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Abstract 
 

 

 

Repetitive Control (RC) has been widely used to track a periodic reference signal, or to 

reject periodic disturbance. Digital RC is usually designed by assuming a constant 

period of reference/disturbance signal, which then leads to the selection of a fixed 

sampling period. However, in practice, both reference signal and disturbance may vary 

in period. In order to overcome this problem, the sampling period is carefully adjusted 

to maintain a constant number of samples per period. This sampling period adjustment 

causes a change in the parametric model of the plant. This thesis aims to develop novel 

RC designs for a tracking/ rejecting periodic signal with time-varying frequency. We 

present three main designs in this thesis: a robust RC design, an adaptive RC design, 

and a MIMO RC design. 

 

The first design developed was the robust RC for linear systems with time 

varying sampling periods. Firstly, it develops a new frequency domain method for the 

nominal sampling period to design a low order, stable, and causal IIR repetitive 

compensator that uses an optimization method to achieve fast convergence and high 

tracking accuracy. A new stable and causal compensator can be implemented 

independently to reduce the design complexity, as most existing repetitive compensators 

are either unstable or non-causal, which makes the implementation difficult. A 

comprehensive analysis and comparison study is presented. Then this thesis extends the 

method to design a robust RC, which compensates time varying periodic signals in a 

known range. In the design, the time-varying parts due to sampling period interval 

variation are treated as parametric uncertainties, and the robust RC is designed as close 

as possible to the nominal one, thus ensuring that the system is stable for any sampling 

period in the given interval. A complete series of experiments on a servo motor was 

successfully carried out to demonstrate the effectiveness of the proposed algorithms. 
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The second design developed was the Adaptive Repetitive Control (ARC) for 

unknown linear systems subject to time varying periodic disturbances. It was assumed 

that the sampling period would be locked to the period of disturbance signal to preserve 

a constant number of samples per disturbance period, as required by the RC. The 

sampling period adjustment results in a discrete plant with time-varying coefficients. By 

considering the direct adaptive control, it is possible to adapt the parameters of the 

controller to handle the time varying plant. Thus, the ARC has been proposed, based on 

the direct adaptive control and the internal model principle. The internal model can 

reject the disturbance perfectly, since the number of samples per period remains fixed. 

The time-varying plant parameters are handled by the direct adaptive control, as it tunes 

the controller parameters such that the closed-loop system is stable and the plant output 

tracks the reference. The effectiveness of the ARC has been verified in simulations and 

experiments on a servo motor system.  

 

The third design developed was the decentralized RC (DRC) for linear multiple 

inputs multiple outputs (MIMO) systems. The design is based on decentralized control 

that treats the MIMO system as a set of single input single output (SISO) systems. A 

Relative Gain Array (RGA) analysis is first performed to determine the dynamics that 

result in dominant interactions. A set of low order, stable and causal repetitive 

compensators are then designed to compensate the dominant dynamics that have been 

determined by the RGA. The compensators, which ensure the system stability, are 

obtained by solving an optimization. Various numerical examples are presented to 

demonstrate the effectiveness of the proposed DRC. The comprehensive analysis and 

comparison study is given. The novelty of the design was also verified in experiments 

on a 2 DOF robot. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1  MOTIVATION 

 

Repetitive Control (RC) has been successfully used for many applications, such as in a 

hard disc, for robot control, for altitude stabilization of satellite, etc [1, 2]. A well-

known use of a repetitive controller is to both track a periodic reference signal and 

reject periodic disturbance, as tracking and rejecting periodic signals are common tasks 

in many control applications. RC is related to learning control [3, 4] and originated from 

the idea of the Internal Model Principle (IMP) of Wonham and Francis [5]. The IMP is 

attached inside a feedback loop, and behaves as the generator of a periodic signal in 

order to achieve a zero tracking error. Many researchers have worked in the field of RC, 

and some issues have already been investigated. Inoue et al [6] originally formulated a 

repetitive model that deals with disturbances with a known period. This was followed 

successfully by Chew and Tomizuka [7], who applied RC in computer disk drives. The 

recent RC design to reject disturbances with multiple periods has been done by [8]. The 

RC consists of two main parts; the internal model to generate a periodic signal, and a 

compensator to stabilize the closed-loop system. 

 

A number of important works related to the design of a compensator have been 

discussed in [9-18]. The compensator is often designed as the inverse of the plant model 

in order to cancel whole system dynamics [9-11]. The inverse of the plant is sometimes 

not available due to uncertainties and disturbance [15]. Moreover, the inverse of discrete 
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time plant models are almost unstable as the zeros of discrete time plant models are very 

close to the unit circle [19]. This makes the design of a compensator is sometimes not 

feasible [14]. The design of a compensator based on pole placement was developed in 

[12, 13]. The compensator parameters are obtained by solving the Diophantine 

Equation, where the order of compensator is similar to the order of the IMP. An 

unstable IIR filter composed of stable and unstable poles was found to model the 

inverse of the plant [12]. This filter requires special implementation, where the unstable 

part operates in reverse time. In [14], the design of compensator became a problem of 

minimization in the frequency domain, where a compensator was in the form of a non-

causal FIR filter. The design required a high order of FIR filter to stabilize the system, 

which meant that a large number of parameters needed to be optimized [14]. A 

compensator in the form of phase lead  ���� , where �� is a gain, and m is an integer 

value, was proposed in [15, 16]. These approaches [15, 16] use a non-causal operator ��  that gives inflexible phase compensation. 

 

Furthermore, in most designs of discrete RC, it is assumed that the frequency of 

the periodic signal is a constant and the sampling period is fixed to give an integer 

number of samples per period. However, in practice, the periodic signal may have a 

time varying period. Such a periodic signal, where its frequency is time-varying in 

nature, appears on a compact disc mechanism [20], vibrations control [21], rotational 

machinery [22], and an active suspension system [23]. If the sampling period is kept 

fixed while the period of repetitive signal changes, then the RC performance will 

significantly decay [24].  

 

A number of RC designs have been proposed to compensate periodic signals 

with uncertain or time-varying periods [22-27]. An adaptive RC algorithm to 

recursively identify the period of disturbance then update either the delay length or 

sampling period has been proposed in [22, 25]. Landau et al [23] presented a direct 

adaptive RC to reject time-varying periodic disturbances. However, this can only be 

used for narrow band disturbances that give a lower order of the internal model RC. 

Steinbuch [26] proposed a RC with multiple periodic signal generators to reject the 

disturbance when its period is only slightly changed or less varying. Cao and 

Narasimhulu [27] proposed a digital PLL-based RC, where the sampling period was 
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locked to the period of the disturbance signal to maintain a constant number of samples 

per period, as required by RC. This sampling period adjustment results in a discrete 

plant with time-varying coefficients, especially when the periodic signal has a time 

varying period. The approaches in [22-27] also assume that the plant is known. 

 

The motivation of this research is to develop novel RC designs for a tracking/ 

rejecting periodic signal with time-varying frequency. To overcome time-varying 

frequency problem, it has been assumed that the sampling period is locked to the period 

of repetitive signal to maintain a constant number of samples per period. This sampling 

period adjustment causes the change of parametric model of the plant. The RC has to be 

changed accordingly to achieve a stable system. This thesis firstly proposes digital 

designs of RC for linear systems with time-varying sampling periods. Then, this thesis 

extends the method to the design of RC for linear MIMO systems. 

 

The major contributions of this thesis are outlined as follows: 

• The development of a new design methodology to obtain a low order, 

stable, and causal RC compensator. 

• The design of a robust RC compensator that accommodates the 

sampling period variation in the known bound. 

• The design of an adaptive RC (ARC) for unknown linear systems with 

time-varying sampling periods. 

• The design of a decentralized RC (DRC) for linear MIMO systems. 

 

 

1.2  ORGANIZATION OF THE THESIS 
 

The thesis is organized as follows 

 

Chapter 1: Introduction.  

This chapter gives the motivation for the research. Some important works related to the 

compensator design and RC design for tracking/rejecting time-varying periodic signal, 

are presented. 
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Chapter 2: Literature Review.  

This chapter presents both earlier and the latest applications of RC, and discusses 

various RC designs. In this chapter, the previous RC designs are classified into 4 main 

categories: Basic RC Design, Robust RC Design, Adaptive RC Design, and MIMO RC 

Design. 

 

Chapter 3: Experimental System. 

This chapter describes the experimental system used for testing the control algorithms 

proposed in this thesis. The details of the system hardware and software are explained in 

this chapter. 

 

Chapter 4: Design of Robust RC with Time-Varying Sampling Periods. 

This chapter firstly proposes a design methodology using optimization to obtain a low 

order, stable, and causal RC compensator. The chapter then presents a robust RC design 

to achieve a stable system when the sampling period varies in a defined range. Some 

simulation and experimental results are also presented to validate the effectiveness of 

the proposed design. A comparison study is also given in this chapter. 

 

Chapter 5: Design of Adaptive RC of Linear Systems with Time-Varying Periodic 

Disturbances 

This chapter proposes two algorithms: Model Reference Repetitive Control (MRRC) 

and Adaptive Repetitive Control (ARC). MRRC is employed when the plant model is 

known and subject to periodic disturbance with fixed frequency, while ARC is applied 

when the plant model is unknown and subject to time-varying periodic disturbance. 

Simulation and experimental results are presented in this chapter. 

 

Chapter 6: Design of Decentralized RC of Linear MIMO Systems 
This chapter proposes the design of decentralized RC (DRC) for linear MIMO systems. 

The design is based on decentralized control that treats the MIMO system as a set of 

SISO systems. Two design approaches are proposed in this thesis. Various numerical 

examples are presented to demonstrate the effectiveness of the proposed DRC. A 
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comprehensive analysis and comparison study is given. The effectiveness of the design 

is also verified in experiments on a 2 DOF robot. 

 

Chapter 7: Conclusion and Future Works. 

This chapter summarizes all of the proposed algorithms in the research. Some 

comparisons for each algorithm are also presented. The chapter closes with some 

suggestions for the future works.  

 

The publications based on this research are given at the end of this thesis. In 

addition, the list of Matlab codes and Simulink models used in simulations and real-

time experiments are provided in the Appendix. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION 

 

Repetitive Control (RC) is a learning control scheme that is designed to track / reject a 

repetitive signal. RC has a superior performance compared to the non-predictive control 

schemes such as PI and PID [2]. This is due to the capability of RC to learn the 

repetitive signal values, and then generate them as an output. For tracking or rejecting 

non-periodic signals, RC is not suitable due to the delay component of RC which gives 

large transient time.  

 

Tracking and rejecting repetitive signal are common tasks in many control applications. 

The first use of RC was to control a power supply of proton synchrotron to follow a 

periodic reference [6]. Then, Chew and Tomizuka [7] successfully used RC to reject 

periodic disturbance in disk drives. Other early applications of RC, as listed in [2], are 

in a compact disc (CD) player, a peristaltic pump, robot control, continuous steel 

casting, thickness control in cold rolling, noise cancellation, active vibration 

compensation, and attitude stabilization of satellites. In 2004, Cuiyan et al [1] also listed 

applications of RC and included speed control of ultrasonic motors, suppression of 

torque vibration in motors, reduction of waveform distortion in pulse width-modulation 

(PWM) inverters, current compensation in active filters, suppression of harmonic 

current in an interior permanent magnet synchronous motor (IPMSM), accurate position 

control of piezoelectric actuators, control of electro hydraulic actuators, acoustic 
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impedance matching control in a standing wave tube, turning process, and current 

control of a photovoltaic generation system .  

 

Recently, RC has been used for the reduction of total harmonic distortion (THD) 

in a grid-connected inverter [28-32], in a constant-voltage constant frequency (CVCF) 

PWM converter [15, 33-36], for compensation of the current harmonics in a power 

correction factor (PFC) converter [37-40], in an Active Power Filter (APF) [41-43], for 

the improvement of scanning performance in an imaging atomic force microscope 

(AFM) [44, 45], for the suppression of topography disturbances in  metrological AFM 

[46], for tracking control in an Ionic polymer-metal composite (IPMC) actuator [47], for 

disturbance rejection due to breathing in a flexible endoscopy system [48, 49], for 

position control of an electro-hydraulic engine valve system (EVHS) [50, 51], for 

tracking of contouring tasks in an industrial biaxial precision gantry [52], for 

compensation of fluctuating DC link voltage in a AC-fed railway traction drives [53], 

and for suppression of human tremor in functional electrical stimulation (FES) [54]. 

 

The list of applications above shows that RC has been widely used in many 

applications. Moreover, since RC has been introduced, various RC designs have been 

developed. In this chapter, a review of various RC designs is presented. Section 2 

reviews basic RC designs. A review of both robust and adaptive RC designs is given in 

Sections 3 and 4 respectively. Section 5 presents a review of MIMO RC designs. 

Section 6 draws the conclusion. 

 

 

2.2  BASIC RC DESIGN 

 

This section reviews various designs for basic RC. The RC designs that will be 

reviewed in this section refer to internal model based RC, where the model of repetitive 

signal is included in the basic feedback loop. This is to differentiate it from the external 

model based RC as proposed in [55] where the periodic signal model is placed outside 

the feedback loop, and a periodic signal is injected to cancel the disturbance. The RC is 

originated from the idea of the Internal Model Principle (IMP) of Wonham and Francis 

[5], which states that the periodic signal model needs to be included in the closed-loop 

system in order to achieve perfect tracking or rejection of the periodic signal. 
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Inoue et al [6] first proposed an internal model based RC for tracking any 

repetitive signal with known period T� , and successfully implemented it to control a 

proton synchrotron magnet power supply that required high precision tracking . 

 

 

Figure 2.1 A continuous time-delay internal model 

 

The internal model in [6] is constructed from a continuous time-delay with positive 

feedback, as shown in Figure 2.1, which can be represented in the following transfer 

function: 

 

I(s) = 	 e>?@A1 − e>?@A (2.1)  

 

where	TB is the period of the reference signal, and  e>?@A is a continuous time-delay with 

the length TB. 
 

An important feature of this internal model is that it is able to compensate fundamental 

frequency and all harmonics frequency components in a repetitive signal. The internal 

model above also shows an infinite dimensional structure as it has infinite poles at the 

imaginary axis: 	±)D* , where D = 1,2, … ,∞ . Since the poles are located at the 

imaginary axis, the internal model is marginally stable.  

 

In [56], the stability condition of an RC system with the internal model (2.1) was 

assessed by using small gain theorem, and it was revealed that the internal model 

worked only for stable plant with a relative degree of zero. This gives restriction to the 

class of plants that can utilize this internal model. 

 



10 
 

Hara et al [57] proposed a modified internal model by cascading the time-delay 

with a low pass filter �(G). This modified internal model helped to improve robustness 

of an RC system at the expense of tracking performance at high-frequencies. 

 

 

 

Figure 2.2 A continuous time-delay internal model with low pass filter 

The modified internal model, as shown in (2.2), still has an infinite dimensional 

structure. However, the addition of the low pass filter �(G) pushes the poles of -(G) to 

the open left half plane (LHP). Thus, the modified internal model is open loop stable.   

 

I(s) = 	 q(s)e>?@I1 − q(s)e>?@I (2.2) 

 

where q(s) is a proper stable rational filter such that |q(jω)| < 1 for ω is larger than the 

cut-off frequency. 

 

In practice, the infinite dimension internal model was difficult to realize and 

sometimes some signals were concentrated in the low to medium frequency range [1, 

58]. The finite order internal model to track/reject repetitive signal that was composed 

of fundamental frequency up to the finite number of harmonics was then proposed by 

Ghosh and Paden [58], and was successfully implemented in the servomechanism [59]. 

Ghosh and Paden [58] approximated the infinite internal model above by using the 

following model: 

 

I(s) = 	 1s∏ (G1 + D1*1)��P0  (2.3) 

 

where	� is a finite integer representing the preferred highest harmonics. 
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Different to the internal models (2.1)-(2.2) which has infinite poles, this internal model 

only has 2� poles located at ±)D* , where D = 1,2, … ,� 

 

  Nagahara et al [60] replaced the time-delay  !>QRA  in (2.1) with an optimal 

controller to avoid infinite dimensionality.  

 

I(s) = S(G)1 − �(G)S(G) (2.4) 

 

where	K(s) is an optimal controller, �(G) is a plant model, 

 

The optimal controller K(s) is designed to approximate a linear phase characteristic of !>QRA by solving the following optimization: 

 minW(?)‖,!>QRA − �(G)S(G).Y(G)‖Z (2.5) 

 

where ‖. ‖Z is the infinity norm operator, and	Y(G) is a weighting function, which is a 

low pass filter with a cut-off frequency larger than the targeted harmonics. 

 

Since the introduction of the digital computer, the use of digital control has 

greatly expanded for several reasons, such as being cheaper, smaller, and more flexible 

than analogue hardware. RC designs in the discrete time domain have also been studied 

extensively. The first digital RC was given in [61]. In a discrete-time, the internal model 

to generate periodic signal with period T� is formulated as follows: 

 

I(z) = 	 z−N1 − z−N (2.6) 

 

where	N	 = 	 @A@ ∈ 	ℕ,	N	being the number of samples per period, where it is also referred 

to as the order of the internal model, TB being the period of the repetitive signal, T being 

the sampling period, and ℕ is the integer value. 
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Figure 2.3 A discrete time-delay internal model 

 

The discrete internal model above has a finite dimensional structure, because it has ] 

evenly spaced poles at the unit circle. This internal model gives a null tracking error for 

repetitive signal with frequency  
�RA  , where D = 1,2, . . , 1̂ . In other words, it only 

compensates fundamental frequency and its harmonics up to the Nyquist components of 

the repetitive signal. 

 

The system with the discrete internal model (2.6) is stable if the plant model is 

sufficiently accurate. To improve robustness, a low-pass filter �(�) was cascaded with 

discrete time delay	�>^ [62]. As a result, the robustness was improved but the tracking 

accuracy at high harmonics was sacrificed. 

 

 

 Figure 2.4 A discrete time-delay internal model with Q-filter 

 

This �-filter here is a zero phase low pass filter with unity gain at low frequencies, and 

is often chosen as a moving average filter as follows: 

 

Q(z) =`ab�b�
bPc +`ab�>b�

bP0  (2.7) 

where � is the order of filter, ac + 2∑ ab = 1�bP0 , and  ab > 0 

 

Hillerstrom and Sternby [63] proposed a low order discrete internal model for 

rejecting band-limited periodic disturbances. Compared to the internal model (2.6) that 
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models repetitive frequency and its harmonics up to Nyquist frequency, the low order 

internal model only represents some dominant harmonics.  

 

Ifgh(z) = 	 1(1 − z>0)∏ (1 − 2 cos(kωg+) z>0 + z>1)k∈W  (2.8) 

 

where ωg = 1lRA  is a fundamental frequency of repetitive signal in rad, + is the sampling 

period, and K denotes preferred harmonics indices. 

 

The order of the internal model here depends on the number of dominant harmonics, 

where each harmonic component is modeled by second order system.  

 

In the power systems, the references and disturbances usually contain only odd-

harmonic frequencies. The internal model that is specifically used to track/attenuate odd 

harmonic periodic references or disturbances was proposed by Grino and Costa-Castello 

[64]. The proposed internal model is shown in Figure 2.5. 

 

 

Figure 2.5 A discrete internal model for odd harmonic signals 

 

I(z) = 	− z>m/11 + z>m/1 (2.9) 

 

Instead of using positive feedback, this internal model uses negative feedback, and 

requires only N/2 integrators, which is half of the discrete internal model (2.6). 

 

A discrete internal model to reject a repetitive signal that consists of two 

dominant fundamental frequencies and their harmonics has been proposed by Woo Sok 

and Il Hong [65]. The design came to be called as multi-periodic RC, and was further 

developed [66-68]. The successful implementation of multi periodic RC in hard disk 
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drive has been shown in [8, 69]. An internal model is determined according to the 

number of targeting fundamental frequencies. 

 

I(z) = 1∏ 1 − �o(�)�>^pqoP0  (2.10) 

 

where	]o = +�o/+,+�o being �-th repetitive signal period, + being the sampling period, r being the number of fundamental frequencies, �o(�) being the low pass filter for �-th 

period. 

 

The discussion above reviews various designs of the internal model. The internal 

model is a key feature of RC because of its capability as a periodic signal generator. 

However, there is another important part in the RC, namely the compensator. A 

compensator is needed to stabilize the closed-loop system. The general structure of a 

discrete RC system for tracking periodic reference is shown in Figure 2.1. 

 

 

Figure 2.6 Block diagram of the discrete RC system 

 

Figure 2.6 shows that RC basically consists of two main parts; the internal 

model -(�) and a compensator	�(�). The compensator �(�) plays a significant role in 

RC as it determines the stability of a closed-loop system. A number of important works 

related to the design of compensator have been discussed in [9-18, 70-75].  

 

The design of an RC compensator based on Zero Phase Error Tracking 

Controller (ZPETC) of [11] was proposed by Tomizuka et al [10]. The design is also 
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known as a prototype repetitive controller (PRC) that features a compensator of similar 

order to the plant. The aim of the design is to perfectly cancel the phase of the plant, so 

the phase of the product of �(�) and �(�) is zero for all frequencies. The compensator 

design works for both stable minimum and non-minimum phase plant. For stable 

minimum phase plant, the compensator can be simply the inverse of �(�), as its inverse 

has stable poles.  

 

F(z) = �>0(�) = t(�)u(�) (2.11) 

 

where G(�) = w(x)
y(x) , and u(�)  and t(�)  are the numerator and denumerator of �(�) 

respectively. 

 

For stable non-minimum phase plant, the compensator was proposed as follows: 

 

F(z) = kB
z

A(z)B>(z>0)
B}(z)  (2.12) 

 

where 

 

u}(�)  and u>(�)  are stable and unstable parts of u(�) ,  u>(�>0)  is u>(�)  with the 

backward shift operator  z>0 , �� is a RC gain, and z is a scalar value. 

 

The polynomial t(�) and u}(�) in (2.12) cancel the stable poles and zeros of �(�) 

respectively, while u>(�>0) and z cancel the phase and the magnitude of the unstable 

zeros respectively. The gain ��  is a limited controller gain, which affects the 

convergence rate. The choice of �� and b are given as follows: 

 

kB ∈ (0,2) (2.13) 

 

b ≥ max��,c,�.�B>	e����1 (2.14) 
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Yamada et al [70] replaced the gain 
kI�  in (2.12) with a zero-phase low pass filter 

�(�) to obtain a minimum radius for the dominant poles of the RC system. This results 

in a faster convergence rate of the tracking error. 

 

F(z) = �(�) A(z)B>(z>0)B}(z)  (2.15) 

 

Cosner et al [9] formulated plug-in discrete RC, as shown in Figure 2.7, where it 

was successfully applied to robot manipulators. The compensator design is based on the 

system model which is a closed-loop response, not just the plant model and 

conventional controller in the series. 

 

 Figure 2.7 Plug-in discrete RC system 

 

where C(z) is a conventional/nominal controller used to stabilize system without RC. 

 

Now, the compensator �(�) is not designed to compensate �(�), but to compensate the 

closed-loop system G?(z) as follows: 

 

G?(z) = G(z)C(z)
1 + G(z)C(z) (2.16) 

 

The design of a compensator based on pole placement was developed in [12, 

13]. Ledwich et al [12] designed an RC compensator based on pole placement that is 
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used to track periodic reference. The RC structure proposed in [12] is shown in Figure 

2.8. 

 

Figure 2.8 Pole placement based RC system with plug-in structure 

 

where 	u(�),1 + t(�).>0  is an open loop plant model, �(�),1 + �(�).>0  is a 

conventional controller, and 3(�),1 − �>^.>0is a plug-in RC 

 

The design task is to obtain the polynomials �(�), �(�), and 3(�)  shown in 

Figure 2.8 by solving the polynomial fitting as follows: 

 ,1 + t(�).,1 + �(�).,1 − �>^. − u(�)r(�) = (1 + +(�)) (2.17) 

 

where (1 + +(�))  represents the desired characteristic polynomial, and r(�)  is a 

polynomial equal to: 

 r(�) = ,1 + �(�).3(�) + �(�),1 − �>^. (2.18) 

 

The polynomials �(�)  and r(�)  are firstly obtained by solving polynomial fitting 

(2.17), then solving (2.18) gives both 3(�)and �(�) . The polynomial (1 + +(�))  is 

chosen to have (] +�) poles, where ] and � are the order of the internal model and 

the plant respectively. This selection number of poles gives �-th order polynomial �(�) and ]-th order polynomial	3(�). The polynomial 3(�) can be considered as the 

RC compensator, in which it has the same order of the internal model.  
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Hillerstrom [13] designed a pole placement based RC compensator that is used 

to reject periodic disturbance. An RS polynomial structure as shown in Figure 2.9, was 

used in the design. 

 

 

Figure 2.9 Pole placement based RC system with RS polynomial structure 

 

where	"(�) is disturbance and " is a system time-delay. 

 

First, the disturbance model, denoted as �(�), should be included in the polynomial �(�), as indicated in (2.19). 

 �(�)�(�) = �(�)��(�)�(�) (2.19) 

 

Then, the transfer function  
�(�)��(�)  which behaves as a compensator is designed. The 

numerator �(�)  and denumerator 	��(�)  are obtained by solving the Diophantine 

Equation as follows: 

 t(�)�(�)��(�) + �>�u(�)�(�) = t�(�) (2.20) 

 

where t�(�) is the desired characteristic polynomial. 

 

Solving (2.18) results in the polynomial �(�) with a similar order to the order of the 

disturbance model �(�). 
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An RC compensator in the form of an unstable IIR filter was proposed by 

Ledwich et al [12]. An unstable IIR filter composed of stable and unstable poles was 

found to model the inverse of the plant. 

 

F(z) = (z − z0)(z − z1)(z − p�)(z − pg) ≈ 1G(z) (2.21) 

 

where p� and pg are a pole inside and outside the unit circle respectively. 

 

Since the compensator has an unstable pole, the design requires special implementation, 

where the unstable part operates in reverse time. 

 

An interesting form of RC compensator as shown in Figure 2.10 was introduced 

by Zhang et al [15]. Instead of using the inverse of the plant, Zhang et al [15] used a 

compensator in the following form:  

 F(z) = kBz� (2.22) 

 

where kB is an RC gain, and � is a lead step. 

 

 Figure 2.10 RC with phase lead compensator kBz� 

 

The order m is firstly chosen to give larger stable bandwidth that satisfies the following 

condition: 

 

|θ�	e��� + mω	| < 90° − ε (2.23) 

 

where	θ�	e��� is the phase response of the plant, and ε is the positive constant for a 

stable margin. 
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Then, the gain 	kB  is chosen for fast convergence, and determined according to the 

design criterion as follows 

 

kB < 2� G	(θ�	e��� + mω)M�(e��)  (2.24) 

 

where	M�	e��� is the magnitude response of the plant, and m is the selected lead step. 

