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Signifying quantum benchmarks for qubit teleportation and secure quantum
communication using Einstein-Podolsky-Rosen steering inequalities
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The demonstration of quantum teleportation of a photonic qubit from Alice to Bob usually relies on data
conditioned on detection at Bob’s location. I show that Bohm’s Einstein-Podolsky-Rosen (EPR) paradox can be
used to verify that the quantum benchmark for qubit teleportation has been reached, without postselection. This
is possible for scenarios insensitive to losses at the generation station, and with efficiencies of ηB > 1/3 for the
teleportation process. The benchmark is obtained if it is shown that Bob can “steer” Alice’s record of the qubit
as stored by Charlie. EPR steering inequalities involving m measurement settings can also be used to confirm
quantum teleportation, for efficiencies ηB > 1/m, if one assumes trusted detectors for Charlie and Alice. Using
proofs of monogamy, I show that two-setting EPR steering inequalities can signify secure teleportation of the
qubit state.
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I. INTRODUCTION

Quantum teleportation, the process by which a quantum
state is transferred from one party to another, has inspired
countless investigations and many experiments [1–15]. In
a real experiment where imperfections will be present, it
becomes necessary to distinguish the process of quantum tele-
portation from any other process which can be performed clas-
sically. The usual procedure is to determine the fidelityF of the
final teleported state relative to the initial state. In a classical
process, the final sate is created by a “measure and regenerate”
strategy. All such strategies incur extra noise, so that the fidelity
cannot exceed a certain value, Fc [16,17]. The figure of merit
for quantum teleportation is a fidelity exceeding Fc.

A very important example of teleportation for the purpose
of quantum communication [18,19] is the photonic qubit
state teleported over long distances [4,5,14,15]. This quantum
teleportation has been realized experimentally using the
original protocol of Bennett et al. [1]. The criticism has been
raised, however, that these experiments may not give truly
“loophole-free” demonstrations, since the fidelity is calculated
by postselection, i.e., by using only the data observed condi-
tionally on detecting a photon at the teleported location [20]. A
fundamental issue is that loss will become more problematic
where teleportation distances are large (although the storage
of entangled states using quantum memories may overcome
this). It is an interesting question, therefore, to ask what
levels of overall efficiency can be tolerated in order to claim
loophole-free quantum teleportation.

Moreover, the problem of how to demonstrate quantum tele-
portation is closely linked with how to signify the “security”
of the teleported qubit. If Alice teleports a qubit state to Bob,
she may want to know that the state is teleported uniquely to
him, and not also to another observer, Eve [21–26]. A fidelity
F > 2/3 will signify quantum teleportation, which ensures
that there is not an infinite number of identical copies of the
qubit [24]; the fidelity F > 5/6 will ensure that any “copy”
of Bob’s qubit held by Eve will have a degraded fidelity (less
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than 5/6) [21,22]. This knowledge could be used to evaluate
the actual security of a string of qubit values that are teleported
to Bob by enabling calculation of bounds on Eve’s error rate.
Security can be measured in terms of the error rate for any
possible Eve, or, more generally, in terms of the maximum
number of Eves that can possess a nondegraded copy of Bob’s
teleported qubit. However, for such analyses involving lossy
systems, the usual approach taken to treat “no detection” events
leads to an increase in dimension of the Hilbert space [27–31],
so that the original fidelity benchmarks which assume qubit
systems are not directly applicable in that case.

In this paper, I present a quite different approach to
determining signatures for quantum teleportation. I show how
Bohm’s Einstein-Podolsky-Rosen (EPR) paradox [32,33] can
be used to confirm “loophole-free” without postselection the
quantum teleportation and quantum security of a qubit. The
result relies on a simple proof of monogamy: Bohm’s EPR
paradox cannot be shared among more than a finite number
of parties. Bohm’s EPR paradox is an example of the subclass
of nonlocality called “quantum steering” [34–36], and the
method I propose requires two parties to demonstrate violation
of an “EPR steering” inequality [37,38].

I focus on the so-called “entanglement swapping teleporta-
tion scenario” [7,39–41]. In that case, Alice’s qubit, prior to
teleportation to Bob, is entangled with a qubit of Charlie’s. This
scenario captures the entire teleportation process by including
the way Alice’s qubit is locally prepared from an EPR-type
state. Hence, we are able to address the question raised by
Braunstein and Kimble [20] as to whether the zero detection
events (if properly accounted for) will detract from the genuine
fidelity of the scheme.

We can establish that the quantum benchmark for tele-
portation has been reached if Bob can demonstrate an EPR
paradox, based on his inferred predictions of Charlie’s state.
This amounts to Bob “steering” Charlie’s system (which may
be viewed as a record of the qubit teleported by Alice) [41].
We find that quantum teleportation is predicted for arbitrary
nonzero efficiencies ηC > 0 at Charlie’s station, and for an
overall teleportation efficiency of ηB > 1/3. These bounds
give a sufficient (but not necessary) condition for loophole-free
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quantum teleportation. Furthermore, if we assume trusted
detectors at Charlie’s station, it would be possible to use the
m-setting steering inequalities of Saunders et al. [38] and
Bennet, Evans et al. [29] to confirm quantum teleportation
at much lower efficiencies, ηB > 1/m.

