of the investigations 

reported in Chapter 6. 

6.1. Simulation scenarios and assumptions  

The current model is the same as the one deployed in Chapter 5 (e.g. transport network, travel 

demand, traffic flow model, rebalancing algorithm, public transport schedules, initial AVs at 

AMoD stands, and simulation period) with the difference in this chapter being that more fleets of 

varying sizes are utilised and also ride-sharing systems are introduced.  

This chapter investigates the performance of AMoD systems when used as either car-sharing or 

ride-sharing systems at 10% market penetration. The base case (BC) scenario represents the 

current condition where people use their privately-owned  vehicles to reach their destinations. This 

scenario is followed by 72 AMoD scenarios to obtain a comprehensive insight into how these 

systems work in an urban environment. Scenarios vary in terms of fleet size and rebalancing time-

step. Half of the AMoD scenarios explore the effects of AMoD systems when AVs are deployed 

as car-sharing systems and the other half investigate the implications when AVs provide ride-

sharing services to customers.  
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Please note that each AMoD scenario features either car-sharing or ride-sharing. That is to say, 

car-sharing and ride-sharing systems cannot co-exist in this model. As a result, the impacts of each 

system on the network are observed separately and compared with each other.  

Further, in this study, no mode choice model is implemented such as the one discussed in (Liu et 

al., 2017). In other words, travel demand for each transport mode is unchanged during the 

simulation, irrespective of the level of service in the network. Given the major aim of this study is 

to explore the supply side of AMoD scenarios, deploying a constant travel demand with fixed 

mode shares is more helpful. By doing so, researchers can focus more intently on formulating the 

impacts of supply change on current traffic conditions.  

It is also worth mentioning that the majority of AMoD studies appraised in this paper deploy the 

same approach and the assumed travel demand and mode shares are unchanged throughout their 

simulations. Therefore, this thesis implements the same framework, which enables a comparison 

to be made between the thesis results and the results in the existing literature so that disparities 

can be identified.   

It is also assumed that people use ride-sharing systems in groups of two (i.e. ride-sharing is not 

allowed for groups larger than two passengers). Ride-sharing clusters larger than two people seems 

unrealistic for Melbourne as the current average car occupancy rate in Victoria is 1.55 people per 

car, and this trend is estimated to decline in the future (Truong et al., 2017).   

In the ride-sharing scenarios, it is assumed that people who travel as a group have the same origins 

and destinations. This means that no detour occurs to pick up or drop off customers at different 

places. In other words, no DRS strategy is implemented in the current model such as the ones 

discussed in (Agatz et al., 2010, 2011; Shuo Ma, Yu Zheng and Wolfson, 2013; Fagnant and 

Kockelman, 2015). 

Further, it is assumed that any person who intends to share ride with someone else has come to 

an agreement in advance with his or her fellow riders regarding the start time of their journey. As 

a result, in this model, ride-sharers are imported into the model at the same time. That is to say, 

ride-sharers do not spend time waiting for their fellow riders at a station before departure.  

At the start of the simulation, the initial number of available AVs is equal at each of the AMoD 

stands, as demand is assumed to be uncertain for the fleet operator. As shown in Figure 6-1, nine 

fleet sizes are considered for this study such that the equal distribution of AVs at the start of 



Chapter 6: Model testing and evaluations- Formulating the relationship between fleet size and VKT  
 
 

115 
 

simulation is possible. For instance, when fleet size is 318 AVs, 6 vehicles (i.e. 318/53=6) can be 

equally distributed among 53 stations across the network. The process of choosing these fleet sizes 

was explained in Chapter 5, section 5.5. 

6.2. Simulation results 

The simulation was run for four OTSs (5, 15, 30, and 60 min) using a scenario where no 

rebalancing was implemented. As previously mentioned, the simulation was conducted for the 

07:00-09:00am peak period for the same calibrated and validated travel demand as discussed in 

Chapter 5. Overall, in this part of study, 133 scenarios were explored to gain a clear insight into 

the behaviour of AMoD systems.  

Figure 6-1-b shows that when OTS is set to 5 minutes, all fleet sizes in both ride-sharing and car-

sharing systems are able to service travel demand completely. As OTS grows (Figure 6-1-d, Figure 

6-2-b & Figure 6-2-d), the percentage of serviced requests drops. This decrease in the level of 

service is more rapid for car-sharing fleets than ride-sharing systems. These numbers indicate that 

the percentage of serviced requests in the ride-sharing system is always higher than that for the 

car-sharing system; however, this difference is not substantial especially for shorter OTSs. Note 

that passenger waiting time for all scenarios is always less than 7 minutes. 

On the other hand, Figure 6-1-a, Figure 6-1-c, Figure 6-2-a, and Figure 6-2-c show that AMoD 

systems induce more VKT due to the rebalancing of empty AVs. The highest and the least increase 

in VKT for all fleet sizes occur when OTS is set to 5 and 60 minutes, respectively. However, there 

is a considerable difference between the induced VKT in the car-sharing systems compared to the 

ride-sharing systems. For instance, when the AMoD system comprises 318 vehicles and the OTS 

is 5 minutes, the increase in VKT for the car-sharing system is 48 percent more than that for the 

ride-sharing system when both systems completely meet the travel demand. This phenomenon, 

first, shows the crucial role of implementing ride-sharing schemes in boosting the efficiency of 

AMoD systems and preventing the generation of new VKT due to rebalancing. Moreover, it 

highlights the importance of considering induced VKT as a key performance measure in assessing 

the efficacy of AMoD systems, rather than considering only the percentage of trips serviced and 

passenger waiting times as decision variables, which is the case in several studies in the literature 

e.g. (Spieser et al., 2014; Shen and Lopes, 2015; Zhang and Pavone, 2016; Alonso-Mora et al., 2017). 

Figure 6-3 illustrates the percentage of requests serviced for different fleet sizes in both car- and 

ride-sharing systems when no rebalancing strategy is deployed. These figures show if no 
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rebalancing strategy is deployed, the AMoD systems of small fleet size are not be successful 

enough in meeting the travel demand and deploying larger fleets is necessary to maintain an 

acceptable level of service. 
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Figure 6-1: Relationships between fleet size, VKT increase and percentage of requests serviced for 5 and 15 min OTSs 
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Figure 6-2: Relationships between fleet size, VKT increase and percentage of requests serviced for 30 and 60 min OTSs
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6.3. Formulating the relationships between AMoD fleet sizes and induced VKT 

This section investigates whether there is a specific relationship between AMoD fleet size and 

induced VKT. To answer this question, this study defines each AMoD fleet in terms of the amount 

of decrease in fleet size compared to the base case fleet size (current condition comprising 

conventional vehicles).  

Consider, for instance, an AMoD fleet comprising 318 AVs which is 16% of the base case fleet 

comprising 2039 vehicles, hence, the deployment of this AMoD fleet cuts the base case fleet size 

by 84%.  Similarly, AMoD fleets comprising 424, 530, 636, 848, 1060, 1272, 1590, and 1855 AVs 

cut the base case fleet size by 79%, 74%, 69%, 58%, 48%, 38%, 22%, and 9% respectively.  

Figures 6-4 to 6-7 illustrate the amount of induced VKT due to deploying the aforementioned 

AMoD fleets for various OTS. Note that each point on these graphs represents an AMoD fleet. 

These figures show there is always a quadratic relationship between the amount of decrease in the 

base case fleet size and induced VKT. In other words, as the AMoD fleet size decreases, the 

induced VKT increases on a parabola.  
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Figure 6-4: Percentage of increase in VKT as a function of the decrease in current fleet size 
when OTS is 5 min 

 

Figure 6-5: Percentage of increase in VKT as a function of the decrease in current fleet size 
when OTS is 15 min 
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Figure 6-6: Percentage of increase in VKT as a function of the decrease in current fleet size 
when OTS is 30 min 
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Another question that arises is will any change in the amount of travel demand affect this 

relationship while the demand pattern is the same (i.e. will the attraction rates of different areas 

remain the same?)  

To answer this question, five travel demands were designated which represent the conditions when 

market penetration is 2%, 4%, 6%, 12% or 20%. For each of these travel demands, three AMoD 

fleet sizes were designated and the induced VKT for various OTS were calculated through both 

simulation and using the quadratic equations displayed in Figures 6-4 to 6-7 for 10% market 

penetration. Tables 6-1 and 6-2 show the results of 60 scenarios with the last column displaying 

the difference between the simulated and estimated results (error). These results show that the 

calculated increase in VKT for both the simulation and the quadratic equation derived for 10% 

market penetration returns almost the same amount with an average 2.7% error. 

These results indicate that the percentage of increase in VKT for a specific decrease in fleet size is 

independent of the amount of travel demand and the VKT increase can be estimated using the 

equations derived for 10% market penetration irrespective of the travel demand as long as the 

demand pattern (i.e. the attraction rates of areas) remains unchanged.  