 

Another design of RC compensator in the form of a phase lead �� was proposed 

by Wu et al [16]. A block diagram of the proposed RC is shown in Figure 2.11. As 

shown in Figure 2.11, the low pass filter �(�) is not placed inside the internal model 

loop, which make it differs to the design [15]. The exclusion of �(�) in the internal 

model loop aims to preserve the tracking performance at high frequencies, and the �(�) 
here is not necessarily a zero phase filter.  

 

 

Figure 2.11 RC with phase lead compensator q(z) kBz� 

 F(z) = q(z)kBz� (2.25) 

 

 where  �(�) is a low-pass filter to reject the noise and improve the system stability, kB 
is an RC gain, and z� here is phase angle compensator to compensate the phase delay 

by �(�) and the plant. 

 

The design procedure starts by choosing filter �(�)  that gives the desired cut-off 

frequency. Then, the order � is selected so that inequality below is satisfied in the 

desired bandwidth. 
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�cos		θ¢	e��� + θ£	e��� + �*�� < 90¤ (2.26) 

 

where θ¢	e��� and θ£	e��� are the phase response of the plant and �(�) respectively 

Then, the gain kB is chosen to satisfy the following condition: 

 

kB < 2min	,cos		θ¢	e��� + θ£	e��� + �*�.max	,�¢(e��)�£(e��).  
(2.27) 

 

where �¢	e��� and �£	e��� are the magnitude of the plant and �(�) respectively, and 

� is the selected order. 

 

For Panomruttanarug and Longman [14], the design of RC compensator became 

a problem of minimization in the frequency domain, where the compensator was in the 

form of non-causal FIR filter as shown in (2.28). The design problems are choosing the 

order  D,�, and obtaining the gains ¥0, ¥1, … ¥� by trying to match the inverse of the 

plant over the frequency range up to Nyquist. 

 F(z) = 	 a0z�>0 + a1z�>1 +⋯+ a�zc +⋯+ a§>0z>(§>�>0) + a§z>(§>�) (2.28) 

 

The gains ¥0, ¥1, … ¥� are obtained by solving the following optimization: 

 

min(¨©,,…,¨ª)`« 1�� F	e��¬@� − G>0	e��¬@�0®¯
�Pc W� « 1�� F	e��¬@� − G>0	e��¬@�∗ (2.29) 

 

where subscript * means complex conjugate, �� 	is a RC gain , + is sampling period, and Y² is the weight for )-th frequency. 

 

Equation (2.29) shows that the objective function is composed of 180 frequencies which 

are chosen every one degree in the z domain. This also means that the phase and 

magnitude value of G>0(z) at every one degree are required in order to construct the 

above objective function.  
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In [73, 75], the compensator in the form of non-causal FIR filter was designed 

based on Taylor expansion. The design is accomplished by approximating the terms 

³ 0�>x´µ and ³ 0�>x¶µ shown in (2.30) by a finite Taylor series. 

 

F(z) = ·(� − ¸0)(� − ¸1)(� − ¸¹)�¢ º « 1z − �b « 1z − �¤ (2.30) 

 

where ¸0, ¸1, ¸¹ are stable poles in the plant, �¢ is the plant gain, and  �b , �¤ are stable 

and unstable zero respectively. 

 

1
z − �b

= »1
�¼ « 1

1 + (¥b �⁄ ) ≈ »1
�¼ `	−(¥b �⁄ )�k

§

kPc
 (2.31) 

 

1
z − �¤

= » 1
¥¤

¼ « 1
1 + (� ¥¤⁄ ) ≈ » 1

¥¤
¼ `	−(� ¥¤⁄ )�k

§

kPc
 (2.32) 

 

where  ¥b = −�b , ¥¤ = −�¤, and D is the highest power of  the Taylor series. 

 

The digital RCs discussed above require a priori knowledge of the period of 

repetitive signal and the plant model. The information regarding the period of repetitive 

signal is used to design the internal model, while knowledge of the plant model is 

required to design the compensator. The compensator designs in [9, 10] result in a low 

order and non-causal compensator. The order of the compensator is similar to the order 

of the compensated plant (open loop plant/stabilized plant). The compensator designs 

based on pole placement [12, 13] give a non-causal compensator with the similar order 

to the internal model. The order of the internal model ] can be large [76]. For example, 

if a robot performing a repetitive task with a period of 1s, the RC with a sampling 

period of 1 ms means ] =  1000. Therefore, the pole placement assignment gives a 

high order of compensator. In [12], the compensator is unstable and requires special 

implementation where the unstable part operates in reverse time. In [14], the 

compensator is in the form of a non-causal FIR filter. The design requires high order of 

FIR filter to stabilize the system, which means that a large number of parameters are 
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required to be optimized [14]. The design approaches [15, 16] use a non-causal operator ��  that gives inflexible phase compensation. The non-causal compensators are still 

implementable because they are merged with the internal model. 

 

It becomes a challenge to design a low order, stable, and causal compensator. 

The advantage of causal compensator is that it can be implemented independently 

without being merged to the internal model. This reduces the design complexity, 

especially when the internal model has a high order. Motivated by this challenge, a new 

RC design that results in low-order, stable, and causal compensator, is proposed. The 

proposed design is presented in Chapter 4.  

 

 

2.3  ROBUST RC DESIGN 

 

In real situations, the actual plant model and period of repetitive signal are not 

accurately known. The plant may be subject to input/output constraints and model 

uncertainties (eg. parametric uncertainties, non-parametric uncertainties, uncertain plant 

delay). Moreover, the repetitive signal itself may vary in period. Under those 

conditions, the basic RC may fail to achieve perfect tracking/rejection, and may become 

unstable. This section discusses some robust RC designs that aim to handle either 

uncertain plant or uncertain period of repetitive signal. 

 

A design of robust RC for an uncertain plant with known parameter bounds was 

proposed by Roh and Chung [72]. A robust compensator in the form of a proportional 

derivative (PD) controller was designed to compensate that uncertain plant. The choice 

of compensator gains becomes a problem of minimization in the frequency domain. The 

minimization problem is formulated based on both RC stability criteria and 

Kharitonov’s theorem. The complexity of the optimization problem depends on the 

polynomial order of the plant. 

 

The basic RC works well for plants with relatively small time-delays. However, 

it will fail in the realm of process control applications and requirements due to the 

typical presence of time-delay and large phase lag [77]. Tan et al [77] proposed a robust 

RC for the plant with a long and imprecise time delay. Unlike most RC designs that 
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offer phase lead compensation, the proposed method uses phase lag compensation by 

cascading an additional time-delay with duration � to the RC, as shown in Figure 2.12. 

The stability of the RC system has been assessed, and it was revealed that the proposed 

RC yields a wider range of learning gain compared to the usual RC. 

 

 

Figure 2.12 RC system for the plant with long-time delay 

 

where �	 = 	+� − r, +� being a repetitive signal period, and	r is a large time-delay . 

 

When the actual period of repetitive signal is subject to slight variation, a small 

period mismatch happens. This condition makes the RC gains significantly drop to a 

low level magnitude. As a consequence the tracking/rejecting performance is 

significantly decayed. Steinbuch [26] proposed an internal model with multiple periodic 

signal generators with weighting factors to improve RC capabilities when the 

periodicity changes slightly. In the presence of period-time variations, the use of 

multiple memory loops helps to improve the RC gains at the harmonics. 

 

 

 

Figure 2.13 A continuous internal model with multiple loops 

 

I(s) = 	 ∑ W�§�P0 e>�?@B1 − ∑ W�§�P0 e>�?@B (2.33) 
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where D is the number of periodic signal generators, W� is the weighting factor, and +� 

is the known period of signal 

 

Kim and Tsao [78] proposed an RC design to deal with near periodic time 

varying reference signals. Near periodic means that the reference signal 2(¾) has a priori 

known period, +� , and that |2(¾) − 2(¾ + +�)|  is small in a certain sense. This near 

periodic phenomena happens due to the reference signal slowly changing in its 

magnitude and phase. In [78], a new integrated feed forward controller and RC was 

presented. The RC part enables the control system to learn and track the periodic 

component of the reference signal while the feed forward action compensates for the 

slow changes in magnitude and the phase of the reference signal. The control design 

problem is formulated in the linear fractional transformation (LFT) form and solved by ¿ -synthesis. In [78], the order of the resulting controller is significantly high, and 

controller order reduction must be performed for real-time implementation. 

 

 A low-pass filter �(G)  in the modified internal model is used to give more 

robustness to the RC system. However, the inclusion of this filter affects tracking 

accuracy. Finding the largest bandwidth of low-pass filter is very important, especially 

for a system requiring good tracking precision. She et al [79] proposed an algorithm to 

simultaneously optimize the low-pass filter and obtain state feedback compensator, 

when the plant contains a class of uncertainties. The configuration of the RC system is 

shown in Figure 2.14. Two robust-stability conditions based on LMI were formulated, 

and the conditions were transformed into; a generalized eigenvalue minimization 

problem that is used to calculate the maximum bandwidth of low-pass filter, and a �Z 

control problem that is used to find the state-feedback gains. 

 

 

Figure 2.14 RC system with state feedback controller 
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where �À  and �  are state-feedback gains, and t (¾) , u (¾) , and �  are state-space 

representations of uncertain plant � (G). 
 

In the presence of control saturation, the inclusion of an internal model is 

insufficient to guarantee perfect tracking/rejecting of a repetitive signal. In the RC 

system, windup can be a potential problem due to the marginally stable characteristic of 

the internal model. For some reference signals, the presence of control saturation can 

even lead to divergent trajectories [80]. An RC design that addresses the problem of 

tracking/rejecting repetitive signal for the plant subject to actuator saturation were 

proposed in [80, 81]. Sbarbaro at al [81] proposed anti-windup strategy for RC system 

shown in Figure 2.15. The design aims to maintain all the internal signals bounded 

independently of the reference, and to shape the response during the transients. The 

proposed design cancels the internal model dynamics during saturation. The dynamics 

associated with the internal model can be modified by selecting the polynomials �(�) 
and ](�). The polynomials �(�)  and ](�)  are chosen so that the roots of �(�) +](�) are inside the unit circle. This will guarantee that the actuator input, plant input 

and plant output will be bounded. 

 

 

Figure 2.15 RC system with anti-windup compensator 

 

In [80], the design objective was to handle both control saturation and plant 

uncertainty. In the design, a state-space RC structure was considered, and stability 

conditions in LMI form were formulated to calculate a stabilizing state feedback gain 

and anti-windup gain. Provided the states, the references and the disturbances belong to 
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certain admissible sets, the chosen gains will ensure the reference tracking/disturbance 

rejection.  

 

Lin and Liu [82] integrated RC with model predictive control (MPC) for 

tracking control and constraint handling of mechatronics systems. The design aims to 

preserve the desired properties of RC with the given input constraints. In [82], a state 

observer was required to provide the estimated plant states for MPC , and a Quadratic 

Programming (QP) problem was formulated to obtain the optimal change of control 

input sequence. 

 

A robust RC scheme for three-phase CVCF PWM inverters was presented in 

[83]. The plant was subject to non-linear loads and parametric model uncertainties 

causing periodic tracking error. The design combines RC and robust optimal feedback 

controller, where the feedback controller is obtained by transforming the plug-in RC 

structure to a LFT form then applying ¿-synthesis.  

  

The designs [72, 77, 79, 83] aim to handle uncertain plants, while the designs 

[80, 81] address windup problems. Robust RC designs to compensate uncertain periods 

and the uncertain magnitude of a repetitive signal were discussed respectively in [26] 

and [78]. In [26], the period of the repetitive signal was slightly changed or less varying. 

In [78], the period of repetitive signal might be fixed but the magnitude and phase of 

repetitive signal slowly changed. A robust RC design to handle a large time-varying 

repetitive signal still remains open. One of the solutions to overcome a large time-

varying repetitive signal is to use a digital PLL-based RC [27], where the sampling 

period is locked to the period of the repetitive signal to maintain a constant number of 

samples per period, as required by RC. However, the discrete plant parameters change 

as the sampling period varies. The change of plant parameters can result in an unstable 

closed-loop RC system. Motivated by this problem, a robust RC compensator that 

accommodates the sampling period variation in a known relatively large bound, is 

proposed. In the design, the time-varying parts due to sampling period interval variation 

are treated as parametric uncertainties. The proposed design is presented in Chapter 4.  
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2.4  ADAPTIVE RC DESIGN 

 

The design of RC when the plant model and period of repetitive signal are both known 

is straightforward. The internal model can be easily designed based on the information 

of the repetitive signal period and the choice of sampling period, while the RC 

compensator can be designed based on the known plant model. A problem arises when 

the period of repetitive signal is unknown, or known but time-varying. A slight 

mismatch between the internal model period and the actual repetitive signal period 

significantly degrades the performance of the RC [25]. Another problem also arises 

when the plant is subject to non-repeatable disturbance. These problems make the 

design of RC more complex. Several solutions based on an adaptive scheme have been 

proposed in [22-25, 84-92]. This section discusses some adaptive RC designs that are 

specifically proposed to handle the problems mentioned above.  

 

An adaptive RC algorithm to recursively identify the period of repetitive signal 

then update either the delay length or sampling  period has been proposed [22, 25, 84]. 

The period estimation scheme is based on the minimization of a quadratic energy 

function of the periodic signal. This is an indirect adaptive RC that firstly estimates the 

period of the periodic signal, then based on the identified period either the delay length 

is updated and the sampling period is kept fixed, or the sampling period is adjusted and 

the delay length kept constant. 

 

When the period of reference/disturbance varies but the requirement forces a 

fixed sampling period for nominal controller and plant, the number of samples per 

period may change and be non-integer. An adaptive RC design to address such a 

problem was proposed by Cao and Ledwich [85]. There are two portions of controller, 

as illustrated in Figure 2.16, where each portion has a different sampling period. The 

sampling period of the RC is adapted to maintain N samples per reference period, while 

the sampling period of the nominal controller is kept fixed. Interpolations are utilized to 

synchronize those two portions. 
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Figure 2.16 Adaptive RC to track variable periodic signals with fixed Sampling 

period 

where S1 and S2 are samplers 1 and 2 respectively. 

 

Kim et al [86] designed an adaptive RC algorithm to reduce a single frequency 

disturbance in hard disk drives. The disturbance frequency is unknown and adaptive 

peak frequency identification is employed to determine the dominant disturbance 

frequency. The proposed design uses a low order internal model targeting a single 

fundamental frequency. Problems occur when there are some harmonics or significant 

peaks disturbances. 

 

A self-tuning digital RC that is comprised of a gradient descent disturbance 

model estimation and a Pseudo Feed Forward (PFF) controller was proposed by 

Hillerstrom and Sternby [87]. The design consists of two main ideas; online 

identification to estimate the fundamental frequency of the disturbance by minimizing 

the output energy of the filtered disturbance, and the PFF controller that uses the filtered 

plant input and output to reject the disturbance signal affecting the system. The PFF 

controller is designed based on the identified disturbance model. A nice property of PFF 

controller is that it does not affect the closed-loop system stability, as the cancellation 

signal is injected from outside the feedback loop. A low order disturbance model that 

represents some dominating harmonics is used here. Therefore, the design only works 

for band-limited disturbance.  
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N´estor et al [88] designed a control strategy to reject both the repeatable and 

non-repeatable run out disturbances affecting the hard disk drive (HDD). The control 

scheme integrates the internal model to reject repeatable disturbance and an adaptive 

component based on minimum variance regulation to eliminate the non-repeatable 

disturbance.  

 

Lin et al [89] integrated RC and adaptive FIR filter based on a recursive least-

squares lattice filter to suppress random jitter while tracking a reference trajectory 

generated by a deterministic dynamic model. RC based ZPETC is employed to achieve 

asymptotic tracking performance, while an adaptive FIR filter is used to minimize the 

steady-state variance of plant output. 

 

Lu et al [90] proposed a continuous adaptive RC to eliminate periodic 

disturbance with an unknown period. In the design, a finite-dimensional internal model 

was used. The adaptive algorithm tunes the finite-dimensional internal model 

parameters to match with the actual disturbance model. Since the proposed method uses 

a finite-dimensional internal model, then the design works only for band-limited 

disturbance. 

 

A direct adaptive RC based on pole placement, as shown in Figure 2.17, has 

been proposed in [23]. Landau et al [23] presented a discrete adaptive RC to reject 

unknown narrow band disturbances. The proposed method identified the model of 

disturbance and updated the repetitive controller at each sampling time. The proposed 

design showed that it is possible to build an adaptive control where the parameters of 

the repetitive controller are directly adapted in order to have the desired internal model. 

 

Figure 2.17 Adaptive RC system with RS polynomial control structure 
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where� (�>0) is disturbance model , 

 

By using Youla-Kucera parameterization, polynomials �(�>0)  and �(�>0)  can be 

decomposed to: 

 �(�>0) = �¤(�>0) − �>�u(�>0)�(�>0) (2.34) 

 �(�>0) = �¤(�>0) + t(�>0)�(�>0) (2.35) 

 

Since the plant model is known and the central controller �¤(�>0) and �¤(�>0) can be 

computed by closed-loop pole assignment as follows: 

 Á(�>0) = t(�>0)�¤(�>0) + �>�u(�>0)�¤(�>0) (2.36) 

 

, then the design problem is obtaining polynomial �(�>0) such that the �(�>0) includes 

the internal model of disturbance "(�) 
 

In [23], the disturbance model was unknown, but its order was known. Therefore, it was 

possible to tune polynomial �(�>0) at each sampling time until the polynomial �(�>0) 
incorporated the internal model of disturbance. 

 

 

Figure 2.18 Digital PLL-based RC 

 

Cao and Narasimhulu [27] proposed a digital PLL-based adaptive RC as shown 

in Figure 2.18. In the presence of a periodic signal with time-varying frequency, the 
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sampling period was locked to the period of the reference/disturbance signal to maintain 

a constant number of samples per period, as required by RC. The use of PLL to estimate 

the time-varying frequency of disturbance and synchronize the sampling period also has 

been investigated by Cataliotti et al [93]. The sampling period adjustment in [27] 

changes the discrete plant coefficients. Then, the RC compensator needs to be adjusted 

accordingly to achieve a stable system. 

 

An adaptive RC design to compensate parametric changes of the plant caused by 

sampling period adjustment was proposed by Olm et al [91]. The proposed method was 

comprised of two steps: an RC compensator design based on ZPETC at the selected 

nominal sampling period, and a controller design to keep the closed-loop model fixed at 

the selected nominal sampling period even though the sampling period varies. The 

design strategy is depicted in Figure 2.19 below: 

 

 

Figure 2.19 Adaptive RC with time-varying sampling period 

 

where 	�¤(�)  is the RC compensator at the nominal sampling period +�  , which is 

formulated as follows: 

 

�¤(�) = �� « �(�)�(�, +�)1 + �(�)�(�, +�)
>0

 

 

(2.37) 

�0(�, +) being a controller that makes Á(�) fixed and equal to the discrete plant model 

at the nominal sampling period �(�, +�) 
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 �0(�, +) = 	�(�, +�),�(�, +).>0 (2.38) 

 

, and + being the current sampling period that maintains the constant number of samples 

per period ]. 

The implementation of the design is quite complex, especially when updating the 

controller  �0(�, +) that requires the calculation of the discrete model of �(G) at the 

current sampling period T  

 

A stability analysis of closed-loop system containing RC under time-varying 

sampling period [91] was presented by Ramos et al [94]. An analysis was carried out 

using LMI gridding approach. 

 

A number of adaptive RC designs to track/reject repetitive signals with unknown 

or time-varying period have been discussed above. Most of the approaches assume that 

the plant is known. An indirect adaptive RC algorithm to recursively identify the period 

of disturbance then update either the delay length or sampling period was proposed in 

[22, 25, 84]. An indirect adaptive RC to identify the period of disturbance then update 

the external model of disturbance was presented by Hillerstrom and Sternby [87]. 

Landau et al [23] presented a direct adaptive RC to reject time-varying periodic 

disturbances. However, it can only be used for narrow band disturbances that give a 

lower order of the internal model RC. A direct adaptive RC design to reject time-

varying periodic disturbances without knowledge of the plant model has not been 

proposed yet. Therefore, the design of adaptive RC for unknown linear systems subject 

to time-varying periodic disturbances, is proposed in this thesis. The proposed adaptive 

RC is based on the direct adaptive control scheme and the internal model principle. The 

design aims to reject disturbance frequency and its harmonics up to Nyquist. The 

proposed method is presented in Chapter 5. 
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2.5  MIMO RC DESIGN 

 

An extensive study of RC was done for a SISO system, as discussed in previous 

sections. There are still few RC designs for the MIMO system to be found. This section 

presents some work on MIMO RC designs. 

 

Sadegh [95] synthesized the discrete-time RC of a linear MIMO system, which 

aimed to preserve tracking performance over the sampling bandwidth. The compensator 

was designed based on a priori knowledge of the plant frequency response and the range 

of learning gain was formulated by using Nyquist stability criteria. 

 

Jeong and Fabien [96] proposed the design of a Phase Cancellation Inverse 

(PCI) Matrix that operates by cancelling the phase lag in the diagonal elements and 

eliminating the-off diagonal elements of the plant model. The idea was initiated using a 

Zero Phase Tracking Error Controller (ZPETC) by Tomizuka [11], which aims to 

exactly cancel the phase response of the plant model. For the plant �(�) with a square 

matrix transfer function, where its elements have a non-causal FIR filter form, the PCI 

matrix is given by: 

 

� b(�) = t")(�(�)) Â}(�>0)Â>(�)  (2.39) 

 

where � b(�)  is PCI matrix, t")(�(�))  is an adjoint of �(�), Â}(�), Â>(�)  are the 

uncancellable and cancellable parts of "!¾	(�(�)) , and "!¾(�(�))  stands for 

determinant of �(�).	
The PCI matrix for a non-square matrix was also given Jeong and Fabien [96]. The 

design ends up with a non-causal PCI matrix, which is allowed due to the high causal 

term of the internal model.  

 

In some situations, the repetitive signals consist of unrelated fundamental 

frequencies. A so-called multi periodic RC is required to address these situations. 

Owens et al [97] presented stability conditions for multi-periodic RC of a continuous-

time MIMO system using Lyapunov analysis. As illustrated in Figure 2.20, the multi-

periodic RC here was constructed from several internal models with different time-
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delays arranged in parallel. In [97], stability conditions of this RC system were derived. 

It has been shown that asymptotic stability is guaranteed if the plant model is positive 

real (PR), and exponential stability is ensured if the plant is strictly positive real (SPR). 

 

 

Figure 2.20 MIMO multi periodic RC system 

 

where �(G) is a continuous –time plant with a �Ã� transfer function matrix (�(G) ∈ℂ�4�), D is the number of unrelated fundamental frequencies, �(G) is a low-pass filter, a is the gain given to each internal model, and the reference � , disturbance �, tracking 

error 3 , control Å	, and output Æ  belong to the set ℝ�. 

 

The design of an adaptive multi-periodic RC of continuous-time MIMO system 

was proposed by Dang and Owens [98]. The design objective was to adapt feed-forward 

controller such that the plant output tracks/rejects a multi periodic repetitive signal 

without information of the plant model. The MIMO plant is not necessarily positive 

real. However, it needs to be a strictly minimum-phase system. A direct adaptive 

scheme was employed, and the system stability was analysed using the Lyapunov 

method. The design was also extended to MIMO plant under certain nonlinear 

perturbations and the stability was also discussed. 

 

An RC design that addresses the problem of tracking/rejecting repetitive signal 

for a MIMO system subject to control saturation was proposed by Flores et al [99]. The 

modified internal model allows tracking/rejecting of a repetitive signal of different 

fundamental frequencies on each channel that is used. In the design, LMI conditions are 

also proposed to compute the stabilizing state feedback gain and the antiwindup gain, 
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which ensures that the outputs, states, references, and disturbances belong to certain 

admissible sets. 

 

Another RC design for tracking the reference signal of a MIMO system subject 

to control saturation was also proposed by Wang et al [100]. The frequency of all 

reference signals were first decomposed via Fourier analysis and the dominant 

frequencies were chosen based on the reconstruction of reference signals with a 

predefined accuracy. A low order internal model was used to model each dominant 

frequency. The use of model predictive control (MPC) enabled it to put constraints on 

the plant inputs. 

 

Xu [73] proposed an optimization based compensator to mimic each component 

of the inverse matrix of a plant. Given a �Ã� MIMO system (�1 transfer functions), 

then there were  �1 compensators that needed to be designed. 

 

 �(�) = ÈÉ00(�) ⋯ É0�(�)⋮ ⋱ ⋮É�0(�) … É��(�)Ì (2.40) 

 

 �(�) = È�00(�) ⋯ �0�(�)⋮ ⋱ ⋮��0(�) … ���(�)Ì (2.41) 

 

where �(�) is the plant matrix, and �(�) is a compensator matrix   

 

Each component of �(�) is designed by minimizing the objective function as 

follows: 

 

Íb² = ` Î«1 − Ïℎb²(�)Ñ>0 �b²(�)Wo «1 − Ïℎb²(�)Ñ>0 �b²(�)∗ÒÓ>0
oPc xPÔ´ÕpÖ

 (2.42) 

 

where	× = 1,2, … ,� , ) = 1,2, … ,�, � is indices of the chosen frequency up to Nyquist, Yo  is weight for �th frequency, ℎb²(�)is a component of �>0(�) at ×-th row and )-th 
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column, and �>0(�) is the inverse matrix of �(�), �b² is a compensator in the form of a 

non-causal FIR filter. 

 

 �>0(�) = 1det	�(�)�t")(�(�)) = Èℎ00(�) ⋯ ℎ0�(�)⋮ ⋱ ⋮ℎ�0(�) … ℎ��(�)Ì (2.43) 

 

This makes �1 separate SISO objective functions to obtain a compensator matrix �(�). 
Since the design procedure requires the calculation of the determinant of the matrix, 

then this design only works for a square matrix �(�). Moreover, complexity in the 

design increases when the dimension of the matrix is significantly large. 

 

Most of the designs for discrete-time MIMO are based on the full MIMO 

approach, which results in a compensator with the same dimensions as the plant. This 

implies that if we have an mxm MIMO system (m1 transfer functions), then we need to 

design m1  RC compensators. Moreover, the designs also end up with a non-causal 

compensator that needs to be merged with the internal model to make it realizable. The 

fact that most of MIMO control problems can be treated on a decentralized basis [101], 

gives a motivation to design decentralized RC of MIMO system. Decentralized control 

means that the MIMO system should be considered as a set of SISO systems. In chapter 

6, a design for an RC compensator for a MIMO system is proposed, based on 

decentralized control. The stability of decentralized RC is also discussed. 
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2.6 SUMMARY 

 

This chapter has presented a review of various RC designs. The designs were classified 

into four categories: Basic RC design, Robust RC design, Adaptive RC design, and 

MIMO RC design.  