The level of security of the teleported qubit can be deter-
mined by the number of measurement settings m associated
with the Bohm EPR steering inequality. If Bob demonstrates
steering of Charlie’s system using an m-setting steering
inequality, then there can be a maximum of m − 2 Eves that can
possess identical copies of Bob’s qubit. If Bob demonstrates
steering of Charlie’s system, using a two-setting Bohm EPR
inequality, then complete monogamy of the violation of the
inequality is guaranteed. I will show that this implies a
minimum noise level for the values of Alice’s qubits, as
inferred by any independent third party (Eve). The violation
of the two-setting Bohm EPR inequality is predicted for
ηB > 1/2, provided the assumption of trusted detectors is
justified at Charlie’s location.

I conclude with a brief discussion, pointing out the “one-
sided device-independent” [42,43] nature of the protocol that
is proposed in this paper. This means that information is given
about the security of the teleported qubit, regardless of the
nature of the devices that could be used by the parties, Bob
and Eve.

II. DEMONSTRATING BOHM’s EPR PARADOX

A. A Bohm EPR paradox criterion

Let us begin with the question of how to confirm Bohm’s
EPR paradox. This is the case where two systems (A and B)
are prepared in the Bell-Bohm state [27,33],

|ψ〉s = 1√
2
{|↑〉A|↓〉B − |↓〉A|↑〉B}. (1)

The spin outcomes measured at A and B are anticorrelated if
the same spin component is measured at each system. Bob at
B can make a prediction of any Pauli spin component σ θ

A of
Alice’s system A by making a measurement on his spin σ θ

B .
According to the EPR premises, usually called “local realism”
(LR), this implies a predetermination of each of Alice’s
spin components. In the EPR argument, the predetermined
spin components are represented by an “element of reality,”
which is a hidden variable that defines the spin outcome
for Alice’s system precisely, because Bob’s prediction is
precise. In the ideal case of Eq. (1), the hidden variable
values are 1 or −1. There is inconsistency between the
EPR premises and the “completeness of quantum mechanics”
because according to LR, all of Alice’s spin components are
predetermined simultaneously and cannot, therefore, be given
by any quantum-mechanical state [32].

In practice, Bob cannot infer Alice’s spins with perfect
accuracy. We need to know what accuracy will be enough
to deduce an EPR paradox. One useful approach is to
use quantum uncertainty relations [44]. For three spins, the
variances predicted by quantum mechanics for any quantum
system A are always constrained to satisfy [45]

(
�σX

A

)2 + (
�σY

A

)2 + (
�σZ

A

)2 � 2. (2)

On recognizing that 〈(σ θ
A/B)2〉 = 1, we note that this quantum

uncertainty relation can also be written as the “circle condi-
tion,” 〈

σX
A

〉2 + 〈
σY

A

〉2 + 〈
σZ

A

〉2 � 1, (3)

used in Refs. [31,46]. By extending the above argument that
relates to perfect correlation and ideal states [44,47], we can
derive an inequality for a practical test of the Bohm EPR
paradox. We demonstrate Bohm’s EPR paradox if

S
(3)
A|B = (

�infσ
X
A|B

)2 + (
�infσ

Y
A|B

)2 + (
�infσ

Z
A|B

)2
< 2. (4)

Here �infσ
X
A|B is the “inference” uncertainty for Bob’s pre-

diction of Alice’s spin σX
A . When there is a need to specify

the second party (in this case B) that is making the inference,
we will use the explicit notation (�infσ

X
A|B)2, but otherwise

we will write �infσ
X
A|B as �infσ

X
A . The “inference variance”

is the average conditional variance(
�infσ

X
A|B

)2 =
∑

σ
ϕ

B =−1,+1

P
(
σ

ϕ

B

){
�

(
σX

A

∣∣σϕ

B

)}2
. (5)

This variance gives the uncertainty of the “element of reality”
for σX

A . Here, {�(σX
A |σϕ

B )}2 denotes the variance of the
conditional distribution P (σX

A |σϕ

B ). The inference variances for
the spins σY and σZ are defined similarly. We have written (5)
as though the best possible prediction for Alice’s spin σX

A will
be given by Bob measuring σ

ϕ

B , and that this choice will give
the smallest �infσ

X
A . The specification of which measurement

of Bob’s is optimal is irrelevant, however, for the criterion.
(For simplicity of notation, we assume it is understood from
the context whether we are referring to the spin operator
measurements σ̂ θ

A/B or the outcomes of those measurements,
and we omit the “hats” in the first case.)

When the criterion (4) is achieved, the inferred uncertain-
ties “violate” the uncertainty principle (2) if they represent
simultaneous descriptions of spin components. For this reason,
the inequality (4) will demonstrate the incompleteness of
quantum mechanics based on the assumption of LR [44,47].
The inequality is thus a sufficient condition for Bohm’s EPR
paradox.

Bohm’s EPR paradox inequality is closely related to the
steering inequality used by Wittmann et al. to demonstrate
loophole-free steering. The close relationship between the
EPR paradox and quantum steering was pointed out in
Refs. [35–37]. Since (�infσ

θ
A|B)2 = 1 − 〈σ θ

A|σϕ

B 〉2, where
〈σ θ

A|σϕ

B 〉 is the mean of P (σX
A |σϕ

B ), substitution into (4) yields
the equivalent inequality

S = TX + TY + TZ > 1, (6)

where TX = ∑
σ

ϕ

B
P (σϕ

B )〈σX
A |σϕ

B 〉2 (and similarly for TY and
TZ). This is precisely the steering inequality used by Wittmann
et al. [31].