The significance of the findings discussed in this section is in providing fleet operators and policy 

makers with quick estimates of the future VKT for different scenarios when once-shared AMoD 

systems are operational. Furthermore, given the discussions in the Analytical Models section, there 

is a need to enhance the accuracy of the current analytical models in the literature. The relationship 

between AMoD fleet size and VKT identified in this paper can potentially be utilised in developing 

future analytical methods to evaluate similar technology-enabled transport systems. 
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Table 6-1: Estimating the increase in VKT using both a simulation and empirical equation 

Demand for 

AMoD 

AMoD 

Fleet 

Size 

(FS) 

BC 

Fleet 

Size  

AMoD 

FS/BC 

(%) 

FS 

decrease 

compared 

to BC (%) 

= x 

OTS (min) VKT 

increase 

(%) – 

Simulation  

VKT 

increase 

(%) – 

Estimated 

= y 

Error 

(%) 

2% 

Market 

Penetration 

106 411 26 -74 5 71 74 3 

15 57 54 3 

30 45 47 2 

60 36 36 0 

 

212 411 52 -48 5 45 50 5 

15 39 38 1 

30 30 31 1 

60 23 23 0 

 

318 411 77 -23 5 34 36 2 

15 28 30 2 

30 22 24 2 

60 15 17 2 

 

 

 

 

 

 

4% 

Market 

Penetration 

212 816 26 -74 5 68 74 6 

15 54 54 0 

30 45 47 2 

60 29 29 6 

 

424 816 52 -48 5 45 50 5 

15 37 38 1 

30 29 31 2 

60 21 23 2 

 

636 816 78 -22 5 33 36 3 

15 27 30 3 

30 20 24 4 

60 14 17 3 

 

6% 

Market 

Penetration 

265 1224 22 -78 5 76 79 3 

15 60 57 3 

30 52 50 2 

60 39 38 1 

 

530 1224 43 -57 5 48 57 9 

15 43 43 0 

30 35 36 1 

60 26 26 0 

 

954 1224 78 -22 5 34 36 2 

15 29 30 1 

30 23 24 1 

60 17 17 0 
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Table 6-2: Estimating the increase in VKT using both a simulation and empirical equation 

 

6.4. Investigating the effects of travel demand heterogeneity on the general relationship 

between fleet size and induced VKT 

In the previous section, it was shown that in general, there is a quadratic relationship between fleet 

size and induced VKT. This section explores whether this relationship holds if the travel demand 

pattern (TDP) varies when demand is unchanged. To achieve this, a hypothetical travel demand, 

comprising 2000 trips with four TDPs (D1, D2, D3, and D4) is introduced to the model. For each 

TDP, eight scenarios of varying fleet sizes (424, 530, 636, 848, 1060, 1272, 1590, 1855) and a 

constant rebalancing time-step (5 minutes) is undertaken. Note that in all the scenarios, only car-

sharing is allowed and all the trips happen in the study area. 

Demand for 

AMoD 

AMoD 

Fleet 

Size 

(FS) 

BC 

Fleet 

Size  

AMoD 

FS/BC 

(%) 

FS 

decrease 

compared 

to BC (%) 

OTS (min) VKT 

increase 

(%) - 

Simulation 

VKT 

increase 

(%) - 

Estimated 

Error 

(%) 

12% 

Market 

Penetration 

530 2447 22 -78 5 69 79 10 

15 60 57 3 

30 51 50 1 

60 41 38 3 

 

1007 2447 41 -59 5 51 59 8 

15 44 44 0 

30 37 37 0 

60 28 28 0 

 

1855 2447 76 -24 5 37 36 1 

15 31 30 1 

30 24 24 0 

60 19 17 2 

 

 

 

 

 

 

20% 

Market 

Penetration 

1060 4079 26 -74 5 63 74 11 

15 57 54 3 

30 50 47 3 

60 37 36 1 

 

1855 4079 45 -55 5 51 55 4 

15 42 42 0 

30 40 34 6 

60 27 25 2 

 

2968 4079 73 -27 5 40 37 3 

15 37 31 6 

30 30 24 6 

60 21 18 3 
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In this chapter, travel demand heterogeneity is represented by the distribution of NTRR within 

the study area along with their associated standard deviation (SDV) values. By definition, for each 

TDP (Dj), the value of NTRR for each area (i) is computed as follows, 

𝑵𝑻𝑹𝑹𝒊𝒋 =
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒄𝒐𝒎𝒊𝒏𝒈 𝒕𝒓𝒊𝒑𝒔 𝒕𝒐 𝒂𝒓𝒆𝒂 𝒊

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒐𝒖𝒕𝒈𝒐𝒊𝒏𝒈 𝒕𝒓𝒊𝒑𝒔 𝒇𝒓𝒐𝒎 𝒂𝒓𝒆𝒂 𝒊
                                                Equation 6-1 

 

Where, 

𝑁𝑇𝑅𝑅𝑖𝑗 : net trip-rate ratio of area i when TDP is Dj 

The value of SDV for the whole study area when TDP is Dj is calculated as follows, 

𝑺𝑫𝑽𝒋 = 𝑺𝑫𝑽 (𝑵𝑻𝑹𝑹𝟏𝒋, 𝑵𝑻𝑹𝑹𝟐𝒋, … , 𝑵𝑻𝑹𝑹𝒊𝒋)                                                   Equation 6-2 

 

where 

𝑆𝐷𝑉𝑗: Standard deviation of NTRR values for the whole study area when TDP is Dj 

For this study, i ϵ (1, 2, 3, …, 53) and j ϵ (1, 2, 3, 4). 

The distribution of NTRR in the study area for each TDP and their related SDV is shown in Figure 

6-8. As shown in the graph, in the first and second TDPs (D1, and D2), the central parts of the 

study area (i.e. area 9 to 34) have the highest NTRR values (5.50 for D1, 3.33 for D2), meaning 

these regions are popular in comparison to the other areas2 whereas, for the third TDP (D3), the 

central parts of the study area are less attractive than the other regions with a NTRR value of 0.67. 

Finally, for the fourth TDP (D4), the NTRR of all the areas within the study area is equal to 1, 

meaning the attractiveness of all regions are on a par.  

As shown in Figure 6-8, as TDP moves from D1 to D4, the value of SDV gradually declines from 

2.51 to 0. In fact, D1 represents the case in which the study area comprises regions with very 

different attractiveness levels, and as TDP approaches D4, all areas display an equal attractiveness.  

It is most likely to observe a TDP, similar to D1 or D2 between suburbs and city centres over 

peak hours when most people travel from their residences to CBD for work. During off-peak 

                                                             
2 Note that the NTRR values in D1 and D2 are the same (0.56) for the area 34 to 53 (Figure 6-8). 
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hours, the travel demand distribution within the city can be approached by D3 or D4. However, 

observing a TDP similar to D4 in reality is quite difficult.   

Figure 6-9 illustrates the simulation results for all 32 AMoD scenarios, showing there is still a 

quadratic relationship between fleet size and induced VKT irrespective of demand pattern. In 

other words, given the simulation results obtained throughout this study, it can be deduced that 

there is always a quadratic relationship between fleet size and induced VKT irrespective of the 

level of demand or the pattern. All the scenarios were successful in completely meeting the travel  

demand with customer waiting times always less than 5 minutes. 

Figure 6-10, however, shows that the demand pattern has a substantial effect on the induced VKT. 

Note that the number of trips (demand) is the same (2000 trips) for all the scenarios investigated. 

As seen in this graph, for a specific fleet size, there is a considerable difference between the VKT 

generated in each demand pattern. For instance, when the fleet size is 424, the induced VKT for 

D1 is 39% more than that of D4.  This happens because in D1, customers in the non-attractive 

areas whose NTRR is low can only be serviced by sending idle vehicles from the attractive areas 

(central parts in this study) whose NTRR is high, whereas in D4, customers do not have to rely 

only on rebalanced AVs as they can also be picked up by AVs which have taken passengers from 

other parts of the city to this area and have dropped them off. Hence, the reason why D4 has less 

VKTs is due to the number of trips coming from other areas, however non-attractive areas such 

as D1 receive few trips from other areas.  As a result, in D1, the AMoD system is heavily dependent 

on the rebalancing process to meet the travel demand, which ultimately leads to high VKTs 

As a result, in D1, the AMoD system is heavily dependent on the rebalancing process to meet the 

travel demand, which ultimately leads to high VKTs. 
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Figure 6-8: The distribution of NTRR within the study area for various travel demand patterns
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Figure 6-9: The relationship between fleet size and VKT for a constant demand with various 
patterns  

 

Figure 6-10: Induced VKT for different fleet sizes with a constant demand but various patterns   
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6.5. Chapter summary 

The investigations discussed in this chapter show that an AMoD system, which provides either a 

car-sharing or ride-sharing service, is able to cut the current fleet size by 84%. This system, 

however, can increase the current VKT by up to 77% when used as a car-sharing system. On the 

other hand, there is a 29% increase in VKT for the ride-sharing system, which is 55% less than 

the former system. This suggests that shared AMoD systems might not be a sustainable solution 

to the current urban mobility challenges by themselves and deploying ride-sharing schemes with 

high car-occupancy is crucial.  

The model also shows that there is a quadratic relationship between AMoD fleet size and the 

induced VKT in the system, which is independent of the total number of trips and demand pattern. 

The significance of the current finding could lie in providing fleet operators and policy makers 

with a more computationally efficient technique to assess the performance of AMoD systems. 

