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Abstract

Traditionally, searching XML data with a structured query often identifies the ex-

act matches for the query and returns them as the qualified results. However, the

structural heterogeneity of the large number of XML data sources will make it diffi-

cult to answer the structured queries exactly. As such, query relaxation is necessary

when the exact results do not exist or the number of the exact results is not enough.

Previous work on XML query relaxation poses the problem of unnecessary compu-

tation of a big number of unqualified relaxed queries. This thesis addresses several

fundamental issues in ranking a set of heterogeneous XML data sources, designing

the adaptive relaxation rules and efficiently processing the relaxed queries over the

data sources. Relaxing the specified queries may loose the constraints of the users’

original preferences, which can increase the number of relevant results significantly.

Therefore, in this work the users’ queries would be answered with a ranked list of the

best matched results, e.g., top-k problem means that only the top k relevant results

are interesting to users. In addition, at each time we prefer to evaluate the relaxed

queries over the data source that is the most relevant to the specified queries, and

incrementally output the retrieved results that are guaranteed to have the higher rel-

evance to the queries than the candidates in the other data sources, thus minimizing

query processing time.

However, query relaxation would become time-consuming and ineffective in some

cases, such as the data structure is too complex for users to write structured queries,
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or the users do not know structured query languages. To address this problem, we

allow users to issue keyword queries. Different from previous keyword search methods,

we first construct structured query templates based on the given keyword query and

the underlying source schemas and then evaluate the query templates to answer the

original keyword query based on our proposed ranking model.
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Chapter 1

Introduction

Due to its flexibility, XML has emerged as the standard for exchanging and querying

documents on the Web required for the next generation Web applications including

electronic commerce and intelligent Web searching. XML documents comprise hier-

archically nested collections of elements, where each element can be either atomic

(i.e., raw character data) or composite (i.e., a sequence of nested sub-elements). Tags

stored with elements in an XML document describe the semantics of the data. Thus,

XML data, like semi-structured data, is hierarchically structured and self-describing.

The widespread adoption of XML has raised many challenging issues, such as pro-

cessing XML queries across large and heterogeneous XML document collections.

Traditionally, query processing techniques over XML data need to identify the

exact matches for a given XML query. To find the exact matches, it is necessary

to consider not only the contents but also the structures in the query. Let’s take

an example to illustrate the procedure of identifying the exact matches. An XML

document consists of nested elements enclosed by user-defined tags that indicate

the meaning of the contained content. Figure 1.1 shows an example of an XML

document named “pub.xml”, which contains some publication information. Since

the hierarchical structure of an XML document can be usually modeled as a tree,

1
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< ? x m l   v e r s i o n = " 1 . 0 "   ? > 
< p u b l i c a t i o n > 
                  < j o u r n a l   t i t l e = " D B M S " > 
                                      < e d i t o r >   J a c k < / e d i t o r > 
                                      < a r t i c l e > 
                                                          < t i t l e > 
                                                                                I n d e x   C o n s t r u c t i o n 
                                                          < / t i t l e > 
                                                          < a u t h o r s > 
                                                                                < a u t h o r >   S m i t h < / a u t h o r > 
                                                                                < a u t h o r >   J o h n < / a u t h o r > 
                                                          < / a u t h o r s > 
                                      < / a r t i c l e > 
                    < / j o u r n a l > 
                    < j o u r n a l   t i t l e = " A l g o r i t h m " > 
                    < / j o u r n a l > 
< / p u b l i c a t i o n > 

Figure 1.1: An example of an XML
document pub.xml

p u b l i c a t i o n 

j o u r n a l 

t i t l e e d i t o r a r t i c l e 

a u t h o r s 

a u t h o r 

D B M S 

            I n d e x 
C o n s t r u c t i o n 

S m i t h J o h n 

A l g o r i t h m J a c k 

j o u r n a l 

t i t l e 

t i t l e 

a u t h o r 

Figure 1.2: The tree representation of
the XML document example

the XML document in Figure 1.1 can be represented with the tree in Figure 1.2.

Therefore, we can consider XML documents on Internet as an forest of XML trees.

Figure 1.3 shows an XML query expressed in XQuery [16] over the document

in Figure 1.1 where “//” indicates the ancestor-descendant relationship, and “/”

indicates the parent-child relationship. This query is used to retrieve the titles of

the articles that are written by “Smith” and published in a journal. It contains both

structure and content information. We can use a tree to depict the query as shown

F O R   $ a   I N   d o c u m e n t ( " h t t p : / / . . . / p u b . x m l " ) / / j o u r n a l / a r t i c l e 
                  $ b   I N   $ a / t i t l e 
W H E R E   $ a / a u t h o r s / a u t h o r = " S m i t h " 
R E T U R N   < a r t i c l e > $ b < / a r t i c l e > 

Figure 1.3: An example of XQuery

j o u r n a l 

a r t i c l e 
a u t h o r s 

a u t h o r 
[ S m i t h ] 

t i t l e 

Figure 1.4: The tree representation of
the example query

in Figure 1.4. In other words, this query will find all the matches of the tree pattern
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in the XML database. In this example, the article’s title “Index Construction” will

be returned as the exactly matched result.

To find all the exactly matched results, there are lots of previous methods [27,

7, 63, 95] designed for tree pattern queries in XML, which rely on the following

three similar strategy - (1) Decomposition: decompose the tree pattern into linear

patterns which might be binary (parent-child or ancestor-descendant) relationships

between pairs of nodes or root-to-leaf paths; (2) Matching : find all matches of each

linear pattern; and (3) Merging : merge the intermediated results to produce the final

results.

However, the structures of such XML data are often too complex for users to fully

grasp. In addition, due to the heterogeneous nature of large number of XML data

sources, exact matching of queries is often inadequate. It has become increasingly

important that the system can smartly modify users’ queries to get satisfied answers

from multiple XML data sources. To address this issue, there are four types of cate-

gories by modifying the users’ original queries: (1) Query Rewriting : modified queries

produce the same set of answers as original queries; (2) Query Restriction: less num-

ber of or smaller-scoped answers will be returned; (3) Query Shift : modified queries

generate partially overlapping, but different set of answers; (4) Query Relaxation:

more number of or bigger-scoped answers will be retrieved.

Among the four categories, Query Rewriting and Query Relaxation have drawn

most of the attentions from research community, because both of them can guaran-

tee the answers are lossless. But Query Rewriting requires users to offer their own

schemas and set up mappings between their own schemas and those utilized in mul-

tiple sources, which is the foundation of query rewriting techniques. Unfortunately,

it is often infeasible for a casual user to give out an entire schema, since his or her

aim is only to issue a query. However, Query Relaxation can relax the users’ queries

by analysing the given queries and the corresponding data sources and evaluate the
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relaxed queries to return the relevant results to the users, which does not ask for any

other inputs from the users. Although the other two categories are also required in

some cases, there are few work to discuss them due to the incomplete result set of

Query Restriction and the varied result set of Query Shift. Compared with the other

three categories, we think Query Relaxation is a more worthwhile and competent

research topic in most cases.

j o u r n a l 

a r t i c l e 

a u t h o r 
[ S m i t h ] 

t i t l e 

Figure 1.5: A different tree pattern
query
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[ S m i t h ] 

t i t l e 
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Figure 1.6: The example of relaxed
query

For example, there is another user who intends to express the same query request

over the same XML document in Figure 1.1. However, he or she issues a different

tree pattern query as shown in Figure 1.5 because he or she does not know whether

the node “authors” exists in the XML document. According to the decomposition-

matching-merging process, no exact result can be returned from the document be-

cause the parent-child edge “article/author” does not appear in the document. To

address this problem, query relaxation is required to generalize the parent-child edge

“article/author” into ancestor-descendant edge “article//author” during query eval-

uation. The relaxed query is shown in Figure 1.6. Now, the same result - the article’s

title “Index Construction” would be returned as the matched result for the relaxed

query. Most of the time, the wealth of XML data makes it difficult for users to identify

relevant fragments for their query requests. Particularly, the loosely-coupled nature

of the data sources also makes it inapplicable for deploying the traditional federated

database approach for integrating the XML data sources by defining a global schema.

To address these issues, this thesis focuses on adaptive query processing techniques
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to efficiently identify the fragments that are most relevant to user queries, preventing

users from having to access all the XML data sources.

1.1 Motivation of This Thesis

Most existing work in [78, 58, 8] are proposed to relax a user’s query depending on

the intermediate feedback of query evaluation over XML documents, i.e., they do

relaxation operations at running time. For instance, a query may be partitioned into

a set of binary relationships at first step decomposition, based on the decomposition-

matching-merging process strategy, and each binary relationship will be evaluated.

If one binary relationship does not produce any result, the binary relationship would

be required to be relaxed into a loosed relationship that has to be tested again. In

addition, Amer-Yahia et al. in [10] propose a framework, called FleXPath, for relaxing

XML tree pattern queries. Given a tree pattern query q, the closure of the structural

and value-based predicates in q is first inferred and then is used to generate relaxed

queries. The set of generated relaxed queries, including only the root of q, is complete.

Based on the discussions, we can know that the above relaxation process is basically

blind and wild, which may increase the number of relaxed queries greatly. For a large

number of heterogeneous XML data sources, many of the relaxed queries could be

unqualified, which will result in unnecessary cost of either computing or testing them.

a r t i c l e 

p a r a g r a p h 
[ " x m l " ] 

a l g o r i t h m 

a r t i c l e 

p a r a g r a p h 
[ " x m l " ] 

a l g o r i t h m 

a r t i c l e 

s e c t i o n 

p a r a g r a p h 
[ " x m l " ] 

a r t i c l e 
[ " x m l " ] . . . . . . 

s e c t i o n s e c t i o n 
" / / " 

Figure 1.7: Relaxed queries of FleXPath

Suppose a user wishes to find articles that are relevant to algorithms on XML
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(b) Relaxed Queries

Figure 1.8: Relaxed queries of our approach

data. At the beginning, the user may issue a precise structured query (the first one)

as shown in Figure 1.7 where the node in a box is a distinguished node, indicating that

matches of the node will be the required answers. FleXPath [10] may generate a great

number of relaxed queries as shown in Figure 1.7, based on the original query. Here,

we assume we do not consider term relaxation at this moment, i.e., we do not discuss

whether the term “xml” is promoted to the nodes “section” or “article”. However,

if the XML document conforms to an XML schema as shown in Figure 1.8(a), only

two of the large number of relaxed queries need to be generated and evaluated. The

two qualified relaxed queries have been presented in Figure 1.8(b). The rest of the

set of relaxed queries in Figure 1.7 are unqualified in structure with regards to the

document.