B. Bohm’s EPR paradox without fair sampling assumptions

The inequality (4) does not take into account detection
losses, where one or both of the particles is not detected. The
usual procedure is to introduce a fair sampling assumption,
where all “no detection” events are ignored. In some recent
experiments that detect (without fair-sampling loopholes) the
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sort of nonlocality called “quantum steering,” the assumption
is made that the detectors for Alice’s particle can be “trusted”
[29–31]. This means that the fair sampling assumption is made
asymmetrically for Alice’s system but not for Bob’s.

The Bohm EPR condition (4) can be modified so that it
will apply without fair sampling assumptions for either party.
This provides a way to demonstrate the “loophole-free” Bohm
EPR paradox. The original condition (4) is derived from the
quantum uncertainty relation (2) which is valid only when
the outcomes for the measurements are dichotomic (±1). This
uncertainty relation can be modified to allow for “no detection”
events, which are labeled by an outcome of 0. This approach
of expanding the Hilbert space has been commonly used to
treat the effect of loss on nonlocality [27–31].

It is convenient to introduce the Schwinger formalism
for spins. This enables a direct analogy with the photonic
realization of spin measurements, whereby the Stern-Gerlach
apparatus is replaced by polarizing beam splitters. Two
orthogonal polarization field modes are defined at each of
two sites A and B, and are identified by boson operators a±
and b±, respectively. In the ideal case, the spin states at A are
|↑〉A = |1〉a+|0〉a− and |↓〉A = |0〉a+|1〉a−, which describe a
photon in one of the polarization modes. More generally, the
measurable Schwinger spin observables at A are

SZ
A = a

†
+a+ − a

†
−a−, SX

A = a
†
+a− + a+a

†
−,

SY
A = (a†

+a− − a+a
†
−)/i, S2

A = nA(nA + 2), (7)

nA = a
†
+a+ + a

†
−a−,

where S2
A = (SX

A )2 + (SY
A)2 + (SZ

A )2, and nA is the total number
operator. Similar operators and states are defined for the
system B.

Having established the formalism, we now introduce an
uncertainty relation
(
�SX

A

)2 + (
�SY

A

)2 + (
�SZ

A

)2 �
〈
n2

A

〉 − 〈nA〉2 + 2〈nA〉 (8)

which will hold for any quantum state, and which follows
from 〈S2〉 = 〈n(n + 2)〉 and that 〈SX〉2 + 〈SY 〉2 + 〈SZ〉2 � 〈n〉2

[46,48]. This uncertainty relation can be used to derive an
inequality for the Bohm EPR paradox in nonideal scenarios.

Specifically, by applying the EPR argument with the
quantum uncertainty relation (8), we see that we will verify an
EPR paradox if

(
�infS

X
A

)2 + (
�infS

Y
A

)2 + (
�infS

Z
A

)2

<
〈
n2

A

〉 − 〈nA〉2 + 2〈nA〉. (9)

Here, we define
(
�infS

X
A|B

)2 =
∑

s
ϕ

B=−1,0,+1

P
(
s
ϕ

B

){
�

(
SX

A

∣∣Sϕ

B

)}2
(10)

in accordance with definition (5). This inequality is the
generalization of the EPR Bohm paradox condition (4) that
accounts for detection inefficiencies, at both sites, and is the
main result of this paper.

The inequality is also a “steering” inequality, and can
be derived directly from the local hidden state formalism
established in Refs. [35,36]. This proof is presented in the
Appendix. We will use the term “EPR steering” to refer to such

inequalities that test both the EPR paradox and the nonlocality
of quantum steering [37].

With only one photon incident at each site, and the
possibility of “no detection,” the possible outcomes for a given
“spin” S

Z/Y/X

A/B are +1, −1, and 0. Denoting the probabilities
for each of these outcomes at site j (j ≡ A,B) by P+j , P−j ,
and P0j , respectively, we note that

〈nj 〉 = P+j + P−j = ηj ,

where ηj is the efficiency at the site j . We use the notation ηA

for the efficiency at site A, and ηB for the efficiency at site B.
We can also modify the steering inequality used by

Wittmann et al. [31], so that it accounts for the inefficiencies
at the “trusted site” of Alice. Since the outcomes for each
Sθ

A/B are ±1 or 0 (here θ ≡ X,Y,Z), it is easy to verify that
〈(Sθ

A)2〉 = ηA, and hence that (�infS
X
A|B)2 = ∑

sX
B

P (sB
X ){ηA −

〈SX
A |SX

B 〉2} = ηA − TX, where here 〈SX
A |SX

B 〉 denotes the mean
value of SX

A given the result SX
B . Thus, the Bohm EPR

condition (9) can be written

S = TX + TY + TZ > η2
A, (11)

which is the extension of the steering inequality (6) used by
Wittmann et al. [31]. If this inequality is satisfied, then one can
confirm a steering of system A by measurements performed by
Bob (at system B) without the assumption of trusted detectors
at Alice’s location.