Further, this relationship could potentially be used as one of the key underlying assumptions of 

the future analytical approaches. 

This chapter also explored the effects of travel demand heterogeneity on the performance of 

AMoD systems and showed that the more heterogeneous the travel demand is, the higher the 

VKT becomes. 

In general, the findings of this work show that many studies in the existing literature are 

overoptimistic about the potential benefits of AMoD systems. This is due to unrealistic models 

and the assumptions used in these studies. The results also advocate the idea that extensive public 

transport systems will play a key role in providing more efficient mobility services. In this regard, 

AMoD systems could be utilised as a complementary component to the current public transport 

systems through increasing the accessibility of mass transit systems to members of the public.
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Chapter 7 : Synthesis of Results, Summary of Impacts and 

Policy Implications 

This chapter presents the findings of this PhD research in a concise manner. Further, it 

demonstrates how these findings could assist policy makers in preparing a sustainable transport 

agenda for the years ahead. These discussions could help governments and other stakeholders 

develop a realistic insight into the potential of emerging technologies in resolving urban transport 

issues.  

7.1. Synthesis of results 

This section summarises the main findings of this dissertation. The key discoveries of this work 

are outlined as follows, 

1. The current literature is overoptimistic about the role of shared AMoD systems in reducing 

traffic congestion and producing a sustainable mobility system. This is  mainly due to the 

simplistic models used and unrealistic assumptions made. 

2. AMoD systems always lead to more VKT in the system. However, the extent of this 

increase is determined by fleet size, vehicle occupancy and TDP. Shared AMoD systems 

with no ride-sharing translate into 29% to 77% more VKT. 

  Adding ride-sharing services with only two people on board cuts down the induced VKT 

up to 48%. Further, TDP has a considerable effect on the induced VKT. The more 

heterogeneous the travel demand becomes, the higher the induced VKT becomes. In this 

study, changes in TDP increased the induced VKT up to 39%, which shows the 

significance of this phenomenon in exploring the performance of AMoD systems.   

3. AMoD systems are always successful in meeting the travel demand when OTS is set to 5 

minutes. The average customer waiting times are always around 4 minutes. 

4. The system becomes less sensitive to OTS with larger fleet sizes. 

5. The system becomes more sensitive to fleet size with longer OTS. 

6. For a specific change in fleet size, VKT changes more rapidly than the percentage of trips 

serviced. 
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7. AMoD systems are not as sensitive to the initial number of AVs at stations. 

8. There is always a quadratic relationship between fleet size and VKT irrespective of travel 

demand or TDP. This finding could be used in estimating future VKT. It can also help 

researchers improve the accuracy of the current analytical methods. 

7.2. Policy insights 

The findings of this research can also benefit governments and help policy makers come up with 

more thoughtful and realistic decisions.  Some of these policy insights can be outlined as follows, 

1. Deploying AMoD to service customers within the whole urban area would certainly lead 

to a sizable increase in VKT. Therefore, implementing ride-sharing schemes in these 

systems seems to be imperative to avoid the potential growth in congestion.  

Governments should also invest more in researching ways to convince travellers to share 

rides with other people.  Having a realistic insight into people’s travel behaviour and 

expectations will assist governments in introducing new schemes that encourage more 

ride-sharing.  

2. Given the significant potential of AMoD systems to increase VKT in urban areas, 

deploying these systems to improve the accessibility of current mass public transit systems 

seems more sustainable.  

Implementing shared AVs between residential areas and public transport stations will 

promote more mass transit use, which is already in place. In other words, introducing 

AMoD systems as last mile solutions in the current urban environment could persuade 

more people to use them and reduce the number of vehicles on roads.  

Further, the increased interest in mass transit will result in attracting more funds to enhance 

the existing public transport systems, and thereby the number of travellers using these 

systems will grow. This strategy will not only cut VKT in the network, but it will also 

establish a sustainable mobility system.  

3. This study, for the first time in the literature, proposed a method to explore the impacts 

of travel demand heterogeneity (or TDP) on the efficiency of AMoD systems. The results 
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show that this phenomenon can substantially affect the efficacy of these systems and 

render them unsustainable.  

This study shows that deploying an AMoD system between suburbs and city centres during 

peak hours might not be a wise solution to address the congestion problem in urban areas. 

Governments should take this issue into account along with other decision-making factors 

while establishing new urban transport agendas in the age of emerging technologies. 

4. Public transport investments, particularly high capacity rail, will remain critical even in 

future mobility scenarios. Together with walking and cycling, public transport should 

continue to be promoted as an important mode of transport, particularly in urban areas.  

5. Transport policies and deployment strategies should consider the shape, type and size of 

AMoD fleets and ensure that the right mix between public transport and shared vehicles 

is reached to minimise empty running and avoid increased congestion and emissions in 

cities. 

6. Environmental benefits will depend on vehicle technology, car occupancy, and total VKT 

in the system. An AMoD fleet comprising efficient and advanced AVs that deploys wise 

ride-sharing schemes will most likely succeed in delivering an environmentally friendly 

transport system.  

7. To ensure the public transport industry remains viable and relevant, it needs to be more 

entrepreneurial and step forward as an actor in shaping the regulatory frameworks and the 

future use of AVs. Otherwise, it will be mainly shaped by the automobile and technology 

companies. The transport industry can do this by supporting public transport SAV trials 

to raise its profile and increase public awareness. The regulatory frameworks will need to 

be adapted to allow public transport operators to innovate and launch such pilot studies. 

8. Public authorities should promote and adapt policies to prepare citizens for the shared use 

of vehicles. This can be achieved by demonstrating support, removing barriers and 

providing tax incentives for shared mobility schemes to support the trend in declining car 

ownership and the increasing acceptance of shared ownership of vehicles. More shared 

mobility and more digital services today will lay the foundation for AV fleets and AMoD 

services tomorrow. 
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9. The commercial sector and the provider of an AMoD should design fare systems and 

pricing structures for mobility services that ensure the sustainability of the service. To the 

traveller, it will not matter in the future who provides the service however,  the type and 

cost of the service is important. These services will need to be run in line with public policy 

goals to provide safe, clean, equitable, accessible and affordable mobility solutions. 

10. If well planned and implemented, AMoD will mean better cost per passenger kilometre 

resulting in reduction of individual car usage leading to reduced congestion and emissions. 
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Chapter 8 : Conclusions and Future Directions 
 

This research investigated transport network impacts of AMoD systems in an urban area. The 

study commenced by reviewing the current AMoD studies and exploring the methods which have 

been utilised in the literature. The literature review provided sufficient evidence that an agent-

based simulation model would be the best option to achieve the goals of the project.  

For this study, Commuter, an agent-based traffic simulation tool, was selected as the modelling 

environment. To develop a proof of concept, a pilot study was conducted using a small case study 

located in Melbourne. The pilot study was successful in providing the researchers with the 

sufficient level of knowledge necessary to develop an AMoD model over a larger area (the main 

study). 

The main study was undertaken in the context of a case study located in Melbourne with an area 

(88.75 km2), much larger than the pilot one (6 km2). The main model featured new characteristics 

compared to its counterparts in the literature in terms of traffic flow, network representation, and 

rebalancing algorithm. These new modelling features led to some new insights into the 

performance of AMoD systems, which have not been previously discussed in the literature.   

Further, this research, for the first time, introduced a new measure, called travel demand 

heterogeneity  to explore the performance of AMoD systems and showed that the impacts of this 

phenomenon is not trivial. Sections 8.1 and 8.2 discuss the findings of this research and future 

research directions, respectively. 

8.1. Findings  

The current study provides the quantitative trade-offs between AMoDs of different fleet size and 

OTS. The results suggest that an AMoD system with no ride-sharing can reduce the current fleet 

size by 84%. This reduction in fleet size, however, comes at the cost of 77% more VKT in the 

system due to the need for AV rebalancing. The induced VKT reported in the current study is not 

in line with what is suggested in the majority of the existing literature, which is an indication of 

over-optimism regarding the potential of AMoD systems to mitigate congestion3.  

                                                             
3 Readers are referred to chapter 5, section 5.6, for a comprehensive discussion on the possible causes of these 
discrepancies. 
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The results also showed that implementing a ride-sharing scheme led to 55% less VKT compared 

to a scenario in which no ride-sharing was permitted. This finding indicates the key role of ride-

sharing in the ultimate success of AMoD systems and providing a sustainable mobility service to 

the public.  

In this study, ride-sharing scenarios comprised AVs with a capacity of two people. This assumption 

was made based on studies that suggest ride-sharing in groups larger than two people might be 

unrealistic. Undoubtedly, encouraging a larger number of people to ride-share ride with other 

people would translate into more efficient AMoD systems as a result of less induced VKT. This 

objective, however, will never materialise unless wise ride-sharing schemes that convince more 

travellers to use ride-sharing systems are implemented. 

This research also quantified the elasticities of trip success rate and VKT with respect to different 

fleet sizes and rebalancing time-steps, which could be helpful for formulating the relationships 

between different system characteristics. 

In addition, the current research discovered a quadratic relationship between AMoD fleet size and 

VKT, which is independent of travel demand. Although travel demand patterns (TDP) may affect 

the amount of induced VKT in the system, the quadratic relationship between fleet size and VKT 

always holds, irrespective of TDP.  