To resolve the problem of unnecessary computation of a big number of unqualified

relaxed queries, there are four challenges:

• Challenge 1: To enhance the quality of searching and ranking big volume of

source documents, we need to study the problem of measuring structural sim-

ilarities of a large number of source schemas against a single domain schema,

which is different from previous methods that compute the similarity in a sym-

metric way.

• Challenge 2: Since previous query relaxation methods relax users’ query
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blindly, most of the time many of the relaxed queries generated are unquali-

fied for a given XML document. Can we relax a user’s query issued to a set of

XML data sources adaptively?

• Challenge 3: To answer a top-k query over a set of heterogeneous XML data

sources, it is time-consuming to evaluate all the relaxed queries over each data

source and then select the top k results. Can we decide which data source is

preferable to be processed as early as possible? Can we return the searched

results incrementally during evaluation for a top-k query?

• Challenge 4: When issuing a structured query, users must be familiar with

one of structured query languages, such as XPath or XQuery. Meanwhile, they

need also know the structure of the XML data source to be retrieved. Oth-

erwise, they either do not know how to express a structured query or issue a

structured query with a lot of irrelevant information. For both of the cases, if

we continue to deploy a query relaxation strategy, the relaxed queries may be

very far away from the users’ original intention because only a small part of

information is preserved. Therefore, the practical usability of query relaxation

will be affected greatly. Can we allow users issue and evaluate their requests in

a loose-structured query, such as a set of label-term pairs?

We are motivated by the above challenges.

To address Challenge 1, an asymmetric similarity model is proposed to compare

the structural features between a domain schema and the source schemas where we

leverage the structural features of XML schema, such as ancestor-descendant (“//”)

relationship, parent-child (“/”) relationship and cardinality (“*”) information. The

similarity model can be used to decide which data source may be more relevant to

users’ query request.
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To address Challenge 2, we propose an adaptive relaxation approach that adap-

tively relaxes a query against different data sources based on their conformed schemas

where all the inconsistent relationships are generalized or relaxed before query eval-

uation. For a data source, only the qualified relaxed queries need to be generated.

To address Challenge 3, we design a scheduling strategy to efficiently process top-k

queries across heterogeneous XML data sources where the irrelevant candidates and

data sources are able to be pruned as early as possible. Specifically, the results to be

determined can be output incrementally. Therefore, users would see the most relevant

results as soon as possible.

To address Challenge 4, it is desirable to allow users issue a set of label-term pairs

in a keyword query, rather than a pure keyword query containing only terms. This

is because if we permit users issue a pure keyword query, the possibility returning

lots of uninteresting results to users may become very higher. Therefore, we allow

a set of label-term pairs to be specified in a keyword query, which is helpful to

express more semantics while limit the range of the terms under the nodes matching

to the corresponding labels. In addition, to efficiently process a keyword query, we

first construct structured queries w.r.t. XML data sources to be searched and then

evaluate them in an effective strategy, which can obtain more relevant results and

better performance than directly evaluating the keyword query.

1.2 Contributions of This Thesis

The main contributions of this thesis are as follows.

Firstly, we focus on the study of XML schema, which is helpful for enhancing

the quality of searching and ranking a big volume of XML documents. The flexible

structures of XML documents make query evaluation quite complex, and sometimes

impose relaxed conditions and return approximate results. Due to different perception
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of an application domain, different providers of a service may define different schemas

which we call source schemas. Meanwhile users may issue their queries based on

the common understanding of the domain which we call a domain schema. If one

source schema is much more similar to the domain schema than the others, the

probability of those XML documents that conform to the source schema will be

much higher because the XML documents contain the most relevant results than

the other XML documents. Therefore, to be able to get the most relevant results,

it is very important to work out the similarity of the source schemas w.r.t. the

domain schema. In Chapter 3, we design an asymmetric similarity model to compute

the similarity of source XML schemas against domain XML schema. Particularly, we

design similarity preserving rules and a trimming algorithm to filter out uninteresting

elements or relationships in source schemas for the purpose of optimizing the similarity

computation. In addition, an extension of Dietz’s numbering schema is used to reduce

the cost of computation.

Next, we concentrate on the study of XML query relaxation. As we know, there are

some existing methods that can be applied to relax users’ queries. But their relaxation

is processed in a blind and wide way. That is to say, the previous approaches are

required to generate all the relaxed queries in advance or adjust the inconsistent

relationships based on the intermediate feedbacks during evaluation. Obviously, the

former may generate many unqualified relaxed queries for a certain data source while

the latter may make the query evaluation time-consuming. To address this issue,

in Chapter 4 we propose an adaptive query relaxation approach, which adaptively

relaxes a query to each XML data source according to its conformed schema. Hence

each relaxed query will be guaranteed to agree with the structural constraints imposed

by the conformed schema. And as a positive result, the adaptive relaxation approach

will have a high probability of generating an answer from the XML data source.

Particularly, a set of schema-aware relaxation rules and corresponding algorithms
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are designed and presented. In addition, since the relaxed queries are derived from

various relaxation operations subject to different source schemas, a penalty model is

established for measuring to what extent the original query is modified. In this model,

we allow users to convey their preference to the relationships between adjacent nodes

in the query tree by assigning weights to edges. The computed penalty of a relaxed

query can reflect the relevance of its matched results and the original query, which

can be used to rank the retrieved answers.

Thirdly, we study top-k query evaluation when the given query cannot be an-

swered exactly from the XML data sources or the exactly matched results are not

enough for the users (i.e., the number of exactly matched results is less than the

specified value k). Different from the traditional top-k approaches holding the sim-

ilar assumption that all attributes are independent for each other, the top-k search

issue over XML databases has to consider the relationships among the relevant el-

ements (or attributes). Therefore, many traditional techniques cannot be directly

applied to XML query evaluation. In Chapter 5 we propose a scheduling strategy

to efficiently evaluate relaxed queries across heterogeneous XML data sources for an-

swering top-k queries. By using the scheduling strategy, we can not only skip those

XML data sources that will not produce the desired results, but also prune the inter-

mediate results with lower relevance as early as possible. Most importantly, we can

output the top-k results incrementally, rather than waiting for the end of all top-k

results to be determined. Therefore, users would see the most relevant results as soon

as possible. But we have to say that the above query relaxation techniques are the

foundation of this scheduling strategy. This is because the weight of the relaxed query

with the minimal penalty w.r.t. a data source can be taken as the upper bound of

the relevance of the returned results from the data source. That is to say, the score

of the most relevant results from the data source is lower than or equal to the upper

bound value.
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Finally, in Chapter 6 we present a novel keyword search approach that can con-

struct a set of answer templates by analyzing the given keyword queries and the

XML schemas conformed by XML data sources. Different from previous keyword

search methods, our approach can prune plenty of irrelevant intermediate results as

early as possible. In addition, answer templates can be used to design efficient ex-

ecution plans. Specifically, we propose a ranking function to measure the relevance

between the results and a keyword query by considering the context and the weights

of the keywords. For efficiently finding the top-k relevant results, we also develop a

corresponding algorithm for adapting to our proposed ranking function.

1.3 Structure of This Thesis

The structure of this thesis is organized as follows.

• Chapter 2 gives the literature review in which we discuss the significant models

or algorithms related to our work.

• Chapter 3 introduces a model to compute structural similarity of source XML

scheams against domain XML schema, which can rank the data sources for

a given domain schema. The ranking results can be used to guide the query

evaluation across a heterogeneous XML data sources.

• Chapter 4 presents an adaptive relaxation approach for query heterogeneous

XML data sources, which can avoid the blind and wild relaxations in previous

query relaxation methods.

• Chapter 5 discusses two scheduling strategies: brute-force scheduling strategy

and BT-based scheduling strategy to process top-k queries, which can efficiently

find the top k relevant answers by pruning the data sources and irrelevant

intermediate results as early as possible.
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• Chapter 6 introduces a precise keyword search model, which can improve the

efficiency and accuracy of XML keyword search.

• Chapter 7 concludes the thesis with a discussion of the future work.



Chapter 2

Related Work

There has been a lot of interesting work in the field of query relaxation and processing

over XML data recently. In this chapter, we first summarize the work about structural

similarity algorithms for ranking XML data sources to be retrieved in Section 2.1. And

then, we discuss the related research about XML structured query relaxation and

XML keyword query processing in Section 2.2 and Section 2.3, respectively. Finally,

we introdce the related work for processing top-k queries in different applications in

Section 2.4.

2.1 Similarity Computation Measures

Measuring the structural similarity among XML documents has been an active area

of research in the past a few years and it is fundamental to many applications, such

as integrating XML data sources, XML dissemination and repositories. In this sec-

tion, we discuss previous work of identifying similarity between XML documents,

between XML documents and schemas and between XML schemas in Section 2.1.1,

Section 2.1.2 and Section 2.1.3, respectively.

13
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2.1.1 Similarity Computation between XML Documents

There is considerable previous work on finding edit distances between XML trees

[23, 24, 25, 82, 84, 88, 96]. Most algorithms in this category are direct descendants of

the dynamic programming techniques for finding the edit distance between strings.

The basic idea in all of these tree edit distance algorithms is to find the cheapest

sequence of edit operations that can transform one tree into another.