 

In Section 2, various designs for both an internal model and a compensator were 

presented. For digital RC, most existing compensators are either non-causal or unstable. 

The non-causal compensator is implementable because it is merged with the internal 

model, while the unstable compensator requires special implementation where the 

unstable poles operate in reverse time. In Chapter 4, a stable, low order, and causal 

compensator is proposed that can be implemented independently without being merged 

with the internal model. This reduces the complexity of the design, especially when the 

internal model has a high order.  

 

In Section 3, various robust RC designs were discussed. The RC designs 

addressed; uncertain plant, control saturation, uncertain period of repetitive signal. 

Robust RC design to handle large time-varying repetitive signal has not been discussed 

yet. To overcome a repetitive signal with large variations in a period, the sampling 

period needs adjustment to maintain a constant number of samples per period. However, 

the discrete plant model changes as the sampling period varies In Chapter 4, a robust 

RC compensator is proposed that accommodates sampling period variation in a known 

relatively large bound. 

 

In Section 4, various adaptive RC designs were reviewed. Most of the designs 

use an indirect scheme, and require information of the plant, which is required either to 

design the compensator of the internal model based RC or to estimate the disturbance 

signal in the external model based RC. In Chapter 5, a direct adaptive RC scheme is 

proposed that is able to simultaneously track and reject a time-varying periodic signal 

without knowledge of the plant model. The design is based on direct adaptive control 

and the internal model principle.  
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In Section 5, several MIMO RC designs were presented. There has still been 

little work on MIMO RC designs. Most of the designs for discrete-time MIMO have 

been based on the full MIMO approach, resulting in a compensator with the same 

dimensions as the plant. This implies an �Ã� MIMO system (�1 transfer functions), 

requires the design of m1 RC compensators. In Chapter 7, a decentralized RC design is 

presented, as most MIMO control problems can be treated on a decentralized basis. This 

reduces the complexity of the design since we only need to design � RC compensators 

for an �Ã� MIMO plant Another advantage of the proposed design is that it ends up 

with a causal compensator that can be implemented independently rather than being 

merged with the internal model. 
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CHAPTER 3  

EXPERIMENTAL SYSTEM 

 

3.1  INTRODUCTION 

 

The fastest and most convenient approach to test the effectiveness of the design is to 

simulate the system on a computer via software. Computer simulations can quickly 

demonstrate the performance of the system, as the simulations are only processed and 

calculated in the computer. However, simulations cannot replace the real-time 

experiments, in which the tests represent the real situations that may be affected by 

disturbances, uncertainties, and nonlinearities. 

 

This chapter describes the experimental system used for testing the control 

algorithms proposed in this thesis. System hardware and software are given in Sections 

2 and 3 respectively. Section 4 concludes the chapter. 

 

3.2  SYSTEM HARDWARE 
 

The experimental system used here consists of the following hardware components: 

1. Host PC: This hardware is the computer that hosts the software simulator, editor, 

compiler, and debugger. 

2. Target System:  This is the computer that runs the code generated by the host 

PC. This hardware interfaces directly to the plant. In this experiment, both host 

PC and target system were the same machine (single-PC solution). 

3. Signal Conditioning Hardware: This hardware amplifies, attenuates, and filters 

signals sent between the software execution hardware and the plant   

4. Plant: This is the hardware to be controlled. 
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Figure 3.1 Experimental setup for the servo plant 

 

 

Figure 3.2 Experimental setup for 2 DOF robot plant 

 

Figures 3.1 and 3.2 show the experimental setup for the servo plant and 2 DOF 

robot plant respectively. The block diagram of the experiment is shown in Figure 3.3. A 

PC and a set of hardware manufactured by Quanser are used to control the position of 

servomotor. The system hardware used in the experiment consisted of a PC, a 

servomotor, a 2 Degrees of Freedom (DOF) robot, an amplifier, and a data acquisition 
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board. A PC with the specifications; Intel Core i5 processor, and 2GB RAM, was used 

for both Host and Target system.  

 

 

 

Figure 3.3 Experimental system block diagram 

 

3.2.1  SERVOMOTOR 

 

The first plant to be controlled is a rotary servo SRV02-E manufactured by Quanser. 

The Quanser SRV02-E, pictured in Figure 3.4, consists of a DC motor that is equipped 

with a planetary gearbox, a potentiometer sensor that is used to measure angular 

position of the load gear, and an encoder that can be used to obtain a digital position 

measurement. The potentiometer sensor provides an absolute position measurement as 

opposed to relative measurement from the encoder.  

 

The open-loop SRV02-E has the following model 

 

�(G) = Ú¤(G)Û¤(G) = SÜG1 + G (3.1) 

 

where Ú¤(G) is open-loop voltage, Û¤(G)is load gear position, parameter S  and	Ü  are 

experimentally identified based on the frequency response, and are shown in Table 3.1   
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.  

Figure 3.4 (a) Quanser SRV02-E servo plant (b) Bar and disc load supplied with 

SRV02-E system [102]  

 

Table 3.1 Parameter Ý and Þ for different loads 

Load 
S= steady-state gain (2¥"/GÚ) 

Ü = time constant 

(G) 

No Load 1.7400 0.0268 

Bar 1.7400 0.0275 

Disc 1.7500 0.0255 

 

Real-time experiments using this plant were conducted to verify the control 

algorithms proposed in Chapter 4 and 5. The experiments aimed to control the angle 

position of Quanser SRV02-E to exactly track the periodic reference signal. 

 

3.2.2 A 2 DOF ROBOT 

 

The second plant used in the experiment is Quanser 2 DOF robot, pictured in Figure 

3.5. Two servo motors mounted at a fixed distance control two arms coupled via two 

non-powered two-link arms. The system has 2 actuated and 3 unactuated revolute joints. 

The 4-bar linkage system gives coupling effect to the actuated joints. The 2 DOF robot 

is a 2x2 MIMO system, and its transfer functions are experimentally modeled using 

time-domain data. The 2 DOF robot has the following transfer functions: 
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�(G) = Ú(G)Û¤(G) = «É00(G) É01(G)É10(G) É11(G) (3.2) 

where Ú(G) is close-loop voltages, Û¤(G)is load gear positions  

É00(G) = 1.02100.0059G1 + 0.1191G + 1 
(3.3) 

 

É01(G) = −0.0144	G	 + 	0.397526.430G1 + 7.2020G + 1 
(3.4) 

 

É10(G) = −0.0029	G	0.0069G1 + 	0.1201G + 1 (3.5) 

 

É11(G) = 1.00300.0051	G1 + 0.1151G + 1 (3.6) 

 

 

Figure 3.5 2 DOF Quanser robot plant [103]  
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Figure 3.6 Schematic of 2 DOF robot  

 

A schematic of the 2 DOF robot is shown in Figure 3.6. Figure 3.6 shows that 

the two servomotors are represented as the actuated revolute joints A and B.  All four 

bars have the same length  r�. The robot end effector is depicted by joint E. The two 

actuated angles are denoted by Ûy  and Ûw, and they are the angles position of SRV02-E 

A and SRV02-E B respectively. The goal of the system is to control the X-Y 

coordinates of a 4-bar linkage end effector joint E. The given references are periodic 

signals of X-Y Cartesian coordinate, while the control inputs and measured outputs are 

angles position. To obtain control inputs in angles, and tracking outputs in Cartesian, 

some conversions are required. Hence, the forward and inverse kinematics need to be 

derived. The X-Y Cartesian coordinate of joint E is represented as 	34, 35�. 
 

The forward kinematics calculate the Cartesian coordinates of robot end effector 

from the actuated angles (Ûy , Ûw). The known quantities in forward kinematics are Ûy, 

and Ûw. By assuming that the joint A is at the origin, the Cartesian coordinate of joint C, 

namely �4 and �5 are 

�4 = r�� G(Ûy) (3.7) 

�5 = r�G×D(Ûw) (3.8) 
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Similarly, the Cartesian coordinate of joint D, namely �4 and �5 are 

�4 = u4 + r�G×D(Ûw) (3.9) 

�5 = r�� G(Ûw) (3.10) 

where u4 = 2r�  (3.11) 

The distance between point C and D, is given by the following equation: 

�� = á(�4 − �4)1 + 	�5 − �5�1 (3.12) 

From Figure 3.6 and doing some trigonometry, the following expressions are derived: 

  

a = ¥2�� G »��2r�¼ (3.13) 

Â = ¥2�¾¥D »�5 − �5�4 − �4¼ (3.14) 

Thus, the Cartesian coordinate of joint E, namely 34 and 35 can be expressed 

respectively as follows: 

34 = �4 + r�� G(a + Â) (3.15) 

35 = �5 + r�G×D(a + Â) (3.16) 

The inverse kinematics convert from the Cartesian coordinates of joint E to the 

actuated angles (Ûy , Ûw). From [103], the inverse kinematics are given as follows: 

 

Ûy = ¥2�¾¥D »3534¼ − â2 + ãy2  (3.17) 

Ûw = 	¥2�¾¥D äu4 − 3435 å − â2 + ãw2  (3.18) 

where the angles ãy and ãw are given by 

ãy = ¥2�� G ä2r�1 − 	341 + 351�2r�1 å (3.19) 

ãw = 	¥2�� G ä2r�1 − �(34 − u4)1 + 351�2r�1 å (3.20) 
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3.2.3  DATA ACQUISITION BOARD (DAQ) 

 

A data acquisition board (DAQ) is used to interface between the target system and the 

plant. The DAQ basically performs analogue to digital (A/D) conversions, and digital to 

analogue (D/A) conversions.  The DAQ used in the experiments is Q8-USB board , 

manufactured by Quanser. The Q8-USB board supports a rapid prototyping and 

Hardware-in-the-Loop (HIL) control environment. This board does not require digital 

signal processor (DSP), because a CPU does all processing. The others features include 

a USB connection,  8 16-bit ADCs,  8 16-bit  DACs, 8 encoder inputs, supporting both 

QUARC Windows and NI LabView targets [104]. 

 

3.2.4  POWER AMPLIFIER 

 

A linear power amplifier, VoltPAQ-X1 manufactured by Quanser, was used in the 

experiment. This is signal conditioning hardware that powers one load only. An analog 

control signal from DAC is fed to the amplifier before it is sent to the plant. The same 

goes for the analog measurement signal from the plant, which is sent to the amplifier 

before going to ADC. The main specifications of VoltPAQ-X1 are shown in the table 

below [105]. 

 

Table 3.2 VoltPAQ-X1 Specifications 

Amplifier Specifications Value 

Output Voltage ±24	Ú 

Continuous Current Output ±4.16	t 

Voltage Gain 1Ã	 2	3Ã 

Current Sense 1t/	Ú 

Amplifier Command Voltage ±10	Ú 
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3.3  SYSTEM SOFTWARE 

 

System software used in the experiment consists of the following components: 

 

1. Software Development  

 

The software development used in the experiment, and which ran on the host computer, 

consisted of Microsoft Windows XP SP2, QUARC
@

2.1, and MATLAB R2009b, which 

includes Simulink, and Real-Time Workshop (RTW). Windows XP SP2 is an operating 

system on which the QUARC and MATLAB run. 

 

QUARC
@

 2.1 is a rapid prototyping software for real-time control, developed by 

Quanser, that generates real-time code directly from Simulink. This tool basically 

extends the capabilities of Real-Time Workshop by adding a Windows target. The 

QUARC compiles the C code generated from the Simulink model, links with libraries 

for the selected target, and downloads the code to the target. 

 

Simulink is an add-on product to MATLAB that provides a graphical 

environment for modeling, simulating and analyzing of dynamic systems. It includes a 

library of pre-defined blocks to be used to create a graphical model of system. The user 

also can create and insert the user-defined block to the Simulink model. 

 

Real-time workshop (RTW) generates and executes C or C++ code from 

Simulink diagrams, Stateflow charts, and Matlab functions. The user can generate code 

for any Simulink diagrams (discrete-time, continuous, or hybrid systems) that are useful 

for real-time or embedded applications. The generated code also can be used for non-

real time applications including simulation acceleration, and HIL testing.  

 

2. Target Software.  

 

This is an operating system on which the software execution hardware runs. In 

this experiment, the same Windows XP SP2 was used.  
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  The procedures of running real-time control in the experiment consisted of the 

following stages: 

 

1. Creating Simulink Model 

 

This is the process by which a system model is created, first selecting the desired 

blocks, then configuring the block parameters, and finally connecting the block inputs 

and outputs. The reference signal and controller parameters are set at this stage. For the 

robust RC described in Chapter 4 and the MIMO RC system described in Chapter 6, the 

system models were built from blocks that were already available in the library browser. 

All of the controller parameters were fixed and designed by using an Optimization 

Toolbox, MATLAB [106]. The controller parameters were set offline before running 

the model. For the adaptive RC system in Chapter 5, besides the blocks provided from 

the libraries, user-defined blocks were created. These blocks embed C-S functions. The 

C-S function is a user-defined code written in C environment. This C-S function gives 

more flexibility than the common blocks provided in the Library, because it enables the 

controller parameters to be updated at each sampling time when the model is already 

running.   

 

2. Configuring Model 

 

This is the stage of configuring the Simulink parameters after the model is 

created. The key parameters for building and running the model are Solver parameters 

and a System target file.  The fixed-step type solver, which has a constant step size, was 

chosen, as this was the only solver that could support code generation. A variable-step 

type solver may be chosen, if the models run in the normal simulation. The solver is a 

numerical method used to compute the model’s states when the model is running. A 

first order solver, ode1 (Euler’s Method), was used because it gives less computation 

time in real-time code. Another important parameter is the System target file. The target 

file determines the target type for which the real-time code will be generated. The target 

file quarc_windows.tlc was chosen, in which it indicates the Quarc Windows target.  
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3. Building Model 

 

This stage is required if the model is to run in real-time. In a normal simulation, 

a building model is not necessary because simulation does not need real-time code. The 

building model basically consists of the following operations; Model compilation, Code 

generation, Customized makefile generation, Real-time code generation, and a 

Downloading real-time code.  

 

Model compilation is the operation in which RTW examines the Simulink model 

and builds a database describing every single block and line in the model. Code 

generation is the process of generating C code for the model. Customized makefile 

generation is the process in which QUARC creates a customized makefile using a 

template associated with the specified target file. In real-time code generation, the 

generated C code is compiled, the object files and libraries are linked, and a real-time 

code is obtained for the specified target type. The real-time code is the executable file 

that will run on the target machine. The executable file has an extension .rt-windows, 

where windows indicates the Quarc windows target. Once the real-time code is 

generated, then the code is ready to be downloaded to the target machine. 

 

4. Connecting to a Model’s Real-Time Code  

 

Downloading real-time code as part of build process does not make the code is 

loaded into memory. Connecting to the real-time code here is needed to make the target 

load the code into memory, and initialize it. However, this does not start the model.  

 

5. Starting/Stopping  

 

The user must input the start/stop command to run/stop the model. 
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3.4  SUMMARY 
 

This chapter has presented the experimental system used to validate the proposed 

algorithms. The system hardware and software used in the experiments have been 

described in this chapter.  

 

The system hardware consists of a PC, a servomotor, a 2 DOF robot, an 

amplifier, and a data acquisition board. The first experimental system has used a 

servomotor as the plant. The goal of the system is to control the angle position of the 

servomotor in order to be exactly track the periodic reference signal. A 2 DOF robot 

was used for the second experimental system. The system aims to control the X-Y 

Cartesian coordinates of the end effector. For the system software, the following 

software was used; Microsoft Windows XP SP2, QUARC@2.1, and MATLAB 

R2009b. 
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CHAPTER 4  

DESIGN OF ROBUST RC  

WITH TIME-VARYING SAMPLING PERIODS 
 

 

4.1  INTRODUCTION 

 

In most designs of discrete RCs, it is assumed that the frequency of the compensated 

signal is a constant, and the sampling rate is fixed to give an integer number of samples 

per period. However, in practice, the reference or disturbance may have a time varying 

period. If the sampling period remains fixed, the number of samples per period will 

change. This may decay the tracking performance [24]. To overcome this problem, a 

digital PLL-based repetitive control was proposed [27], in which the sampling period 

was locked to the period of the reference/disturbance signal to maintain a constant 

number of samples per period. However, the discrete plant model changes as the 

sampling period varies. The RC has to be changed accordingly in order to achieve a 

stable system. 

 

In this chapter, a design of robust RC with time varying sampling periods is 

proposed. A new design methodology was developed first in order to obtain a stable, 

robust and causal IIR compensator that achieves fast convergence and high tracking 

accuracy. The new stable and causal RC compensator is implemented independently to 

reduce the design complexity, as most existing repetitive compensators are either 

unstable or non-causal, which makes implementation difficult. A comprehensive 

analysis and comparison study is presented. A robust compensator is then proposed, 

which accommodates the sampling period variation in the known bound. In the design, 
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the time-varying parts due to sampling period interval variation are treated as parametric 

uncertainties.  

 

This chapter is organized as follows. In Section 2, the design of a new 

compensator using an optimization method is presented. Section 3 covers how to model 

the uncertainties. In Section 4, the robust design is described. Simulation and 

experimental results are given in Section 5 and Section 6 respectively. A comparison 

study is also presented in Section 5. Section 7 concludes the chapter. 

 

 

4.2  A NEW DESIGN OF RC COMPENSATOR 

 

The general structure of a digital plug - in RC system is shown in Figure 4.1 [9], 

where	GBæ(z) is the digital repetitive control, C(z) is the feedback controller, G(z) is the 

plant model, r(k) is the periodic reference signal, e(k) is the tracking error, ué(k) is the 

control signal, and yé(k) is the tracking output.  

 

∑∑

∑ N
z

−Q

 

Figure 4.1 General structure of the plug –in RC system 

 

The digital RC has a generic transfer function as follows: 

 

 GBæ(z) = F§(z) Q(z)z>m1 − Q(z)z>m (4.1) 
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where F§(z) is the compensator, �(z) is  the zero phase low pass filter with unity gain, TB is the period of the reference, T is the sampling period, N	 = 	TB/T ∈ 	ℕ,	N	is the 

integer number of samples per period and is also the order of the internal model. 

 

For the plug-in RC system shown in Figure 4.1, the compensator C(z) is firstly 

designed to achieve a stable system with the closed loop transfer function of Gæ(z): 
 

 Gæ(z) = G(z)1 + C(z)G(z) (4.2) 

 

The RC compensator is then designed to cancel the dynamics of	Gæ(z), in which 

the plant model is usually required [9-11]. However, the accurate plant model is 

sometimes not available due to uncertainties and disturbance [15]. Here, we propose a 

new form of compensator, which is a proper and stable �-th order IIR filter F§(z) as: 

 

 F§(z) = qcz� + q0z�>0 +⋯+ q�z� + r0z�>0 +⋯+ r� 	 , m > 0 (4.3) 

 

The characteristic equation of the system shown in Figure 4.1 can be derived as: 

 

 1 + äC(z) + F§(z) Q(z)z>m1 − Q(z)z>måG(z) = 0 (4.4) 

 ,1 + C(z)G(z). − ,1 + C(z)G(z).Q(z)z>m + F§(z)G(z)Q(z)z>m = 0 (4.5) 

 

,1 + C(z)G(z). ·1 − Q(z)z>m + ä G(z)1 + C(z)G(z)å F§(z)Q(z)z>mº = 0 (4.6) 

 

 ,1 + C(z)G(z).,1 − Q(z)z>m + Gæ(z)F§(z)Q(z)z>m. = 0 (4.7) 

 

 ,1 + C(z)G(z).�1 − 	1 − Gæ(z)F§(z)�Q(z)z>m� = 0 (4.8) 
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The overall system is stable if two conditions are satisfied [9, 15]: 

 
1. Gæ(z) is a stable transfer function. 

 
 

 2. ê	1 − Gæ(z)F§(z)�Q(z)ê∞ < 1	  or (4.9) 

 

 					�	1 − Gæ(z)F§(z)�Q(z)� < 1			∀				0 < ω� < πT (4.10) 

 

As the controller sampling period T is specified, and the continuous model G(s) 
is known, the discrete plant model G(z) and the closed-loop transfer function Gæ(z) can 

be easily obtained. Hence, the information regarding the magnitude and phase response 

of Gæ(z) is also known.  

 

Let Mìæíand θìæí, Mîíand	θîí,  Mïªí and θïªíare magnitude and phase response 

of Gæ(z),  Q-filter and  F§  at frequency		ω� respectively. As the parameters of F§  are 

unknown, then 	Mïªí  and θïªí  are nonlinear scalar functions that have (2m + 1) 
variables denoted as 		r0,r1, … , r�, qc, … , q� . The stability condition (4.10) at 

frequency		ω� can be expressed as: 

 

�1 − Mïªíe�θðªíMìæíe�θñòí��Mîíe�θóí� < 1 (4.11) 

 

Since the phase response of Q-filter is zero for all frequencies, thus (4.9) can be 

rewritten as: 

 

�1 − Mïªíe�θðªíMìæíe�θñòí�Mîí < 1 (4.12) 

 

³Ï1 − MïªíMìæíe�Ïθðªí}θñòíÑÑ Ï1 − Mìæíe>�Ïθðªí}θñòíÑÑµ
©ôMîí < 1 (4.13) 

 

Let	M@í = MïªíMìæí, 	θ@í 	= θïªí + θìæí, and the LHS of (4.13) denoted as : 

 

h� = �	1 − M@í�cos	θ@í� + j	sin	θ@í���	1 − �cos	θ@í� − j	sin	θ@í����©ôMîí (4.14) 

 



57 
 

				= �1 − 2M@ícos	θ@í� + M@í1�©ôMîí (4.15) 

		h� is a scalar function presenting the magnitude response of (4.10) at 

frequency		ω�. To satisfy the stability condition (4.10),	h� has to be less than one for all 

frequencies up to the Nyquist.  

 

h� = �1 − 2M@ícos	θ@í� + M@í1�©ôMîí < 1 (4.16) 

 

An objective function can now be defined as: 

 

h@gö¨f =`h�÷
�P0 ∀ω� = 2π iNT 	i = 1,2,3… , L (4.17) 

 

where	L = N/2 for an even  N, and L = (N − 1)/2 for an odd N . 

 

Now, the optimization problem as follows is proposed: 

 min(é©,,…,éù,£ú,…,£ù)h@gö¨f	
Subject to:      

1. û−1 + δ..−1 + δü < ûp0..p�ü < û1 − δ..1 − δü 
2. h� < 1 − Ü, ∀ω� = 2π iNT 	i = 1,2,3… , L 

(4.18) 

 

where 	δ		  and τ	are small positive constants, and 		p0,p1, … , p�  are m  real poles of 

F§(z). 
 

Remark 4.1: We can assume that some poles are complex, and complex poles always 

come in pairs.  Suppose ¸0 is a complex pole,	¸0 = þ + )�, so there is a pair conjugate 

of this pole, ¸1 = þ − )� . In this case, the optimization problem is simply modified to: 
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 min(�,À, �,…, � ,�ú,…,��)ℎR¤#�� 
Subject to:      

1. þ1 + �1 < 1 − � 

2. �−1 + �..−1 + �� < û ¸¹..̧�ü < û1 − �..1 − �ü 
3. ℎb < 1 − Ü, ∀*b = 2â b^ R	  × = 1,2,3 … , r 

(4.19) 

 

Remark 4.2: The first condition of (4.18) consists of �  constraints which guarantees 

that all poles of ��(�) are inside the unit circle. The positive constant � presents the 

minimum distance of all  ��(�) poles from the unit circle. This condition ensures that 

the compensator is stable within a safe margin. 

 

Remark 4.3: The second condition of (4.18) guarantees that the closed loop system is 

stable within a positive margin of τ.  

 

The optimization problem (4.18) is a class of nonlinear optimization that 

finds  (2� + 1)  optimum variables subject to �  bound constraints and ]/2  (for an 

even ] ) or   (] − 1)/2 (for an odd  ]) nonlinear constraints. 

 

 

4.3  UNCERTAINTY MODELING  

 

Suppose we have a k-th order plant, the transfer function of Gæ(z) can be expressed as: 

 

 
Gæ(z) 	= b0(T)zk>0 + b1(T)zk>1 +⋯+ bk(T)zk + a0(T)zk>0 +⋯+ ak(T)  (4.20) 

 

where	a0, … , ak, 	b0, … , bk are coefficients of the transfer function. 

 

These coefficients vary when the sampling period	T? is changed. Assume 	T? is varying 

in the known bound,T ∈ ,Tf, T
. ⊂ R} , where Tf	and	T
  are the lowest and highest 
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sampling periods respectively. This leads to the parametric uncertainties of Gæ�z� . 

Defining Gæf�z� and Gæ
�z� as the transfer function when the plant Gæ�z� is sampled 

at		Tf and 	T
 respectively: 

 

Gæf�z� 	= b0�Tf�zk>0 +⋯+ bk�Tf�zk + a0�Tf�zk>0 +⋯+ ak�Tf� (4.21) 

 

Gæ
�z� 	= b0�T
�zk>0 +⋯+ bk�T
�zk + a0�T
�zk>0 +⋯+ ak�T
�    (4.22) 

 

Assume Gæ�s� is a continuous time transfer function:  

 

Gæ�s� = D + C�sI − A)>0B (4.23) 

 

where A, B, C and D are the matrixes of the system state space model. 

 

Its discrete time transfer function is:  

 Gæ(z) = D+ C(zI − A�)>0B� (4.24) 

 

where	A�(T) = e�@, and B�(T) = Ï� e��	dτ@c ÑB. 

From the Taylor series,e�@ can be expressed as: 

 

e�@ = I + AT + (AT)12! + (AT)¹3! +⋯ (4.25) 

 

Let the sampling period T  take small values, T ≪ 1 , then e�@  can be 

approximated as: 

 e�@ ≈ I + AT (4.26) 

 

Therefore, matrix 	A� and B� can be expressed as: 
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	A� ≈ I + AT (4.27) 

The digital system matrix 	A�  is varying linearly with 	T? . Therefore, the 

eigenvalues of the digital system are the linear functions of T . If a robust RC 

compensator is designed to make the system at 	Tf and 	T
 stable, it guarantees that the 

system is stable at any sampling period T ∈ [Tf, T
] ⊂ R}. In the following section, the 

design of such a robust RC compensator is discussed. 