This research used a new criterion, called travel demand heterogeneity, to consider the 

performance of AMoD systems. A method was proposed which takes into account the effects of 

this phenomenon on the efficiency of these systems. The results revealed that the more 

heterogeneous the demand is, the less efficient the AMoD systems become. This investigation also 

showed that AMoD systems might not be a sustainable transport solution during peak hours 

between suburbs and city centres. 

The obtained results have significant policy implications, particularly in relation to the need for 

continued investment in public transport, especially heavy rail mass transit between the suburbs 

and city centres in large cities. The results also suggest that the real value of AMoD systems is 

likely to be in meeting the demand for intra-suburban and inter-suburban travel, particularly first 

and last kilometre solutions for transporting travellers from their homes to the nearest public 

transport hubs.  
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8.2. Future directions 

1. Similar to other studies, this thesis investigated the increase in capacity, which might be 

realised thanks to the need for fewer parking lots in AMoD scenarios. Future work could 

investigate the performance of AMoD systems while taking into account this potential 

increase in capacity along with the measures discussed in this thesis to gain a more realistic 

insight into the contributions of AMoD systems. 

2. Given this study only quantified the network benefits of AMoD systems for AM-peak 

hours, future studies will investigate the performance of AMoD systems during off-peak 

and evening peak hours as well, before making a general conclusion about the overall 

efficiency of AMoD systems. 

3. The eVKT reported in this research was only based on rebalancing the empty AVs. Future 

work could extend this by considering how AVs will also need to undertake other empty 

travels for recharging or refuelling purposes. Depending on where the charging stations 

are located, this type of empty driving may well lead to even more eVKT.  

4. The AMoD system used in this study was assumed to be station-based. We expect that 

deploying door-to-door AMoD systems will induce more eVKT than the station-based 

system. In the door-to-door AMoD system, people are picked up and dropped off at their 

residences rather than walking (or cycling or taking a bus etc.) to an AMoD station. This 

means that these types of trips in the station-based system will be replaced with AV trips 

in the door-to-door system and will result in more eVKT. This suggests, and should be 

explored in future research, that their deployment as ride-sharing schemes (especially in 

the outer suburbs for first and last kilometre services) supplemented with extensive public 

transport systems between the suburbs and city centres, is going to be critical for their 

success as an urban mobility solution in future cities. 

5. The results reported in this study suggest that the real value of AMoD systems is likely to 

be in meeting the demand for intra-suburban and inter-suburban travel particularly first 

and last kilometres solutions for transporting travellers from their homes to the nearest 

public transport hubs. Future research should aim to verify and quantify these assertions 

through extended simulations.   
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6. Due to computer power and computational constraints, the current research only modelled 

part of Melbourne during morning peak hours to conduct this study. In the future, much 

larger areas should be investigated over the course of the whole day or so, using super 

computers and cloud computing techniques. Note that the simulation models developed 

in this study are scalable and can be easily extended to cover the wider Melbourne network. 

For new cities, the same modelling techniques used in this study can be applied in the 

context of new transport networks with different characteristics. These developments 

would be exciting for researchers and would help them gain a vaster insight into the 

behaviour of AMoD systems. These expanded models could also be used to verify the 

findings of the current study and build on its findings. 
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Appendices 
 

Appendix A: Instructions to Create a Plugin in Commuter 

To create and install a plugin in Commuter the following steps must be taken, 
 

1. Ensure you have a license for creating user-defined plugins. The 
Help / About window should display “User Plugins” 

2. Write your plugin java source code: the plugin class must extend 
com.azalient.api.BasePlugin, and implement any event interfaces for 
which you want to register 

3. Your classes should be in an appropriate package to avoid name 
clashes. By convention, reverse your internet domain: for example, 
if your domain is thu.edu.cn, the package should be cn.edu.thu 

4. In the constructor of the plugin class, add a call to register the 
plugin for each event 

5. The event interfaces are in packages com.azalient.api.event.model.* and 
com.azalient.api.event.agent.* 

6. For example if you implement ModelEventTimeStep, and you register 
the plugin using addModelEventTimeStepListener(this); your plugin will be 
called on every simulation time step. Similarly if you implement 
AgentEventLoop, and add the relevant registration call, your plugin will 
be called whenever a vehicle activates a loop. 

7. Once you have written the Java code for your plugin, compile it 
into a class file. Follow standard Java conventions: the class file 
should be in a folder that agrees with the package name. For 
example, if your plugin is MyPlugin..java in package cn.edu.thu, 
the class file should be in a file cn/edu/thu/MyPlugin.class 

8. Package up the class file(s) into a JAR file, and put that jar file into 
the bin directory of your Commuter installation, beside the other jar 
files. This is normally C:/Azalient/Commuter/bin. It will be 
automatically added to the class path from here by the 
Commuter.exe launcher. 

9. Add a 3-letter acronym, the name of the plugin and the "main" 
class (this class) to commuter.plugins.csv 
For example: "XYZ,Test Plugin,cn/edu/thu/MyPlugin" 
(The 3-letter acronym is historical, it is required but the value is not important) 

10. When you next start Commuter, your plugin will be visible in the 
Plugins Tab 
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The following simple template can be used in order to produce a desired plugin in Commuter, 

 

package com.azalient.test; 
 
import java.awt.Color; 
import java.awt.Window; 
import java.io.File; 
import java.io.IOException; 
import java.io.PrintWriter; 
import javax.swing.JFrame; 
import javax.swing.JLabel; 
import com.azalient.api.BasePlugin; 
import com.azalient.api.b.control.IController; 
import com.azalient.api.b.control.IGroup; 
import com.azalient.api.b.control.IPhase; 
import com.azalient.api.draw.IDrawing; 
import com.azalient.api.event.model.ModelEventViewLegend; 
import com.azalient.api.quick.Api; 
import com.azalient.apo.SC; 
import com.azalient.apo.enums.Signal; 
 
/** This is a template for a Commuter plugin. 
* 
* <p> 
* The steps you need to take to install a plugin are as follows: 
* <ul> 
* <li> The new plugin must extend BasePlugin, and implement any event interfaces 
* for which you want to register 
* <li> Add a 3-letter code, the name of the plugin and the "main" class (this class) 
* to commuter.plugins.csv <br> 
* For example: "TTT,Test Plugin,com/mydomain/test/TestPlugin". 
* The 3-letter code is historical, it is not important. 
* <li> Package up the class files into a JAR file, and put that jar file into the bin directory 
* of your Commuter installation, beside the other jar files. This is normally 
* C:/Azalient/Commuter/bin. It will be automatically added to the class path from here 
* by the Commuter.exe launcher. 
* 
* </ul> */ 
 
public class TestPlugin extends BasePlugin 
implements ModelEventViewLegend 
 
/* implement the event handlers corresponding to the events you want 
to be sent to this plugin */ 
{ 
/** 
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* In the constructor, register for the events you want to be sent to this 
* plugin. See the packages com.azalient.api.event.agent and .model for all 
* the events. There are both model events, corresponding to significant 
* transitions in the model loading and handling cycle, and agent avents, 
* which correspond to significant events in the life cycle of an agent 
* (vehicle, pedestrian etc) in any simulation 
**/ 

public TestPlugin() 
 
{ 
addModelEventViewLegendListener(this); 
frame.getContentPane().add(new JLabel("Add your own controls here, to allow user 
interaction with your plugin.")); 
frame.pack(); 
} 
 
/** This is the implementation of the event handler registered above */ 
public void viewLegend(IDrawing drw) 
{ 
drw.colour(Color.WHITE.getRGB()); 
drw.string("Test Plugin", 0.5, 0.7, 0, 0.5); 
} 
 
/** This is called for all plugins, after the network "document" has been loaded */ 
public void pluginOpen() 
 
{ 
File file = new File("c:/temp/phases.csv"); 
Try 
 
{ 
PrintWriter pw = new PrintWriter(file); 
pw.println("Phase,Group*,Group*,Group*,Group*,Group*,Group*,Group*,Group*,Group*,
Grou 
p*,Group*,Group*,Min,Gap,Loop*,"); 
for (IPhase phase: Api.model().control().phases()) 
 
{ 
Signal[] signals = phase.signalArray(); 
IController c = phase.controller(); 
IGroup[] ga = c.groups(); 
int ns = signals.length; 
int ng = ga.length; 
pw.print(phase.name()+SC.CM); 
for (int i = 0; i < ng && i < ns; i++) 
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{ 
if (signals[i] == Signal.Green) 
{ 
pw.print(SC.N+ga[i].index()+SC.CM); 
} 
} 
pw.println(); 
} 
pw.close(); 
} 
catch (IOException iox) {} 
} 

/** This is called for all plugins, when a network "document" is closed */ 
public void pluginClose() 
{ 
frame.setVisible(false); 
frame.dispose(); 
} 
/** This is called for all plugins, when "File/Save" is selected, to save any data in the 
plugin */ 
public void pluginSave() {} 
private JFrame frame = new JFrame("Test Plugin User Interface"); 
/** called when the "Configure" button is pressed on the Plugins tab */ 
public Window pluginWindow() 
{ 
return frame; 
} 
} 
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Appendix B: Plugin codes used in this research for rebalancing purposes  

The plugin used in this study in order to rebalance the idle vehicles according to the algorithm 

described in the thesis is composed of various java codes. The following sections express those 

codes in detail. 