A key differentiator between the various tree-distance algorithms is the set of

edit operations allowed. An early work in this area is by Selkow [82], which allows

inserting and deleting of single nodes at the leaves, and relabeling of nodes anywhere

in the tree. The work by Chawathe in [23] utilizes these same edit operations and

restrictions, but is targeted for situations when external memory is needed to calculate

the edit distance. There are several other approaches that allow insertion and deletion

of single nodes anywhere within a tree [84, 88, 96]. Expanding upon these more

basic operators, Chawathe et. al. [25] and Cobena et al. [29] also considered a move

operation on sub-trees, which is essential in the context of XML. Differently Cobena

et al. used signatures to match sub-trees that are left unchanged between the old and

new versions.

General Tree-Edit Distance: Assume that we are given a cost function defined

on each edit operation. An edit script S between two trees T and T ′ is a sequence

of edit operations turning T into T ′. The cost of S is the sum of the costs of the

operations in S. An optimal edit script between T and T ′ is an edit script between

T and T ′ of minimum cost. This cost is called the tree edit distance, denoted by δ(T ,

T ′). For example, the mapping in Figure 2.1 shows a way to transform T to T ′. The

transformation includes deleting node labeled b in T and inserting node labeled f in

T ′.

An edit distance mapping (or just a mapping) between T and T’ is a representation

of the edit operations, which is used in many of the algorithms for the tree edit
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Figure 2.1: A mapping from T to T ′.

distance problem. In [96], Zhang et. al. used a postorder numbering to encode the

nodes in the trees. Let T [i] represent a node of T whose position in the postorder for

the nodes of T is i. When there is no confusion, they also used T [i] to represent the

label of node T [i]. Formally, a mapping from T to T ′ is a triple (M, T, T ′) (or simply

M if the context is clear), where M is any set of pairs of integers (i, j) satisfying:

(Map Conditions)

1. 1 ≤ i ≤ |T |, 1 ≤ j ≤ |T ′|;

2. For any pair of (i1, j1) and (i2, j2) in M ,

(a) i1 = i2 if and only if j1 = j2 (one-to-one);

(b) T [i1] is to the left of T [i2] if and only if T ′[j1] is to the left of T ′[j2] (sibling

order preserved);

(c) T [i1] is an ancestor of T [i2] if and only if T ′[j1] is an ancestor of T ′[j2]

(ancestor order preserved).

Let (M , T , T ′) be a mapping. It says that a node v in T or T ′ is touched by a

line in M if v occurs in some pairs in M . Let N1 and N2 be the set of nodes in T and

T ′ respectively not touched by any line in M . The cost of M is given by:

γ(M) =
∑

(υ,ω)∈M

γ(υ → ω) +
∑

υinN1

γ(υ → λ) +
∑

ω∈N2

γ(λ→ ω)
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Figure 2.2: Tree Examples

Figure 2.3: Normalized Binary Tree Representation

Since γ is a metric, it is not hard to show that a minimum cost mapping is equivalent

to the edit distance: δ(T, T ′) = min{γ(M) |(M ,T ,T ′) is an edit distance mapping}.

Binary Tree-based Edit Distance: Yang et al. in [91] transformed tree-

structured data into corresponding binary trees, and then encoded the binary trees

and generated the corresponding approximate numerical multidimensional vectors to

compute similarity, denoted as BDist.

There is a natural correspondence between forests and binary trees. The standard

algorithm to transform a forest (or a tree) to its corresponding binary tree is through

the left-child, right-sibling representation of the forest (tree): (1) Link all the siblings

in the tree with edges. (2) Delete all the edges between each node and its children
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in the tree except those edges which connect it with its first child. Note that the

transformation does not change the labels of vertices in the tree. For example, the

trees T1 and T2 of Figure 2.2 can be transformed into B(T1) and B(T2) shown in

Figure 2.3, respectively. To generate the vectors, they first build an inverted file for

all binary branches, as shown in Figure 2.4(a). An inverted file has two main parts: a

vocabulary which stores all distinct values being indexed, and an inverted list for each

distinct value which stores the identifiers of the records containing the value. The

vocabulary here consists of all existing binary branches in the datasets. The inverted

list of each component records the number of occurrences of it in the corresponding

trees. The resulting vectors of the transformation for the trees in Figure 2.2 and

the normalized binary trees in Figure 2.3 are shown in Figure 2.4(b). Based on the

vector representation, the binary branch distance can be computed by the equation

BDist(T1, T2) =
∑|T |

i=1 |bi−b′i| = 9, which can be taken as the lower bound edit distance

of the two trees.

Figure 2.4: Binary Branch Vector Representation

However, when BDist(T1, T2) = 0, it can not imply that T1 is identical to T2. This
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isillustratedinFigure2.5,wherebothtreesT1andT2havethesamebinarybranch

tree.

D C 

B 

A 

C 

: 1 T 

D 

C 

B 

A 

C 

: 2 T 

D 

C 

B 

A 

C 

e

e
B i n a r y   B r a n c h   T r e e 

Figure2.5:Treeswith0BinaryBranchDistance

Althoughthebinarybranchdistanceisnotametric,itapproximatesandlower

boundsthetree-editdistancemetric.Ifthelowerbounddistanceisgreaterthanthe

queryrange,itissafetofilteroutthedatasinceitsrealeditdistancecannotbe

lessthanthatrange,i.e.,objectsthatcannotqualifyarefilteredoutwhileverifica-

tionoftheoriginalcomplexsimilaritymeasureisnecessaryonlyforthecandidates

filteredthrough.Therefore,theycanefficientlyprocesssimilaritysearchonthetree-

structureddatabyexploitingthelowerbounds.

TimeSeries-basedEditDistance:Inordertocomputethesimilaritybetween

XMLdocuments,Flescaetal.in[45]describedthestructureofanXMLdocument

intoatimeserieswhereeachoccurrenceofatagcorrespondstoagivenimpulse.

ByanalysingthefrequenciesofthecorrespondingFouriertransform[74],theycan

statethatthedegreeofsimilaritybetweenthedocuments.Asamatteroffact,the

exploitationoftheFouriertransformtochecksimilaritiesamongtimeseriesisnot

completelynew(see,e.g.,[5,75])andhasbeenprovedsuccessfully.Themaincon-

tributionofthisworkisthesystematicdevelopmentofaneffectiveencodingscheme

forXMLdocuments,inawaythatmakestheuseoftheFourierTransformextremely

profitable.
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2.1.2 Similarity Computation between Documents and Schemas

Bertino et al. [12] exploited a graph-matching algorithm to associate elements in the

XML document with element definitions in the DTD. An algorithm, named Match, is

proposed to evaluate the similarity between any kind of XML documents and DTDs.

Given a document D, and a DTD T , algorithm Match first checks whether the root

labels of the two trees are equal. If not, then the two structures do not have common

parts. If the root labels are equal, the maximal level l between the levels of the two

structures is determined, and the recursive function M is called on:

1. the root of the document,

2. the first (and only) child of the DTD,

3. the level weight taking into account that function M is called on the second

level of the DTD structure, and

4. a flag indicating that the current element (the root element) is not repeatable.

Function M recursively visits the document and the DTD, at the same time, from

the root to the leaves, to match common elements.

2.1.3 Similarity Computation Between Schemas

At the schema level, different methods computing XML schema similarity have been

studied for the purpose of generating qualified schema matching.

Cupid [68] addressed the problem of schema matching by computing similarity

coefficients between elements of the two schemas and then deducing a mapping from

those coefficients. The coefficients, in the [0, 1] range, are calculated in two phases.

1. linguistic matching: It matches individual schema elements based on their

names, data types, domains, etc. They use a thesaurus to help match names
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Figure 2.6: Purchase Order Schemas

by identifying short-forms (Qty for Quantity), acronyms (UoM for UnitOfMea-

sure) and synonyms (Bill and Invoice). The result is a linguistic similarity

coefficient, lsim, between each pair of elements.

2. structural matching: It matches the schema elements based on the similarity of

their contexts or vicinities. Let’s take the purchase order schemas in Figure 2.6

as an example. Line is mapped to ItemNumber because their parents, Item,

match and the other two children of Item already match. The structural match

depends in part on linguistic matches calculated in phase one. For example,

City and Street under POBillTo match City and Street under InvoiceTo, rather

than under DeliverTo, because Bill is a synonym of Invoice but not of Deliver.

The result is a structural similarity coefficient, ssim, for each pair of elements.

The weighted similarity (wsim) is a mean of lsim and ssim: wsim = wstruct × ssim

+ (1-wstruct) × lsim, where the constant wstruct is in the range 0 to1. A mapping

is created by choosing pairs of schema elements with maximal weighted similarity.

In order to improve the performance of computation, its structural algorithm only

considers the elements with the same number of leaves and immediate descendants.

The similarity comparison in XClust [60] and Similarity Flooding [72] considers

not only the linguistic and structural information of schema elements but also the con-

text of a schema element (defined by its ancestors and descendants in a schema tree).
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Differently, XClust also considered the cardinality of elements. Similarity Flooding

employed fixpoint computation approach to detect the similar schema elements. In

addition, Similarity Flooding is usable across different scenarios. Yi and Weng et. al.

[93] represented XML schemas by constructing a universal semantic model and then

compared the generated models to compute the similarity between XML schemas.

The semantic model consisted of three components: ontological categories, proper-

ties and contextual constraints. In addition, the operation of relaxation labeling was

devised to improve the quality of schema matching. Formica [46] computed the sim-

ilarity of XML schema elements by combining two parts: the maximum information

content that is measured by the minimal common type to be shared and their own

type declarations. COMA [38] is a generic schema match system which provided an

extensible library of simple and hybrid match algorithms and supported a framework

for combining the match results obtained from different algorithms. In the system,

the similarity between the elements was recursively computed from the similarity

between their respective children with a leaf-level matcher.