 

 

4.4  ROBUST RC DESIGN  

 

Suppose that the causal and stable RC compensator F§�z� is firstly designed at the 

nominal sampling period T§. Let vector f§̅ represent the coefficients of  F§�z�  
 f§̅ = [r0	r1…r�qc		q0…q�]@ (4.28) 

 

Now the robust compensator FB�z�  is designed closest to the nominal one 

		F§�z�, which ensures that the system is stable at 	Tf and	T
. Let vector fB̅   represent the 

coefficients of  FB�z� : 
 fB̅ = [r0Br1B…r�BqcB		q0B…q�B]@ (4.29) 

 

Therefore, the robust design can be formulated as: 

 

min�̅IPB©IBôI…BùI£úI£©I…£ùI�êfB̅ − f§̅ê1	
Subject to:      

1. û−1 + δ..−1 + δü < ûp0�..p��ü < û1 − δ..1 − δü 2.		hf� < 1 − Ü,∀ω� = 2π �m	@� 	i = 1,2,3… , N/2 

3. h
� < 1 − Ü,∀ω� = 2π �m	@� 	i = 1,2,3… , N/2 

(4.30) 

 

where		p0B,p1B, … , p�B are m real poles of FB(z),  
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, hf� = |�1 − FB(z)Gæf(z))Q(z)|ωPωí (4.31) 

 

, and h
� = |(1 − FB(z)Gæ
(z))Q(z)|ωPωí (4.32) 

 

The robust compensator FB(z)  can be obtained by solving the above 

optimization problem, which minimizes a quadratic objective function subject to m 

bound constraints, and N nonlinear constraints (N constraints for N	even and (N − 1) 
constraints for N odd). 

 

 

4.5  SIMULATION RESULTS  

 

In this section, we present the simulation results of the proposed methods; a new design 

of RC compensator and robust RC design. Simulation results of a new design of RC 

compensator and robust RC design are given in subsections 4.5.1 and 4.5.2 respectively.  

 

4.5.1  SIMULATION OF NEW RC COMPENSATOR  

 

This sub section covers numerical examples of the new design of compensator 

for both minimum and non-minimum phase plant, and also provides an analysis of the 

simulation results.  A comparison study is also given in sub subsection 4.5.1.3. 

 

4.5.1.1 Minimum Phase System 

 

The continuous plant model has the following transfer function; 

 

G�s� 	= 1.740.0268s1 + s (4.33) 

 

which represents the servomotor used in the experiment. 
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The feedback controller C�s�  used to stabilize open-loop model is just a 

proportional controller with gain 10. Let the sampling period be 	T = 0.005  s, the 

reference signal r�k� have a fundamental frequency 0.8 Hz.  The discrete closed-loop 

transfer function Gæ�z� is given as follows: 

 

Gæ�z� = 10>¹(0.7634z + 0.7173)z1 − 1.8222z + 0.8370  (4.34) 

 

Gæ�z� is a stable minimum phase plant, since it has stable poles and a zero located inside 

the unit circle. 

 

A first order Q-filter is generally accepted in most RC designs [15]. In this case, 

the Q-filter Q�z� = 0.25z + 0.5 + 0.25z>0 is chosen, as it gives a sufficient bandwidth 

to accommodate the reference harmonics. The small constants		δ = 0.075 and	τ = 0.05 

are chosen respectively. The Optimization toolbox from MATLAB is employed to solve 

this optimization problem (4.16). Table 4.1 shows the objective function value of the 

optimized compensator for different	�.  

 

Table 4.1 The objective function value (4.18) of minimum phase for � ∈ �1,4� 
� 1 2 3 4 

 

The function value ℎR¤#�� 
 

60.01 37.03 32.39 32.35 

 

Figure 4.2 shows the magnitude response of	1 − Gæ(z)F§(z)�Q(z), while Figure 

4.3 shows the phase compensation θìò(�)ïª(�)for  � ∈ �1,4� . The figures indicate that 

the designed compensator fulfills the stability criteria of (4.8), although it does not 

completely compensate the phase and magnitude of Gæ(z). The first order compensator 

gives a very large objective function value, which results in poor magnitude and phase 

compensation. The second order compensator is sufficient to compensate both the phase 

and magnitude. The compensated phase is significantly small at low frequency, but it 

drops to −90g at high frequency. For		m ∈ �3,4�, the compensator gives a slightly better 

performance compared to	� = 2.  
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Figure 4.2 Magnitude response of �	1 − Gæ(z)F§(z)�Q(z)� for the minimum phase 

system 

 

 

Figure 4.3 Phase response of Gæ�z�F§�z� for different m 

 

The phase plot shown in Figure 4.3 also indicates that the F§�z� has a phase lead 

response to compensate Gæ�z�. This basically can be explained from stability condition 

(4.14). Equation (4.14) can be rewritten as follows:  
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�1 − 2�R´� G	ÛR´� + �R´1� < 1��´1 (4.35) 

 

where	��´ is 1 at low frequencies, and  approaches  zero at high frequencies.  

 

Therefore, at low frequencies, the stability condition can be rewritten as: 

 

�1 + �R´1� − 2�R´� G	ÛR´� < 1 (4.36) 

 

Since �R´ = ���´��´ , is a non-negative value, the phase compensation ÛR´ is required 

to meet the following condition to satisfy the stability condition  

 

�ÛR´ = Û��´ + Û�´� < 90c (4.37) 

 

A stable discrete plant has phase lag characteristics, which means Û�´ is negative. To 

meet the stability phase condition, Û��´   must be positive, which gives a phase lead 

compensator.  

 

 

Figure 4.4 RMS errors for different � 
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The simulated root mean square (RMS) error for � = 1,2,3,4  is shown in 

Figure. 3.4. The reference signal is a triangle waveform with amplitude π/4  and 

frequency 0.8 Hz. Figure 4.4 shows that the first order compensator gives a very slow 

convergence rate and poor tracking accuracy. For	�	 = 	2, the convergence rate and 

tracking accuracy are significantly improved in comparison to 	�	 = 	1 . Figure 4.4 

shows that the tracking error converges to zero after 15 repetitions. 

 

Figures 4.5(a) and (b) show the tracking outputs for �	 = 	1 and 2 respectively, 

where the second order compensator clearly gives a better performance. The tracking 

performance for � = 3,4  does not show a significant difference to the tracking 

performance for		� = 2. In this case,  � = 2 can be chosen as the optimum order of the 

proposed compensator. The designed compensator F§(z) for m = 2 is  

 

F§(z) = 10¹(1.9228z1 − 3.5679z + 1.6712)z1 + 1.85z + 0.8556  (4.38) 

 

 

(a)

 

(b) 

Figure 4.5 Tracking outputs for (a) m = 1, (b) m = 2 
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4.5.1.2 Non-Minimum Phase System 

 

Given a third order closed-loop model Gæ�s� as follows: 

 

Gæ�s� = » 8.8
s + 8.8¼ ä

371
s1 + 37s + 371å (4.39) 

 

,which is a dynamic of 7 degrees-of-freedom (DOF) Robotics Research Corporation 

robot [107, 108]. 

 

At		+ = 0.005	G , the discrete model is obtained as follows: 

 

Gæ�z� = 0.2368	x	10>¹(z + 0.2533)(z + 3.519)(z − 0.9419)(z1 − 1.815z + 0.844)  (4.40) 

 

Equation (4.40) shows that there is one zero outside the unit circle which makes the 

discrete model becomes a non- minimum phase system. 

 

Using the same Q-filter, δ, and τ, the objective function value of the optimized 

compensator for different � is shown in Table 4.2.  Table 4.2 indicates that there is no 

solution for �	 = 	1 , which means that the first order compensator is not able to 

compensate the third order non-minimum phase system in order to get a stable system. 

 

Table 4.2 The objective function value (4.18) of non-minimum phase for � ∈ �1,5� 
m 1 2 3 4 5 

The function value h@gö¨f No 

Solution 
61.61 58.96 58.81 58.77 

 

Magnitude response and phase response for this non-minimum system for � ∈ �2,5� are shown in Figure 4.6 and 4.7 respectively. Figures 4.6 and 4.7 show that 

both magnitude and phase compensation are inferior compared to the minimum phase 

case. For a non-minimum phase plant (4.39), the discrete model has a maximum phase 

lag 360
o
. To compensate, the compensator ideally needs to have a maximum phase lead 
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360
o
. However, this is hard to achieve due to the compensator providing stable poles, 

and also having the same number of poles and zeros.  

 

 

 

Figure 4.6 Magnitude response of �	1 − Gæ(z)F§(z)�Q(z)�for a non-minimum 

phase system 

 

 

Figure 4.7 Phase response of Gæ�z�F§�z�for a non-minimum phase system 
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 The tracking output of a triangle reference signal using the third order 

compensator is shown in Figure 4.8.  Figure 4.8 shows that a good tracking performance 

can still be achieved for non-minimum phase plant. 

 

 

Figure 4.8 Tracking output for  m = 3 

Apart from the simulation for the plant in (4.34) and (4.40) above, the additional 

simulation results for different systems are given in the table below. 

 

Table 4.3 The objective function value of (4.18) for different systems 

System 

The function value ℎR¤#�� � = 1 

�= 2 

�= 3 

�= 4 

n=2,mp 

 

Gæ(z) = 	0.011(	�	 + 	0.932)�	1 − 	1.789	�	 + 	0.8106 

(a SCARA robot manipulator [109]) 

60.58 37.27 32.56 32.07 

n=2,nmp 

 

Gæ(z) = 0.003(	z	 + 3.778)z	1 − 	1.796	z	 + 	0.8106 
62.57 59.53 59.45 59.26 

n=3,mp 

 Gæ(z)
= 0.008(z − 0.9715)(z + 0.9397)(z − 0.9521)(z1 − 1.87z + 0.8789) 

(a servomotor in (4.31) with PI 

controller) 

No 

Solution 
37.51 32.76 32.22 

mp = minimum phase, nmp = non-minimum phase 
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This suggests that the controller has the lowest order of 	D − 1, where D is the 

order of the plant, to be able to give the required phase compensation. However, the 

controller with an order of � = D  gives a smaller objective function value, which 

means better tracking performance. Therefore, the compensator order should be equal or 

higher than the plant order to give good phase and magnitude compensation. 

 

4.5.1.3 A Comparison Study 

 

A comparison study is given to show the significance of the proposed 

compensator. The designed compensator F§�z� in (4.38) can be presented in a zero-pole 

format: 

 

F§�z� = 1922.8 ·z − (0.928 + 0.089i)z + 0.925 º «z − (0.928 − 0.089i)z + 0.925  (4.41) 

 

which consists of two stage phase lead compensators. As the proposed compensator has 

a phase lead characteristic, a comparison study is conducted with the phase lead 

repetitive controller	kBz�  [15].  Figure 4.9 shows the phase compensation of phase 

lead	kBz�. At a low frequency range	,0.1,10.	Hz, the compensated phase for m = 2,3,4 

shown in Figure 4.3 is significantly small, very close to 	0c , compared to the 

compensated phase shown in Figure 4.9.  

 

The frequency ranges inside the boundary ,−90c, +90c. as shown in Figure. 4.9 

are also limited. In contrast, the proposed compensator gives a greatly wider frequency 

range as the compensated phases are still inside the stable range ,−90c, +90c.  for 

almost all frequency components. Therefore, the proposed design provides a much 

better phase compensation, that results in a better tracking performance as shown in 

Figure 4.10. 

 

For comparison, the 	kBz�  compensator [15] is also simulated with 	kB 	=	2,	�	 = 	4	. The value of � is chosen to give the largest stable bandwidth, while the 

gain	kB is chosen for fast convergence, and determined according to the design criterion 

as follows [15, 109]: 
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����(*) < 2cos	(Û�(*) + �*) 
(4.42) 

 

where  ��(*) and Û�(*)are the magnitude and the phase of ��(�), m is the chosen 

lead time  

 

 

Figure 4.9 Phase response of z�Gæ�z� for different m 

 

 

Figure 4.10 The tracking errors for the proposed (4.38) and phase lead 	kBz�  

compensators 

 

e[
k
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4.5.2  SIMULATION OF ROBUST RC COMPENSATOR  

 

Suppose that the RC compensator is designed at the nominal sampling period 

	T§ = 0.005	s as shown in (4.38) 

 

A robust RC compensator is now designed to achieve a stable system when the 

sampling period varies in the rangeT ∈ [0.0025	,0.0085	]s. The closed-loop transfer 

functions Gæ�z� at the lowest and highest sampling period are obtained as follows: 

 

��(�) = 10>¹(0.1967� + 0.1907)�1 − 1.9090� + 0.9128  (4.43) 

 

��(�) = 10>¹(0.2116� + 0.1904)�1 − 1.7070� + 0.7472  (4.44) 

 

The chosen Q-filter, constant � and Ü are		�(�) = 0.25�>0 + 0.5 + 0.25�, 0.075 

and 0.1 respectively. The robust compensator 	��(�)  can be obtained by solving the 

optimization problem (4.30).  

 

��(�) = 10¹(0.8022�1 − 1.4423� + 0.6438)�1 + 1.85� + 0.8556  (4.45) 

 

Let the nominal compensator at the lowest and highest sampling period be F§f(z) and F§
(z) respectively, that are obtained from the optimization (4.18): 

 

���(�) = 10!(0.7260�1 − 1.3992� + 0.6755)�1 + 1.85� + 0.8556  (4.46) 

 

���(�) = 10¹(0.7177�1 − 1.2617� + 0.5711)�1 + 1.85� + 0.8556  (4.47) 

 

The stability analysis of the designed RC systems is shown in Table 4.4. Column 

(1) indicates that all the eigenvalues of A� are changing linearly with	T. Column (2) 

shows how the compensated system meets the stability condition, where the nominal 
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compensator F§f�z�  is stable in the lower sampling range [0.0025,0.003] , F§
�z�  is 

stable in the high sampling range[0.005,0.0085], and FB�z�  is stable for the whole 

sampling range [0.0025,0.0085]. 
 

Table 4.4 Stability analysis for three compensators:F§f�z�, F§
�z�, and FB�z� 

+�G� 
 Stability Assessment 

�1). 
max " 3×É	 �	t"" 

(2).		ê	1 − �(�)�(�)��(�)êZ < 1 − Ü 

F§f(z) F§
(z) FB(z) 
0.0025 0.955 0.426 Stable 1.034 Unstable 0.899 Stable 

0.003 0.947 0.573 Stable 0.989 

Stable (very 

slow 

convergence) 

0.838 Stable 

0.004 0.931 1.117 Unstable 0.904 
Stable (slow 

convergence) 
0.716 Stable 

0.005 0.915 2.017 Unstable 0.799 Stable 0.655 Stable 

0.006 0.899 3.322 Unstable 0.676 Stable 0.656 Stable 

0.007 0.885 4.848 Unstable 0.540 Stable 0.700 Stable 

0.008 0.871 6.599 Unstable 0.416 Stable 0.808 Stable 

0.0085 0.864 7.558 Unstable 0.409 Stable 0.899 Stable 

Stable sampling 

period range 

,0.0025,0.003. ,0.005,0.0085. ,0.0025,0.0085. 
 

The simulated tracking errors for the three different compensators at T =0.0025	s , T = 0.005	s  and T = 0.0085	s  are shown in Figure 4.11, 4.12 and 4.13 

respectively. The reference signal is a triangle waveform with amplitude π/4  and 

frequency 0.8 Hz. Figures 4.12(a) and 4.13(a) show that tracking errors using  F§f(z) 
become unstable at higher sampling period, while Figure 4.11(b) indicates that the 

tracking error when using  F§
(z) diverges at low sampling period. The tracking errors 

shown in Figure 4.11-13 (c) validate that the robust compensator is stable and works on 

the given sampling period range. 
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(a) 

 

(b) 

 

(c) 

Figure 4.11 Tracking errors using three different RC compensators at T	 = 	0.0025	s, 
(a)	F§f�z�, (b) F§
�z�, and (c) FB�z� 
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(a) 

 

(b) 

 

(c) 

Figure 4.12 Tracking errors using three different RC compensators at T	 = 	0.005	s, 
(a)	F§f�z�, (b) F§
�z�, and (c) FB�z� 
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(a) 

 

(b) 

 

(c) 

Figure 4.13 Tracking errors using three different RC compensators at T	 = 	0.0085	s, 
(a)	F§f�z�, (b) F§
�z�, and (c) FB�z� 
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4.6  EXPERIMENTAL RESULTS  

 

The real-time experiments were conducted to verify the effectiveness of the proposed 

design. The experiment aimed to control the angle position of the Quanser servomotor 

SRV02-E with no load, to exactly track the reference signal with amplitude π/4 rad (45 

degrees). 

 

 

4.6.1  EXPERIMENT OF NEW RC COMPENSATOR  

 

The tracking performance for a triangle reference signal was tested. The 

proposed compensator in (4.38) was used. The tracking output and the tracking error of 

the system is shown in Figure 4.14(a) and Figure 4.14(c) respectively. For comparison, 

the ���� compensator [15] was also implemented with	�� 	= 	2,�	 = 	4	. The tracking 

output and error are shown in Figure 4.14(b) and Figure 4.14 (c) respectively. Figure 

4.14(c) indicates that the proposed compensator has a superior convergence rate.  

 

 

(a) 
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(b) 

(c) 

Figure 4.14 Tracking output and errors, (a) the proposed compensator, (b) the 

compensator kBz�, (c) the tracking errors for both compensators 

 

 

4.6.2  EXPERIMENT OF ROBUST RC COMPENSATOR  

 

Given the triangle reference signal with amplitude π/4 rad (45 degrees), the 

tracking performance of the compensated RC system using robust compensator 	FB�z� 
in (4.45) at	T = 0.0025	s, T = 0.005	s and T = 0.0085	s is shown in Figures 4.15, 4.16 

and 4.17 respectively. 
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(a) 

 

(b) 

Figure 4.15 Tracking performance at	T	 = 	0.0025s, (a) tracking output,      

 (b) tracking error 
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(a) 

 

(b) 

Figure 4.16 Tracking performance at	T	 = 	0.005s, (a) tracking output, (b) 

tracking error 
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(a) 

 

(b) 

Figure 4.17 Tracking performance at	T	 = 	0.0085s, (a) tracking output, (b) 

tracking error 

 

Figure 4.15 and Figure 4.17 show that the compensated system is stable at the 

lowest and highest sampling period. The above experimental results verify the 

effectiveness of the proposed robust compensator. 
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4.7  SUMMARY  

 

This chapter has proposed two main ideas; a new design of RC compensator, and a 

robust RC design that works under a time-varying sampling period.  

 

 Firstly, an optimization problem based on the RC stability condition was 

formulated to obtain a low order, stable, and causal RC compensator. Since the 

compensator has a causal form, it was implemented independently without being 

merged to the IMP. This reduces the design complexity, as most existing repetitive 

compensators are either non-causal or unstable, which makes the implementation 

difficult. The design has worked for both minimum and non-minimum phase plant, 

where fast convergence and high tracking accuracy have been achieved. The 

compensator order should be equal or higher than the plant order to give good phase and 

magnitude compensation. The proposed compensator has been verified by simulation 

and real-time experiments, and shows better performance compared to the lead 

compensator as proposed by Zhang et al [15]. The proposed compensator here becomes 

a nominal compensator in the robust design. 

 

A robust RC compensator closest to the nominal one was then designed to 

achieve a stable system when the sampling period varied in a defined range. The 

optimization problem in a robust design has more constraints compared to that in the 

nominal compensator design. These extra constraints are needed to examine the RC 

stability condition at the lowest and highest sampling period. Both simulation and 

experimental results have shown the effectiveness of the proposed robust design. 
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CHAPTER 5  

DESIGN OF ADAPTIVE RC OF LINEAR 

SYSTEMS WITH TIME-VARYING  

PERIODIC DISTURBANCES 
 

 

5.1  INTRODUCTION 
 

 

A Robust RC design to deal with time-varying reference signal was discussed in 

Chapter 4. In this chapter, the problem of rejecting a class of time-varying periodic 

disturbances is addressed. As mentioned in Chapter 2, the discrete–time RC is usually 

designed by assuming a constant period of disturbance, which leads to the selection of a 

fixed sampling period. In practice, disturbance can be time-varying in period. If the 

sampling period is kept fixed while the period of disturbance changes, then the RC 

performance will significantly decay [24]. Cao and Narasimhulu [27] proposed a digital 

PLL-based RC, where the sampling period is locked to the period of the 

reference/disturbance signal to maintain a constant number of samples per period, which 

is required by RC. This sampling period adjustment results in a plant with time-varying 

coefficients, especially when the disturbance has a time varying period. By considering 

the direct adaptive control, it is possible to adapt the parameters of the controller to 

handle the time varying plant. 

 

In this chapter, the design of an Adaptive RC (ARC) for unknown linear systems 

subject to time varying periodic disturbances is presented. It is also assumed that the 
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sampling period will be locked to the period of disturbance signal to preserve a constant 

number of samples per disturbance period, as required by the RC. This ARC is 

proposed, based on direct adaptive control and the internal model principle. The internal 

model can reject the disturbance exactly, since the number of samples per period 

remains fixed. The time-varying plant parameters are handled by the direct adaptive 

control, as it tunes the controller parameters such that the closed-loop system is stable 

and the plant output tracks the reference.  

The algorithm known as a Model Reference Repetitive Control (MRRC) is first 

proposed. The MRRC is designed for known plant subject to periodic disturbance with 

fixed frequency, where the MRRC becomes the foundation of the design of the 

Adaptive Repetitive Control (ARC). A digital design of ARC is then presented. A 

comparative study has been conducted, and the effectiveness of the ARC has been 

verified in simulations and experiments on a servo motor system. 

This chapter is organized as follows. Section 2 presents the design of the 

MRRC, which simultaneously tracks the reference signal and rejects the periodic 

disturbance with fixed frequency. The matching equation, which obtains true controller 

parameters, and the stability proofing of the structure are discussed here.  Section 3 

proposes an ARC design to reject periodic disturbances with time-varying frequency, in 

which it also covers the stability analysis of the ARC. Simulation and experimental 

results are in Section 4 and 5 respectively. A comparison study is also given in Section 

4. Section 6 summarizes the chapter. 

 

5.2  MODEL REFERENCE REPETITIVE CONTROL (MRRC) 

 

  The MRRC algorithm is the foundation of the design of ARC in Section 5.3. 

Therefore, it is presented before the ARC. In MRRC, the plant is known and the 

disturbance frequency is fixed. The controller parameters are designed offline based on 

the known information of the plant and disturbance. The MRRC is designed to obtain a 

control law for the known plant G�z�subject to fixed-period disturbance "(�)such that 

the closed-loop signals are stable and the plant output yé(k) tracks the reference model 

output	y�(k). The structure of MRRC is shown in Figure 5.1, in which it consists of 

two parts of controller; Model Reference Control (MRC) and Repetitive Control (RC). 
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The plant output yé�k� is expressed in this following form: 

 

 yé�k� = G�z�ué�k� + d�k� (5.1) 

 

where 

 

 G�z� = ké B�z�A�z� 
(5.2) 

 

 

Let write y��k� as the ideal plant output, is the output when the disturbance is 

not exist. 

 

 y��k� = G�z�ué�k� (5.3) 

 

The reference model output	y��k� is generated from LTI model as follows: 

 

 y��k� = W��z�r�k� (5.4) 

 

where 

 W��z� = k� N��z�D��z� (5.5) 

 

Several assumptions are made to design MRRC control scheme here. 

(A.1) G�z�  is minimum phase plant. B�z� , A�z�  are co-prime Monic Hurwitz 

polynomials. 

(A.2) The degree of	A�z� is known. Let	deg[A�z�] = n. 

(A.3) The sign of	ké is known 

(A.4) The degree of D��z� is less than the degree of A�z�.  
 

 deg[D��z�] = m < deg[A�z�] = n (5.6) 
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(A.5)  The relative degree n∗ = n−m is known 

 

(A.6) The relative degree of the plant is equal to the relative degree of reference model 

 

 deg,D�(z). − deg,N�(z). = deg,A(z). − deg,B(z). (5.7) 

 

∑ ∑ ∑
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Figure 5.1 Block diagram of Model Reference Repetitive Control (MRRC) 

 

Supposed uæ�k� is the control law generated from MRC part: 

 

 uæ�k� = θ0∗@ α�z�Λ�z� ué�k� + θ1∗@ α�z�Λ�z� yé�k� + θ¹∗yé�k� + θ!∗r�k� (5.8) 

 

 

where 

α�z� = [z§>1, z§>¹, z,1.@					for	n ≥ 2 

(5.9) 

α�z� = 0																																				for	n = 0 

 

θ0∗ , θ1∗ ∈ ℛ§>0; θ¹∗ , θ!∗ ∈ ℛ0; 	θ∗ = [θ0∗ , θ1∗ , θ¹∗ , θ!∗ ]@ 
 

(5.10) 
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Λ�z�	is	monic	hurwitz	polynomial	of	degree	n − 1  

 

θ∗is a controller parameter vector to be designed so that the transfer function 

from r�k� to y (k) with no RC and disturbance, also meaning the transfer function from 

r(k) to yb(k), is equal to W�(z). The controller parameters θ0∗ , θ1∗ , θ¹∗ , θ!∗  are chosen to 

satisfy the following transfer function matching: 

 

 �(�)Û!∗,1 − Û0∗R *(x)+(x) − Û1∗R *(x)�(x)+(x) − Û¹∗�(�). = Y�(�)  

(5.11) 

 

Choosing 	Û!∗ = o�o, , and Λ(�) = Λc(�)]�(�) , the matching equation (5.11) 

becomes: 

 

�Û0∗a(�)t(�) + � Û1∗a(�)u(�) + � Û¹∗Λ(�)u(�)� = 

(5.12) 
 Λ(�)t(�) − Λc(�)u(�)��(�) 

 

where Λc(�)is monic hurwitz polynomial of degree D+, and D+ = D − 1 − deg	,]�(�). 
 

The parameters Û0∗, Û1∗,	 and Û¹∗  are the solution from the matching equation 

(5.12). As the plant parameters are known, the true parameter vector Û∗ can be 

calculated directly.  

 

The control law generated from the RC is given by 

 

 þ�(�) = ��(�)!(�) (5.13) 

 

where	!(�) is the tracking error defined by 

 

 !(�) = ��(�) − � (�) (5.14) 

 

, and ��(�) is the digital RC.  
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The proposed digital RC has the following form: 

 

 ��(�) = -(�)�(�) = ä z>m1 − z>måÏ��Y�>0(�)Ñ (5.15) 

 

where 

 

 ]	 = 	+�+ ∈ 	ℕ (5.16) 

 

with	]	being the number of samples per disturbance period, +� being the disturbance 

period,+ the sampling period, and  �� is a RC gain. 

 

The digital RC above consists of the internal model -(�) and compensator	�(�). 
The internal model -(�)  behaves as generator of periodic signal which cancels the 

disturbance frequency and its harmonics, while compensator�(�)works to cancel the 

dynamic of reference model. The reference model is strictly proper that makes the 

compensator �(�) improper.  However, this compensator �(�) is still realizable as it is 

merged with the internal model which has relative degree	]. Therefore, this discrete-

time RC is guaranteed to be in proper form. 