1. Empty taxi measure 

package com.gmx.xgd; 

import com.azalient.api.sim.agents.IVehicle; 

public class EmptyTaxiMeasure 

{ 

  private final IVehicle taxi; 

  private double distanceTravelledEmptyM; 

  private double timeEmptyS; 

  private RedirectRequest redirectRequest; 

   

  public EmptyTaxiMeasure(IVehicle v) 

  { 

    this.taxi = v; 

  } 

  public void reset() 

  { 

    this.distanceTravelledEmptyM = 0.0D; 

    this.timeEmptyS = 0.0D; 

  }  

  public double distanceTravelledEmptyM() 

  { 

    return this.distanceTravelledEmptyM; 

  } 

   

  public void incDistanceTravelledEmptyM(double d) 

  { 
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    this.distanceTravelledEmptyM += d; 

  } 

  public double timeEmptyS() 

  { 

    return this.timeEmptyS; 

  } 

  public void incTimeEmptyS(double t) 

  { 

    this.timeEmptyS += t; 

  } 

  public RedirectRequest redirect() 

  { 

    return this.redirectRequest; 

  } 

  public void redirect(RedirectRequest rr) 

  { 

    this.redirectRequest = rr; 

  } 

} 

 

2. Taxi redirector 

 

package com.gmx.xgd; 

 

import com.azalient.api.API; 

import com.azalient.api.APU; 

import com.azalient.api.BasePlugin; 

import com.azalient.api.a.IModel; 

import com.azalient.api.a.IRouting; 
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import com.azalient.api.a.ISimulator; 

import com.azalient.api.a.model.INetwork; 

import com.azalient.api.a.model.IParameters; 

import com.azalient.api.a.position.IBezier; 

import com.azalient.api.a.position.IPosition; 

import com.azalient.api.a.position.IXyz; 

import com.azalient.api.b.network.ILane; 

import com.azalient.api.b.network.ILink; 

import com.azalient.api.b.network.IZone; 

import com.azalient.api.b.parameters.IBehaviour; 

import com.azalient.api.b.parameters.ITerm; 

import com.azalient.api.b.parameters.IVehicleType; 

import com.azalient.api.b.parking.IParkingLane; 

import com.azalient.api.b.parking.IParkingVehicle; 

import com.azalient.api.b.trips.IVehicleTrip; 

import com.azalient.api.event.agent.AgentEventMove; 

import com.azalient.api.event.agent.AgentEventOccupantIn; 

import com.azalient.api.event.agent.AgentEventOccupantOut; 

import com.azalient.api.event.agent.AgentEventTimeStep; 

import com.azalient.api.event.model.ModelEventTimeRewind; 

import com.azalient.api.event.model.ModelEventTimeSec; 

import com.azalient.api.sim.agents.IAgent; 

import com.azalient.api.sim.agents.IMotor; 

import com.azalient.api.sim.agents.IOccupant; 

import com.azalient.api.sim.agents.IUnit; 

import com.azalient.api.sim.agents.IVehicle; 

import com.azalient.api.sim.routes.IZoneRouter; 
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import com.azalient.apo.basics.Distance; 

import com.azalient.apo.basics.DistanceLong; 

import com.azalient.apo.basics.Price; 

import com.azalient.apo.basics.UTime; 

import java.awt.Window; 

import java.util.ArrayList; 

import java.util.Hashtable; 

 

public class PluginTaxiRedirect 

  extends BasePlugin 

  implements AgentEventTimeStep, ModelEventTimeRewind, AgentEventMove, 

ModelEventTimeSec, AgentEventOccupantIn, AgentEventOccupantOut 

{ 

  private TaxiRedirectOptimizer optimizer = new TaxiRedirectOptimizer(); 

  private TaxiRankWindow ui = new TaxiRankWindow("Taxi Ranks"); 

  private TaxiRank[] taxiRankArray; 

  private Hashtable<IZone, TaxiRank> zoneToRank = new Hashtable(); 

  private Hashtable<IZone, ArrayList<RedirectRequest>> redirectRequestTable = new 

Hashtable(); 

  private double[][] interTaxiRankFreeFlowTravelCost; 

   

  public PluginTaxiRedirect() 

  { 

    addModelEventTimeRewindListener(this); 

    addModelEventTimeSecListener(this); 

     

    addAgentEventMoveListener(this); 

    addAgentEventTimeStepListener(this); 
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    addAgentEventOccupantInListener(this); 

    addAgentEventOccupantOutListener(this); 

  } 

   

  public void pluginOpen() 

  { 

    ArrayList<TaxiRank> taxiRankList = new ArrayList(); 

    for (IZone zone : API.model().network().zones()) { 

      if (zone.parkingTaxiRank()) 

      { 

        TaxiRank taxiRank = new TaxiRank(zone); 

        if (taxiRank.valid()) 

        { 

          taxiRankList.add(taxiRank); 

          this.zoneToRank.put(zone, taxiRank); 

        } 

      } 

    } 

    this.taxiRankArray = ((TaxiRank[])taxiRankList.toArray(new TaxiRank[taxiRankList.size()])); 

     

    this.ui.initialise(this.taxiRankArray)  

 

    status(this, 2); 

  } 

  public void pluginClose() {} 

  public void pluginSave() {} 
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  public Window pluginWindow() 

  { 

    return this.ui; 

  } 

  public void timeSec() 

  { 

    for (TaxiRank taxiRank : this.taxiRankArray) { 

      taxiRank.timeStep(); 

    } 

    this.ui.fireTableUpdate(); 

     

    int interval = this.ui.optInterval(); 

    UTime now = new UTime(API.simulator().simulationTime()); 

    if (now.timeInt() % interval == 0) 

    { 

      APU.reportF("%s Calling Optimizer", new Object[] { now.toString(Boolean.valueOf(true)) 

}); 

  

      fetchRouteCosts(); 

       

      RedirectRequest[] rra = this.optimizer.optimize(this.taxiRankArray, 

this.interTaxiRankFreeFlowTravelCost); 

      addRequestsToQueue(rra); 

    } 

  } 

   

  private void addRequestsToQueue(RedirectRequest[] rra) 



 

160 
 

  { 

    if (rra.length == 0) { 

      return; 

    } 

    for (RedirectRequest rr : rra) 

    { 

      pushRequest(rr) 

      this.ui.countRequest(rr.redirectFrom(), rr.redirectTo()); 

    } 

  } 

  private synchronized void pushRequest(RedirectRequest rr) 

  { 

    if ((rr.redirectFrom() == null) || (rr.redirectTo() == null)) { 

      return; 

    } 

    ArrayList<RedirectRequest> fromRequestList = 

(ArrayList)this.redirectRequestTable.get(rr.redirectFrom()); 

    if (fromRequestList == null) 

    { 

      fromRequestList = new ArrayList(); 

      this.redirectRequestTable.put(rr.redirectFrom(), fromRequestList); 

    } 

    fromRequestList.add(rr); 

  } 

  private synchronized RedirectRequest popRequest(IZone zone) 

  { 

    ArrayList<RedirectRequest> fromRequestList = 

(ArrayList)this.redirectRequestTable.get(zone); 
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    if (fromRequestList == null) { 

      return null; 

    } 

    if (fromRequestList.size() == 0) { 

      return null; 

    } 

    RedirectRequest firstRR = (RedirectRequest)fromRequestList.remove(0); 

    return firstRR; 

  } 

  private void fetchRouteCosts() 

  { 

    IZoneRouter zr = API.routing().zoneRouter(); 

    int taxiBehaviourIndex = -1; 

    for (IVehicleType vt : API.model().parameters().vehicleTypes()) { 

      if (vt.isTaxi()) 

      { 

        taxiBehaviourIndex = vt.behaviour().index(); 

        break; 

      } 

    } 

    int nRank = this.taxiRankArray.length; 

    this.interTaxiRankFreeFlowTravelCost = new double[nRank][nRank]; 

    for (int i = 0; i < nRank; i++) 

    { 

      IZone zi = this.taxiRankArray[i].zone(); 

      ILink ziLink0 = zi.links()[0]; 

      for (int j = 0; j < nRank; j++) { 
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        if (i != j) 

        { 

          IZone zj = this.taxiRankArray[j].zone(); 

          Price costIJ = zr.routeCost(ziLink0, zj.index(), taxiBehaviourIndex); 

          this.interTaxiRankFreeFlowTravelCost[i][j] = costIJ.dollars(); 

        } 

      } 

    } 

  } 

   

  private boolean keepToThroughLane(IVehicle taxi) 

  { 

    ILink link = taxi.link(); 

    if (link == null) { 

      return false; 

    } 

    IZone zone = link.zone(); 

    if (zone == null) { 

      return false; 

    } 

    if (zone != taxi.trip().destination()) 

    { 

      int lo = -1; 

      int hi = -1; 

      for (ILane lane : link.lanes()) { 

        if (!lane.isParking()) 

        { 
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          int index = lane.index(); 

          if ((lo == -1) || (index < lo)) { 

            lo = index; 