C. Quantum prediction

We now ask, for what quantum states and with what degree
of loss can the Bohm EPR paradox criterion be satisfied? Let
us assume the system is in a Werner mixed state:

ρ̂ = (1 − ps) 1
4I + ps |ψ〉S S〈ψ | , (12)

where ps gives the relative contribution of the Bell state |ψS〉 =
1√
2
{|↑〉A|↓〉B − |↓〉A|↑〉B} and I is a rotationally symmetric,

uncorrelated state proportional to the identity matrix at each
site. The calculations are given in the Supplemental Material
[49]. We find that for a system in the Werner state and with
detection efficiencies ηA and ηB at each site, the quantum
prediction is

(
�infS

θ
A|B

)2 = ηA

{
1 − ηAηBp2

s

}
, (13)

where θ ≡ X,Y,Z. The Bohm EPR condition (9) is satisfied
when

ηB > 1/
(
3p2

s

)
, (14)

i.e., for ηB > 1/3, where ps = 1 (provided ηA > 0). This
efficiency for ηB (Bob’s detection) has been achieved in the
experiments of Wittmann et al. [31]. We note that the criterion
is satisfied independently of the value of the efficiency for
Alice’s detection, so long as it is nonzero.

The EPR steering inequality (9) is very useful for loophole-
free tests since it applies regardless of the photon numbers
actually incident on the detectors. This means it can fully
account for all spurious events. This is important when the
photon pairs are generated via parametric downconversion,
since then there is always a possibility of two photon pairs
being generated. As these events usually occur with a very
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small probability, however, the quantum prediction given here
is valid for most scenarios.

III. SIGNATURE FOR QUBIT QUANTUM
TELEPORTATION WITHOUT FAIR SAMPLING

We now address the question of how to apply the Bohm EPR
criterion to demonstrate quantum teleportation. We begin with
a simple proof of monogamy. If a party B can demonstrate a
steering of the party A by satisfying the Bohm EPR paradox
inequality (4) or its generalization (9), then there cannot be an
infinite number of other parties that can also do this.

A. Monogamy relations for the EPR steering inequalities

We define a “steering parameter” that is based on the Bohm
EPR criterion (9):

S
(3)
A|B = {(

�infS
X
A

)2 + (
�infS

Y
A

)2 + (
�infS

Z
A

)2}
/J, (15)

where J = 〈n2
A〉 − 〈nA〉2 + 2〈nA〉. Then we see that according

to (9), EPR steering of system A by B is obtained when
S

(3)
A|B < 1. We note that this inequality involves three observ-

ables, and is hence a “three-setting inequality.”
We now prove that a monogamy steering relation holds for

the steering parameter. For any four quantum systems A–D, it
is always true that

S
(3)
A|B + S

(3)
A|C + S

(3)
A|D � 3. (16)

This result, and a collection of other monogamy results for
the EPR paradox and quantum steering, have been presented
and proved in previous papers [50,51]. The proof is briefly
summarized here for the sake of completeness.

Proof. The observer at B (Bob) can make the measure-
ment that gives him the value of Alice’s observable SX

A

with uncertainty �infS
X
A|B . The observer at C (Charlie) can

make the measurement that gives the result for Alice’s SY
A

with uncertainty �infS
Y
A|C , and the observer at D can make

the measurement that gives the result for Alice’s SZ
A with

uncertainty �infS
Z
A|D . Since the three observers can measure

simultaneously, the uncertainty relation (8) constrains the
variances to be (�infS

X
A|B)2 + (�infS

Y
A|C)2 + (�infS

Z
A|D)2 � J .

Similarly, (�infS
X
A|D)2 + (�infS

Y
A|B)2 + (�infS

Z
A|C)2 � J and

also (�infS
X
A|C)2 + (�infS

Y
A|D)2 + (�infS

Z
A|B)2 � J . We then

see that the monogamy relation (16) follows, upon adding
the three inequalities. �

The monogamy result (16) tells us that, within the con-
straints of quantum theory, it is impossible for more than two
parties to (independently) demonstrate the steering of system
A by the procedure of violating the three-setting Bohm EPR
paradox inequality (9).

B. Quantum teleportation of a qubit

There is a close relationship between monogamy and
quantum no-cloning. We now turn to the situation in which
Alice teleports a quantum state to Bob via an entanglement
swapping protocol. The monogamy of the three-observable
steering inequality (9), as given by (16), will restrict
the number of equivalent copies of Alice’s state that can be
teleported to different parties. Such a restriction cannot be

Alice

Victor

Charlie

Classical Communication
 Channel

teleported qubit

Bob

EPR beams

Bell measurement

FIG. 1. (Color online) Schematic of verification of quantum
teleportation using the monogamy inequalities. If Bob can verify
steering of Charlie’s qubit system, using a two-observable steering
inequality, then no other party (Eve) can also do this. This excludes the
possibility of a clone of the teleported state, and it gives confirmation
of secure quantum teleportation. If Bob can steer Charlie’s qubit
system using an m-setting steering inequality, then there can be no
more than m − 2 clones (in the diagram, m = 3, and the red lines
indicate the possible “Eves”): the possibility of a classical “measure
and regenerate” strategy is negated, and quantum teleportation
confirmed.

achieved by any classical “measure and regenerate” strategy,
since such a strategy would allow an infinite number of
equivalent copies to be regenerated.