 

The total control law coming to the plant is þ (�) 
 

 þ (�) = þ(�) + þ�(�) (5.17) 

 

The control law in (5.17) ensures that the tracking error (5.14) is	!(�) ∈ r1 , which 

decays to zero in the finite �. 
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5.2.1  STABILITY ANALYSIS OF MRRC 

 

 

In this section, we firstly derive the tracking error dynamic of MRRC. Then, 

stability proofing is presented. 

 

Applying control law þ (�) to the plant �(�) gives the plant output � (�) as 

follows: 

 

� (�) = 	�(�)�Û0∗R a(�)Λ(�) þ (�) + Û1∗R a(�)Λ(�) � (�) + Û¹∗� (�) + Û!∗2(�)									  

(5.18) 

+��(�)!(�)�+ "(�)  

 

Equation (5.1) can be rewritten as  

 

 ué�k� = 1G(z) �yé(k) − d(k)� (5.19) 

 

Substituting (5.19) to (5.18) we obtain: 

 

� (�) = 	�(�)�Û0∗R a(�)Λ(�)G(z) �yé(k) − d(k)� + Û1∗R a(�)Λ(�) � (�) + Û¹∗� (�)			 (5.20) 

+Û!∗2(�) + ��(�)!(�)�"(�)  

 

Rearranging (5.20), thus we obtain: 

 

� (�) = �(�)Û!∗³1 − Û0∗R *(x)+(x)− Û1∗R *(x)�(x)+(x) − Û¹∗�(�)µ 	2(�) + 

(5.21) �(�)��(�)³1 − Û0∗R *(x)+(x) − Û1∗R *(x)�(x)+(x) − Û¹∗�(�)µ !(�) − 
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1³1 − Û0∗R *(x)+(x) − Û1∗R *(x)�(x)+(x) − Û¹∗�(�)µ ·Û0∗R
a(�)Λ(�) + 1º "(�) 

 

Substituting (5.11) to (5.21), we have: 

 

� (�) = Y�(�)	2(�) − ��Û!∗ z>m1 − z>m !(�) + Y�(�)�(�)Û!∗ ·Û0∗R a(�)Λ(�) + 1º "(�) (5.22) 

 

Denote -(�) is equal to 

 

-��� = t���Y����� u(�)Û!∗ «Û0∗R a(�)Λ(�) + 1 (5.23) 

 

The facts that 	u��� ,t���  are co-prime and both u���	and	Λ���   are monic 

hurwitz polynomials, ensure that -���  is a stable transfer function. In addition, 

Assumption (A.6) guarantees the properness of	-���. Equation (5.21) shows that the 

plant output is a function of three different input signals; 2���, !(�) , and "(�). Each 

signal is filtered by a stable LTI system. Thus, if  2(�), !(�) , and "(�) are bounded 

signals, then � (�) will be a bounded signal. 

 

Let write "0(�)  as the filtered 	"(�) , where the periodic property of "(�) 
appears on "0(�), but the magnitude and phase of "(�)may change. 

 

"0(�) = -(�)"(�) (5.24) 

 

Substituting (5.22) - (5.23) to (5.14) and using	Û!∗ = o�o, , the error dynamic !(�) 
can be formulated as follows: 

 

!(�) = "0(�) − S z>m1 − z>m !(�) (5.25) 

 

where 
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S = � ����  (5.26) 

 

Denote ".0(�) is equal to 

 

".0(�) = S z>m1 − z>m !(�) (5.27) 

 

Thus, (5.25) can be rewritten as 

 

!(�) = "0(�) − ".0(�) (5.28) 

 

Signal ".0(�) can be viewed as the estimation of "0(�) which has an updating 

rule as follows: 

 

".0(�) = ".0(� − ]) + S!(� − ]) (5.29) 

 

Based on the error dynamic (5.25), we can prove the system stability. 

 

Theorem 5.1: The control law in (5.17) ensures that the tracking error of MRRC 

structure shown in Figure 5.1 is 	!(�) ∈ r1 which converges to zero in the finite time 	� 

 

Proof:  

Given a positive definite function Ú	!(�)� 
 

Ú	!(�)� = 12S ` !1(o>0
/Po>^ Ü) (5.30) 

 

The time increment of  Ú	!(�)� is 
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Ú	!(� + 1)� − Ú	!(�)� = 12S ` !1(o
/Po>^}0 Ü) − 12S ` !1(o>0

/Po>^ Ü) (5.31) 

= 12S 0�"0(�) − ".0(�)�1 − �"0(� − ]) − ".0(� − ])�11 (5.32) 

 

Applying two important properties; 

 

1. "(�) = "(� − ]) → 	 "0(�) = "0(� − ]) 
2. ".0(�) − ".0(� − ]) = S!(� − ]) 

 

Equation (5.32) can be further derived as 

 

= 12S ,".01(�) − ".01(� − ]) − 2"0(�)".0(�)
+ 2"0(� − ])".0(� − ]). 

 

= 12S �".0(�) − ".0(� − ])��".0(�) + ".0(� − ]) − 2"0(�)�  

= 12 !(� − ])�−2!(� − ]) + ".0(�) − ".0(� − ])�  

= 12 !(� − ]),−2!(� − ]) + S!(� − ]).  

= − «1 − S2 !1(� − ]) (5.33) 

 

Equation (5.33) implies that for ³1 − 31µ > 0,	!(�) ∈ r1 , and for finite	� , the 

tracking error !(�) converges to zero. This also gives a range of RC gain to be 0 <
�� < 2 "o�o, ". 

 

 

5.3  ADAPTIVE REPETITIVE CONTROL (ARC) 

 

This section covers the digital design of Adaptive Repetitive Control (ARC) for 

unknown linear systems subject to time-varying periodic disturbances. The structure of 
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ARC as shown in Figure 5.2 consists of two main controllers: Model Reference 

Adaptive Control (MRAC), and RC, in which the structure is almost similar to MRRC. 

The different is that the controller parameters of MRRC are fixed, and designed offline, 

while the controller parameters of ARC are evolved, and updated each sampling time. 

 

Assume that a linear discrete-time plant is represented by the following transfer 

function at the sampling period	T	: 

G�z, T� 			= ké B�z�A�z� = ké�T� z
§>0 + b0�T�z§>1 +⋯+ b�§>0��T�z§ + a0�T�z§>0 +⋯+ a§�T�  (5.34) 

 

where parameters a��T�and b��T�are functions of the sampling period T.  

 

Due to the presence of the periodic disturbance with time-varying period  dö�k� , 
the sampling period T is changed to keep a fixed integer number of samples per period 

N . As a result of the time-varying sampling period, the discrete-time plant model 

G�z, T� becomes a special class of time-varying plant in which the parameters	ké, a�		and 

b�			  are bounded and jump to the new constant values when the sampling period T 

changes. 

 

The objective is to design control signal ué�k� for the time-varying plant G�z, T� 
shown in (6.34) subject to periodic disturbance 	dö�k� such that the plant output yé�k� 
tracks the reference model output	y��k�.  

 

Now we propose an ARC based on the MRAC and IMP, which is shown in 

Figure. 6.2. 

 

The reference model output	y��k� is generated from the LTI model as shown in 

(5.4).  Several assumptions are also made to design the ARC scheme here: 

(A.1) G�z, T�  is a stable and minimum phase plant for a sampling period T  . 

B�z�andA�z� are co-prime Monic Hurwitz polynomials.  

(A.2) The minimum time between sampling period changes is sufficient interval. 

(A.3) The degree of	A�z� is known. Let	deg[A�z�] = n.  
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(A.4) The sign of	ké is known. 

(A.5) The degree of D��z� is less than the degree of A�z�.  
(A.6)  The relative degree n∗ = n−m is known 

(A.7) The relative degree of the plant is equal to the relative degree of reference model 

(A.8) The disturbance period is unknown, but the sampling period is updated to obtain N samples per period by using algorithms such as PLL (Phase Locked Loop) [27, 

93, 110]. 
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Figure 5.2 Block diagram of Adaptive Repetitive Control (ARC) 

 

The plant output yé�k� is expressed in the following form 

� (�) = G(z, T)þ (�) + 	"#(�) (5.35) 

 

 The control signal fed to the plant is formulated as follows: 

 

þ (�) = 				 þ�(�) + þ�(�) (5.36) 

 

A control signal  u¨æ(k)  is generated from the MRAC block 
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												þ�(�) = ÛR(�)*(�) 
(5.37) 																			= Û0R(�)*0(�) + Û1R(�)*1(�) + Û¹(�)� (�) + Û!(�)2(�) 

 

 

where 

 

Û(�) = ,Û0R(k), Û1R(k), Û¹(k), Û!(k).R; Û¹, Û! ∈ ℛ0;Û0, Û1 ∈ ℛ�>0 (5.38) 

 

*(�) = ,*0(�), *1(�), �(�), 2(�).R 

(5.39) = ·a(�)4(�) þ (�), a(�)4(�) � (�), � (�), 2(�)º ;ω0, ω1 ∈ ℛ�>0R
 

 

Λ�z�is a Monic Hurwitz polynomial of degree D − 1, a(�) is similar to (5.9), and Û(�)is the estimation of Û∗ , which is the true parameters  vector at a sampling 

period T. 

 

 For each sampling period T, the plant parameters 	ké, a�, and	b� are unknown. 

We choose gradient adaptive law with parameter projection [111] for updating  Û(�) 
and 5(�) 

 

Û(� + 1) = Û(�) + sign	,� .Γ7(�)8(�)�1(�) +�9 (5.40) 

 

5(� + 1) = 5(�) + :;(�)8(�)�1(�) + �< (5.41) 

 

where 

 Γ = Γ@ > 0,= ∈ ℛ1§61§ (5.42) 

 γ > 0	: ∈ ℛ (5.43) 
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�1(�) = 1 + 7R(�)=7(�) (5.44) 

 7(�) = Y�(�)*(�) (5.45) 

 ;(�) = Y�(�),ÛR(�)*(�). − ÛR(�)7(�) (5.46) 

8(�) = ��(�) − � (�) + 5(�);(�) (5.47) 

 

�9´(�) = ? 0	Ûb� − Ûb − É9´Ûb� − Ûb − É9´
if	Ûb − É9´ 	 ∈ ,Ûb� , Ûb�.if	Ûb − É9´ > Ûb�if	Ûb − É9´ < Ûb�  

(5.48) 

 

�<(�) = @ 0	5� − 5 − É<5� − 5 − É<
if		5 − É< 	 ∈ ,5� ,5�.if		5 − É< > 5�if		5 − É< < 5�  

(5.49) 

 

É9(�) = =7(�)8(�)�1(�)  
(5.50) 

 

É<(�) = :;(�)8(�)�1(�)  
(5.51) 

 Ûb(�)and É9´(�) is i-th component of θ(�) and É9(�) respectively, 

i=1,..,2n Ûb� , Ûb� are the lower and upper bound of θ�(k) 5� ,5� are the lower and upper bound of  ρ(k) 
Û∗ ∈ ,Û� , Û�.,5∗ ∈ ,5� ,5�. 

 

 

The control law generated from the RC is given by 

 

þ�(�) = ��(�) 8(�)�1(�) (5.52) 

 

where	��(�) has similar form as shown in (5.15)  
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The control law in (5.36) with adaptation law (5.40)-(5.41) ensures that 

	θ�k�, ρ�k�, and	ε�k� ∈ LZ which are bounded signals, and also ensures that	ε�k� ∈ L1 

which decays to zero. 

 

 

5.3.1  STABILITY ANALYSIS OF ARC 

 

To prove the stability, we firstly need to derive the system error dynamics for 

the proposed ARC. For each sampling period T, there exists unique solution θ∗  so that 

the transfer function from r�k� to yé�k�  with no RC and disturbance, is equal to W���� 
 

 

�(�, +)Û!∗,1 − Û0∗R *(x)+(x)− Û1∗R *(x)�(x)+(x) − Û¹∗�(�, +). = Y�(�) (5.53) 

 

Choosing	Û!∗ = ��/� , and	Λ(�) = Λc(�)]�(�) , the matching equation becomes 

 Û0∗a(�)t(�) − � u(�)	Û1∗a(�) + Û¹∗Λ(�)� = Λ(�)t(�) − Λc(�)u(�)��(�) (5.54) 

 

Rearranging (5.54), we obtain 

 

,Û0∗a(�) − Λ(�).t(�) + �Λc(�)��(�)+� Û1∗a(�) + � Û¹∗Λ(�)�u(�) = 0 (5.55) 

 

The polynomial t���andu��� are co-prime, so there is a polynomial ���� such  

 

[Û0∗a��� − Λ(�). = �(�)u(�) (5.56) 

 

�Λc(�)��(�)+� Û1∗a(�) + � Û¹∗Λ(�)� = −�(�)t(�) (5.57) 

 

Multiplying both sides of (6.57) by � (�) and rearrange, we get 

 

�(�)t(�)� (�)+� Û1∗a(�)� (�) + � Û¹∗Λ(�)� (�) = −Λc(�)��(�)� (�) (5.58) 
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Equation (5.35) can be rewritten as follows: 

 � (�)t(�) = � u(�)þ (�) + t(�)"#(�) (5.59) 

 

 

Substituting (5.59) and (5.57) to (5.58), we have 

 � �Û0∗a(�)þ (�) + Û1∗a(�)� (�) + Û¹∗Λ(�)� (�)� + �(�)t(�)"#(�) 
(5.60) −� Λ(�)þ (�) = −Λc(�)��(�)� (�) 

 

Dividing both sides of (5.60) by � Λ(�)and rearrange, we get 

 

Û0∗ a���Λ��� þ (�) + Û1∗ a(�)Λ(�) � (�) + Û¹∗� (�) 
(5.61) + 1� �(�)t(�)"#(�) = þ (�) − 1� ]�(�)��(�) � (�) 

 

Using (5.36)-(5.37), (5.61) can be rewritten as:  

 Û0∗R*0(�) + Û1∗R*1(�) + Û¹∗� (�) + Û!∗2(�) = Û0R*0(�)+Û1R*1(�) 
(5.62) +Û¹� (�) + Û!2(�)+Û!∗2(�) − Û!∗Y�>0(�)� (�) 

+uBæ�k� − 1� �(�)t(�)"#(�) 
 

We need to define parameter error ÛB ���as the difference between the estimation 

Û���and true parameter Û∗. 
 

ÛC��� = Û��� − Û∗ (5.63) 
 

Using (5.63), we can rewrite (5.62) as  

 

−ÛC���ω�k� = Û!∗2��� − Û!∗Y�>0(�)� (�) + uBæ(k) − 1� �(�)t(�)"#(�) (5.64) 
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Multiplying both sides of (5.64) by 
D��x�9E∗ , we obtain 

 

−Y�(�)Û!∗ �ÛC(�)ω(k)� = ��(�) − � (�) + 1Û!∗Y�(�)uBæ(k) 
(5.65) − 1

��Y��������t���"#(�) 
 

Denote "0(�)as 

 

"0(�) = 1��Y�(�)�(�)t(�)"#(�) (5.66) 

 

Using equality (5.57), "0(�) can be rewritten as follows 

 

"0(�) = − «Λ(�)+ 1Û!∗ ,Û1∗Ra(�).Y�(�)   + 1Û!∗ Û¹∗Λ���Y���� "#(�) (5.67) 

 

The facts that Λ(�)and Y�(�)  are a monic hurwitz polynomial and a stable 

transfer function respectively, ensures that "0(�) is a bounded signal. Signal "0(�) is 

simply the filtered "#(�)  where the periodic property of "#(�)  remains, but the 

magnitude and phase of "#(�)  may change. Therefore, "0(�)  has the following 

property: 

 

"0(�) = "0(� + ]) = "0(� − ]) (5.68) 

 

Let write dF0�k� as  

 

dF0�k� = 1θ!∗ W�(z)uBæ(k) (5.69) 

 

Since uBæ(k)is a control signal generated from the RC as formulated in (5.52), 

dF0(k) can be expressed as follows: 

".0(�) = S 1�^ − 1 ε(k)�1(�) (5.70) 

 

where	K = kIòGE∗  
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Signal ".0(�) also can be considered as the estimation of "0(�) which has the 

following updating rule: 

 

".0(� + ]) = ".0(�) + S ε(k)�1(�) (5.71) 

  

Equation (6.65) can be rewritten as follows: 

 

−Y�(�)Û!∗ �ÛC(�)ω(k)� = ��(�) − � (�) + ".0(�) − "0(�) (5.72) 

 

From (5.72), the tracking error !(�)  can be formulated as follows: 

 

!(�) = ��(�) − � (�) = −5∗Y�(�)�ÛC(�)ω(k)�+εH��� (5.73) 

 

where	5∗ = 09E∗ and εH��� = "0(�) − ".0(�). 
 

Substituting (5.46) and (5.73) to (5.47), we obtain 

 8(�) = −5∗ÛC(�)7(�) − 5I(�)η(k) + ε�(�) (5.74) 

 

where		5K (�) = ρ(k) − 5∗ 
 

Finally, we obtain the augmented error 8(�) which consists of three different 

errors: parameter error	ÛC(�), parameter error 5I(�), and repetitive error ε�(�). 
 

Now, we prove the system stability. 

Theorem 5.2: For each sampling period T, the control law in (5.36) with adaptation law 

(6.40)-(6.41) ensures that 	θ(k), ρ(k), ε(k) ∈ LZ  which are bounded, and ε(k) ∈ L1 

which converges to zero. 

Proof: 

Let us choose a Lyapunov function V(θC , ρI , ε�) as follows 
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Ú	ÛC, 5,K ε�� = Ú0	ÛC� + Ú1(5I) + Ú¹(εH) (5.75) 

 

where 

 Ú0	ÛC� = 5∗ÛCR(�)Γ>0ÛC(�) (5.76) 

 

Ú1�5I� = 5I1���:  (5.77) 

 

Ú¹�εH� = 1S ` εHM(Ü)o>0}^
/Po  (5.78) 

 

The time difference of Lyapunov function Ú0	ÛC� is 

 Ú0	ÛC(� + 1)� − Ú0 ÏÛC(�)Ñ = ρ∗θC@(k + 1)Γ>0θC(k + 1) − ρ∗θC@(k)Γ>0θC(k) (5.79) 

 

= 5∗=>0N�ÛCR�� + 1) − ÛCR(�)�ÛC(� + 1) − �ÛCR(� + 1) − ÛCR(�)�ÛC(�)O  

 

= 5∗ ·7R���=8����1(�) + �9Rº «7(�)8(�)�1(�) +=>0�9 + 2=>0ÛC(�)  

 

= 5∗7R���=7���81����!(�) + 25∗ 7R(�)ÛC(�)8(�)�1(�) + 5∗�9R=>0�9  

+25∗�9R=>0É9 + 25∗�9R=>0ÛC(�)  

 

≤ 5∗7R���=7���81����!(�) + 25∗ 7R(�)ÛC(�)8(�)�1(�)  

(5.80) +25∗�9R=>0��9 + É9 + ÛC(�)� 
 

The time difference of Lyapunov function Ú1�5I� is 

 

Ú1�5I�� + 1)) − Ú1(5I(�)) = 5I1(� + 1): − 5I1(�):  (5.81) 

 

= :>0[5I�� + 1) − 5I(�).5I(� + 1) − :>0,5I(� + 1) − 5I(�).5I(�)  
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= «;���8����1(�) + :>0�< «:;(�)8(�)�1(�) + �< + 25I(�)  

 

= :;1���81����!(�) + 2 ;(�)5I(�)8(�)�1(�) + 2:>0�<É<+:>0�<1 + 2:>0�<5I(�)  

 

≤
:;1���81����!(�) + 2 ;(�)5I(�)8(�)�1(�) + 2:>0�<��< + É< + 5I(�)� (5.82) 

 

The time difference of Lyapunov function Ú¹(εH) is 
 

Ú¹(ε�(� + 1)) − Ú¹(ε�(�)) = 1S ` ε�1(Ü)o}^
/Po}0 − 1S ` εHM(Ü)o>0}^

/Po  (5.83) 

 

= 1S 0�".0(� + ]) − "0(� + ])�1 − �".0(�) − "0(�)�11  

 

= 1S �".0(� + ]) − ".0(�)��".0(� + ]) − ".0(�) − 2εH(�)�  

 

= 8����1(�) ·S8(�)�1(�) − 28H(�)º (5.84) 

 

We obtain the increment of Lyapunov function Ú(ÛC,5I, εH) as the sum of (5.80), 

(5.82), and (5.84): 

 

Ú ÏÛC(� + 1),5I(� + 1), εH(� + 1)Ñ − Ú ÏÛC(�),5I(�), εH(�)Ñ 

(5.85) 

≤ 5∗ 7R(�)Γ7(�)81(�)�!(�) + :;1(�)81(�)�!(�)  

+2�5∗7R(�)ÛC(�) + ;(�)5I(�)� 8(�)�1(�) + 25∗�9RΓ>0��9 + É9 + ÛC(�)� 
+2:>0�<��< + É< + 5I���� + 8(�)�1(�) ·S8(�)�1(�) − 28�(�)º 

 

Using parameter projection properties (5.48)-(5.49) implies that 
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25∗�9RΓ>0��9 + É9 + ÛC���� ≤ 0 (5.86) 

 

2:>0�<��< + É< + 5I(�)� ≤ 0 (5.87) 

 

The parameter projection algorithm (5.48)-(5.49) also ensures  Û(�) and ρ(k) to 

be bounded signals. 

 

 

Hence, we can rewrite (5.85) as follows: 

 

Ú ÏÛC(� + 1),5I(� + 1), εH(� + 1)Ñ − Ú ÏÛC(�),5I(�), εH(�)Ñ  

 

≤ 5∗7R���Γ7���81����!(�) + :;1(�)81(�)�!(�) + 2,−8(�) + ε�(�). 8(�)�1(�)  

+ 8(�)�1(�) ·S8(�)�1(�) − 28�(�)º  

 

≤ −ä2 − 5∗7R(�)Γ7(�)�1(�) − :;1(�)�1(�) − S�1(�)å 81(�)�1(�)  

 

≤ −� 81(�)�1(�) (5.88) 

 

where 

� = ä2− 5∗7R(�)Γ7(�)�1(�) − :;1(�)�1(�) − S�1(�)å (5.89) 

Equation (5.89) implies that for 	� > 0 , θ(k), ρ(k) 	∈ 	LZand 8(�) ∈ LZ ∩ L1 . 

This means that θ(k)  and ρ(k)are bounded signals, and 8(�)  is both bounded and 

decaying signal. 

 

5.4  SIMULATION RESULTS 

 

We now perform simulations to verify both the MRRC and ARC designs 

proposed in Section 2 and 3 respectively.  The open-loop plant model has a continuous 
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transfer function as follows  

 

�(G) = 1.740.0275G1 + G (5.90) 

 

which represents Quanser servomotor SRV02-E with bar load as described in Chapter 3. 

 

5.4.1  SIMULATION OF MRRC 

 

The proportional controller with gain 4 is used to stabilize the open-loop model. 

Hence, we have a second order closed-loop model. With the fixed sampling period + = 0.05	G , we obtain a second order discrete model  with a relative degree 1 as 

follows: 

 

�(�) = 0.1877 � + 0.5530�1 − 0.9747� + 0.2662 (5.91) 

 

The reference model		W�(z) is chosen to satisfy (A.4) and (A.6) described in 

section 2. The transfer function		W�(z)and polynomial	Λ(z)are chosen respectively as 

follow: 

 

Y�(�) = 1� ,Λ(z) = z (5.92) 

 

As we have a second order plant model, then we need a controller parameter 

vector as follows: 

 

 θ
∗ = [θ0∗ , θ1∗ , θ¹∗ , θ!∗]@ (5.93) 

 

 where		θ0∗ , θ1∗ , θ¹∗ , θ!∗ ∈ ℛ0  

 

Firstly, θ!∗  is obtained from  
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 	Û!∗ = ��� = 5.328 (5.94) 

 

Then, θ0∗ , θ1∗ , and	, θ¹∗  are obtained by solving the matching equation (5.12).Thus, 

we get the true parameter vector θ∗as follows: 

 

 θ∗ = �θ0
∗θ1∗θ¹∗θ!∗�=û

�0.5531.418�5.1945.328 ü (5.95) 

 

Suppose a disturbance 	"���with fixed period 1	G  illustrated in Figure 5.3(c) 

corrupts the plant output. Thus, the number of samples per disturbance period 	N	is 

20.Let the repetitive controller gain 	kBæ � 2  that satisfies ³1 � kIò1GE∗µ e 0  is chosen. 

Larger RC gain can be chosen for fast convergence rate. The repetitive controller CBæ�z�  
can be formulated as follows.  

 

CBæ�z� � ä2 z>0¯1 � z>1cå (5.96) 

 

We consider two types of references: a triangle signal with a period 10	G shown 

in Figure 5.3(a) and a constant input with a magnitude of π/4  rad shown in Figure 

5.3(b). 

 

 

(a) 
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(b)

 

(c) 

Figure 5.3 (a) a triangle reference signal (b) a constant reference signal (c)a periodic 

disturbance 

 

The tracking outputs and tracking errors for two reference signals are shown in 

Figure 5.4 and Figure 5.5 respectively. Figure 5.4 and 5.5 show that the proposed 

MRRC can simultaneously track the reference signal r�k� and reject the disturbance d�k� . Figure 5.4 (a) and 5.5 (a) also indicate perfect tracking performance for two types 

reference signals. Figure 5.6 shows the tracking error of the system when only MRC is 

used. The periodic signal with smaller amplitude appears as an error. When RC is not 

applied or uBæ�k� is zero, the error equation  e�k� (5.28) is equal to	d0�k�. Hence, the 

error signal is only the filtered	d�k�, where the periodic property of d�k� remains, but 

both the magnitude and phase of d�k� change. 
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(a)

 
 (b) 

Figure 5.4 (a) Tracking output  yé�k�,(b) tracking error e�k�of MRRC for triangle 

reference signal 

 

 

(a)
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 (b) 

Figure 5.5 (a) Tracking outputyé�k�,(b) tracking error e�k�of MRRC for constant 

reference signal 

 

 

Figure 5.6 Tracking error e�k�of MRC for constant reference signal 

 

 

5.4.2  SIMULATION OF ARC 

 

We now perform simulations to verify the ARC design proposed in Section 3.  The 

same continuous plant model is used here. The discrete plant model is a second order 

plant with a relative degree 1. The transfer function		W��z�, a polynomial	Λ�z� ,an 

initial controller parameters	θc, and a RC gain kBæ are chosen respectively as follow: 

 

	Y���� = 0
x ,4��� = �,	Ûc = [0	0	0	0]R , �� = 2 (5.97) 
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If we choose the desired number of samples	N	 as 20, then the repetitive controller 

CBæ�z�has the same formula as shown in (5.96). 