To support efficient computation of schema similarity, Duta [39] proposed seven

reduction rules to transform XML schemas into minimum structures capable of storing

the same information and preserved the cardinality constraints of leaf nodes. The first

three rules called conversion rules convert the attribute and text node types of the

source structure into an element node, and the last four rules called elimination rules

eliminate intermediate tree levels. Rahm and Bernstein [76] did a comprehensive

survey of some early work in schema matching.

2.2 Structured Query Relaxation

Query relaxations on structure have been studied recently. In this section, we first

describe the strategy that embeds the relaxation operations in query evaluation plan
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in Section 2.2.1. And then we illustrate the procedure of relaxation by deriving the

correlations from malleable schemas in Section 2.2.2. Finally, Section 2.2.3 briefly

introduce the rest methods related to query relaxation.

2.2.1 Embedding Relaxation in Query Evaluation Plan

Amer-Yahia et al. [8] proposed the relaxations of weighted tree pattern queries: gen-

eralizing nodes or edges, deleting leaf nodes, promoting subtrees. Weights are added

to either edges and nodes for determining penalties in a straightforward manner. Let

us consider the example in Figure 2.7.
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Figure 2.7: An Instance and a Query Example

In order to evaluate structured query, several query evaluation strategies have

been proposed for XML (e.g. [71, 95]). They typically rely on a combination of index

retrieval and join algorithms using specific structural predicates. In the work [8],

Amer-Yahia et al. used the algorithm of [95] and two specific predicates c(n1, n2)

to check for the parent-child relationship and d(n1, n2) to check for the ancestor-

descendant one. Figure 2.8 shows a translation of the tree pattern query of Figure 2.7
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Figure 2.8: An example of relaxation embedded in evaluation plan

into a left-deep join evaluation plan with the appropriate predicates. And some

relaxations of the query are embedded in the query evaluation plan.

Generalizing nodes. In order to encode a node type generalization in a query

plan, the predicate on the node type is replaced by a predicate on its super-type. We

show how Book can be replaced by Document in Figure 2.8.

Relaxing the structural predicate between nodes. In order to capture the

generalization of a parent-child edge to an ancestor-descendant edge in an evaluation

plan, we transform the join predicate c(t1, t2) into the predicate: c(t1, t2) OR ((not

exists c(t1, t2)) AND d(t1, t2)).

This new join predicate can be checked by first determining if a parent-child

relationship exists between the two nodes, and then, if this relationship does not exist,

determining if an ancestor-descendant relationship exists between them. For example,
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Figure 2.8 depicts how the parent-child edge (Editor, Name) can be generalized to an

ancestor-descendant edge in the evaluation plan.

Making a leaf node optional. To allow for the possibility that a given query

leaf node may or may not be matched, the join that relates the leaf node to its parent

node in the query evaluation plan becomes an outer join. More specifically, it becomes

a left outer join for left-deep evaluation plans. For example, Figure 2.8 illustrates how

the evaluation plan is affected by allowing the Address node to be deleted. The left

outer join guarantees that even the books whose editor does not have an address will

be returned as an approximate answer.

Promoting a subtree. This relaxation causes a query subtree to be promoted

to become a descendant of its current grandparent. In the query evaluation plan, the

join predicate between the parent of the subtree and the root of the subtree, say jp(t1,

t2) needs to be modified to: jp(t1, t2) OR ((not exists jp(t1, t2)) AND d(t3, t2)) where

t3 is the type of the grandparent. For example, Figure 2.8 illustrates the evaluation

plan is affected by promoting the subtree rooted at Name.

Combining relaxations. It consists of the above four relaxation operations.

But the root node and the original descendant edges do not need to be relaxed.

2.2.2 Deploying Malleable Schemas

Recently, Zhou et. al. in [97] proposed query relaxation by using malleable schemas

where they first utilize the duplicates in different data sets to discover the correla-

tions within a malleable schema and then relax users’ queries based on the derived

correlations.

Since each data instance uses only a subset of the attributes or relationships

defined in a malleable schema, the predicates in a query have to be properly relaxed

to retrieve all relevant results. In this work, such relaxation is achieved by extending

the types of attributes or relationships. For example, Given a query q1 based on one
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schema (please refer to Figure 1 in [97]).

q1 = {E1|E1.title 3 ’XML’ ∧E1.title 3 ’Query’ ∧E1.ISA − paper 3 ’True’

∧E1.author 3 E2 ∧ E2.name 3 ’Daniel’}

In order to retrieve more relevant results, q1 can be relaxed by extending E2.name 3

’Daniel’ to E2.f irstname 3 ’Daniel’. By applying query relaxation, a query will be

turned into a set of relaxed queries. However, users would like to see the results

with the higher relevance. Therefore, the system in this work returns query results

based on their probabilities of relevance. That means, given a query q0 that could

be relaxed to q1 ∨ q2 ∨ . . . ∨ qn, the system returns the results of the relaxed queries

according to the probabilities P (q0|q1), P (q0|q2), . . ., P (q0|qn), where P (qi|qj) repre-

sents the probability that a result of qj is also a relevant result of qi. As an example,

q0 = {E|A 3 a ∧ B 3 b} is relaxed to q1 ∨ q2, where q1 = {E|A1 3 a ∧ B1 3 b} and

q2 = {E|A2 3 a ∧ B2 3 b}. If the system can know that P (A 3 a ∧ B 3 b|A1 3

a ∧ B1 3 b) < P (A 3 a ∧ B 3 b|A2 3 a ∧ B2 3 b), then the system will return the

results of q2 prior to the results of q1 because q2 will retrieve more relevant results

than q1.

The authors assume that the entity-relationship data are stored in relational

database. In contrast to ordinary queries in relational database, a query using

malleable schema will be relaxed to multiple queries that are executed on differ-

ent columns or tables. The major performance consideration is to find a plan that

executes as less queries as possible to retrieve sufficient relevant results. The optimal

plan is to execute relaxed queries in a sequence based on the expected precisions of

their result sets. However, sometimes it is infeasible to evaluate all relaxed queries.

In practice, it is more desirable to evaluate the relaxed queries in the order of their

precisions until the users can obtain more than k results or the users are satisfied and

stop the processing. To achieve this, the authors exploit the relationship between the

relaxed queries. And they find that a relaxed query always yields better precision
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than its child queries, so that it should always be evaluated prior to its child queries.

2.2.3 Others

In addition, there are some approaches that relax queries when no results can be

returned. Delobel and Rousset [35] defined three kinds of relaxations: unfolding a

node (replicating a node by creating a separate path to one of its children), deleting

a condition at a node, and propagating a condition to its parent node. Schlieder[78]

considered relaxations on an XQL query: deleting nodes for making the context loose,

inserting a node between inner nodes for specifying more specific context and renam-

ing nodes for changing the search context. Koudas et al.[58] presented a framework for

relaxing join and selection conditions in relational schema. In information retrieval,

some work have been proposed to search the approximate results. For example,

VCAS [66] is an approach for vague content and structure retrieval, which partitions

a user’s structure query into a SCAS (strict content and structure) sub query and a

CO (content only) sub query and produces results by combining the results of two

sub queries.

2.3 XML Keyword Search Processing

Keyword search is a user-friendly way of querying HTML documents in the World

Wide Web. Keyword search is well-suited to XML documents as well, which are

often modeled as labeled trees or graphs. It allows users to find the information they

are interested without having to learn a complex query language or needing prior

knowledge of the structure of the underlying data. In this section, we first introduce

some approaches that take the lowest common ancestors (LCA) or smallest LCA

(SLCA) of the keyword-matched nodes as the returned results. And then we describe

the more effective methods that pay more attention to the semantic relationships
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among the keyword-matched nodes, which can improve the accuracy of the searched

results. At last, we illustrate some specific keyword search methods over data graph,

which will return a set of subgraphs or particular representatives as the results.

2.3.1 LCA/SLCA based Approaches

Definition 1 LCA in XML Given a list of m keywords k1, k2, · · ·, km and an input

XML document tree T , an answer subtree of keywords k1, k2, · · ·, km is a subtree of

T such that it contains at least one instance of each keyword and at least one of the

instances cannot be covered by other answer subtrees. The results LCA(k1, k2, · · ·,

km, T ) of the list of keywords k1, k2, · · ·, km on the input XML document tree T is

the set of roots of all answer subtrees of the list of keywords.

Definition 2 SLCA in XML A smallest answer subtree of keywords k1, k2, · · ·,

km is answer subtree (of keywords k1, k2, · · ·, km) such that none of its subtrees is an

answer subtree (of keywords k1, k2, · · ·, km). The results SLCA(k1, k2, · · ·, km, T )

of the list of keywords k1, k2, · · ·, km on the input XML document tree T is the set

of roots of all smallest answer subtrees of the list of keywords.

Guo et. al. in [49] presented the XRANK system to process ranked keyword search

over XML documents. The keyword query results are defined as LCA. In addition,

to make the returned results more meaningful, XRANK also supported both user

navigation for context information and the ability to pre-define answers nodes where

the former is to allow the user to navigate up to the ancestors of the query result

to get more context information when desired and the latter is to predefine a set of

“answer nodes” (that is originally proposed in the context of keyword searching graph

database [15, 33]). But there is an assumption that pre-defining answer nodes for

XML documents may require knowledge of the domain and underlying XML schema,

if such knowledge is not available, all XML elements can be treated as answer nodes.
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To sort the retrieved results, three properties are considered in their ranking func-

tion:

• Result specificity: The ranking function should rank more specific results

higher than less specific results.

• Keyword proximity: The ranking function should take the proximity of the

query keywords into account. This is the other dimension of result proximity.

Note that a result can have high keyword proximity and low specificity, and

vice-versa.

• Hyperlink Awareness: The ranking function should use the hyperlinked

structure of XML documents.

To efficiently evaluate XML keyword search queries, they proposed three algo-

rithms: Dewey Inverted List (DIL) algorithm, Ranked Dewey Inverted List (RDIL)

and Hybrid Dewey Inverted List (HDIL).