Let us consider the setup of Fig. 1, where a Bohm EPR
two-qubit state is prepared at the site of Alice, Charlie, and
Victor. One qubit is with Charlie. The second EPR qubit is
with Victor, and is then teleported to Bob by Alice’s sending
station. After teleportation, the entanglement is “swapped” and
Bob and Charlie share an entangled EPR state [7,39–41].

In the standard protocol, two EPR beams are prepared in
the Bell state |ψ〉 = 1√

2
{|↑〉A|↓〉B − |↓〉A|↑〉B}. One of these

beams is sent to Alice, the other to Bob. Victor and Charlie
prepare an entangled EPR qubit,

|φ〉 = 1√
2
{|↑〉θV |↓〉θC − |↓〉θV |↑〉θC}, (17)

and Victor will teleport his qubit to Bob. Victor’s qubit is input
to a teleportation device, while the correlated qubit remains
with Charlie. Alice performs a Bell measurement on the direct
product state which can be written as a linear combination of
the four Bell states [1]. If Alice measures the system to be in
a Bell state |
−〉 = 1√

2
{|↑〉θV |↓〉θA − |↓〉θV |↑〉θA}|
−〉, then her

result is sent classically to Bob, who recovers Victor’s qubit by
performing the identity operation on his state. The procedure
swaps the entanglement between Charlie and Victor to one
between Charlie and Bob, and the final state is the entangled
qubit,

1√
2
{−|↑〉B |↓〉C + |↓〉B |↑〉C}. (18)

This description summarizes the entire teleportation process,
even when viewed as teleportation of a single qubit, since in
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practice the correlated Bell-Bohm EPR state of Victor and
Charlie is used to herald the qubit that is input to Alice’s
sending station [4].

If Charlie has detected his qubit (before teleportation so
both he and Alice know the qubit value and angle θ ), then
we may view the process as teleportation of a qubit. Victor’s
input to the sending station is the anticorrelated eigenstate of
definite spin along the direction θ . If Alice performs a Bell
measurement with result indicating |
−〉 and transmits this
result indicating to Bob, then he will know that his state is
the same state as Victor’s input. Alternatively, if Charlie does
not make his measurement, then Bob’s state is entangled with
Charlie’s state. In that case, if Charlie measures his spin along
the direction θ , then he and Bob will know that Bob’s state
is the eigenstate with the anticorrelated spin along the same
direction. Delayed-choice entanglement swapping has been
studied in recent experiments [41,52].

C. Signature of quantum teleportation

To claim quantum teleportation, there must be a signa-
ture to indicate that Bob’s final teleported state cannot be
generated using any classical strategy. Usually this is done
by demonstrating that the fidelity with Alice’s input state is
higher than can be achieved based on any classical “measure
and regenerate” protocol. It has been proved that according
to quantum mechanics a high fidelity, F > 2/3, can only
be achieved for a finite number of copies of a qubit state.
This feature is a consequence of the quantum no-cloning
theorem [16,21,22,53]. Since for any classical teleportation
strategy an infinite number of identical copies are possible,
the criterion F > 2/3 will demonstrate quantum teleportation
for qubit systems. In fact, this fidelity criterion is a necessary
and sufficient condition, and has been used to determine the
optimal teleportation with mixed-state qubits [54].

Here, I consider a different approach, based on an EPR
steering inequality. Bob measures the value of the teleported
qubit along a direction θ . Charlie communicates classically
the value of θ that he or Victor used to define the qubit,
so that Bob knows what measurement to make. Alice and
Charlie know when she sent the information about the qubit.
The experiment involves the quantum state conditional on her
making the Bell measurement and sending the classical signal
to Bob.

For a sequence of states each with the value of θ, Bob
reports to Charlie his values, Charlie performs the same mea-
surement of his spin, and the conditional variance (�infσ

θ
C|B)2

is measured. If this is done for three orthogonal selections
of θ , the steering parameter S

(3)
C|B can be determined. The

observation of steering is given when S
(3)
C|B < 1. Suppose Bob

and Charlie verify that Bob has satisfied the EPR steering
criterion

S
(3)
C|B < 1. (19)

Use of the monogamy relation S
(3)
C|B + S

(3)
C|D + S

(3)
C|E � 3

[Eq. (16)] tells us that there can be no more than one other party
that can also show a steering of Charlie’s system by way of this
criterion, i.e., for independent parties C, D, and E, if S

(3)
C|D < 1,

then we know that S
(3)
C|E � 1. This excludes the possibility of

more than one clone produced by the teleportation process,
since a second clone at E would be able to establish the
same value of S

(2)
C|E < 1, which contradicts the monogamy

result (16). If EPR steering is verified by S
(3)
C|B < 1, then

quantum teleportation of Bob’s state is verified, since any
classical “measure and regenerate” strategy to generate that
state would enable an infinite number of identical states to be
produced on teleportation.

The EPR steering inequality (19) is thus a sufficient
condition to demonstrate quantum teleportation. We note that
the ideal transmission of every qubit will lead to S

(3)
C|B → 0,

so that the quantity defined by taking the maximum of 0 or
1 − S

(3)
C|B gives a type of “figure of merit” for the teleportation

process. This is not a true figure of merit for quantum
teleportation itself, however, as the inequality is a sufficient
but not necessary condition for quantum teleportation (as we
will see in Sec. V). Other EPR steering inequalities have
been derived, for example, based on entropic uncertainty
relations [55], which could give a more effective test of the
steering.

