Asymptotic analysis of loss probabilities in GI/M/m/n queueing systems as n increases to infinity

Author(s)

Abramov, Vyacheslav M.

Abstract

The paper studies asymptotic behavior of the loss probability for the GI/M/m/n queueing system as n increases to infinity. The approach of the paper is based on applications of classic results of Takacs and the Tauberian theorem with remainder of Postnikov associated with the recurrence relation of convolution type. The main result of the paper is associated with asymptotic behavior of the loss probability. Specifically it is shown that in some cases (precisely described in the paper) where the load of the system approaches 1 from the left and n increases to infinity, the loss probability of the GI /M/m/n queue becomes asymptotically independent of the parameter m .

Publication year

2007

Publication type

Journal article

Source

Quality Technology and Quantitative Management, Vol. 4, no. 3 (Sep 2007), pp. 379-393

ISSN

1684-3703

Publisher

NCTU Press

Copyright

Copyright © 2007 ICAQM.

Details