The key idea of DIL is to merge the query keyword inverted lists, and simultane-

ously compute the longest common prefix of the Dewey IDs in the different lists. Since

each prefix of a Dewey ID is the ID of an ancestor, computing the longest common

prefix will automatically compute the ID of the deepest ancestor that contains the

query keywords. Since the inverted lists are sorted on the Dewey ID, all the common

ancestors are clustered together, and this computation can be done in a single pass

over the inverted lists.

Although DIL evaluates queries in a single pass over the query inverted lists,

it suffers from a potential disadvantage. If inverted lists are long (due to common

keywords or large document collections), even the cost of a single scan of the inverted

lists can be expensive, especially if users want only the top few results. One solution

is to order the inverted lists by the ElemRank (element ranking score) instead of
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by the Dewey ID. In this way, higher ranked results are likely to appear first in the

inverted lists, and query processing can usually be terminated without scanning all

of the inverted lists. As a simple example, if a query contains just one keyword, only

the first m inverted list entries have to be scanned to find the top m results.

Even though RDIL is likely to perform well in many cases, there are certain

cases where it is likely to perform much worse than DIL. For example, consider a

query where the keywords are not very correlated, i.e., the individual query keywords

occur relatively frequently in the document collection but rarely occur together in

the same document. Since the number of results is small, RDIL has to scan most (or

all) of the inverted lists to produce the output, incurring the cost of random index

lookups along the way. In contrast, DIL sequentially scans the inverted lists, and

is likely to be faster. In general, the overhead of performing random index lookups

in RDIL can sometimes outweigh the benefit of processing the inverted lists in rank

order. To address this problem, they considered an adaptive strategy. They first

started evaluating the query using RDIL, and periodically monitor its performance

to calculate (a) the time spent so far - t, and (b) the number of results above the

threshold so far - r. Based on this, they estimate the remaining time for RDIL as

(m− r) ∗ t/r, where m is the desired number of query results. If this estimated time

is more than the expected time for DIL, we switch to DIL. Note that the expected

time for DIL is relatively easy to compute a priori for a given machine configuration

because it mainly depends on the number of query keywords, and the size of each

query keyword inverted list (since DIL scans inverted lists fully in all cases). If there

are very few results above the threshold (corresponding to low keyword correlation),

it switches to DIL; else it sticks with RDIL.

Xu and Papakonstantinou in [90] presented the XKSearch system to process key-

word search in XML databases. The proposed keyword search returned a set of SLCA

of the keyword matches as the interesting results. But in their work, how to rank the
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returned SLCA nodes is not discussed.

To efficiently compute the SLCAs of keyword matches, they proposed two algo-

rithms: the Indexed Lookup Eager algorithm that exploits key properties of smallest

trees in order to outperform prior algorithms by orders of magnitude when the query

contains keywords with significantly different frequencies and the Scan Eager variant

algorithm that is tuned for the case where the keywords have similar frequencies.

The Indexed Lookup Eager Algorithm improves the algorithm by adding “eagerness”-

it returns the first part of the answers without having to completely go through

any of the keyword lists and it pipelines the delivery of SLCAs. Assume there is

a memory buffer size of P nodes. The Indexed Lookup Eager algorithm first com-

putes X2 = slca(X1, S2) where X1 is the first P nodes of S1. Then it computes

X3 = slca(X2, S3) and so on, until it computes Xk = slca(. . . slca(X1, S1) . . . Sk). All

nodes in Xk except the last node are guaranteed to be SLCAs and are returned. The

last node of Xk is carried on to the next operation to be determined whether it is a

SLCA or not. The above operation is repeated for the next P nodes of S1 until all

nodes in S1 have been processed. The smaller P is, the faster the algorithm produces

the first SLCA. If P = 1, again only three nodes are needed to be kept in memory

in the whole process. However, a smaller P may delay the computation of all SLCAs

when considering disk accesses.

When the occurrences of keywords do not differ significantly, the total cost of

finding matches by lookups may exceed the total cost of finding matches by scanning

the keyword lists. Therefore, they implement a variant of the Indexed Lookup Eager

Algorithm, named Scan Eager Algorithm, to take advantage of the fact that the

accesses to any keyword list are strictly in increasing order in the Indexed Lookup

Eager algorithm. The Scan Eager algorithm is exactly the same as the Indexed

Lookup Eager algorithm except that its lm and rm implementations scan keyword

lists to find matches by maintaining a cursor for each keyword list. In order to find the
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left and right match of a given node with id p in a list Sj , the Scan Eager algorithm

advances the cursor of Sj until it finds the node that is closest to p from the left or

the right side. Notice that nodes from different lists may not be accessed in order,

though nodes from the same list are accessed in order.

There are lots of other related work [83, 65, 67] to evaluate XML keyword query

by computing LCA or SLCA of the keyword matches. Sun et. al. in [83] proposed

a multiway-SLCA approach to process SLCA-based keyword search queries. The

multiway-SLCA approach computes each potential SLCA by taking one data node

from each keyword list Si in a single step instead of breaking the SLCA computation

into a series of intermediate binary SLCA computations. On the other hand, the

approach picks an “anchor” node from the k keyword data lists to drive the mul-

tiway SLCA computation. By doing so, it is able to optimize the selection of the

anchor node to maximize the skipping of redundant computations. Li et. al. in [65]

integrated keywords into standard XML Query to process keyword search in XML

where searching the keyword matches can be constrained by associating more specific

context with keywords. Liu and Chen in [67] focused on the procedure of identify-

ing meaningful return information for XML keyword search where it is possible to

return the whole entities (SLCA) or attributes related to the keyword matches as the

interesting results.

2.3.2 Semantics based Approaches

LCA or SLCA based approaches determine the results by considering the structural

relationships among the keyword-matched nodes. However, to retrieve the more

meaningful results, there are some other work that investigate under what condi-

tions different elements of an XML document are semantically related.

Li et. al. in [61] introduced the notion of valuable lowest common ancestor to

accurately and effectively answer keyword queries over XML documents, which not
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only improves the accuracy of LCAs by eliminating redundant LCAs that should not

contribute to the answers, but also retrieves the false negatives filtered out wrongly

by SLCAs.

Cohen et. al. in [30] presented a semantic search engine for XML by studying the

semantic relationships between any two nodes of an XML data tree. They formalize

the idea as follows. Let n and n′ be nodes in an XML data tree T . It can say that n

and n′ are interconnected if one of the following conditions holds:

• Any two distinct nodes with the same label do not exist on the “path” between

n and n′, or

• The only two distinct nodes on the “path” with the same label are n and n′.

Therefore, only the interconnection relationship between nodes can be considered in

their work. Let Q(t1, · · · , tm) be a query. It says that a sequence N = n1, · · · , nm

of nodes is an answer for the query Q if the nodes in N satisfy the interconnection

relationship and for all 1 ≤ i ≤ m:

1. ni is not the null value if ti is a required term;

2. ni satisfies ti if it is not the null value.

In order to return the answers in order of relevance, they use the vector space

model, common in information retrieval, when determining how well an answer satis-

fies a query. Intuitively, the measure of similarity between a query Q and an answer A,

denoted sim(Q, A), is the sum of the cosine distances between the vectors associated

with the nodes in A and the vectors associated with the terms that they match in Q.

In addition, the relationships between nodes in A are also required to be considered.

During query evaluation, path index is designed to efficiently match the labels in

the queries. Moreover, dynamic offline/online interconnection indices are proposed
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to improve the performance of detecting the relationships between any two nodes in

the answers.

2.3.3 Keyword Search over Graph

He et. al. in [50] proposed a system BLINKS that explored a single- or bi-level

indexing and query processing scheme for top-k keyword search on graphs.

A Single-Level Index A common approach to enhance online performance is to

perform some offline computation. They pre-compute, for each keyword, the shortest

distances from every node to the keyword (or, more precisely, to any node containing

this keyword) in the data graph. The result is a collection of keyword-node lists. For

a keyword w, LKN(w) denotes the list of nodes that can reach keyword w, and these

nodes are ordered by their distances to w. They also pre-compute, for each node u,

the shortest graph distance from u to every keyword, and organize this information in

a hash table called node-keyword map, denoted MNK . Given a node u and a keyword

w, MNK(u, w) returns the shortest distance from u to w, or ∞ if u cannot reach any

node that contains w.

They call the duo of keyword-node lists and node-keyword map a single-level index

because the index is defined over the entire data graph. Therefore, we can find the

answers faster by augment backward search with efficient forward expansion.

Bi-Level Index For large data graphs, the single-level index is impractical be-

cause the index is too large to store and too expensive to construct. To address this

problem, the BLINKS uses a divide-and-conquer approach to create a bi-level index.

BLINKS partitions a data graph into multiple subgraphs, or blocks. A bi-level index

consists of a top-level block index, which stores the mapping between keywords and

nodes to blocks, and an intrablock index for each block, which stores more detailed

information within a block. The total size of the bi-level index is a fraction of that

of a single-level index.
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The block index is a simple data structure consisting of:

• For each keyword w, LKB(w) denotes the list of blocks containing keyword w,

i.e., at least one node in the block is labeled with w.

• For each portal p, LPB(p) denotes the list of blocks with p as an out-portal.

The keyword-block lists are used by the search algorithm to start backward expansion

in relevant blocks. The portal-block lists are used by the search algorithm to guide

backward expansion across blocks. Note that with the portal-block lists, it is not

necessary for each node to remember which block it belongs to; during backward

expansion it should always be clear what the current block is.

For each block b, the intra-block index consists of the following data structures:

• Intra-block keyword-node lists: For each keyword w, LKN(b, w) denotes the

list of nodes in b that can reach w without leaving b, sorted according to their

shortest distances (within b) to w (or more precisely, any node in b containing

w).