The important point is that the three-observable steering
inequality S

(3)
C|B < 1 is achievable at quite low inefficiencies

for the qubit Bell state [Eq. (18)] shared between Charlie
and Bob. Let ηC be Charlie’s efficiency and ηB be Bob’s
efficiency. The predictions given in Sec. II C are (�infS

θ
C|B)2 =

ηC{1 − ηBηC} (θ = X,Y,Z). The Bohm EPR condition is
satisfied when ηB > 1/3 (provided ηC > 0). The loophole-free
verification is insensitive to the losses ηC of Charlie’s detectors.
The efficiency ηB > 1/3 is difficult to achieve with current
technology because it represents the entire efficiency of the
teleportation process, from Charlie to Bob and including Bob’s
detection inefficiency. This is because of the significant losses
that take place at Alice’s sending station.

However, we can define and consider the quantum state
ρCB|A of Charlie and Bob, conditional on Alice making
a successful Bell measurement and sending the classical
information. In this scenario, it is envisaged that Charlie
has not made his measurement, but the information about
Alice’s qubit is stored in Charlie’s spin-1/2 system. This is
the case of entanglement swapping teleportation. Since ρBC|A
is a quantum state, the monogamy relation is predicted to
hold for Bob and Charlie’s measurements (on this conditional
state), and therefore the inequality will remain a signature of
quantum teleportation. In that case, we can argue that we have
gained confirmation of quantum teleportation regardless of
inefficiencies at Alice’s sending station. The requirement of
ηB > 1/3 is determined by the efficiency of Bob’s detection
and the losses on Bob’s EPR channel only. This level of
efficiency has been realized in the loophole-free steering
experiments of Wittmann et al. [31] and would appear to be
quite feasible.

In many situations, the EPR channels of Alice and Bob are
propagated from a common source. To achieve true quantum
teleportation for that case, since the sensitivity is with respect
to Bob’s efficiency ηB , the EPR source is best placed close to
Bob’s station in order to minimize losses on Bob’s channel.
It also becomes essential that he has the best detectors. These
sorts of issues are discussed in Ref. [43] from the perspective
of quantum key distribution (QKD).
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IV. SECURE QUBIT TELEPORTATION USING
TWO-SETTING EPR STEERING INEQUALITIES

Let us consider the experiment in which Bob and Charlie
are able to demonstrate that the EPR steering inequality (19)
is satisfied. Then they can confirm the quantum benchmark
for teleportation. The monogamy relation (16) gives us a
stronger result: there can be no more than one party E (other
than Bob) also able to satisfy the EPR inequality, S

(3)
C|E < 1.

On examining the proof of the monogamy relation, we see
that this follows because the EPR inequality involves three
observables, and hence there are three measurement settings
at each location. The result directly implies a level of security
of the qubit values shared by Charlie and Bob, because
the EPR inequality can only be satisfied if the variances
in the inferences of Charlie’s qubit values are small enough.
The inference variances for the other parties must be large, and
are quantifiable using the monogamy relation (16).

We note that we can improve the level of security if Bob
and Charlie use two-setting EPR steering inequalities. In that
case, there can be no party other than Bob that can demonstrate
the EPR steering inequality. Two-setting inequalities for Pauli
spins have been derived in Refs. [37,38,46]. Here, we consider
a two-setting EPR inequality expressed in terms of the
conditional variances. We find that EPR steering of Charlie’s
system C by Bob’s measurements at B is observed if

(
�infσ

X
C|B

)2 + (
�infσ

Y
C|B

)2
< 1. (20)

The proof is presented in Ref. [37] and is outlined in the
Appendix. This inequality is also a condition for Bohm’s
EPR paradox. Introducing the steering parameter S

(2)
C|B =

(�infσ
X
C|B)2 + (�infσ

Y
C|B)2, we can write the monogamy

relation

S
(2)
C|B + S

(2)
C|E � 2 (21)

that follows on extending the results and definitions of (16).
The relation has been derived in Ref. [51] and will always
hold. Thus, if Bob can demonstrate S

(2)
C|B < 1, then this ensures

that for any other party E (Eve), it is the case that S
(2)
C|E � 1,

which implies a minimum noise level on Eve’s inference
of Charlie’s qubit values. Thus, the two-setting inequality
S

(2)
C|B < 1 confirms what we will call interchangeably “faithful

teleportation” or “secure teleportation.”
The two-setting EPR inequality (20) is derived based on

the uncertainty relation (�σX
C )2 + (�σY

C )2 � 1 for Pauli spins,
which holds for any quantum state. The inequality, therefore,
also holds for the Schwinger spins defined in (7) but provided
the outcomes for Charlie’s spins (at C) are ±1. Assuming
perfect detectors at Charlie’s station, and assuming the system
is prepared in a maximally correlated Bell state, it is easy
to show from the results of Sec. II C and the Supplemental
Material [49] that the inequality (20) can be satisfied for any
ηB > 1/2.

In short, the inequality S
(2)
C|B < 1 can be used to confirm

secure teleportation provided one assumes trusted detectors
at Charlie’s measurement station, so that the fair sampling
assumption is justified at this location. In that case, security of
the teleported state can be confirmed for up to 50% losses in the
teleportation process (i.e., for Bob’s channel and detectors).