          } 

          if (index > hi) { 

            hi = index; 

          } 

        } 

      } 

      if ((lo > 0) && (hi >= lo)) { 

        taxi.laneLowHigh(lo, hi); 

      } 

      return true; 

    } 

    return false; 

  } 

   

  public void move(IAgent agent) 

  { 

    if (!(agent instanceof IVehicle)) { 

      return; 

    } 

    IVehicle taxi = (IVehicle)agent; 

    if (!taxi.isTaxi()) { 

      return; 

    } 

    if (keepToThroughLane(taxi)) { 
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      return; 

    } 

    if (taxi.occupant() != null) { 

      return; 

    } 

    IParkingVehicle pv = taxi.parkingVehicle(); 

    if ((!taxi.isParking()) || (pv == null)) { 

      return; 

    } 

    IParkingLane pl = pv.parkingLane(); 

    if (pl == null) { 

      return; 

    } 

    if (!pv.parked()) 

    { 

      if (API.simulator().simulationTime() - 

API.model().parameters().simulationTerm().start().time() < 2.5D * 

API.model().parameters().timeStep()) { 

        if (taxi.leader() != null) 

        { 

          IBezier cl = pl.lane().centreline(); 

          double centrePositionFromEnd = taxi.laneOrderIndex() * pl.bayLength() + 

taxi.halfLength(); 

          IPosition c = cl.position(cl.length() - centrePositionFromEnd); 

          taxi.centre().set(c); 

        } 

      } 

      return; 
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    } 

    RedirectRequest rr = popRequest(pl.zone()); 

    if (rr == null) { 

      return; 

    } 

    EmptyTaxiMeasure etm = emptyTaxi(taxi); 

    etm.redirect(rr);  

    IZone redirectFrom = rr.redirectFrom(); 

    IZone redirectTo = rr.redirectTo();   

    assert (pl.zone() == redirectFrom); 

    taxi.trip().destination(redirectTo); 

    pv.leavingZoneBay(0); 

 

    APU.reportF("%s Dispatch Taxi %d: %s to %s", new Object[] { 

      new UTime(API.simulator().simulationTime()).toString(Boolean.valueOf(true)),  

      Integer.valueOf(taxi.uniqueID()), redirectFrom, redirectTo }); 

     

    this.ui.countDispatch(rr.redirectFrom(), rr.redirectTo()); 

  } 

   

  private Hashtable<IVehicle, EmptyTaxiMeasure> emptyTaxis = new Hashtable(); 

  private double completedEmptyTaxiTimeS; 

  private double completedEmptyTaxiDistanceM; 

  private double incompleteEmptyTaxiTimeS; 

  private double incompleteEmptyTaxiDistanceM; 

   

  private EmptyTaxiMeasure emptyTaxi(IVehicle taxi) 
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  { 

    EmptyTaxiMeasure etm = (EmptyTaxiMeasure)this.emptyTaxis.get(taxi); 

    if (etm == null) 

    { 

      etm = new EmptyTaxiMeasure(taxi); 

      this.emptyTaxis.put(taxi, etm); 

    } 

    return etm; 

  } 

  public void timeStep(IAgent agent) 

  { 

    if (((agent instanceof IVehicle)) && (((IVehicle)agent).isTaxi())) 

    { 

      IVehicle taxi = (IVehicle)agent; 

      EmptyTaxiMeasure etm = emptyTaxi(taxi); 

      if (taxi.occupant() == null) 

      { 

        double dt = API.simulator().timeStep(); 

        double dd = taxi.speedMPS() * dt; 

         

        etm.incTimeEmptyS(dt); 

        etm.incDistanceTravelledEmptyM(dd); 

         

        this.incompleteEmptyTaxiTimeS += dt; 

        this.incompleteEmptyTaxiDistanceM += dd; 

        if ((etm.redirect() != null) && (taxi.link().zone() == etm.redirect().redirectTo())) 

        { 
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          APU.reportF("%s Arrive Taxi %d: %s to %s", new Object[] { 

            new UTime(API.simulator().simulationTime()).toString(Boolean.valueOf(true)),  

            Integer.valueOf(taxi.uniqueID()), etm.redirect().redirectFrom(), 

etm.redirect().redirectTo() }); 

          this.ui.countArrival(etm.redirect().redirectFrom(), etm.redirect().redirectTo()); 

          etm.redirect(null); 

        } 

      } 

      keepToThroughLane(taxi); 

    } 

  } 

   

  public void timeRewind() 

  { 

    this.redirectRequestTable.clear(); 

     

    this.completedEmptyTaxiTimeS = 0.0D; 

    this.completedEmptyTaxiDistanceM = 0.0D; 

    this.incompleteEmptyTaxiTimeS = 0.0D; 

    this.incompleteEmptyTaxiDistanceM = 0.0D; 

     

    updateEmptyTaxiPanel(); 

    for (TaxiRank taxiRank : this.taxiRankArray) { 

      taxiRank.rewind(); 

    } 

    this.ui.rewind(); 

  } 

   



 

168 
 

  private void updateEmptyTaxiPanel() 

  { 

    this.ui.updateEmptyTaxiPanel(new UTime(this.completedEmptyTaxiTimeS, 

UTime.HHMMSS), new DistanceLong(this.completedEmptyTaxiDistanceM, Distance.M),  

      new UTime(this.incompleteEmptyTaxiTimeS, UTime.HHMMSS), new 

DistanceLong(this.incompleteEmptyTaxiDistanceM, Distance.M)); 

  }   

  public void occupantIn(IUnit unit, IOccupant occupant) 

  { 

    if (unit.pathway() != null) 

    { 

      IZone origin = occupant.vehicle().trip().origin(); 

      TaxiRank rank = (TaxiRank)this.zoneToRank.get(origin); 

      if (rank != null) { 

        rank.enRouteInc(1); 

      } 

    } 

    IMotor m = unit.aboardMotor(); 

    if (((m instanceof IVehicle)) && (((IVehicle)m).isTaxi())) 

    { 

      IVehicle taxi = (IVehicle)m; 

      EmptyTaxiMeasure etm = (EmptyTaxiMeasure)this.emptyTaxis.get(taxi); 

      if (etm != null) 

      { 

        if (etm.redirect() != null) 

        { 

          pushRequest(etm.redirect()); 

          this.ui.uncountDispatch(etm.redirect().redirectFrom(), etm.redirect().redirectTo()); 
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          etm.redirect(null); 

        } 

        this.incompleteEmptyTaxiTimeS -= etm.timeEmptyS(); 

        this.completedEmptyTaxiTimeS += etm.timeEmptyS(); 

        this.incompleteEmptyTaxiDistanceM -= etm.distanceTravelledEmptyM(); 

        this.completedEmptyTaxiDistanceM += etm.distanceTravelledEmptyM(); 

        etm.reset(); 

         

        updateEmptyTaxiPanel(); 

      } 

    } 

  } 

   

  public void occupantOut(IUnit unit, IOccupant occupant) 

  { 

    if (unit.pathway() != null) 

    { 

      IZone origin = occupant.vehicle().trip().origin(); 

      TaxiRank rank = (TaxiRank)this.zoneToRank.get(origin); 

      if (rank != null) { 

        rank.enRouteInc(-1); 

      } 

    } 

  } 

} 
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3. Redirect OD 

package com.gmx.xgd; 

 

import com.azalient.api.b.network.IZone; 

 

public class RedirectOD 

{ 

  private final IZone origin; 

  private final IZone destination; 

  private int requested; 

  private int dispatched; 

  private int arrived; 

   

  public RedirectOD(IZone a, IZone b) 

  { 

    this.origin = a; 

    this.destination = b; 

  } 

   

  public String toString() 

  { 

    return this.origin.name() + "-" + this.destination.name(); 

  } 

   

  public int requested() 
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  { 

    return this.requested; 

  } 

   

  public void incRequested() 

  { 

    this.requested += 1; 

  } 

  public int dispatched() 

  { 

    return this.dispatched; 

  }   

  public void incDispatched() 

  { 

    this.dispatched += 1; 

  } 

  public void decDispatched() 

  { 

    this.dispatched -= 1; 

  } 

  public int arrived() 

  { 

    return this.arrived; 

  } 

   

  public void incArrived() 

  { 
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    this.arrived += 1; 

  } 

   

  public void clear() 

  { 

    this.requested = 0; 

    this.dispatched = 0; 

    this.arrived = 0; 

  } 

} 

 

4. Redirect request 

 

package com.gmx.xgd; 

 

import com.azalient.api.b.network.IZone; 

 

public class RedirectRequest 

{ 

  private final IZone redirectFrom; 

  private final IZone redirectTo; 

   

  public RedirectRequest(TaxiRank from, TaxiRank to) 

  { 

    this.redirectFrom = from.zone(); 

    this.redirectTo = to.zone(); 

  } 
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  public IZone redirectFrom() 

  { 

    return this.redirectFrom; 

  } 

   

  public IZone redirectTo() 

  { 

    return this.redirectTo; 

  } 

} 

 

5. Redirect Table model 

 

package com.gmx.xgd; 