 

The disturbance is illustrated in Figure 5.7, in which the period is 1 s, 1.5	s and 

0.8 s at 0 s, 20 s and 40 s respectively. The sampling period is 0.05 s, 0.075 s and 0.04 s 

to obtain 20 samples per disturbance period. At 40 s, the period drops to nearly half of 

the previous representing a large period change. 

 

Now we also consider two types of references: a triangle signal with a period 

10s shown in Figure 5.3(a) and a constant input with a magnitude of π/4  rad shown in 

Figure 5.3(b). 

 

 

Figure 5.7 Time-varying periodic disturbance dö(k) with a large period change 

 

 

(a) 
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(b) 

Figure 5.8 The proposed ARC performance tracking a periodic reference (a) the 

system output (b) the output error 

 

 

Figure 5.9 Pole-zero map of G�z� when 	T	 = 	0.075	s and 0.04	s 
 

Figure 5.8 shows the proposed ARC tracking and rejecting periodic signals at 

the same time. The reference period is not necessarily the same or multiple of the 

disturbance period. Figure 5.8(b) shows that the first transient error reaches 5% settling 

time around 8.3 s, which is about 8 cycles of disturbance signal. When the sampling 

period change to 0.075s (disturbance period increases from the previous), the new 

transient error occurs. This is due to the adaptive controller needs to adapt to the new 

correct values. In the middle transient, the error dies down around 4 s, which is 2.6 
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cycles of the disturbance. The last transient error takes 9 s to reach 5% settling, which is 

about 11 cycles of the disturbance. In the last transient, the period drops to nearly half 

of the previous one, representing a large period variation and significant changes of the 

plant coefficients as indicated from poles and zeros displacement shown in Figure 5.9. 

 

 

(a) 

 

 (b) 

Figure 5.10 The proposed ARC performance tracking a constant reference (a) the 

system output (b) the output error 

 

Figure 5.10 shows tracking a constant reference and rejecting a time varying 

periodic disturbance, in which all transient errors decay to zero. Similar performance 

has been achieved.  
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(a) 

 

 (b) 

Figure 5.11 The proposed ARC tracking a constant reference with a graduate time 

varying disturbance (a) disturbance (b) the output error 

 

Tracking a constant reference with a less time-varying disturbance is also 

simulated, in which the sampling period adapted as 0.05s, 0.075s and 0.08s. Figure 

5.11(a) shows the disturbance and Figure 5.11(b) shows the error, in which the error is 

much smaller at the last transient compared with Figure 5.10(c). 

 

 

5.4.3  A COMPARISON STUDY OF ARC 
 

This subsection presents the comparison study to show the significance of ARC 

design. The proposed ARC is compared with various existing controllers. Figure 5.12 

shows the output error of the MRAC and prototype RC (PRC) [10] when the sampling 

period is fixed and a constant reference is used. In Figure 5.12 (a), the periodic 

disturbance exists in the MRAC output consistently, although the transient errors are 
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smaller because of the constant sampling period and no change in the plant coefficients. 

Figure 5.12(b) shows the output error of the PRC does not converge to zero, when the 

sampling period is adapted to the disturbance period. 

 

 

(a) 

 

(b) 

Figure 5.12 The output error with a fixed sampling period (a) using MRAC (b) using 

PRC. 

 

Figure 5.13 shows the output errors when the sampling period is updated to keep 

a constant N samples per disturbance period. The output error of the MRAC exists 

persistently in Figure 5.13(a), while the output error of the ARC converges to zero in 

Figure 5.10(b). The magnitudes of the transient errors are similar in both cases, since 

the sampling period and plant coefficients are changing. Figure 5.13(b) shows the 

output error when the fixed PRC [10] based on zero phase error tracking controller 

(ZPETC) [11] is used, in which the system is unstable in the second transient, since the 
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sampling period is varying and the system does not meet the stability condition [10], 

especially condition no. 2: 

 

 1. G�z� is stable (5.98) 

 

 2. |1 − FBæ(z)G(z)|∞ < 1 (5.99) 

  

where	FBæ(z) is a ZPETC as proposed in (2.11)-(2.12). 

 

 

 

(a) 

 

 (b) 

Figure 5.13 The output error with a time varying sampling period (a) using MRAC (b) 

using PRC. 
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5.5  EXPERIMENTAL RESULTS 
 

This section presents the experimental results of using ARC. The real-time experiments 

were conducted on a Quanser servo motor SRV02-E with bar load. The aim of the 

system is to control the angle position of the servomotor to follow the triangle signal 

with a period of 10 s and a constant reference of π/4 rad (45 degrees). The plant input 

is corrupted by adding a disturbance, which is generated by computer. 

 

The same disturbance shown in Figure 5.7 is used here. Figure 5.14 shows the 

control signal, servo output, and output error when the ARC is used to track a triangle 

signal. Figure 5.15 shows the control signal, servo output, and output error when the 

ARC is tracking a constant reference. In both cases, a similar performance has been 

achieved to the simulations. 

 

 

(a) 

 

(b) 
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(c) 

Figure 5.14 The proposed ARC with triangle reference signal (a) the control values 

(b) the system output (c) the output error 

 

(a) 

 

(b) 
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 (b) 

Figure 5.15 The proposed ARC with constant reference signal (a) the control values 

(b) the system output (c) the output error 

 

The proposed ARC is compared with the PRC with: (a) a fixed sampling period 

(b) a time-varying sampling period. Figure 5.15 (a) shows the tracking error when the 

sampling period is kept fixed	+ = 0.05	G. On the second and third interval, the perfect 

tracking is not achieved due to the number of samples per disturbance period is no 

longer ]. Figure 5.15 (b) shows the tracking error when the sampling period is changed 

to keep ]  samples per period. On the second transient, the tracking error keeps 

increasing and becomes unstable. This is due to the change of plant parameters, which 

makes the closed-loop RC system is unstable. 

 

 

(a) 



118 
 

 

 (b) 

Figure 5.16 The output error 	e�k� of the general RC with (a) fixed sampling period, 

(b) time-varying sampling period. 

 

 

5.6  SUMMARY 
 

This chapter has proposed an MRRC and ARC design method. Both MRRC and ARC 

can simultaneously track the periodic reference signal and reject the periodic 

disturbance, where the reference period is not necessarily the same or multiple of the 

disturbance period.  

 

The MRRC scheme has successfully worked for known plant subject to periodic 

disturbance with fixed frequency. ARC has been proposed for an unknown linear 

system subject to periodic disturbances with time-varying frequency. The designed 

ARC can perfectly reject the disturbance since the number of samples per period 

remains fixed. The time-varying plant parameters have been handled by the MRAC 

which tunes the controller parameters such that the closed-loop system is stable and the 

plant output tracks the reference model output. Both simulations and experiments 

results have been presented to verify the effectiveness of the proposed design. 
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CHAPTER 6  

DESIGN OF DECENTRALIZED RC OF LINEAR 

MIMO SYSTEMS 
 

 

6.1  INTRODUCTION 

 

In Chapters 4 and 5, RC designs were proposed for SISO systems. An RC design for 

MIMO systems will now be addressed in this chapter. Most of the designs for RC 

MIMO systems are based on the full MIMO approach, resulting in a controller with the 

same dimension as the plant. This implies that if we have an �Ã� MIMO system (�1 

transfer functions), then we need to design �1 RC compensators. Moreover, the designs 

also end up with a non-causal compensator that needs to be merged with the internal 

model to make it realizable. This gives rise to complexity in the implementation, 

especially when the order of the internal model is very large. 

 

The fact that most of MIMO control problems can be treated on decentralized 

basis [101] gives a motivation to design RC based on decentralized control, called as 

decentralized RC (DRC). Decentralized control means that the MIMO system is 

considered to be a set of SISO systems. In addition, the decentralized control design is 

considered to be easier as it can apply simpler SISO theories [101]. A further advantage 

of decentralized control here is only � RC compensators are required. 

 

This chapter presents two approaches to decentralized RC (DRC) ; DRC-1 and 

DRC-2. Both approaches result in a low order, stable and causal compensators. 
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Moreover, there are only � compensators to be obtained from the proposed algorithms. 

A complete series of simulation and experiments is carried out to demonstrate the 

effectiveness of the proposed algorithms.  

This chapter is organized as follows. Section 2 presents the design of DRC-1, 

which covers the RGA and robustness analysis, the decentralized stabilizing controller 

design, the compensator design, and the RC MIMO stability analysis. Section 3 

discusses the design of DRC-2, which is more straightforward than the DRC-1 design. 

Simulation results and details of a comparison study conducted to PCI are also given in 

Section 4. Experimental results of the 2 DOF robot plant are presented in Section 5. 

Section 6 concludes the chapter. 

 

 

6.2  DECENTRALIZED RC: APPROACH 1 (DRC-1) 

 

Let a �Ã� MIMO system G(s) be represented by the following transfer functions  

 

 �(G) = ÈÉ00(G) ⋯ É0�(G)⋮ ⋱ ⋮É�0(G) … É��(G)Ì (6.1) 

 

The plant model G(s) has m inputs and outputs, where the relation between inputs and 

outputs can be formulated as follows: 

 

 ��0(¾)�1(¾)⋮��(¾)
� = � É00(G)þ0(¾) + ⋯+ É0�(G)þ�(¾)É10(G)þ0(¾) + É11(G)þ1(¾). . +É1�(G)þ�(¾)⋮É�0(G)þ0(¾)+. . +É��(G)þ�(¾)

� (6.2) 

 

wherey0(t), … , y�(t) and  u0(t), … , u�(t) are plant outputs and inputs respectively. 

 

Decentralized control aims to approximate the MIMO system into a set of 

independent SISO systems. This is different to decoupling control which tries to convert 

the full MIMO model into a perfect set of independent SISO models. The assumption in 

the design of decentralized control is to ignore dynamics that result in weak 

interactions. Each of the system outputs is approximated from the input response that 
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makes the dominant contribution. Therefore, the degree of interaction needs to be 

quantified in the decentralized control. The Relative Gain Array (RGA) introduced by 

Bristol [112] is one of the techniques termed as dominant interaction control method 

that can be used to determine the best input output pairings for multivariable control 

[113]. 

RGA is defined as matrix Λ  which is formulated as follows: 

 

 Λ = 	�(0).∗ ,�>0(0).R (6.3) 

 

where	G(0) and G>0(0) are the system dc gain matrix and its inverse, Notation  .∗ and  T operate as element wise multiplication and transpose of the matrix respectively. 

 

In particular, the best pairings are chosen from the entries of Λ which are large. Suppose 

the diagonal entries of Λ have larger values than the non-diagonal entries, then the best 

pairings are ,þb , �b.  pairings, where = 1,… ,�  . This also means that we need to 

consider the transfer functions Ébb(G)  as the strong dynamics that give dominant 

contribution to the plant outputs.  

 

Now, we need to choose the nominal complimentary sensitivity function T(s) as 

the desired stabilized closed-loop model of g��(s). 
 

 T(s) = diag,t0(s), … , t�(s). (6.4) 

 

With decentralized control, robustness analysis is needed to check the impact of 

the neglected dynamics [101]. To perform robustness analysis, the G(s)  is first 

represented as the nominal model G§(s) with additive uncertainty	GR(s) [101]. 

 

 G(s) =G§(s),I + GR(s). (6.5) 

where 

 

G§(s) = Èg00(s) 0 00 ⋱ 00 0 g��(s)Ì (6.6) 
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GR�s� = 	 [G�s� − G§(s).�G§>0(s)� (6.7) 

and I is a mxm identity matrix  

Then, the robustness check is given by the stability condition as follows [101]: 

 

 σT,GR(jω)T(jω). < 1∀	ω ∈ ℝ (6.8) 

 

Equation (6.8) states that the maximum singular value of ,GR(jω)Gs(jω). has to be less 

than one. 

 

Once the robustness check has been performed, then the decentralized 

stabilizing controller C(s)  can be designed to match the chosen complimentary 

sensitivity function T(s). 
 

 C(s) = diag,c0(s), … , c�(s). (6.9) 

 

where	c�(s), i = 1,… ,m are obtained to satisfy the following equality 

 

 
c�(s)g��(s)1 + c�(s)g��(s) = t�(s) (6.10) 

 

Let c�(s), g��(s), and t�(s) be expressed in the form of numerator and denumerator as 

follows: 

 

 c�(s) = nc�(s)dc�(s) , g��(s) = ng��(s)dg��(s) , t�(s) = nt�(s)dt�(s) (6.11) 

 

The polynomials nc�(s)  and dc�(s)  can be obtained by solving the following 

Diophantine Equation 

 

 nc�(s),ng��(s)nt�(s) − ng��(s)dt�(s. + dc�(s),dg��(s)nt�(s). = 0 (6.12) 
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The relative degree of the complimentary sensitivity function t��s�needs to be 

chosen carefully so that it gives proper stabilizing controller 	c��s� . The stabilizing 

controller ��G� is designed to achieve the nominal complimentary sensitivity function 

+�G�, while the actual complimentary sensitivity function �(G) is given as follows: 

 

 �(G) = ,- + �(G)�(G).>0�(G)�(G) (6.13) 

 

Once �(G) has been designed, then it is possible to proceed to the design of the 

compensator matrix	�(�), as shown in Figure 6.1. Figure 6.1 shows the configuration of 

a MIMO system with DRC-1 for tracking periodic reference. 

 

 

Figure 6.1 Block diagram of DRC-1 

 

where Gæ�z�  is the actual complimentary sensitivity function with �Ã�  transfer 

functions, which is also the discrete model of (6.13),	�(�)is the compensator matrix 

with �  transfer functions, r(k)  is the periodic reference signal, e(k)  is the tracking 

error, u(k)  is the control signal, and y(k)  is the tracking output. and 2(�), !(�), þ(�), �(�) ∈ ℝ� 

 

If RGA analysis suggests ,u�, y�. pairings, then the compensator matrix �(�) 
will have elements only at the diagonal. 

 

 F(z) = Èf00(z) 0 00 ⋱ 00 0 f��(z)Ì (6.14) 

 

where  f00(z)… f��(z) are stable and causal compensators. 



124 
 

The design of �(�) is based on the information of complimentary sensitivity 

function 	T(s). Here, each component of matrix �(�) is designed to compensate the 

dynamic of the respective component of +(�), where +(�) is the discrete model of +(G) 
at sampling period + . The compensator fbb(z)  will be designed to compensate the 

dynamics of tbb(z) . As there are �  pairings, then we only need to design � 

compensators to build matrix �(�). Each component of 	T(s) can be assigned to have 

the same transfer function, and also in low order.  

 

The RC compensator design mostly aims to mimics the inverse of the SISO 

plant model, and usually ends up with either non-causal or high order compensator. 

Here, the design scheme proposed in Chapter 4 can be used to obtain a low order, stable 

and causal compensator. Thus, the compensator fbb(z) is in the following form.  

 

 fbb(z) 	= �cbbz§ + �0bbz§>0 +⋯+ ��bbz§ + 20bbz§>0 +⋯+ 2�bb 	 , n > 0 (6.15) 

 

Let the period of reference signal and sampling period be +� and + respectively. 

As the RC design is treated on a decentralized basis, then we have � separate RCs as 

follow; 

 

 É�bb (z) = q(z)zm − q(z) fbb(z) (6.16) 

 

where	É�bb (z) is the digital RC for the nominal sensitivity function tbb(z), and q(z) is the 

chosen zero-phase low pass filter to improve the robustness, ] = +� +U . 
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An optimization problem similar to (4.16) is used to obtain a low order, stable 

and causal fbb�z�.  
 

 

min� ©́́ ,…, �́́ ,�ú́́ ,…,��́́ )h@gö¨fbb =`hobb
m/1
kP0 	∀	ωk = 2π kN+ , k = 1,2. . , N/2	

Subject to:     

1. �−1 + δ..−1 + δ� < �p0bb..p�bb� < û1 − δ..1 − δü 
2.		hobb < 1 − Ü, ∀ωk = 2π kN+	, k = 1,2. . , N/2 

(6.17) 

 

where  

 ℎobb = |(1 − tbb(z)fbb(z))q(z)|�P�V (6.18) 

 

|. |�P�V stands for the magnitude at frequency ωk  

 ¸0bb , … , ¸�bb  are D real poles of fbb(z), δ		 and τ	are small positive constants  

 

 Since tbb(z) and q(z) are known, then the parameters of  fbb(z) can be obtained 

by solving the nonlinear minimization above. If we assign tbb(z) to be the same for × = 1, . . , � , then we only need to solve one optimization problem. Once the 

compensator fbb(z)  have been obtained, then the compensator matrix �(�)  can be 

constructed. Each component of �(�) is designed on separate SISO model, Therefore, 

there is no guarantee that �(�) ensures the stability of a MIMO RC system. A stability 

check needs to be performed to ensure that the MIMO RC system is stable. The MIMO 

RC system shown in Fig is stable if the following condition is satisfied [73, 96]. 

 

 σT,(I − F(z)Gæ(z))q(z). < 1∀	ω ∈ ℝ (6.19) 
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The design procedure for DRC-1 can be summarized as follows: 

1. Perform RGA analysis to obtain the best pairings. 

2. Choose the desired nominal complementary sensitivity function +�G� . Each 

component of 	+�G� can be assigned to have the same transfer function, and can 

be chosen to be in a low order. This will result in a low order of compensator. 

3. Conduct a robustness check (6.8) to analyse the impact of the neglected 

dynamics. 

4. Obtain the decentralized stabilizing controller C(s). The controller ��G�  is 

designed to achieve the nominal complementary sensitivity function T�s�. Each 

component of ��G� can be obtained by solving the Diophantine Equation. 

5. Solve the optimization problem (6.17). If components of 	+�G� are assigned to 

have the same transfer function, only one optimization problem needs to be 

solved. Now, the matrix �(�) can be constructed. 

6. Conduct a stability check (6.19) to ensure the MIMO RC system is stable. 

 

 

6.3  DECENTRALIZED RC: APPROACH 2 (DRC-2) 

 

In DRC-1, the design consists of several steps which include obtaining the decentralized 

stabilizing controller	�(G), and assessing the stability of the MIMO RC system. In this 

section, we introduce a different approach to designing decentralized RC, known as 

DRC-2. The approach does not require a design of a decentralized stabilizing controller �(G), or a stability check of MIMO RC system. The structure of the MIMO RC system 

with DRC-2 is shown in Figure below: 

 

 

Figure 6.2 Block diagram of DRC-2  
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where G�z�  is the discrete plant model with �Ã�  transfer functions, and 	�(�) is a 

compensator matrix with � transfer functions. 

 

The transfer function from �(�) to Æ(�) , and the tracking error 3(�)  of RC 

MIMO system shown in Figure 6.2 are respectively  as follow: 

 

 
Y(z)
R(z) = q(z)F(z)G(z),zmI − (I − F(z)G(z))q(z). (6.20) 

 

 E(z) = 1,zmI − (I − F(z)G(z))q(z). ,zm − q(z).R(z) (6.21) 

 

Let �(�)  and �(�) be: 

 

 S(z) = ,zmI − (I − F(z)G(z))q(z). (6.22) 

 

 M(z) = (I − F(z)G(z))q(z) (6.23) 

 

The stability of the MIMO system can be examined from the location of the 

zeros of its characteristic equation. The characteristic equation of MIMO RC system 

above can be obtained by calculating the determinant of 	�(�). To be stable, all zeros of det	�(�)  have to be inside the unit circle. Calculating the determinant of �(�)  is 

troublesome because of the high order of ]. Therefore, examining the location of zeros 

of det	�(�) is very ineffective. From Equation (6.20)-(6.21), the stability of the MIMO 

RC system can be assessed in more simple way. The overall system stable if [73, 96]: 

 

 σT,�(�). < 1	∀	0 < ω < πT (6.24) 

 

where  σT(. ) stands for the maximum singular value,	�(�) is as shown in (6.23), and + 

is the sampling period 
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The stability condition (6.24) implies that the maximum singular value has to be 

less than for all frequencies up to Nyquist. The maximum singular value of ���� is a 

norm of the matrix ���� , and also defined as the square root of the maximum 

eigenvalue of �Z�. In MIMO, the maximum singular value is considered as the gain 

of the system, which is also function of frequency [101]. 

 

 σT[����] = [ã��4(�Z�) (6.25) 

 

where λ�¨6(. )  is the maximum eigenvalues of the Hermitian matrix M]M, and the 

notation H operates as the complex conjugate transpose. 

 

The matrix M(z) is the functions of �, where � is equal to !²^R . The singular 

value is evaluated at every frequency up to Nyquist. By replacing � with !²^R , and 

picking a single frequency *, the elements of matrix M(z) become complex numbers 

now. Multiplying M(z) with M](�) results in Hermitian matrix M]M. The eigenvalues 

of Hermitian matrix M]M  are real positives; !×É(M]M) = ã0, … , ã� , ãb > 0, × =1, . . ,�. Then, a maximum eigenvalue is simply the largest value of (λ0, … , λ�)”. 

 

Xu [73] developed several stability conditions that also ensure the asymptotic 

stability of the MIMO RC system. One of the stability conditions proposed in [73] , 

which is less restrictive than (6.24) is given as follows: 

 

 |det	(�(�))| < 1	∀	0 < ω < πT (6.26) 

 

Reference [73] strongly stated that the tracking error of RC MIMO system 

converges to zero for all possible N, and for all possible initial conditions, if only if the 

magnitude of the determinant of �(�) is less than one for all frequencies up to Nyquist. 

Later on, the stability condition (6.26) is used as a constraint in the proposed 

optimization problem to obtain the compensator parameters. 

  

 

Let �(�) be a discrete plant model at sampling period +: 
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 �(�) = ÈÉ00(�) ⋯ É0�(�)⋮ ⋱ ⋮É�0(�) … É��(�)Ì (6.27) 

 

To build the compensator matrix �(�), we also need the information regarding 

the best pairings obtained from RGA analysis. For simplicity, suppose RGA analysis 

also suggest ,u�, y�. pairings, then matrix �(�) only has elements on diagonal. Since the 

idea of DRC here is about designing F(z)  for compensating the strong dynamics 

in	�(�), a single objective function can be formulated: 

 

ℎR¤#�� =``|(1 − gbb(z)fbb(z))q(z)|�P�V 	∀	ωk = 2π kNT	
m/1
kP0

�
bP0  (6.28) 

 

Supposed fbb(z) has the same causal form as shown in (6.15). Let the chosen 

order for compensator fbb(z) be Db. Then, the number of parameters of the matrix �(�) 
to be obtained is: 

 

DR¤#�� =`2Db + 1�
bP0  (6.29) 

 

The optimization problem (6.30) is proposed in order to obtain the causal 

compensator �bb(�) for × = 1, . . , �  , in which the obtained matrix �(�) guarantees the 

stability of the MIMO RC system. 

 

 

min( ©©©,…, �©©© ,.., ©��,…, ����,�ú©©,…,��©©© ,..,�ú��,…,�����)ℎR¤#��	
Subject to:     

1.1. �−1 + δ..−1 + δ� < �p0
00..¸�©00
� < û1 − δ..1 − δü 

1.2. �−1 + δ..−1 + δ� < �p0
11..¸�ô11
� < û1 − δ..1 − δü 

                            … 

(6.30) 
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1�. �−1 + δ..−1 + δ� < �p0
��..¸��00

� < û1 − δ..1 − δü 
 

2.		|det	(�(�))|�V < 1 − Ü, ∀ωk = 2π kN+	, k = 1,2. . , N/2 

 

 

 

where ¸000, … , ¸�©00 are D0 real poles of f00(z) ¸011, … , ¸�ô11 are D1 real poles of f11(z) ¸0��, … , ¸���� are D� real poles of f��(z) |det	(�(�))|�V is the magnitude of the determinant of �(�) at frequency  ωk, and 

δ		 and τ	are small positive constants. 

Remark 6.1: The first condition of (6.30) consists of ∑ Db�bP0   constraints which 

guarantees that all poles of the elements of the matrix �(�) are inside the unit circle. 

The positive constant � presents a minimum distance of all poles from the unit circle. 

This condition ensures that the obtained compensators are stable within a safe margin. 

 

Remark 6.2: The second condition of (6.30) guarantees that the MIMO RC system is 

stable within a positive margin of τ.  

The optimization problem (6.30) is a class of nonlinear minimization that 

finds	∑ 2Db + 1�bP0  optimum variables subject to ∑ Db�bP0  bound constraints and ]/2 (for 

an even	]	) nonlinear constraints. Solving this minimization problem (6.30) gives all 

parameters of �(�)  , but at the expense of larger number of variables to optimized 

compared to number of variables in the optimization of DRC-1. 

The design procedure of DRC-2 here can be summarized as follow: 

1. Perform RGA analysis to obtain the best pairings 

2. Solve the optimization problem (6.30) to obtain all parameters of F(z). 
 

The proposed DRCs are still limited for a class of �Ã� MIMO model. This is 

due to the RGA analysis and MIMO stability assessment require to calculate the inverse 
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of the matrix. Hence, the matrix needs to be square, which means the number of inputs 

is similar to the number of outputs. 

 

6.4  SIMULATION RESULTS 
 

Simulation is now performed to validate the effectiveness of the two proposed 

approaches. The advantage and disadvantage of both approaches will be discussed. A 

comparison study conducted to PCI [96] is also given in this section. 

 

 

6.4.1 SIMULATION OF DRC-1 

 

A two-input two -output MIMO model of pick and place robot arm [100] is used 

to verify the effectiveness of DRC-1. The MIMO model has the following transfer 

functions: 

 

 G�s� = «g00�s� g01�s�g10�s� g11�s� (6.31) 

 

where	g00�s�, g01�s�, g10�s�, and g11�s� are given as follows: 

 g00�s�
= 0.16s¯ + 14.51s_ + 578.2s® + 1.392e4s` + 2.26e5sa +⋯5.3e − 5s01 + 0.02s00 + 0.91s0c + 31.2s¯ + 714.1s_ + 1.2e4s® +⋯ 

(6.32) 2.58e6s! + 2.09e7s¹ + 1.17e8s1 + 4.21e8s + 7.6e81.45e5s` + 1.4e6sa + 1.01e7s! + 5.7e7s¹ + 2.3e8s1 + 5.9e8s + 7.6e8 

 

g01(s) = −0.022s® − 3.24s` − 88.3sa−1347s! − 1.06e4s¹ +⋯5.3e − 5s0c + 0.014s¯ + 0.72s_ + 20s® + 363s` + 4645sa +⋯ 
 

(6.33) −4.52e4s14.3e4s! + 2.9e5s¹ + 1.4e6s1 + 4.18e6s + 6.32e6 
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g10�s� = −0.16s® − 8.7s` − 194sa−2498s! − 1.78e4s¹ +⋯5.2e − 5s0c + 0.014s¯ + 0.72s_ + 20s® + 363s` + 4645sa +⋯ 

(6.34) −6.64e4s14.3e4s! + 2.9e5s¹ + 1.4e6s1 + 4.18e6s + 6.32e6 

 g00(s)
= 0.027s¯ + 4.95s_ + 264s® + 7394s` + 1.3e5sa +⋯5.3e − 5s01 + 0.014s00 + 0.9s0c + 31s¯ + 714.1s_ + 1.19e4s® +⋯ 

(6.35) 1.69e6s! + 1.5e7s¹ + 9.4e7s1 + 3.8e8s + 7.6e81.48e5s` + 1.4e6sa + 1.04e7s! + 5.7e7s¹ + 2.3e8s1 + 5.9e8s + 7.6e8 

 

We can see that each element of the matrix �(G) is in high order. The zeros and poles of 

the plant are the zeros and poles of determinant of �(G). The det ,�(G). has 38 zeros and 

44 poles, and all zeros and poles are on the left half plane (LHP). Thus, the continuous 

model (6.31) is a stable and minimum phase MIMO plant. 