• Intra-block node-keyword map: Looking up a node u ∈ b together with a key-

word w in this hash map returns MNK(b, u, w), the shortest distance (within b)

from u to w ( ∞ if u cannot reach w in b).

• Intra-block portal-node lists: For each out-portal p of b, LPN(b, p) denotes the

list of nodes in b that can reach p without leaving b, sorted according to shortest

distances (within b) to p.

• Intra-block node-portal distance map: Looking up a node u ∈ b in this hash

map returns DNP (b, u), the shortest distance (in b) from a node u to the closest

out-portal of b (∞ if u cannot reach any out-portal of b).
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Another different but related research topic is keyword search in relational databases

that is also viewed as a graph of objects with edges representing relationships between

the objects. DBXplorer [6], DISCOVER [53], Hristidis et al. [51] and BANKS [15] are

systems that support free-form keyword search on relational databases. They return

tuple trees as answers for a given keyword query. One focus of the above works is to

generate tuple trees efficiently. DBXplorer, DISCOVER and Hristidis et al. construct

a set of join expressions (i.e. answer graph) for a given query, and then evaluate these

join expressions to produce tuple trees. BANKS finds all tuple trees from the data

graph directly using a Steiner tree algorithm. In the data graph, they use PageRank

style methods to assign weights to tuples and assign weights to edges between tu-

ples. XKeyword [54] stores the XML data in a relational database and delivers much

higher efficiency than the above systems, which perform keyword search on arbitrary

graphs, by being tuned for SLCA keyword search on trees. More recently, Sayyadian

et al [77] introduced schema mapping into keyword search and proposed a method to

answer keyword search across heterogenous relational databases. [56, 50] studied the

problem of keyword search over graphs by employing the techniques of bidirectional

expansion and graph partition respectively.

2.4 Top-k Queries Processing

In this section, we first present the traditional top-k approaches in relational database

in Section 2.4.1 and then show an adaptive top-k approach over XML data in Sec-

tion 2.4.2.

2.4.1 Traditional Top-k Algorithms

Assume that there are m attributes, and that the aggregation function is the m-ary

function t. If x1, · · · , xm are the grades of object R under each of the m attributes,
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then t(x1, · · · , xm) is the (overall) grade of object R. They use t(R) for the grade

t(x1, · · · , xm) of R. We say that an aggregation function t is monotone if t(x1, · · · , xm)

≤ t(x′
1, · · · , x

′
m) whenever xi ≤ x′

i for every i. Certainly monotonicity is a reasonable

property to demand of an aggregation function: if for every attribute, the grade of

object R′ is at least as high as that of object R, then we would expect the overall grade

of R′ to be at least as high as that of R. They restrict their attention to monotone

aggregation functions. Their goal is to find the top k objects for some fixed choice of

k, that is, the k objects R with the highest overall grades t(R).

Fagin’s algorithm (FA) [40] works as follows:

• Do sorted access in parallel to each of the m sorted lists Li. (By “in parallel”, it

means that they access the top member of each of the lists under sorted access,

then they access the second member of each of the lists, and so on.) Wait until

there are at least k “matches”, that is, wait until there is a set H of at least k

objects such that each of these objects has been seen in each of the m lists.

• For each object R that has been seen, do random access as needed to each of

the lists Li to find the ith field xi of R.

• Compute the grade t(R) = t(x1, · · · , xm) for each object R that has been seen.

Let Y be a set containing the k objects that have been seen with the highest

grades. The output is then the graded set {(R, t(R))|R ∈ Y }.

FA is correct for monotone aggregation functions t (that is, the algorithm can

successfully find the top k results).

The Threshold Algorithm (TA) [43, 48, 73] works as follows:

• Do sorted access in parallel to each of the m sorted lists Li. As an object R

is seen under sorted access in some list, do random access to the other lists to

find the grade xi of object R in every list Li. Then compute the grade t(R) =
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t(x1, · · · , xm) of object R. If this grade is one of the k highest we have seen,

then remember object R and its grade t(R) (so that only k objects and their

grades need to be remembered at any time).

• For each list Li, let xi be the grade of the last object seen under sorted access.

Define the threshold value τ to be t(x1, · · · , xm). As soon as at least k objects

have been seen whose grade is at least equal to τ , then halt.

• Let Y be a set containing the k objects that have been seen with the highest

grades. The output is then the graded set {(R, t(R))|R ∈ Y }.

TA is correct for each monotone aggregation function t. The stopping rule for TA

always occurs at least as early as the stopping rule for FA (that is, with no more sorted

accesses than FA). In FA, if R is an object that has appeared under sorted access

in every list, then by monotonicity, the grade of R is at least equal to the threshold

value. Therefore, when there are at least k objects, each of which has appeared under

sorted access in every list (the stopping rule for FA), there are at least k objects

whose grade is at least equal to the threshold value (the stopping rule for TA).

In relational databases, there are lots of other work that extend the evaluation of

SQL queries for top-k processing. Carey and Kossmann [21] optimized top-k queries

when the scoring is done through a traditional SQL order by clause, by limiting the

cardinality of intermediate results. Other works [17, 26] deployed statistical informa-

tion to map top-k queries into selection predicates which may require restarting query

evaluation when the number of answers is less than k. Over multiple repositories in a

mediator setting, Fagin et al. proposed a family of algorithms [41, 44, 42], which can

evaluate top-k queries that involve several independent subsystems, each producing

scores that are combined using arbitrary monotonic aggregation functions. These

algorithms are sequential in that they completely process one tuple before moving

to the next tuple. The Upper [70], MPro [22] and TPUT [20] algorithms show that
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interleaving probes on tuples results in substantial savings in execution time. In ad-

dition, Upper [70] used an adaptive per-tuple probe scheduling strategy, which results

in additional savings in execution time when probing time dominates query execution

time.

2.4.2 Adaptive Top-k Approach in XML

Marian et. al. in [69] explored an adaptive top-k query processing strategy in XML,

which permits different query plans for different partial matches and maximizes the

best scores. Based on the intermediate results, the irrelevant answers for the top-k

query may be pruned as early as possible. In their work, they present a conservative

extension of the tf ∗ idf function to XPath queries against XML documents. The first

point to note is that, unlike traditional IR, an answer to an XPath query need not be

an entire document, but can be any node in a document. The second point is that an

XPath query consists of several predicates, instead of simply “keyword containment

in the document” (as in IR). Thus, the XML analogs of idf and tf would need to

take these two points into consideration.

Definition 3 XPath Component Predicates Consider an XPath query Q, with

q0 denoting the query answer node, and qi, 1 ≤ i ≤ l, denoting the other query nodes.

Let p(q0, qi) denote the XPath axis between query nodes q0 and qi, (i ≥ 1). Then, the

component predicates of Q, denoted PQ, is the set of predicates {p(q0, qi)}, 1 ≤ i ≤ l.

For example, the component predicates of the XPath query /a[./b and ./c[.//d

and following-sibling::e ] ] is the set {a[parent::doc-root], a[./b], a[./c], a[.//d], a[./e]}.

The component predicates provide a unique decomposition of the query into a set of

“atomic predicates”.

Definition 4 XML idf Given an XPath query component predicate p(q0, qi), and
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an XML database D, p′s idf against D, idf(p(q0, qi), D), is given by:

log(
|{n ∈ D : tag(n) = q0}|

|{n ∈ D : tag(n) = q0 ∧ (∃n′ ∈ D : tag(n′) = qi ∧ p(n, n′))}|
)

Intuitively, the idf of an XPath component predicate quantifies the extent to

which q0 nodes in the database D additionally satisfy p(q0, qi). The fewer q0 nodes

that satisfy predicate p(q0, qi), the larger is the idf of p(q0, qi).

Definition 5 XML tf Given an XPath query component predicate p(q0, qi), and a

node n ∈ D with tag q0, p′s tf against node n, tf(p(q0, qi), n), is given by:

|{n′ ∈ D : tag(n′) = qi ∧ p(n, n′)}|

Intuitively, the tf of an XPath component predicate p against a candidate answer

n ∈ D quantifies the number of distinct ways in which n satisfies predicate p.

Definition 6 XML tf ∗ idf score Given an XPath query Q, let PQ denote Q′s set

of component predicates. Given an XML database D, Let N denote the set of nodes

in D that are answers to Q. The the score of answer n ∈ N is given by:

∑

pi∈PQ

(idf(pi, D) ∗ tf(pi, n))

In their work, the Whirlpool architecture is proposed to compute top k answers.

It consists of the router, router queue, servers, server queues and the top-k set where

the router will select the partial matches from the router queue and make the deter-

mination of the next server that needs to process the partial matches and send the

partial matches to the queue of that server; the server to be reached will extend the

partial matches with the nodes in the server queue if the nodes are consistent with the

structure of the queries and then compute scores for each of the extended matches;
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The newly computed partial matches will be sent to a Top-k set where a candidate

set of top-k matches is maintained.

However, in their work, the query component predicates are assumed to be inde-

pendent. The top-k results can not be determined until all candidates are evaluated.

In addition, they do not consider how to efficiently compute top-k results over a larger

number of different data sources.



Chapter 3

Similarity Computation between

Schemas

In this chapter, we study the problem of measuring structural similarities of large

number of source schemas against a single domain schema, which is useful for en-

hancing the quality of searching and ranking big volume of source documents on the

Web with the help of structural information. After analyzing the improperness of

adopting existing edit-distance based methods, we propose a new similarity measure

model that caters for the requirements of the problem. Given the asymmetric nature

of the similarity comparisons of source schemas with a domain schema, similarity

preserving rules and algorithm are designed to filter out uninteresting elements in

source schemas for the purpose of optimizing the similarity computation. Based on

the model, a basic algorithm and an improved algorithm are developed for struc-

tural similarity computation. The improved algorithm makes full use of a new coding

scheme that is devised to reduce the number of comparisons. Complexities of both

algorithms are analyzed and extensive experiments are conducted showing the signif-

icant performance gain achieved by the improved algorithm.