V. DEMONSTRATION OF QUANTUM TELEPORTATION
AT ARBITRARY EFFICIENCIES

A set of EPR inequalities has been derived that involve m

settings [29,38]. These inequalities can be expressed in a form
similar to the steering inequalities (9) and (20), which we write
as S

(3)
C|B < 1 and S

(2)
C|B < 1. If S

(m)
C|B < 1, then it is confirmed that

Bob can steer Charlie’s system using an m-setting inequality.
The exact form of S

(m)
C|B is given by the results in Refs. [29,38].

It has been shown that the m-setting inequalities also
satisfy a monogamy relation [51]. If Bob and Charlie can
demonstrate an m-setting steering inequality to confirm that
Bob can steer Charlie’s system, then there can be no more than
m − 2 parties (other than Bob) that can also demonstrate the
m-setting inequality. The realization of the inequality S

(m)
C|B < 1

therefore confirms quantum teleportation. This is because
a classical protocol would enable generation of an infinite
number of identical teleported states, which in turn enables
an infinite number of parties to demonstrate the inequality,
in contradiction with the monogamy result. The value m − 2,
which gives the maximum number of parties (Eve) that can
possess an identical copy of Bob’s state, is an indicator of the
quality of the teleportation.

It is possible to evaluate for what efficiencies the m-setting
inequalities can be satisfied, assuming Bob and Charlie share
a Bell state. With the assumption that Charlie has “trusted
detectors” (i.e. maximum efficiency ηC = 1), it has been
shown by Evans et al. [29] that the inequality S

(m)
C|B < 1

can be satisfied for optimal measurement choices provided
ηB > 1/m. This is an important result that indicates quantum
teleportation can be demonstrated for arbitrary losses at Bob’s
receiving station, provided we can make the assumption of fair
sampling at the generation (Charlie) stage.

VI. BRAUNSTEIN-KIMBLE CRITICISM

Braunstein and Kimble have commented that the quality of
qubit quantum teleportation is limited by the “no detection”
outcomes at Bob’s location [20]. They also point out that the
low efficiency for generation of the EPR pair when using
parametric amplification would lead to a high incidence of “no
detection” outcomes, even with ideal detectors. As mentioned
by them, these problems can be overcome, e.g., by heralding
the EPR pair [15,39]. In terms of establishing a deterministic
teleportation, high efficiency of the teleportation process is
essential [6].

However, it remains interesting to ask whether the claim of
quantum teleportation is compromised in the presence of zero
detections. We have established that quantum teleportation can
in principle be demonstrated for quite low efficiencies. Lastly,
we address the second question for the scenario considered
in this paper. We examine the effect of the vacuum state that
arises in the parametric process that generates the photonic
EPR pair. We consider that the actual EPR resource is the
quantum state of the four-mode parametric amplifier:

|ψ〉 = c0|0〉a+|0〉a−|0〉b+|0〉b− + c1
1√
2
{|1〉a+|0〉a−|1〉b+|0〉b−

+ |0〉a+|1〉a−|0〉b+|1〉b−}. (22)
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Here, the contributions of terms involving modes with two
or more photons have been ignored, and therefore |c0|2 +
|c1|2 = 1. For simplicity, we consider the case in which there
are no losses. Since a register for Alice’s Bell measurement
requires a coincidence at her detectors (for the detection of
the |
−〉 Bell state), we note that Alice’s classical signal
for teleportation go-ahead will always be correlated with a
detection of a photon at Bob’s detector in that case. This
means that the vacuum state has no effect on the calculations
presented for that particular scenario.

VII. CONCLUSION

The objective of this paper is to propose alternative ways
to signify the quantum teleportation of a qubit that can be
applied without postselection. Two sorts of inequalities have
been presented. The first is a single inequality that allows
confirmation of quantum teleportation without fair sampling
assumptions at either station: where the qubit is generated
(Charlie), or where it is detected after teleportation (Bob).
This inequality involves three measurement settings and can
give a demonstration of Bohm’s EPR paradox, and quantum
teleportation, for efficiencies ηC > 0 at Charlie’s station and
ηB > 1/3 at Bob’s station. In this case, the quantum state
that is considered as being teleported is that conditioned on
Alice’s successful performance of the Bell measurement, and
the teleportation protocol is one of entanglement swapping.
The proof of quantum teleportation is based on a proof of
monogamy of the EPR paradox.

The second sort of inequality can be used where a fair
sampling assumption is made at Charlie’s station, so that the
outcomes of his measurements are confined to the qubit Hilbert
space. Such an assumption has been called that of “trusted
detectors.” In that scenario, steering of Charlie’s system by
Bob (and hence quantum teleportation) can potentially be
demonstrated for arbitrary efficiency at Bob’s detectors. This
conclusion is based on the results of Bennet, Evans et al. [29],
which report steering inequalities to be violated for efficiencies
ηB > 1/m, where m is the number of measurement settings.

An important example of this second sort of inequality is a
Bohm’s EPR paradox inequality for two settings (m = 2). This
inequality requires efficiencies of ηB > 1/2 (for correlations
based on the maximally entangled Bell state). The useful
feature of the two-setting inequality is that a high level of
security of the teleported qubit state can be deduced. There can
be no other independent party (Eve) also able to demonstrate
the inequality (apart from Bob), which implies a minimum
noise level on Eve’s inferences of Charlie’s qubit value.