 

The RGA of G(s) is calculated as follows: 

 

 Λ = ³1 00 1µ .∗ »³1 00 1µ>0¼
@ = ³1 00 1µ (6.36) 

 

The RGA value Λ  shows that the dynamic g00(s)  and g11(s)give dominant 

interaction to output y0(t)  and y1(t)  respectively. The RGA suggests that the best 

pairings are ,u0, y0.and ,u1, y1.. This also means that we only need to consider the 

dynamics of g00(s) and g11(s). Before designing the decentralized stabilizing controller �(G) , robust analysis needs to be performed to check the impact of the neglected 

dynamics g01(s)and g10(s). Let the desired complimentary sensitivity function T(s) be: 

 

T(s) 		= «t0(s) 00 t1(s) (6.37) 

 

where  
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t0�s� = t1�s� = 100(s1 + 6s + 16)(s + 25) (6.38) 

 

The t0�s� and t1�s� are chosen to have the same transfer function with relative 

degree 3. The choice of the relative degree of t0�s� and t1�s� will affect the properness 

of the stabilizing controller ��G�.  
 

If the actual model is represented as G�s� =G§�s�[I + GR�s�], then the nominal 

model G§�s� and the uncertainty model GR�s� are given respectively as follow: 

 

G§�s� = 	 «g00�s� 00 g11�s� (6.39) 

GR�s� = 	 « 0 g01�s�/g11�s�g10�s�/g00�s� 0  (6.40) 

 

Singular values of GR�jω)T(jω) are shown in Figure 6.3  

 

 

Figure 6.3 Singular values of GR�jω)T(jω) 
 

The upper line in Figure 6.3 shows the maximum singular values of GR(jω)T(jω) , which are less than	0	dB for all frequencies. Thus, the impact of the 
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neglected dynamics is acceptable. Now, we can proceed to design the decentralized 

stabilizing controller C�s�. 
 

The decentralized stabilizing controller C�s� is obtained by solving the following 

Diophantine Equations as follows: 

 

nc0�s�[ng00�s�nt0�s� − ng00(s)dt0(s. + dc0(s),dg00(s)nt0(s). = 0 (6.41) 

 

nc1(s),ng11(s)nt1(s) − ng11(s)dt1(s. + dc1(s),dg11(s)nt1(s). = 0 (6.42) 

 

The obtained controller C(s) is 

 

C(s) = 	 bcc
cdnc0(s)dc0(s) 0

0 nc1(s)dc1(s)eff
fg = «c0(s) 00 c1(s) (6.43) 

 

where c0(s) and c1(s) are  

 c0(s)
= 5.4e − 5s01 + 1.4e − 2s00 + 0.93s0c + 31.9s¯ + 730s_ + 1.22e4s® +⋯1.6e − 3s01 + 0.19s00 + 10.19s0c + 319.5s¯ + 6761s_ + 1.02e5s® +⋯ (6.44) 

 1.5e5s` + 1.43e6sa + 1.03e7s! + 5.83e7s¹ + 2.35e8s1 + 6.03e8s + 7.8e81.1e6s` + 9.3e7sa + 5.5e7s! + 2.2e8s¹ + 5.6e8s1 + 6.1e8s  

 c1(s)
= 1.6e − 13s01 + 4.3e − 11s00 + 2.7e − 9s0c + 9.5e − 8s¯ + 2.2e − 6s_ +⋯8.3e − 13s01 + 1.7e − 10s00 + 1.2e − 8s0c + 4.6e − 7s¯ + 1.1e − 5s_ +⋯ (6.45) 

 3.6e − 5s® + 4.5e − 4s` + 4.3e − 3sa + 0.03s! + 0.17s¹ + 0.7s1 + 1.8s + 2.31.8e − 4s® + 2.2e − 3s` + 0.02sa + 0.13s! + 0.6s¹ + 1.6s1 + 1.8s  

 

Let the period of reference signal and sampling period be 8 s and 0.04 s 

respectively. The discrete models of t0(s) and t1(s) are: 
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t0�z� = t1�z� = 8.2e − 4(z + 2.88)(z + 0.2)(z − 0.37)(z1 − 1.88z + 0.88) (6.46) 

 

Both discrete-time t0(z) and t1(z)are non-minimum phase model because they have a 

zero outside the unit circle. 

 

The order of compensator 	n = 3  is chosen. This follows the suggestion in 

Chapter 4 that the compensator order should be equal or higher than the plant order to 

give good phase and magnitude compensation. The zero phase low pass filter q(�), and 

positive constants δ and τ are chosen respectively as follows: 

�(z) = 0.25z + 0.5 + 0.25z>0, δ = 0.075, τ = 0.05 (6.47) 

 

The compensator f00(z) is obtained by solving the optimization problem (6.17) using an 

Optimization Toolbox from Matlab. Since we assign t0(z) as equal to	t1(z), only one 

optimization problem needs to be solved. 

 

F(z) = «f00(z) 00 f11(z) (6.48) 

where 

f00(z) = f11(z) = 475.6z¹ − 1046z1 + 704.1z − 131.2z¹ + 2.10z1 + 1.33z + 0.22  (6.49) 

 

Equation (6.48)-(6.49) show that two elements of �(�) have the same transfer 

function, and they are in lower order compared to the order of g00(z) and g11(z) . The 

compensator matrix �(�) is designed to compensate low order nominal complimentary 

sensitivity function +(�), while the actual stabilized complimentary sensitivity function 

is �(�) which is the discrete model of (6.13). The stability check (6.19) is performed to 

ensure the stability of the MIMO RC system, and the singular values of ,(I −F(z)Gæ(z))q(z). is shown in Figure 6.4. 
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Figure 6.4 Singular values of [�I − F(z)Gæ(z))q(z). 
Figure 6.4 shows that the maximum singular values of ,(I − F(z)Gæ(z))q(z). 

are less than one for all frequencies up to Nyquist. Hence, the MIMO RC system using 

the obtained compensator matrix F(z) is stable. 

 

In the simulation, two tracking schemes are presented. In the first scheme, the 

first channel y0 is required to track triangle reference signal, while the second channel y1 needs to stay idle. In the second scheme, both channels are required to track the 

triangle reference signals with different amplitudes. The tracking output and tracking 

error for the first scheme is shown in Figure 6.5. 

 

 

(a) 
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(b) 

 

 (c) 

Figure 6.5 The first scheme (a) Tracking output	y0���,(b) Tracking output y1���, 
(c).Tracking errors e0��� and e1��� 

 

The first scheme aims to emphasize the effect of neglected dynamics in this 

decentralized control. On Channel 1, the tracking output y0 is able to follow periodic 

reference r0 after 4 repetitions. On channel 2, a small excitation due to the coupling 

effect appears on output y1 . The tracking output and tracking error for the second 

scheme is shown in Figure 6.6. Figure 6.6 shows good tracking performance for both 

channel 1 and 2. The simulation results verify the effectiveness of DRC 1. 
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(a) 

 

(b) 

 

(c) 

Figure 6.6 The second scheme (a) Tracking output	y0���,(b) Tracking output y1���, 
(c).Tracking errors e0��� and e1��� 
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6.4.2  SIMULATION OF DRC-2 

 

In this subsection, the DRC-2 will be used for the tracking control of a 2 DOF 

robot plant, which is the plant used in the experiment.  

 

�(G) = «É00(G) É01(G)É10(G) É11(G) (6.50) 

 

where É00(G), É01(G), É10(G)	, and É11(G) are also given in (3.3)-(3.6) 

 

É00(G) = 1.02100.0059G1 + 0.1191G + 1 
(6.51) 

 

É01�G� = −0.0144	G	 + 	0.397526.430G1 + 7.2020G + 1 
(6.52) 

 

É10�G� = −0.002888	G	0.0069G1 + 	0.1201G + 1 (6.53) 

 

É11(G) = 1.0030.0051	G1 + 0.1151G + 1 (6.54) 

 

The RGA of G(s) is calculated as follows: 

 

 Λ = ³1 00 1µ (6.55) 

 

The RGA value Λ  shows that the dynamic g00(s)  and g11(s)give dominant 

interaction to output y0(t) and y1(t) respectively. The RGA also suggests that the best 

pairings are ,u0, y0. and ,u1, y1.. Therefore, the compensator matrix �(�) has elements 

at the diagonal.  

 

 F(z) = «f00(z) 00 f11(z) (6.56) 
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Let the period of reference signal and the sampling period be 2	G and 0.025	G 
respectively. This gives the number of samples per reference period ]  as 	80 . The 

discrete model of �(G) at the given sampling period is 

 

�(�) = «É00(�) É01(�)É10(�) É11(�) (6.57) 

 

where 

 

É00(�) = 0.045� + 0.038�1 − 1.522� + 0.604 
(6.58) 

É01�G� = −1! − 5(0.88� − 1.82)�1 − 1.99� + 0.99  
(6.59) 

 

É10�G� = −0.00831� + 0.0083	�1 − 	1.577� + 0.649  (6.60) 

 

É11(G) = 0.051� + 0.042	�1 − 1.476� + 0.568 (6.61) 

 

The chosen �(�) , δ  and τ  are similar to the previous design. The transfer 

function f00(z) and f11(z) will be designed to compensate the dynamics of g00(z) and g11(z) respectively. Therefore, the order of f00(z) and f11(z) are chosen to be equal or 

higher than the order of g00(z) and g11(z) respectively. Let the order of both f00(z) and f11(z)  be D0 = D1 = 2. The objective function (6.28) is formulated as follows: 

 

ℎR¤#�� = ∑ |(1 − g00(z)f00(z))q(z)|�V 	m/1kP0 + ∑ |(1 − g11(z)f11(z))q(z)|�V 		m/1kP0   (6.62) 

 

There are 10 unknown parameters to be designed, and the goal is to minimize 

the objective function value (6.54). By solving the optimization problem (6.30), the 

following compensator matrix �(�) is obtained: 
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F�z� = bcc
d35.60�1 − 56.91� + 24.34�1 + 1.85� + 0.86 0

0 32.29�1 − 50.31� + 21.11�1 + 1.85� + 0.86 eff
g
 (6.63) 

 

In this simulation, both channels are required to track triangle reference signals. 

The tracking outputs are shown in Figure 6.3. 

 

(a) 

 

(b) 

Figure 6.7 DRC-2 (a) Tracking output 	y0���,(b) Tracking output y1��� 
 

Figure 6.7(a) shows that tracking output y0���  follows the reference 20��� 
perfectly after 3 repetitions. On channel 2, the same tracking performance has been 

achieved. These results verify the effectiveness of DRC-2. 

 

Compared to the DRC-1 design, the DRC-2 design is more straightforward. This 

is because the DRC 2 does not require the design of stabilizing controller, or separate 

checking of the stability condition. The stability check has been packed as a constraint 
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in the optimization problem. This means that the obtained compensator parameters from 

the optimization ensure the stability of the MIMO RC system. However, the DRC-2 

design is more complex if it is used for plant model (6.31). If the DRC-2 is applied for 

tracking control of the plant model (6.31), the compensator matrix	F�z� will result in 

high order, since g00�s� and g11�s� are in high order. Both g00�s� and g11�s� of (6.31) 

have an order 12. The discrete model of g00�s� and g11�s� will also have an order 12, 

but with relative degree 1. Therefore, the order of �00�z� and �11�z�are chosen to be at 

least 12 or higher. This results in large number of parameters that needs to be optimized. 

The computation to solve large-scale optimization is more time consuming than to 

solving the Diophantine Equation. Therefore, the DRC-1 design has an advantage in 

this case. 

 

 

6.4.3 A COMPARISON STUDY OF DRC 

 

This section presents a comparison study to show the significance of the 

proposed DRC. The MIMO model used for the comparison is a model of a 2 DOF robot 

plant (6.50). The comparison study is conducted with the PCI compensator proposed by 

Jeong and Fabien [96]. The idea of the PCI is very similar to the Zero Phase Tracking 

Error Controller (ZPETC) [11] in the SISO case, which aims to perfectly cancel the 

phase response of the plant. The PCI is a matrix function such that [96].  

 

� b(�)�(�) = -�4� (6.64) 

 

If �(�) is a square and minimum phase system, then the choice for PCI will be �>0(�). 
 

� b(�) = 1det	(�(�)) t")(�(�)) (6.65) 

 

 

 

If �(�) is a square and non-minimum phase system, then the PCI will be 
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� b(�) = t")(�(�)) Â}(�>0)Â>(�)  (6.66) 

where� b(�) is the PCI  matrix, t")(�(�)) is the adjoint of �(�), Â}(�), Â>(�) are 

uncancellable and cancellable part of det	,�(�)., and elements of �(�) are in a non-

causal FIR filter form. 

  

To design PCI for the plant model (6.56), we need to examine the zeros and 

poles of 	(�(�)) .  
 

The determinant of �(�) can be expressed as follows: 

 

"!¾	(�(�)) = h¢(�)Á¢(�) (6.67) 

 

where h¢��� and Á¢��� are the numerator and denumerator parts respectively. 

 

The determinant of �(�) has 6 zeros and 8 poles, where there are 4 zeros - poles 

cancellation. After the cancellation, "!¾	,�(�).  will have 2 zeros and 4 poles. The 

number of zeros and poles of 2Ã2 MIMO system with rational transfer functions can 

also be obtained by simple calculation as follows: 

 

Dx = max	,(D�01 + D�10 + D�00 + D�11), (D�00 + D�11 + D�01+D�10). (6.68) 

 

D = D�00 + D�11 + D�01 + D�10 (6.69) 

 

 where  Dx	and D  are the number of zeros and poles of "!¾	,�(�).respectively, 

D�00, D�11, D�01, D�10  are the denumerator order of É00(�), É11(�), É01(�), É10(�) 
respectively, and  D�00, D�11, D�01, D�10  are the numerator order of É00(�), É11(�), É01(�), É10(�) 
respectively.  
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All zeros and poles of "!¾	(�(�))  are still inside the unit circle. Thus, the �(�) 
is stable and a minimum phase system. Since the inverse of	h¢(�) is stable, we do not 

need to break h¢(�) into cancellable and uncancellable parts.  

The PCI matrix after zeros poles cancellation is obtained as follows: 

� b(�) = �� «�00(�) �01(�)�10(�) �11(�) (6.70) 

 

where �� is the learning rate 

 

�00(�) = 21.94�¹ − 15.21�1 − 14.39� + 10.97�1 + 1.673� + 0.699  
(6.71) 

 

�01(�) = 3.85�a − 14.32�! + 22.98�¹ − 18.54�1 + 7.52� − 1.23�! + 0.097�¹ − 1.29�1 − 0.02� + 0.45  
(6.72) 

 

�01(�) = 1! − 2(0.38�a − 1.93�! + 3.66�¹ − 3.36�1 + 1.51� − 0.27)�! − 0.32�¹ − 1.64�1 + 0.27� + 0.69  
(6.73) 

 

�11(�) = 19.65�¹ − 12.39�1 − 13.33� + 9.44�1 + 1.673� + 0.699  
(6.74) 

 

If there is no zero pole cancellation, then the denumerator of the PCI will have 

an order of 6. From (6.71)-(6.74), we can see that all elements of PCI are improper, and 

the order of the PCI is higher than the order of ��� . The PCI can be realized because of 

the high causal term of the internal model. 

 

�� b(�) = �� bcc
cd �(�)�^ − �(�) �00(�) �(�)�^ − �(�) �01(�)�(�)�^ − �(�) �10(�) �(�)�^ − �(�) �11(�)eff

fg
 (6.75) 

 

This is different to the compensator matrix �(�) shown in (6.63) , where �(�) 
has two low order, stable and proper compensators. The tracking performance of the 

MIMO RC system using PCI and DRC-2 is shown in Figure 6.8(a) and (b) respectively. 
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(a) 

 

(b) 

Figure 6.8 Tracking errors with PCI, �2 = 1 and DRC-2, (a) On Channel 1 

(b) On Channel 2.  

 

Figure 6.8 shows that the tracking errors of PCI on both channels vanish 

completely after one repetition, while the tracking errors of DRC-2 converge to zero 

after three repetitions. This shows the superiority of the PCI in terms of the convergence 

rate. This is understandable, because the PCI is the ideal compensator as it is the exact 

inverse of the plant matrix. The DRC-2 here only approximates the inverse of strong 

dynamic elements in the plant matrix. In terms of the complexity, the DRC-2 is simpler 

than the PCI. In DRC-2, only � elements are needed to build the compensator matrix. 

Moreover, all the elements of the DRC-2 are low order, and in causal form. The 

complexity of the PCI design will arise significantly when the plant model is in the high 

order. 
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For instance, the use of the PCI design for the plant model (6.31) will result in 

very high order compensators. Each transfer function of the discrete model of (6.31) has 

the following order: 

 

D�00D�00 = 1112 
D�01D�01 = 910 

D�10D�10 = 910 
D�11D�11 = 1112 (6.76) 

 

Using the equation (6.70)-(6.71), the determinant of �(�) has 42 zeros and 44 

poles. If all the zeros are stable and there is no zero pole cancellation, the denumerator 

of the PCI will have an order 42, and of course the order of the numerator will be higher 

than 42. This complexity shows the drawback of the PCI.  

 

 

6.5  EXPERIMENTAL RESULTS 
 

This section presents the experimental results of the proposed DRCs. The real-time 

experiments were conducted on the 2 DOF Quanser robot plant pictured in Figure 3.5. 

Two servo motors mounted at a fixed distance control two arms coupled via two non-

powered two-link arms. The system has 2 actuated and 3 unactuated revolute joints. The 

4-bar linkage system gives a coupling effect to the actuated joints. The 2 DOF Quanser 

robot plant is a 2x2 MIMO system, and its transfer functions were experimentally 

modeled using time-domain data.  

 

The experiments aimed to control the end effector E in order to have diamond 

shape movement, by giving a triangle reference signal at each channel. The reference 

signals are X-Y coordinates �34�, 35�), where 34� and 35� are given on Channel 1 and 

2 respectively. The period of both 34�  and 35� are 2 s, and 35� has to be started 0.5	G 

after 34� .The proposed DRC-1 and DRC-2 are used to control the position of the end 

effector. The tracking outputs and tracking errors of the system using DRC-1 and DRC- 

2 are shown in Figure 6.9 and Figure. 6.10 respectively.  
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(a) 

 

(b) 

 

(c) 

Figure 6.9 DRC-1 (a) Tracking output	E6(�),(b) Tracking output E7(�),  
(c).Tracking errors e6(�) and e7(�) 

Figure 6.9(c) shows that the tracking errors on both channels converge to zero 

after 3 repetitions. As indicated in Figure 6.9(c), a similar performance was achieved for 

DRC-2. 
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(a) 

 

(b) 

 

(c) 

Figure 6.10 DRC-2 (a) Tracking output	E6(�),(b) Tracking output E7(�),  
(c).Tracking errors e6(�) and e7(�). 
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The end-effector X-Y position response of DRC-2 is shown in Figure 6.11. 

Figure 6.11 traces the end effector movement in inches after reaching a steady state. It 

can be seen that the trace of the end effector forms a diamond shape, and it follows the 

set point exactly.  

 

 

Figure 6.11 End effector X-Y position response of DRC-2 

 

For comparison, the PCI was also implemented with �� 	= 1	 . The tracking 

outputs and errors are shown in Figure 6.12(a)-(b) and Figure 6.12(c) respectively. 

Figure 6.12(c) shows that the tracking errors perfectly converge to zero after two 

repetitions. These results indicate that the PCI has a superior convergence rate 

compared to DRCs. This performance verifies the simulation results presented in 

subsection 6.3.4.  
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(a) 

 
(b) 

 

(c) 

Figure 6.12 PCI (a) Tracking output	E6(�),(b) Tracking output E7(�),  
(c).Tracking error e6(�) and e7(�) 
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6.6  SUMMARY 
 

A decentralized RC design for linear MIMO system has been presented in this chapter. 

Two approaches have been proposed, DRC-1 and DRC-2.  

 

In DRC-1, Relative Gain Array (RGA) analysis is used first to obtain the best 

pairing of inputs and outputs. A robustness check is then conducted to determine the 

impact of neglected couplings. Once the robustness check has been performed, then the 

decentralized stabilizing controller can be designed based on the chosen complimentary 

sensitivity function. The compensator matrix �(�)  is designed in discrete-time. For �Ã� MIMO system, there are �-elements of matrix �(�)  needing to be designed. 

Each element of �(�) has been designed using optimization to obtain a low order, stable 

and causal compensator. If elements of +(G)  are chosen to have the same transfer 

function, then only one optimization problem needs to be solved. Once, the 

compensator matrix �(�) has been obtained, a stability check of the MIMO RC system 

needs to be performed.   

 

In DRC-2, the design does not require a stabilizing controller to be obtained, nor 

separate checking of the stability condition. The stability check is packed as a constraint 

in the optimization problem. This means that the obtained compensator parameters from 

the optimization ensure the stability of the MIMO RC system. The compensator matrix �(�) is obtained by solving a single optimization problem. The design of DRC-2 is 

more straightforward than DRC-1. However, DRC-2 design requires a large number of 

parameters to be optimized especially for high order plant. This large-scale optimization 

in DRC-2 is more complex than solving the Diophantine Equation in DRC-1. 

 

Both DRC-1 and DRC-2 have been verified by simulation and real-time 

experiments, and shown good tracking performance.  For comparison, the PCI method 

was also simulated and implemented in real-time experiments. The PCI design results in 

a full matrix �(�), in which its elements are non-causal and in high order.  
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

 

 

In this chapter, the contributions of this research are summarized, and issues that are 

worth future investigation are discussed. 

 

 

7.1  CONCLUSION 

 

This thesis has presented 3 groups of algorithms; a Robust RC design in Chapter 4, an 

Adaptive RC design in Chapter 5, and a MIMO RC design in Chapter 6. A comparison 

of all proposed algorithms is summarized in Table 7.1.  

 

Chapter 4 proposed two main ideas; a new design of RC compensator, and a 

robust RC design that works for a time-varying sampling period. A low order, stable, 

and causal IIR filter based compensator was first designed using an optimization 

method to achieve fast convergence and high tracking accuracy. Since the compensator 

has a causal form, then it can be implemented independently without being merged to 

the internal model that is mostly in the high order. This reduces the design complexity, 

as most of the existing repetitive compensators are either non-causal or unstable, which 

makes their implementation difficult. The design works for both minimum and non-

minimum phase plant, where fast convergence and high tracking accuracy have been 

achieved. The compensator order should be equal or higher than the plant order to give 

good phase and magnitude compensation.  
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A robust RC compensator was then designed to achieve a stable system when 

the sampling period varies in a defined range. In a robust design, the nominal 

compensator is designed at a nominal sampling period to achieve fast convergence and 

high tracking accuracy. Then, the robust compensator closest to the nominal one is 

designed using optimization, in which it has to ensure that the system is stable in the 

defined range of sampling period. The proposed compensators have been verified by 

simulation and real-time experiments. 

 

Chapter 5 presented an MRRC and ARC design method. Both MRRC and ARC 

can simultaneously track the periodic reference signal and reject the periodic 

disturbance, where the reference period is not necessarily the same or multiples of the 

disturbance period. The MRRC scheme successfully works for known plant subject to 

periodic disturbance with fixed frequency. The MRRC is constructed of two controllers: 

Model Reference Control (MRC), and RC. The controller parameters of MRC are fixed, 

and designed based on the transfer function matching. The RC part is composed of the 

internal model and the compensator that is an inverse of the reference model.  

 

An ARC has been proposed for an unknown linear system subject to periodic 

disturbances with time-varying frequency. The proposed ARC is based on the direct 

adaptive control scheme (MRAC) and the internal model principle (RC). The ARC 

scheme can exactly reject the disturbance since the number of samples per period 

remains fixed. The time-varying plant parameters are handled by the MRAC, which 

quickly tunes the controller parameters such that the closed-loop system is stable and 

the plant output tracks the reference model output. Both simulations and experiments 

results have been presented to verify the effectiveness of the proposed design. 

 

Chapter 6 introduced a decentralized RC (DRC) design for a linear MIMO 

system. Two design approaches were presented; DRC-1 and DRC-2. In DRC-1, 

Relative Gain Array (RGA) analysis was used initially to obtain the best pairing of 

inputs and outputs. Then, a robustness check was conducted to determine the impact of 

neglected couplings. Once the robustness check has been performed, then the 

decentralized stabilizing controller can be designed based on the chosen complimentary 

sensitivity function. The RC compensator matrix was designed in discrete-time. For a 
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�Ã�  MIMO system, there are m-elements of compensator matrix that need to be 

designed. Each element of the matrix was designed using optimization to obtain a low 

order, stable and causal compensator. If elements of the complimentary sensitivity 

function are chosen to have the same transfer function, then only one optimization 

problem needs to be solved. Once, the compensator matrix has been obtained, a stability 

check of RC MIMO system needs to be performed.  

 

In DRC-2, the design does not need to obtain stabilizing controller, or separate 

checking of the stability condition. The stability check has been packed as a constraint 

in the optimization problem. This means that the obtained compensator parameters from 

the optimization ensure the stability of the RC MIMO system. The compensator matrix 

is obtained by solving a single optimization problem. The design of DRC-2 is more 

straightforward than DRC-1. However, the DRC-2 design requires a large number of 

parameters to be optimized especially for high order plant. This large-scale optimization 

in DRC-2 requires greater complexity than just solving Diophantine Equation in DRC-

1. Both DRC-1 and DRC-2 have been verified by simulation and real-time experiments, 

and show good tracking performance. 