41
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3.1 Introduction

Since XML has become the standard for representing, exchanging and integrating

data on the Web, more and more information or application data stored or exchanged

on the Web is adhering to this format. Searching the Web for finding interesting

services or information now becomes part of people’s lives. The flexible structures of

XML documents make this kind of search quite complex, and sometimes may impose

relaxed conditions and return approximate results. Due to different perceptions of

an application domain, different providers of a service may define different schemas

which we call source schemas for their source data. Meanwhile, clients who require

the service may issue queries based on the common understanding of the domain

which we call a domain schema. For example, Figure 3.1(a) shows a domain schema

T0 for universities. The schema defines university, department, student, professor,

library, campus name, and book as its interesting elements and their relationships.

Figure 3.1(b) shows a source schema T for a particular university. Apart from all

interesting elements in Figure 3.1(a), this schema has elements for faculty and campus

which may not be interesting. There are also some structural differences between T0

and T , such as the relationship between departments and professors. Therefore, to

be able to get results or approximate results directly from a source XML document,

it is very important to work out the similarity of the source schema with regards to

the domain schema. Recently, research in information retrieval on XML documents

over the Web attracts a lot of attention. Instead of using a pure CO (content only)

query, we may now use a so called CAS (content-and-structure) query [47] to express

the topic statement more precisely by adding explicit references to XML structure, by

restricting either the context of interest or the context of certain search concepts. In

this kind of search, the structural similarity of the source schemas compared with the

domain schema against which a CAS query is issued is again a key point for ranking
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Figure 3.1: Extracting Interesting Structure from Source Schema based on Domain
Schema

the set of source XML documents. The problem is how to efficiently compute the

structural similarities of the potentially huge number of candidate source schemas

against a domain schema.

In recent years, a great deal of attention has been put on computing the structural

similarity between XML documents [29, 45, 12]. Work has also been presented on

matching XML schemas for schema mapping and integration [68, 38]. To the best of

our knowledge, none of them is proposed to tackle the problem that we propose in

this chapter. The structural similarity problem of our interest is to compare source

schemas with a domain schema for the purpose of searching and ranking those source

documents that conform to their corresponding source schemas. Queries are issued

against the domain schema and the returned source documents are ranked based on

the similarities between their corresponding source schemas and the domain schema.

Therefore, the problem is somehow asymmetric for the schemas to be compared. It

takes as input two schemas, T and T0 representing a candidate source XML schema

and the domain XML schema, respectively. We are able to take T0 as a base to

trim T first, and then compare their structures. For example, the source schema T

in Figure 3.1(b) can be trimmed based on the domain schema T0 in Figure 3.1(a),

yielding a trimmed schema as shown in Figure 3.1(c). In this chapter, we present a
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framework and algorithms to measure the structural similarity of T with regards to

T0.

The contributions of this chapter are as follows:

• We propose a new similarity measure model to compute the structural similar-

ity degree of any candidate source XML schema against a given domain XML

schema after analyzing the requirements of the problem and the improperness

of adopting existing edit-distance based methods to tackle the problem (Sec-

tion 3.2).

• Given the asymmetric nature of the similarity comparisons of schemas to be

compared, we design several similarity preserving rules and an algorithm to filter

out uninteresting elements from source schemas for the purpose of optimizing

the similarity computation (Section 3.3).

• We develop a basic algorithm and an improved algorithm to compute the struc-

tural similarity between a source schema and a domain schema with complexity

analysis. An efficient coding scheme is devised to speed up the similarity compu-

tation and is fully used in the improved algorithm (Section 3.4). Experimental

results show the significant performance gain of the improved algorithm (Sec-

tion 3.5).

The conclusions of this chapter are provided in Section 3.6.

3.2 Measuring Structural Similarity

In this section, we present a framework for measuring the structural similarity of

a candidate source schema against a domain schema. First we use a motivating

example to illustrate what are required for the similarity problem we are targeting

and why an existing edit-distance method is not suitable to the problem. Following



CHAPTER 3. SIMILARITY COMPUTATION BETWEEN SCHEMAS 45

a 

f e 

d c b 

T 0 : 

a 

f e 

d c b 

T 1 : a 

e 

d c b 

T 2 : a 

f 

e 

d c b 

T 3 : a 

f 

d c b 

T 4 : 

x 
e 

y 

B i B = 6 
B i B = 3 B i B = 6 

B i B = 6 

Figure 3.2: A Motivating Example

the discussions, we propose a new similarity measure model. Finally we justify that

the proposed model is effective for solving the similarity problem by reviewing the

motivating example and comparing with the edit-distance method.

3.2.1 A Motivating Example

To motivate our work, let us look at an example shown in Figure 3.2. In the example,

a domain schema tree T0 and four source schema trees T1, T2, T3 and T4 are given. If

we use an edit-distance based method such as BiBranch proposed in [91] to compute

the structural similarity, the similarity values of T1, T2, T3 and T4 against T0 are 6,

3, 6, and 6, respectively. They are shown in Figure 3.2 denoted as BiB. In BiBranch,

the smaller the BiB value is, the more similar its corresponding pair of trees are.

There are several problems in the results calculated using BiBranch.

• BiB(T0, T1) = 6 is not correct. Instead, we would expect BiB(T0, T1) = 0.

In other words, when we query a source document conforming to T1 based

on T0, we do not care about the order of the sibling elements e and f and

the results retrieved from those source documents conforming to T1 should be

ranked among the highest.
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• BiB(T0, T2) = 3 and BiB(T0, T3) = 6 are not expected. Instead, we would ex-

pect BiB(T0,T2)>BiB (T0,T3). In other words, T3 is more similar to T0 than T2.

When searching documents, it is most important that all interesting elements

are not missed out. Missing an element will impact more on the similarity

than placing the element in an inconsistent position. In T2 element f is missing

while in T3 only the relationship between e and f is inconsistent with that in

T0. The relationship between c and e is slightly different where a parent-child

(pc) relationship (“/”) holds in T0 while an ancestor-descendant (ad) relation-

ship (“//”) holds in T3. When a query containing element f is issued against

T0, no result will be returned from those source documents conforming to T2.

However, results will be returned from those source documents conforming to

T3 as long as the relationship between c and e is not strictly a pc relationship

in the query.

• BiB(T0, T4) = 6 is not correct either. Instead, we would also expect BiB(T0, T4) =

0. In other words, when we query a source document conforming to T4 based on

T0, we do not care about whether the source document contains some “noise”

elements that do not impact on the query results. Again, the results retrieved

from those source documents conforming to T4 should be ranked among the

highest.

From the above analysis, it is obvious that edit-distance based methods are not

suitable for solving our schema similarity problem and a new similarity measure model

is needed. To compute the similarity of a source schema against a domain schema,

the new model is required to first prioritize the coverage in the source schema of

every interesting element appearing in the domain schema and then to consider the

consistency of the relationships between any pair of interesting elements in both

schemas. From the example, we have pc, ad, and sibling relationships. We also know



CHAPTER 3. SIMILARITY COMPUTATION BETWEEN SCHEMAS 47

that the order of sibling elements do not matter and that “noise” elements in a source

schema can be ignored if they do not affect the relationships of any pair of elements

in the schema.

3.2.2 Structural Similarity Model SSD

In this section, we present a new similarity model for measuring Similarity of Source

schemas against a Domain schema (SSD). The SSD model provides accurate similar-

ity measures by taking into account two main factors that contribute to the structural

similarity or difference: element coverage and consistency of relationships of element

pairs. In addition, we also consider the difference of element cardinality in the model.

We choose the similarity degree value in [0, 1]. Unlike BiBranch, the bigger the SSD

value is, the more similar a source schema is with regards to the domain schema.

Both the source schemas and the domain schema are represented as schema trees.

We first define a schema tree.

Definition 7 XML Schema Tree: An XML schema tree is defined as T = (V ,

E, vr, Card) where

• V is a finite set of nodes, representing elements and attributes of the schema.

• E is a set of directed edges. Each edge e(v1, v2) represents the parent-child

relationship between two nodes v1, v2 ∈ V , denoted by P (v2)=v1 or v2 ∈ Ch(v1)

where P : V → V , for any v ∈ V and v 6= vr, P (v) is the parent node of v;

Ch : V → 2V , for any v ∈ V , Ch(v) is a set of child nodes of v.

• vr ∈ V is the root node of tree T .

• Card : V → {“1”, “*”} where Card(v) =“1” represents that there is only one

occurrence of v under P (v) in a document conforming to T ; Card(v) =“*”

represents that there are more than one occurrences of v under P (v).
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Given a domain schema tree T0 = (V0, E0, vr0, Card) and a source schema tree

T = (V, E, vr, Card), we need to compute SSD(T0, T ). The first contributing factor

is the element coverage. This can be calculated by the ratio of interesting objects

(RIO) showing the proportion of interesting elements of T0 in T , which is calculated

by the following formula.

Ratio of Interesting Object (RIO(V0, V ))

RIO =
|V ′|

|V0|
(3.1)

where V ′ = V ∩ V0 is the set of interesting nodes in V .

Compared with the domain schema tree T0 in Figure 3.2, the source schema tree

T4 contains all the interesting elements while T2 includes 5 interesting nodes. So we

have RIO(V0, V4) = 6/6 = 1 and RIO(V0, V2) = 5/6 = 0.833, respectively.

The second contributing factor is the consistency degree of all node pairs in T

compared with the corresponding node pairs in T0. Before we discuss the similarity

of node pairs, we first discuss the cardinality that may affect the similarity of node

pairs. In a schema tree, the cardinality of each element is recorded. Based on this

cardinality, we can derive the relative cardinality of a pair of nodes in the schema

tree.

Definition 8 Relative Cardinality: Given a schema tree T = (V, E, vr, Card)

and any two nodes v1, v2 ∈ V such that there exists a path from v1 to v2, we define

the relative cardinality between v1 and v2 as RCard(v1, v2) where RCard(v1, v2) is set

to “1” if every node v on the path from v1 to v2 satisfies Card(v) = “1”; otherwise,

RCard(v1, v2) is set to “*”.