 

import com.azalient.api.API; 

import com.azalient.api.a.IModel; 

import com.azalient.api.a.model.INetwork; 

import com.azalient.api.a.store.IStore; 

import com.azalient.api.b.network.IZone; 

import java.util.Hashtable; 

import javax.swing.table.AbstractTableModel; 

 

public class RedirectTableModel 

  extends AbstractTableModel 

{ 
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  public static final String[] COLS = { "O-D", "Requested", "Dispatched", "Arrived" }; 

  private RedirectOD[] redirectsOD = new RedirectOD[0]; 

  private int nRanks = 0; 

  private Hashtable<String, RedirectOD> lookupByODName = new Hashtable(); 

   

  public void init() 

  { 

    IStore<IZone> zones = API.model().network().zones(); 

     

    this.nRanks = 0; 

    for (IZone zone : zones) { 

      if (zone.parkingTaxiRank()) { 

        this.nRanks += 1; 

      } 

    } 

    this.redirectsOD = new RedirectOD[this.nRanks * this.nRanks - this.nRanks]; 

    this.lookupByODName.clear(); 

     

    int zi = 0; 

    for (IZone origin : zones) { 

      if (origin.parkingTaxiRank()) { 

        for (IZone dest : zones) { 

          if (dest.parkingTaxiRank()) { 

            if (origin != dest) 

            { 

              RedirectOD rod = new RedirectOD(origin, dest); 
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              this.redirectsOD[(zi++)] = rod; 

               

              String key = origin.name() + "-" + dest.name(); 

              this.lookupByODName.put(key, rod); 

            } 

          } 

        } 

      } 

    } 

  } 

   

  public RedirectOD redirectOD(IZone a, IZone b) 

  { 

    String key = a.name() + "-" + b.name(); 

    return (RedirectOD)this.lookupByODName.get(key); 

  } 

   

  public int getRowCount() 

  { 

    return this.redirectsOD.length; 

  } 

   

  public int getColumnCount() 

  { 

    return COLS.length; 

  } 
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  public String getColumnName(int col) 

  { 

    return COLS[col]; 

  } 

   

  public Object getValueAt(int row, int col) 

  { 

    if ((row < 0) || (row >= this.redirectsOD.length)) { 

      return null; 

    } 

    RedirectOD rod = this.redirectsOD[row]; 

    if (rod == null) { 

      return null; 

    } 

    if (col == 0) { 

      return rod.toString(); 

    } 

    if (col == 1) { 

      return rod.requested() == 0 ? null : Integer.valueOf(rod.requested()); 

    } 

    if (col == 2) { 

      return rod.dispatched() == 0 ? null : Integer.valueOf(rod.dispatched()); 

    } 

    if (col == 3) { 

      return rod.arrived() == 0 ? null : Integer.valueOf(rod.arrived()); 

    } 

    return null; 
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  } 

   

  public void rewind() 

  { 

    for (RedirectOD rod : this.redirectsOD) { 

      rod.clear(); 

    } 

    fireTableDataChanged(); 

  } 

} 

 

6. Taxi rank 

 

package com.gmx.xgd; 

 

import com.azalient.api.b.network.IChannel; 

import com.azalient.api.b.network.ILane; 

import com.azalient.api.b.network.ILink; 

import com.azalient.api.b.network.IZone; 

import com.azalient.api.b.parking.IParkingLane; 

 

public class TaxiRank 

{ 

  private final IZone zone; 

  private final IParkingLane parkingLane; 

  private int peopleWaiting; 

  private int enRoute; 
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  private int taxisWaiting; 

   

  public TaxiRank(IZone z) 

  { 

    this.zone = z; 

    this.parkingLane = findParkingLane(); 

  } 

   

  public String toString() 

  { 

    return this.zone.toString(); 

  } 

   

  private IParkingLane findParkingLane() 

  { 

    for (ILink link : this.zone.links()) { 

      for (ILane lane : link.lanes()) 

      { 

        IParkingLane parkLane = lane.parkingLane(); 

        if ((parkLane != null) && (parkLane.isTaxiRank())) { 

          return parkLane; 

        } 

      } 

    } 

    return null; 

  } 
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  public boolean valid() 

  { 

    return (this.zone != null) && (this.parkingLane != null) && (this.parkingLane.zone() == 

this.zone) && (this.parkingLane.channel() != null); 

  } 

   

  public IZone zone() 

  { 

    return this.zone; 

  } 

   

  public IParkingLane parkingLane() 

  { 

    return this.parkingLane; 

  } 

   

  public int peopleWaiting() 

  { 

    return this.peopleWaiting; 

  } 

   

  public int taxisWaiting() 

  { 

    return this.taxisWaiting; 

  } 

   

  public void timeStep() 

  { 
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    this.peopleWaiting = (this.parkingLane.channel().population() - this.enRoute); 

     

    this.taxisWaiting = this.parkingLane.lane().motors().length; 

  } 

   

  public void rewind() 

  { 

    this.peopleWaiting = 0; 

    this.taxisWaiting = 0; 

    this.enRoute = 0; 

  } 

   

  public void enRouteInc(int n) 

  { 

    this.enRoute += n; 

  } 

} 

 

7. Taxi rank table model 

 

package com.gmx.xgd; 

 

import com.azalient.api.b.network.IZone; 

import javax.swing.table.AbstractTableModel; 

 

public class TaxiRankTableModel 

  extends AbstractTableModel 
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{ 

  public static final String[] COLS = { "Taxi Rank", "People Waiting", "Taxis Waiting", "Deficit" 

}; 

  private TaxiRank[] taxiRanks = new TaxiRank[0]; 

   

  public void init(TaxiRank[] tra) 

  { 

    this.taxiRanks = tra; 

  } 

   

  public int getColumnCount() 

  { 

    return COLS.length; 

  } 

   

  public String getColumnName(int col) 

  { 

    return COLS[col]; 

  } 

   

  public int getRowCount() 

  { 

    return this.taxiRanks.length; 

  } 

   

  public Object getValueAt(int row, int col) 

  { 

    if ((row < 0) || (row >= this.taxiRanks.length)) { 
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      return null; 

    } 

    TaxiRank rank = this.taxiRanks[row]; 

    if (rank == null) { 

      return null; 

    } 

    if (col == 0) { 

      return rank.zone().name(); 

    } 

    if (col == 1) { 

      return Integer.valueOf(rank.peopleWaiting()); 

    } 

    if (col == 2) { 

      return Integer.valueOf(rank.taxisWaiting()); 

    } 

    if (col == 3) { 

      return rank.peopleWaiting() > rank.taxisWaiting() ? "Yes" : "No"; 

    } 

    return null; 

  } 

} 

 

8. Taxi rank window 1 

 

package com.gmx.xgd; 

 

import com.azalient.apo.basics.UTime; 
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import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import javax.swing.JTextField; 

 

class TaxiRankWindow$1 

  implements ActionListener 

{ 

  TaxiRankWindow$1(TaxiRankWindow paramTaxiRankWindow) {} 

   

  public void actionPerformed(ActionEvent e) 

  { 

    int newOptInterval = UTime.parseInt(UTime.HHMMSS, 

TaxiRankWindow.access$0(this.this$0).getText()); 

    if (newOptInterval > 0) 

    { 

      TaxiRankWindow.access$1(this.this$0).set(newOptInterval); 

      

TaxiRankWindow.access$0(this.this$0).setText(TaxiRankWindow.access$1(this.this$0).toString(

Boolean.valueOf(false))); 

    } 

  } 

} 

 

9. Taxi rank window 2 

 

package com.gmx.xgd; 

 

import com.azalient.api.b.network.IZone; 

import com.azalient.apo.basics.Distance; 
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import com.azalient.apo.basics.ImageLoader; 

import com.azalient.apo.basics.UTime; 

import java.awt.FlowLayout; 

import java.awt.GridLayout; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import javax.swing.BorderFactory; 

import javax.swing.JFrame; 

import javax.swing.JLabel; 

import javax.swing.JPanel; 

import javax.swing.JScrollPane; 

import javax.swing.JTabbedPane; 

import javax.swing.JTable; 

import javax.swing.JTextField; 

 

public class TaxiRankWindow 

  extends JFrame 

{ 

  private TaxiRankTableModel taxiRankTableModel = new TaxiRankTableModel(); 

  private JTextField optIntervalTextField = new JTextField(8); 

  private UTime optInterval = new UTime(300.0D, UTime.HHMMSS); 

  private RedirectTableModel redirectModel = new RedirectTableModel(); 

  private JTextField completeTaxiTimeField = new JTextField(8); 

  private JTextField completeTaxiDistanceField = new JTextField(8); 

  private JTextField incompleteTaxiTimeField = new JTextField(8); 

  private JTextField incompleteTaxiDistanceField = new JTextField(8); 
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  public TaxiRankWindow(String title) 

  { 

    super(title); 

     

    JTable rankTable = new JTable(this.taxiRankTableModel); 

    JScrollPane rankScrollPane = new JScrollPane(rankTable); 

    rankTable.setFillsViewportHeight(true); 

     

    JTable odTable = new JTable(this.redirectModel); 

    JScrollPane odScrollPane = new JScrollPane(odTable); 

    odTable.setFillsViewportHeight(true); 

     