 

Table 7.1 Comparison of all proposed algorithms 

Algorithm 

Chapter 4 Chapter 5 Chapter 6 

New 

Compensator 

 

Robust 

Compensator 

 

MRRC 

 

ARC 

 

DRC-1 and 

DRC-2 

 

Plant Class Linear SISO Linear SISO Linear 

SISO 

Linear 

SISO 

Linear 

MIMO 

 

RC Class  Internal 

Model 

Internal 

Model 

Internal 

Model 

Internal 

Model 

Internal 

Model 
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Prior know-

ledge 

Parametric 

model of the 

plant, number 

of samples 

per period  

Parametric 

model of the 

plant, number 

of samples 

per period , 

sampling 

period 

interval 

Parametric 

model of  

the plant, 

number of 

samples 

per period 

 

Order of the 

plant, 

number of 

samples per 

period 

 

Parametric 

model of the 

plant, 

number of 

samples per 

period  

 

Controller 

Design 

Frequency 

Domain 

Frequency 

Domain 

Time 

Domain 

Time 

Domain 

Freq. 

Domain 

 

Selective 

Frequency 

Tracking / 

Rejection  

No 

(Fundamental 

Frequency 

and its 

harmonics up 

to Nyquist) 

No No No No 

 

Simultaneo

us Tracking 

and 

Rejection 

 

No (Tracking 

or Rejection) 

No Yes  Yes No  

 

Convergen- 

ce Rate  

Fast (no 

learning gain 

requirement) 

Fast at the 

nominal 

sampling 

period 

Fast 

(depend 

on RC 

gain) 

Medium 

(depend on 

both 

adaptive 

and RC 

gain) 

Fast (no 

learning gain 

requirement) 

 

Tracking 

Accuracy 

Good Good Good Fine Good 
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7.2  FUTURE WORK 
 

Three groups of algorithms have been proposed in this thesis; a Robust RC 

design, an Adaptive RC design, and a MIMO RC design. The proposed robust RC 

compensator described in Chapter 4 has been designed for an RC with a discrete 

modified internal model. The modified internal model uses Q-filter to improve 

robustness, but at the expense of tracking accuracy at higher frequencies. The proposed 

compensator in this thesis also has a low order, stable and causal transfer function. For 

tracking control where very high tracking accuracy is required, the internal model 

without a Q-filter is sometimes preferred. A stable and causal compensator for a discrete 

internal model without a Q-filter has not yet been proposed. 

 

��(�) = �(�) �>^1 − �^ 
(7.1) 

 

For rejection of narrow band disturbance, the finite internal model is sometimes 

sufficient. If the purpose is to reject a repetitive signal that consists of two dominant 

fundamental frequencies and their harmonics, then multi-periodic RC will be required. 

The stable and causal compensators for a finite and multi-periodic internal model have 

also not yet been investigated. 

 

��(�) = �(�) 1(1 − z>0)∏ (1 − 2 cos(kωg+) z>0 + z>1)k∈W  (7.2) 

 

��(�) = �(�) 1∏ 1 − �o(�)�>^pqoP0  (7.3) 

where �(�) is a stable and causal compensator, and 
0(0>�i©)∏ (0>1æg?(k�jR)�i©}�iô)V∈k   is 

a finite internal model as shown in (2.8) , and 
0∏ 0>�p(x)xilpmpn©  is a multi- periodic 

internal model as shown in (2.10).  

 

In Adaptive RC design described in Chapter 5, the gradient adaptation law and 

fixed RC gain are used for each value of sampling period. It is also possible to use 

Least-Squares adaptation law and adaptive RC gain to achieve quick parameter 
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convergences and faster disturbance rejection. Due to the change of plant parameters in 

ARC, the adaptive of RC gain is necessary to achieve fast rejection. The design of an 

ARC using adaptive RC gain is quite challenging, and this of course needs a new 

stability analysis.  

 

The decentralized RC (DRC) proposed in Chapter 6 works for MIMO model 

with square matrix. The DRC for non-square matrix has not been investigated yet. The 

challenge will arise especially when the number of outputs is larger than the number of 

inputs. A new stability condition for RC system with non-square MIMO model needs to 

be studied too. Some of the issues discussed above could be investigated in the future.  

 

All algorithms proposed in this thesis are designed for linear systems. The 

algorithms can be extended to nonlinear systems. The nonlinear system itself can be 

represented as a linear system with additional term. By treating an additional term as 

disturbance, the proposed algorithms can be employed for tracking/rejecting periodic 

signal in nonlinear system. In this case, a new stability condition needs to be analyzed 

too. Extending the proposed algorithms to nonlinear system can be another possible 

future work. 
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APPENDIX 

MATLAB CODES AND SIMULINK MODELS 

USED IN SIMULATIONS AND EXPERIMENTS 
 

 (A) LIST OF MATLAB CODES AND SIMULINK MODELS  

CHAPTER 4: Design of Robust RC with Time-varying Sampling Periods 

No Name Description Used in 

1. compobjfun_lead_quan

ser.m 

m- file function to formulate the 

objective function  in (4.18) for Quanser 

servo plant (minimum phase system). 

Simulation 

2. compconfun_lead_quan

ser.m 

m- file function to formulate the 

optimization  nonlinear constraints no.2 

in (4.18) for Quanser servo plant. The 

boundary constraint (no.1) is given in the 

optimtool (GUI of optimization toolbox) 

Simulation 

3. compobjfun_lead_robot

_nmp.m 

m- file function to formulate the 

objective function in (4.18) for 7 degree 

of freedom robot (non-minimum phase 

system). 

Simulation 

4. compconfun_lead_robo

t_nmp.m 

m- file function to formulate the 

constraints in (4.18) for 7 degree of 

freedom robot (non-minimum phase 

system). 

Simulation 

5. sim_quanser_new_com

pensator_nominalTs.md

l 

Simulink model to simulate the proposed 

new compensator for Quanser servo 

plant. 

Simulation 



176 
 

6. sim_robot_nmp_new_c

ompensator_nominalTs.

mdl 

Simulink model to simulate the proposed 

new compensator for 7 degree of 

freedom  robot  

Simulation 

7. robobjfun_lead_quanse

r.m 

m- file function to formulate the 

objective function in (4.30) for Quanser 

servo plant. 

Simulation 

8. robconfun_lead_quanse

r.m 

m- file function to formulate the 

constraints function no.2 and 3 in (4.30) 

for Quanser servo plant. The boundary 

constraint (no.1) is given in the optimtool 

(GUI of optimization  toolbox) 

Simulation 

9. sim_quanser_robust_co

mpensator.mdl 

Simulink model to simulate the proposed 

robust compensator for Quanser servo 

plant. 

Simulation 

10. real_quanser_new_com

pensator_nominalTs.md

l 

Simulink model to run the RC system 

with the proposed new compensator in 

real-time. 

Experiment 

11 real_quanser_lead_com

pensator_nominalTs.md

l 

Simulink model to run the RC system 

with the lead compensator ���� in real-

time. 

Experiment 

12 real_quanser_robust_c

ompensator.mdl 

Simulink model to run the RC system 

with the robust compensator in real-time. 

Experiment 

 

CHAPTER 5: Design of Adaptive RC of Linear Systems with Time-varying  

Periodic Disturbances 

No Name Description Used in 

1. sim_quanser_MRRC.m

dl 

Simulink model to simulate the proposed 

model reference repetitive control 

(MRRC) for Quanser model. 

Simulation 

2.  adaptive_law_theta_gr

ad_est_Sbuilder_1st_ne

w.c 

C-S function for updating theta each 

sampling time, where theta has four 

parameters to be adapted. 

Simulation 

and 

Experiment 
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3. adaptive_law_rho_grad

_est_Sbuilder_1st.c 

C-S function for updating rho each 

sampling time, where rho has single 

parameter to be adapted. 

Simulation 

and 

Experiment 

4. rep_control_out_states.

c 

C-S function to generate RC control law, 

and also RC states. With this function, 

not just RC output, but each state of RC 

can be saved  to the workspace. 

Simulation 

and 

Experiment 

5. sim_quanser_ARC.mdl Simulink model to simulate the proposed 

adaptive repetitive control (ARC) for 

quanser model. 

Simulation 

6. sim_RC_fixed_Ts_vary

_dist.mdl 

Simulink model to simulate the prototype 

RC with fixed sampling period and time-

varying disturbance. 

Simulation 

7. sim_MRAC_fixed_Ts_v

ary_dist.mdl 

Simulink model to simulate the model 

reference adaptive control (MRAC) with 

fixed sampling period and time-varying 

disturbance. 

Simulation 

8. gen_dist.m  m-file function to generate time-varying 

disturbance. Input of this function is a 

vector of sampling period. 

Simulation 

9. real_quanser_ARC.mdl Simulink model to run the proposed ARC 

in real-time. 

Experiment 

10. real_fixed_RC_fixed_Ts

_vary_dist: 

Simulink model to run the prototype RC 

with fixed sampling period and time-

varying disturbance in real-time 

Experiment 

 

 

 

CHAPTER 6: Design of Decentralized RC of Linear MIMO Systems 

No Name Description Used in 

1. compobjfun_lead_mimo

_pp_robot.m 

m- file function to formulate the 

objective function of DRC-1 for pick and 

place robot model. 

Simulation 
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2. compconfun_lead_mim

o_pp_robot.m 

m- file function to formulate the 

nonlinear constraints of DRC-1 for pick 

and place robot model. The boundary 

constraint is given in the optimtool (GUI 

of the optimization toolbox) 

Simulation 

3. stab_control_pp_robot.

m 

m- file function to obtain the 

decentralized stabilizing controller for 

pick and place robot model. 

Simulation 

4. stab_control_quanser.

m 

m- file function to obtain the 

decentralized stabilizing controller for 2 

DOF Quanser robot model. 

Simulation 

5. compobjfun_lead_mimo

_quanser_one.m 

m- file function to formulate the 

objective function of DRC-1 for 2 DOF 

quanser robot model. 

Simulation 

6. compconfun_lead_mim

o_quanser_one.m 

m- file function to formulate the 

nonlinear constraints of DRC-1 for 2 

DOF Quanser robot model. 

Simulation 

7. robust_check_mimo_qu

anser.m 

m-file function to assess the stability of 

quanser RC system using DRC-1 

Simulation 

8. compobjfun_lead_mimo

_quanser_two.m 

m- file function to formulate the 

objective function of DRC-2 for 2 DOF 

Quanser robot model. 

Simulation 

9. compconfun_lead_mim

o_quanser_two.m 

m- file function to formulate the 

nonlinear constraints of DRC-2 for 2 

DOF Quanser robot model. 

 

Simulation 

10. pci_matrix_quanser.m m- file function to obtain the phase 

cancellation inverse (PCI) matrix  for 2 

DOF Quanser robot model. 

Simulation 

11. s_RC_MIMO_decentral

ized_pp_robot.mdl 

Simulink model to simulate the proposed 

DRC-1 for pick and place robot model 

Simulation 

12. s_RC_MIMO_PCI_qua

nser.mdl 

Simulink model to simulate the PCI for 2 

DOF quanser robot model. 

Simulation 
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13. s_MIMO_RC_quanser_

two.mdl 

Simulink model to simulate the proposed 

DRC 2 for 2 DOF Quanser robot model. 

Simulation 

14. real_MIMO_RC_quans

er_m1.mdl 

Simulink model to run the proposed DRC 

1 for 2 DOF Quanser robot model in real-

time 

Experiment 

15. real_MIMO_RC_quans

er_m2.mdl 

Simulink model to run the proposed DRC 

2 for 2 DOF Quanser robot model in real-

time. 

Experiment 

16. real_MIMO_RC_quans

er_PCI.mdl 

Simulink model to run the PCI for 2 DOF 

Quanser robot model in real-time. 

 

Experiment 

 

 

(B) MATLAB CODES TO FORMULATE OPTIMIZATION PROBLEM 

(4.18) – NEW DESIGN OF RC COMPENSATOR 

 

function [f,fi,ci] = compobjfun_lead_quanser(x) 

% Objective function for Quanser servo model 

% x = parameters to be optimized 

% f = total objetive function value 

% fi = objective function value at harmonics i 

% ci = constraint value at harmonics i 

Ts = 0.005; 

s= tf('s'); 

% Second Order Quanser Servo (Minimum Phase) 

Kp = 10; 

Gs=1.74/(0.0268*s^2+s); 

G = c2d(Gs,Ts); 

Gstab = G/(1+Kp*G); 

Gstab = minreal(Gstab); 

%------------------------------------------- 

[a,b]=tfdata(Gstab,'v'); 

z = tf('z',Ts); 
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q = [0.25 0.5 0.25];% Q-filter coefficients  

%%%%--------------Picking up the order of compensator---------------------- 

%%%%--------------1st Order Compensator------------------------------------ 

% p1 = x(1); 

% b0 =x(2); b1=x(3); 

%%%%----------------------------------------------------------------------- 

%%%%--------------2nd Order Compensator------------------------------------ 

p1 = x(1);p2 = x(2); 

b0=x(3); b1=x(4); b2=x(5);  

%%%%----------------------------------------------------------------------- 

%%%%--------------3rd Order Compensator------------------------------------ 

% p1 = x(1);p2 = x(2);p3 = x(3); 

% b0=x(4); b1=x(5); b2=x(6);b3=x(7);  

%%%%----------------------------------------------------------------------- 

%%%%--------------4th Order Compensator------------------------------------ 

% p1 = x(1);p2 = x(2);p3 = x(3);p4 = x(4); 

% b0=x(5); b1=x(6); b2=x(7); b3=x(8); b4=x(9); 

%%%%----------------------------------------------------------------------- 

%%%%--------------5th Order Compensator------------------------------------ 

% p1 = x(1);p2 = x(2);p3 = x(3);p4 = x(4);p5 = x(5); 

% b0=x(6); b1=x(7); b2=x(8); b3=x(9); b4=x(10);b5=x(11);  

%%%%----------------------------------------------------------------------- 

 

freq=0.8:0.8:100; % picking frequencies at all harmonics up to Nyquist 

Ws=2*pi*freq*Ts; 

f = 0;fi=[]; 

ci = 0.95*ones(1,length(freq));  

 

%%%%--------------Obtaining total objective value ------------------------- 

%%%%%---- For 1st Order (3 Parameters)------------------------------------- 

% for k=1:1:length(freq); 

%     numF = b0*exp(i*1*Ws(k))+b1; 

%     numG = a(2)*exp(i*Ws(k))+a(3); 
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%     num = numF*numG; 

%     denF = (exp(i*Ws(k)) - p1); 

%     denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

%     denum = denF*denG; 

%     f0 = ((1-num/denum))*conj((1-num/denum)); 

%     f1 = sqrt(f0); 

%     numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

%     c1 = abs(numq); 

%     ft = f1*c1; 

%     f = f+ft; 

%     fi = [fi ft];      

% end 

%%%%----------------------------------------------------------------------- 

 

%%%%%---- For 2nd Order (5 Parameters)------------------------------------- 

for k=1:1:length(freq); 

    numF = b0*exp(i*2*Ws(k))+b1*exp(i*1*Ws(k))+b2; 

    numG = a(2)*exp(i*Ws(k))+a(3); 

    num = numF*numG; 

    denF = (exp(i*Ws(k)) - p1)*(exp(i*Ws(k)) - p2); 

    denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

    denum = denF*denG; 

    f0 = ((1-num/denum))*conj((1-num/denum)); 

    f1 = sqrt(f0); 

    numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

    c1 = abs(numq); 

    ft = f1*c1; 

    f = f+ft; 

    fi = [fi ft];      

end 

%%%%----------------------------------------------------------------------- 

 

%%%%---- For 3rd Order (7 Parameters) ------------------------------------- 
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% for k=1:1:length(freq); 

%     numF = b0*exp(i*3*Ws(k))+b1*exp(i*2*Ws(k))+b2*exp(i*1*Ws(k))+b3; 

%     numG = ( a(2)*exp(i*Ws(k))+a(3) ); 

%     num = numF*numG; 

%     denF = (exp(i*Ws(k)) - p1)*(exp(i*Ws(k)) - p2)*(exp(i*Ws(k)) - p3); 

%     denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

%     denum = denF*denG; 

%     f0 = ((1-num/denum))*conj((1-num/denum)); 

%     f1 = sqrt(f0); 

%     numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

%     c1 = abs(numq); 

%     ft = f1*c1; 

%     f = f+ft; 

%     fi = [fi ft];      

% end 

%%%%----------------------------------------------------------------------- 

 

%%%%---- For 4th Order (9 Parameters) ------------------------------------- 

% for k=1:1:length(freq); 

%     numF = b0*exp(i*4*Ws(k))+b1*exp(i*3*Ws(k))+b2*exp(i*2*Ws(k))+… 

%              b3*exp(i*1*Ws(k))+b4; 

%     numG = (a(2)*exp(i*Ws(k))+a(3)); 

%     num = numF*numG; 

%     denF = (exp(i*Ws(k)) - p1)*(exp(i*Ws(k)) - p2)*(exp(i*Ws(k)) - p3)*… 

%         (exp(i*Ws(k)) - p4); 

%     denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

%     denum = denF*denG; 

%     f0 = ((1-num/denum))*conj((1-num/denum)); 

%     f1 = sqrt(f0); 

%     numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

%     c1 = abs(numq); 

%     ft = f1*c1; 

%     f = f+ft; 
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%     fi = [fi ft];      

% end 

%%%%----------------------------------------------------------------------- 

 

%%%%-- For 5th Order (11 Parameters) --------------------------------------- 

% for k=1:1:length(freq); 

%     numF = b0*exp(i*5*Ws(k))+b1*exp(i*4*Ws(k))+b2*exp(i*3*Ws(k))+… 

%           b3*exp(i*2*Ws(k))+b4*exp(i*1*Ws(k))+b5; 

%     numG = a(2)*exp(i*Ws(k))+a(3); 

%     num = numF*numG; 

%     denF = (exp(i*Ws(k)) - p1)*(exp(i*Ws(k)) - p2)*(exp(i*Ws(k)) - p3)*… 

%          (exp(i*Ws(k)) - p4)*(exp(i*Ws(k)) - p5); 

%     denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

%     denum = denF*denG; 

%     f0 = ((1-num/denum))*conj((1-num/denum)); 

%     f1 = sqrt(f0); 

%     numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

%     c1 = abs(numq); 

%     ft = f1*c1; 

%     f = f+ft; 

%     fi = [fi ft];      

% end 

%%%%----------------------------------------------------------------------- 

 

function [c, ceq] = compconfun_lead_quanser(x) 

% Optimzation constraints function for quanser servo model 

  

[f,fi,ci] = compobjfun_lead_quanser(x); 

cf = fi-ci; 

c = [cf]; 

ceq=[]; 
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(C) MATLAB CODES TO FORMULATE OPTIMIZATION PROBLEM 

(4.30) – ROBUST RC COMPENSATOR 

 

function f = robobjfun_lead_quanser(x) 

% Objective function of robust compensator for quanser servo model 

%%%-------- Compensator coefficients at nominal Ts------------------------- 

x0 = [-0.925 -0.925 1922.8   -3567.9    1671.2]; 

%%%%--------------2nd Order Robust Compensator----------------------------- 

a1 = x(1); a2=x(2);   

b0=x(3); b1=x(4); b2=x(5);  

%%%%--------------the objective function----------------------------------- 

f = (a1-x0(1))^2 + (a2-x0(2))^2+(b0-x0(3))^2+(b1-x0(4))^2+... 

     (b2-x0(5))^2; 

 

function [c, ceq] = robconfun_lead_quanser(x) 

%%% Optimzation constraints function of robust compensator  

%%% for quanser servo model 

%%% the aim is to stabilize plant for h=[0.0025,0.0085] s 

a1 = x(1); a2=x(2); b0=x(3);b1=x(4);b2=x(5); 

u = [a1 a2 b0 b1 b2]'; 

q = [0.25 0.5 0.25]; % Q-filter coefficients 

s= tf('s'); 
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%%% Discrete model at low sampling period 

hl = 0.0025; 

Kp = 10; 

Gs=1.74/(0.0268*s^2+s); 

Gl = c2d(Gs,hl); 

z = tf('z',hl); 

Gstab_low = minreal(Gl/(1+Kp*Gl)); 

%------------------------------------------- 

[a,b]=tfdata(Gstab_low,'v'); 

freq = 1/(hl*250):1/(hl*250):1/(2*hl); 

Ws=2*pi*freq*hl; 

fi=[];ci=0.9*ones(1,length(freq)); 

for k=1:1:length(freq); 

    numF =u(3)*exp(i*2*Ws(k))+u(4)*exp(i*1*Ws(k))+u(5); 

    numG = a(2)*exp(i*Ws(k))+a(3); 

    num = numF*numG; 

    denF = (exp(i*Ws(k)) - u(1))*(exp(i*Ws(k)) - u(2)); 

    denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

    denum = denF*denG; 

    f0 = ((1-num/denum))*conj((1-num/denum)); 

    f1 = sqrt(f0); 

    numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

    c1 = abs(numq); 
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    ft = (f1*c1); 

    fi = [fi ft];      

end 

%%% Discrete model at up sampling period 

hu = 0.0085; 

Kp = 10; 

Gu = c2d(Gs,hu); 

z = tf('z',hu); 

Gstab_high = minreal(Gu/(1+Kp*Gu)); 

%------------------------------------------- 

[a,b]=tfdata(Gstab_high,'v'); 

freq = 1/(hu*250):1/(hu*250):1/(2*hu); 

Ws=2*pi*freq*hu; 

fk=[];ck=0.9*ones(1,length(freq)); 

for k=1:1:length(freq); 

    numF =u(3)*exp(i*2*Ws(k))+u(4)*exp(i*1*Ws(k))+u(5); 

    numG = a(2)*exp(i*Ws(k))+a(3); 

    num = numF*numG; 

    denF = (exp(i*Ws(k)) - u(1))*(exp(i*Ws(k)) - u(2)); 

    denG = exp(i*2*Ws(k))+b(2)*exp(i*Ws(k))+b(3); 

    denum = denF*denG; 

    f0 = ((1-num/denum))*conj((1-num/denum)); 

    f1 = sqrt(f0); 
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    numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

    c1 = abs(numq); 

    ft = (f1*c1); 

    fi = [fi ft];    

end 

f_all = [fi fk]; 

c_all = [ci ck]; 

c = f_all - c_all; 

ceq = []; 

 

(D) MATLAB CODES TO FORMULATE OPTIMIZATION PROBLEM 

(6.30) – DECENTRALIZED RC-2 (DRC-2) 

 

function [f,fi,ci] = compobjfun_lead_mimo_quanser_two(x) 

% Objective function for DRC-2  

% x = parameters to be optimized 

% f = total objetive function value 

% fi = objective function value at harmonics i 

% ci = constraint value at harmonics i 

Ts = 0.025; % sampling rate 

s= tf('s'); 

% Continous model of 2 DOF Quanser robot plant 

B11 =  1.021;  

A11 = [0.005907  0.1191  1];  

B21 = [-0.002888 0 ];  

A21 = [ 0.006947  0.1201  1];  
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B12 = [ -0.01438  0.3975];  

A12 = [26.43  7.202  1];  

B22 = 1.003;  

A22 = [0.005095  0.1151  1];  

Gs = [tf(B11,A11) tf(B12,A12);tf(B21,A21) tf(B22,A22)]; 

% Discrete model of 2 DOF Quanser robot plant 

G = c2d(Gs,Ts); 

Gstab = minreal(G); 

[a12,b12]=tfdata(Gstab(1,2),'v'); 

[a21,b21]=tfdata(Gstab(2,1),'v'); 

[a11,b11]=tfdata(Gstab(1,1),'v'); 

[a22,b22]=tfdata(Gstab(2,2),'v'); 

q = [0.25 0.5 0.25]; % Q-filter coefficients 

z = tf('z',Ts); 

%%%%--------------2nd Order Compensators- 10 unknown parameters----------- 

p1 = x(1); p2 = x(2);p1_2 = x(3); p2_2 = x(4); 

b0 = x(5); b1 = x(6); b2 = x(7);  

b0_2 = x(8); b1_2 = x(9); b2_2 = x(10);  

%%%%%---- 2 lead compensators - 10 parameters to be optimized------------- 

freq = 1/(Ts*80):1/(Ts*80):1/(2*Ts); 

Ws = 2*pi*freq*Ts; 

f = 0;fi=[]; 

ci = 0.95*ones(1,length(freq)); 

%%%%--------------Obtaining total objective value ---------------------------- 

for k=1:1:length(freq); 

    numF1 = b0*exp(i*2*Ws(k))+b1*exp(i*1*Ws(k))+b2; 

    numF2 = b0_2*exp(i*2*Ws(k))+b1_2*exp(i*1*Ws(k))+b2_2; 
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    numG1 =  a11(2)*exp(i*Ws(k))+a11(3); 

    numG2 =  a22(2)*exp(i*Ws(k))+a22(3); 

    num1 = numF1*numG1; 

    num2 = numF2*numG2; 

    denF1 = (exp(i*Ws(k)) - p1)*(exp(i*Ws(k)) - p2); 

    denF2 = (exp(i*Ws(k)) - p1_2)*(exp(i*Ws(k)) - p2_2); 

    denG1 = exp(i*2*Ws(k))+b11(2)*exp(i*Ws(k))+b11(3); 

    denG2 = exp(i*2*Ws(k))+b22(2)*exp(i*Ws(k))+b22(3); 

    denum1 = denF1*denG1; 

    denum2 = denF2*denG2; 

    numq = q(1)*exp(-i*Ws(k))+q(2)+q(3)*exp(i*Ws(k)); 

    f0_1 = ((1-num1/denum1))*conj((1-num1/denum1)); 

    f1_1 = sqrt(f0_1); 

    f0_2 = ((1-num2/denum2))*conj((1-num2/denum2)); 

    f1_2 = sqrt(f0_2); 

    c1 = abs(numq); 

    ft = f1_1*c1; 

    ft_2=f1_2*c1; 

    f = f+ft+ft_2; 

    numG3 =  a12(2)*exp(i*Ws(k))+a12(3); 

    denG3 =  exp(i*2*Ws(k))+b12(2)*exp(i*Ws(k))+b12(3); 

    numG4 =  a21(2)*exp(i*Ws(k))+a21(3); 

    denG4 =  exp(i*2*Ws(k))+b21(2)*exp(i*Ws(k))+b21(3); 

    F  = [numF1/denF1 0; 0 numF2/denF2]; 

    G  = [(numG1/denG1) (numG3/denG3);(numG4/denG4) (numG2/denG2)]; 

    P = (eye(2,2)-F*G)*numq; 

    detP = P(1,1)*P(2,2)-P(1,2)*P(2,1); 
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    fs = abs(detP); 

    fi = [fi fs]; 

end 

 

function [c, ceq] = compconfun_lead_mimo_quanser_two(x) 

% Optimization constraints for mimo model of 2 DOF robot  

[f,fi,ci] = compobjfun_lead_mimo_quanser_two(x); 

cf = fi-ci; 

c = [cf]; 

ceq=[]; 
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