We have seen that the EPR and steering paradoxes are useful
to demonstrate quantum teleportation in the presence of loss.
Are there other advantages? A possible response relates to
the nature of the derivation of the EPR steering inequalities.
It is assumed that Charlie’s measurements are made on
a quantum spin system, and are therefore constrained by
quantum mechanics. However, the EPR steering inequalities
are derived with no similar assumption about what or how
measurements are made by Bob (or Eve) [42]. In this way, we
see that the conditions for quantum teleportation (and for the
level of security of the teleported state) have the advantages of
being “one-sided device-independent” [43].
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APPENDIX

We give a derivation of the EPR paradox and steering
inequalities. This type of proof has been presented in Ref. [37].
We begin with the definition of the local hidden state (LHS)
model [35,36]. To prove steering, we need to falsify a
description of the statistics based on a LHS model, where
the averages are given as

〈XBXA〉 =
∫

R

PR〈XB〉R〈XA〉R,ρ. (A1)

Here
∫
R

PR = 1, and the ρ subscript indicates that the averages
are consistent with those of a quantum density matrix. No such
constraint is made for the moments 〈Xi〉R , written without
the subscript ρ. This model is one in which the system
is a probabilistic mixture of states symbolized by R, with
probabilities PR . The states symbolized by R (without the
subscript ρ) may be identified as the local hidden variable
states assumed in Bell’s local hidden variable models. The
summation over all possible states R can be denoted either by
an integral or by a discrete summation, similar to the situation
for Bell’s local hidden variable models [27].

The average conditional uncertainty is
(
�infσ

X
A

)2 =
∑
xB

j

P
(
xB

j

){
�

(
σX

A

∣∣xB
j

)}2
, (A2)

where we denote the possible results of the specified measure-
ment at B by {xB

j }. Using the definitions, and assuming the
mixtures as implied by the LHS model, we see step by step
that∑

xB
j

P
(
xB

j

){
�

(
σX

A

∣∣xB
j

)}2

=
∑
xB

j

P
(
xB

j

) ∑
σA

x

P
(
σX

A

∣∣xB
j

){
σX

A − 〈
σX

A

∣∣xB
j

〉}2

=
∑

xB
j ,σX

A

P
(
xB

j ,σX
A

){
σX

A − 〈
σX

A

∣∣xB
j

〉}2

=
∑
R

PR

∑
xB

j ,σX
A

PR

(
xB

j ,σX
A

){
σX

A − 〈
σX

A

∣∣xB
j

〉}2

�
∑
R

PR

∑
xB

j

PR

(
xB

j

)∑
σX

A

PR

(
σX

A

∣∣xB
j

){
σX

A − 〈
σX

A

∣∣xB
j

〉
R

}2

=
∑
R

PR

∑
xB

j

PR

(
xB

j

){
�R

(
σX

A

∣∣xB
j

)}2

=
∑
R

PR

{
�inf,RσX

A

}2
.

The fourth line follows using that for a probabilistic mixture
P (xB

j ,σA
X ) = ∑

R PRPR(xB
j ,σA

X ). The fifth line follows from
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the fact that 〈(x − δ)2〉 � 〈[x − 〈x〉]2〉, where δ is any number.
Here, the subscripts R imply that the probabilities, averages,
and variances are with respect to the state R. Now, if we assume
the separability between the bipartition A-B for each state R,
in accordance with the LHS model, then

PR

(
xB

j ,σX
A

) = PR

(
xB

j

)
PR

(
σX

A

)
. (A3)

This implies 〈σX
A |xB

j 〉R = 〈σX
A 〉 and {�R(σX

A |xB
j )}2 =

{�R(σX
A )}2. Then we find, on using

∑
xB

j
PR(xB

j ) = 1, that

we can write {�inf,RσX
A }2 = {�R(σX

A )}2. Thus,

(
�infσ

X
A

)2 + (
�infσ

Y
A

)2

�
∑
R

PR

[{
�R

(
σX

A

)}2 + {
�R

(
σY

A

)}2]

and
(
�infσ

X
A

)2 + (
�infσ

Y
A

)2 + (
�infσ

Z
A

)2

�
∑
R

PR

[{
�R

(
σX

A

)}2 + {
�R

(
σY

A

)}2 + {
�R

(
σZ

A

)}2]
.

Because in the LHS model (A1) we assume the states at A

are local quantum states, we can use quantum uncertainty re-
lations to derive a final steering inequality: e.g., {�R(σX

A )}2 +
{�R(σY

A )}2 � 1 for any quantum state, and hence the LHS
model implies

(
�infσ

X
A

)2 + (
�infσ

Y
A

)2 � 1. (A4)

Also, the uncertainty relation (8) will hold for any quantum
state. Thus the LHS model implies

(
�infS

X
A

)2 + (
�infS

Y
A

)2 + (
�infS

Z
A

)2

�
〈
n2

A

〉 − 〈nA〉2 + 2〈nA〉. (A5)

Violation of either of these two inequalities implies failure
of the LHS model, and therefore steering of A by B. The
violation will also imply an EPR paradox in each case,
because the inferred uncertainties represent the uncertainties
of the “elements of reality,” which exist to describe the local
state of A, according to the EPR premises of local realism.
These uncertainties are not compatible with the quantum
uncertainty relation.
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