    JTabbedPane tabbedPane = new JTabbedPane(); 

    tabbedPane.addTab("Taxi Ranks", rankScrollPane); 

    tabbedPane.addTab("Redirects", odScrollPane); 

     

    add(tabbedPane, "Center"); 

     

    JPanel intervalPanel = new JPanel(new FlowLayout(2, 5, 5)); 

    intervalPanel.add(new JLabel("Optimization Interval")); 

    intervalPanel.add(this.optIntervalTextField); 

    add(intervalPanel, "North"); 

     

    JPanel emptyTaxiPanel = new JPanel(new GridLayout(4, 2)); 

    emptyTaxiPanel.setBorder(BorderFactory.createEmptyBorder(4, 4, 4, 4)); 

    emptyTaxiPanel.add(new JLabel("Empty Taxi Complete Drive Time")); 

    emptyTaxiPanel.add(this.completeTaxiTimeField); 
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    emptyTaxiPanel.add(new JLabel("Empty Taxi Complete Drive Distance")); 

    emptyTaxiPanel.add(this.completeTaxiDistanceField); 

    emptyTaxiPanel.add(new JLabel("Empty Taxi Incomplete Drive Time")); 

    emptyTaxiPanel.add(this.incompleteTaxiTimeField); 

    emptyTaxiPanel.add(new JLabel("Empty Taxi Incomplete Drive Distance")); 

    emptyTaxiPanel.add(this.incompleteTaxiDistanceField); 

    add(emptyTaxiPanel, "South"); 

     

 

    this.optIntervalTextField.setText(this.optInterval.toString(Boolean.valueOf(false))); 

    this.optIntervalTextField.addActionListener(new ActionListener() 

    { 

      public void actionPerformed(ActionEvent e) 

      { 

        int newOptInterval = UTime.parseInt(UTime.HHMMSS, 

TaxiRankWindow.this.optIntervalTextField.getText()); 

        if (newOptInterval > 0) 

        { 

          TaxiRankWindow.this.optInterval.set(newOptInterval); 

          

TaxiRankWindow.this.optIntervalTextField.setText(TaxiRankWindow.this.optInterval.toString(

Boolean.valueOf(false))); 

        } 

      } 

    }); 

    pack(); 

     

    ImageLoader.setIcon(this); 
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    setSize(400, 300); 

  } 

   

  public void initialise(TaxiRank[] tra) 

  { 

    this.taxiRankTableModel.init(tra); 

     

    this.redirectModel.init(); 

  } 

   

  public void fireTableUpdate() 

  { 

    this.taxiRankTableModel.fireTableDataChanged(); 

  } 

   

  public int optInterval() 

  { 

    return this.optInterval.timeInt(); 

  } 

   

  public void updateEmptyTaxiPanel(UTime timeC, Distance distanceC, UTime timeI, Distance 

distanceI) 

  { 

    this.completeTaxiTimeField.setText(timeC.toString(Boolean.valueOf(false))); 

    this.completeTaxiDistanceField.setText(distanceC.toString()); 

    this.incompleteTaxiTimeField.setText(timeI.toString(Boolean.valueOf(false))); 

    this.incompleteTaxiDistanceField.setText(distanceI.toString()); 
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  } 

   

  public void countRequest(IZone a, IZone b) 

  { 

    this.redirectModel.redirectOD(a, b).incRequested(); 

    this.redirectModel.fireTableDataChanged(); 

  } 

   

  public void countDispatch(IZone a, IZone b) 

  { 

    this.redirectModel.redirectOD(a, b).incDispatched(); 

    this.redirectModel.fireTableDataChanged(); 

  } 

   

  public void uncountDispatch(IZone a, IZone b) 

  { 

    this.redirectModel.redirectOD(a, b).decDispatched(); 

    this.redirectModel.fireTableDataChanged(); 

  } 

   

  public void countArrival(IZone a, IZone b) 

  { 

    this.redirectModel.redirectOD(a, b).incArrived(); 

    this.redirectModel.fireTableDataChanged(); 

  } 

   

  public void rewind() 
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  { 

    this.redirectModel.rewind(); 

     

    fireTableUpdate(); 

  } 

} 

 

10. Taxi redirect optimiser 

package com.gmx.xgd; 

 

import com.azalient.api.API; 

import com.azalient.api.APU; 

import com.azalient.api.a.ISimulator; 

import com.azalient.apo.basics.UTime; 

import java.util.ArrayList; 

import org.apache.commons.math3.optim.MaxIter; 

import org.apache.commons.math3.optim.OptimizationData; 

import org.apache.commons.math3.optim.PointValuePair; 

import org.apache.commons.math3.optim.linear.LinearConstraint; 

import org.apache.commons.math3.optim.linear.LinearConstraintSet; 

import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; 

import org.apache.commons.math3.optim.linear.NonNegativeConstraint; 

import org.apache.commons.math3.optim.linear.Relationship; 

import org.apache.commons.math3.optim.linear.SimplexSolver; 

 

public class TaxiRedirectOptimizer 

{ 
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  private ArrayList<RedirectRequest> rrList = new ArrayList(); 

   

  public RedirectRequest[] optimize(TaxiRank[] taxiRanks, double[][] 

interTaxiRankFreeFlowTravelCost) 

  { 

    this.rrList.clear(); 

     

    optimizeRanks(taxiRanks, interTaxiRankFreeFlowTravelCost); 

     

 

 

    return (RedirectRequest[])this.rrList.toArray(new RedirectRequest[this.rrList.size()]); 

  } 

   

  private void requestRedirect(TaxiRank from, TaxiRank to) 

  { 

    this.rrList.add(new RedirectRequest(from, to)); 

     

    APU.reportF("%s Optimizer Request: %s to %s", new Object[] { 

      new UTime(API.simulator().simulationTime()).toString(Boolean.valueOf(true)),  

      from, to }); 

  } 

   

  private void optimizeRanks(TaxiRank[] ranks, double[][] interTaxiRankFreeFlowTravelCost) 

  { 

    int n = ranks.length; 

     

    boolean anyRanksWithDeficit = false; 
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    for (int ri = 0; ri < n; ri++) 

    { 

      int V = ranks[ri].taxisWaiting(); 

      int C = ranks[ri].peopleWaiting(); 

      if (C > V) 

      { 

        anyRanksWithDeficit = true; break; 

      } 

    } 

    if (!anyRanksWithDeficit) { 

      return; 

    } 

    int nX = n * (n - 1); 

    double[] T = new double[nX]; 

     

    int x = 0; 

    for (int i = 0; i < n; i++) { 

      for (int j = 0; j < n; j++) { 

        if (j != i) { 

          T[(x++)] = interTaxiRankFreeFlowTravelCost[i][j]; 

        } 

      } 

    } 

    LinearObjectiveFunction lof = new LinearObjectiveFunction(T, 0.0D); 

    ArrayList<LinearConstraint> lca = new ArrayList(); 

    for (int ri = 0; ri < n; ri++) 

    { 
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      int V = ranks[ri].taxisWaiting(); 

      int C = ranks[ri].peopleWaiting(); 

       

      double[] coefficients = new double[nX]; 

      double value = C - V; 

      Relationship relationship = Relationship.GEQ; 

      int x = 0; 

      for (int i = 0; i < n; i++) { 

        for (int j = 0; j < n; j++) { 

          if (j != i) { 

            coefficients[(x++)] = (j == ri ? 1 : i == ri ? -1 : 0); 

          } 

        } 

      } 

      lca.add(new LinearConstraint(coefficients, relationship, value)); 

    } 

    LinearConstraintSet lcs = new LinearConstraintSet(lca); 

    try 

    { 

      SimplexSolver simplexSolver = new SimplexSolver(); 

       

      pvp = simplexSolver.optimize(new OptimizationData[] { new MaxIter(10000), lof, lcs, new 

NonNegativeConstraint(true) }); 

       

      double[] point = pvp.getPoint(); 

      double value = ((Double)pvp.getValue()).doubleValue(); 

       

      int x = 0; 
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      for (int i = 0; i < n; i++) { 

        for (int j = 0; j < n; j++) { 

          if (j != i) 

          { 

            int redirectsIJ = (int)Math.round(point[(x++)]); 

            if (redirectsIJ > 0) 

            { 

              TaxiRank rankI = ranks[i]; 

              TaxiRank rankJ = ranks[j]; 

              for (int r = 0; r < redirectsIJ; r++) { 

                requestRedirect(rankI, rankJ); 

              } 

            } 

          } 

        } 

      } 

    } 

    catch (Exception x) 

    { 

      PointValuePair pvp = 1; 

    } 

  } 

   

  private void optimizeRanks_Simple(TaxiRank[] taxiRanks, double[][] 

interTaxiRankFreeFlowTravelCost) 

  { 

    for (TaxiRank rankA : taxiRanks) { 

      if ((rankA.peopleWaiting() == 0) && (rankA.taxisWaiting() > 1)) { 
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        for (TaxiRank rankB : taxiRanks) { 

          if (rankB != rankA) { 

            if (rankB.peopleWaiting() > rankB.taxisWaiting()) 

            { 

              requestRedirect(rankA, rankB); 

              break; 

            } 

          } 

        } 

      } 

    } 

  } 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