Given a pair of nodes (v1, v2) in V ′ and its counterpart (v01, v02) in V0, we can

first define the cardinality similarity of node pairs (CSNP) indicating the cardinality

difference between node pairs that satisfy the ad or pc relationships.
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Cardinality similarity of node pairs (CSNP(v1, v2, v01, v02))

CSNP =











ω, RCard(v1, v2) 6= RCard(v01, v02)

1, RCard(v1, v2) = RCard(v01, v02)
(3.2)

CSNP is set to 1 when the two node pairs have consistent relative cardinality; other-

wise it is set to ω. Here, ω ∈ [0, 1] represents the degree that clients can tolerate with

the cardinality difference. We permit clients to evaluate the effect of the cardinality

on the similarity by adjusting the value of ω. Normally this value is relatively high.

We assume its default value is 0.8.

For any pair of nodes, they must have one of the three relationships: a pc rela-

tionship, an ad relationship, or an extended sibling relationship defined as follows.

Definition 9 eSibling: Given a pair of nodes (v1, v2), if neither pc(v1, v2) or ad(v1, v2),

nor pc(v2, v1) or ad(v2, v1) hold, v1 and v2 are said to satisfy an extended sibling re-

lationship and this relationship is denoted as eSibling(v1, v2).

Now, we define the similarity of node pairs (SNP) that specifies the structural

relationship between node pairs.

Similarity of Node Pairs (SNP (v1, v2, v01, v02))

SNP =







































CSNP (v1, v2, v01, v02), case 1

λ× CSNP (v1, v2, v01, v02), case 2

1, case 3

0, case 4

(3.3)

where

• Case 1: ((v01/v02) ∧ (v1/v2)) ∨ ((v01//v02) ∧ (v1//v2)) means if the node pairs

satisfy the pc or ad relationships at the same time, we can directly compute the

value of SNP according to the CSNP value of the node pairs.
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• Case 2: ((v01/v02) ∧ (v1//v2)) ∨ ((v01//v02) ∧ (v1/v2)) means that one node

pair satisfies the pc relationship and the other satisfies the ad relationship, in

this case, clients may choose to adjust the parameter λ ∈ [0, 1] which represents

the degree that clients can tolerate the difference between “/” and “//”. We

assume its default value is also 0.8.

• Case 3: eSibling(v1, v2) ∧ eSibling(v01, v02) means the node pairs (v1, v2) and

(v01, v02) are structurally consistent in that both of the node pairs have an

extended sibling relationship and the value of SNP is set to 1.

• Case 4: if the above three cases do not hold, the value of SNP will be set to 0

representing that the node pairs are not matched, e.g., one pair satisfies pc/ad

relationship while the other satisfies eSibling relationship.

Given a node pair (c, e) in T0 and its counterpart in T3 shown in Figure 3.2, it is

easy to see (c, e) satisfies a pc relationship in T0 while its counterpart satisfies an ad

relationship in T3. And they have the same relative cardinality due to RCard(c, e) =

1 in both sides. So we have SNP = λ× 1 = 0.8 where we use the default value of λ.

If one of them changed its relative cardinality, i.e. their relative cardinality were not

same, the value of SNP would be λ× ω = 0.8× 0.8 = 0.64.

Now we provide the SSD similarity value between T0 and T , which combines both

contributing factors.

Similarity of source schema w.r.t. domain schema (SSD(T0, T ))

SSD = RIO(V0, V )× (
1

C2
|V ′|

∑

SNP (v1, v2, v01, v02)) (3.4)

In the above equation, the second contributing factor is calculated by taking into

account similarities of all corresponding node pairs in V ′ and V0. After we substitute

Equation 3.1 and C2
|V ′| = |V ′|×(|V ′|−1)

2
into Equation 3.4, we can get the final similarity
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model:

SSD =
2

|V0| × (|V ∩ V0| − 1)

∑

SNP (v1, v2, v01, v02) (3.5)

3.2.3 Effectiveness Analysis

Come back to the motivating example in Section 3.2.1, now we can compute the

similarity values of T1, T2, T3 and T4 against T0 using Equation 3.5. For example, given

the source schema tree T3 and the domain schema tree T0, we have |V0| = |V3∩V0| = 6,

so RIO = 1 because all the elements in T0 can be found in T3. Then we check if

the relationship between every two elements in T0 is consistent with its counterpart

in T3. From Figure 3.2, differences can be found for two node pairs (c, e) and (f, e).

For (c, e), a pc relationship holds in T0 while an ad relationship holds in T3, so it

contributes to 0.8 (the default value of λ. For (f, e), an eSibling relationship holds in

T0 while a pc relationship holds in T3, so it contributes to 0 because the inconsistency

of the node pairs. It is easy to calculate
∑

SNP (v1, v2, v01, v02) = 13+ 0.8+ 0 = 13.8

out of the total of 15 node pairs. Now, we can get the final result SSD(T0, T3) =

2
6×(6−1)

× 13.8 = 0.92. According to the same procedure, we have SSD (T0, T1) = 1,

SSD (T0, T2) = 0.556 and SSD (T0, T4) = 1, respectively.

Based on the above SSD results, we can see that the SSD similarity values of T1

and T4 against T0 are all 1. These two similarities are exactly what we expected. We

can also see that the SSD similarity value of T3 against T0 (0.92) is much higher than

that of T3 against T0 (0.556). This reflects that a missing element will affect more

on the similarity than misplacing an element, which is what we expected. Compared

with BiBranch, SSD is much more effective when computing the similarity of a source

schema against its domain schema.
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Figure 3.3: Trimming Rules

3.3 Similarity Preserving Trimming

In the SSD model, the “noise” elements of a source schema are not counted directly

for the similarity computation because of the asymmetric nature of the similarity

problem. To reduce the number of comparisons, it is desirable to filter out those

“noise” elements while preserving the similarity of the source schema against the

domain schema. In this section, we propose a set of trimming rules and an algorithm

based on these rules to filter out all “noise” elements in a source schema based on the

domain schema. We also prove that the order of applying rules is insignificant and

the algorithm as well as each rule preserve the similarity property.

3.3.1 Basic Trimming Rules

Let T (V, E, vr, Card) and T0(V0, E0, vr0, Card) be the XML schema trees for a source

schema and a domain schema, respectively. As we discussed above, only those nodes

in T0 and their relationships are interesting to clients. As such, we are able to take

T0 as a base to trim T by deleting the uninteresting nodes v ∈ {V − V0}. When a

node is to be deleted, the edges linked to the node should be changed. According to

the location of v in T , we have the following three updating rules in Figure 3.3:

• Rule 1: If v = vr (node v is the root node), then all the edges {(v, vi)|vi ∈

Ch(v)} need to be deleted.
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• Rule 2: If Ch(v) = φ (node v is a leaf node), then the edge {(P (v), v)} needs

to be deleted.

• Rule 3: If P (v) 6= φ ∧ Ch(v) 6= φ (node v is an internal node), then: (1) for

all vi ∈ Ch(v), the cardinality of vi is updated as max{Card(v), Card(vi)};

(2) all edges relating to node v, i.e. {(v, vi)|vi ∈ Ch(v)} ∪(P (v), v) are deleted

from E; (3) new edges linking the parent node and all the child nodes, i.e.

{(P (v), vi)|vi ∈ Ch(v)} are inserted into E and re-labeled to ad-edges.

The trimmed result remains as a schema tree if the remaining nodes are all con-

nected, or becomes a schema forest containing multiple trees (e.g. we may employ

a virtual root to connect the multiple trees in the schema forest). For example, we

take T0 in Figure 3.1(a) as a base to trim T in Figure 3.1(b), the trimmed tree of T

is shown in Figure 3.1(c).

Definition 10 Trimming Schema Forest: Given a domain XML schema tree

T0(V0, E0, vr0, Card) and a candidate source XML Schema tree T (Vt, Et, vrt, Card),

the trimmed result is represented as a forest F (V, E, Vr, Card), where

• V = V0 ∩ Vt.

• E is the set of edges after applying one of Rules 1-3 for each v ∈ {Vt − V0}.

E = Ec ∪ Ed consists of two kinds of edges called pc-edges (Ec) and ad-edges

(Ed), corresponding to the child and descendant axes of XPath.

• Vr is the set of root nodes of the trees resulted from deleting vrt and some top

level nodes in {Vt − V0}. |Vr| represents the number of trees in F .

• Card is defined the same as that in Definition 7.
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Theorem 1 Let T0(V0, E0, vr0, Card) and F (V , E, Vr, Card) be a domain XML

schema tree and a source schema forest (or tree). Each of the rule in Rule 1 to Rule

3 preserves similarity when applying to F based on T0 in terms of the SSD model.

Proof sketch: Suppose that the transformed source schema forest is F ′(V ′, E ′, V ′
r , Card)

after applying a rule in Rule1 to Rule 3, we prove that SSD(T0, F
′)=SSD(T0, F )

in two parts. The first part is RIO. Obviously F ′ preserves all node in V ∩ V0

because Rule 1 to Rule 3 only filters out a node in v ∈ {V − V0}. So we have

RIO(T0, F
′)=RIO(T0, F ). The second part is SNP . For any two nodes v1, v2 ∈

V ∩ V0, we show that the relationship between v1 and v2 remains unchanged. For

Rule 1/Rule 2, when a root/leaf node v is removed, obviously there is no change

to the relationship of any remaining node with the other nodes. For Rule 3, when

an indermediate node v is removed, ad(v1, v2) and ad(v1, v3) remain unchanged be-

cause the new edges (v1, v2) and (v1, v3) are re-labeled as ad-edges. Furthermore,

RCard(v1, v2) and RCard(v1, v3) are also adjusted accordingly. So F and F ′ agree

on the SNP value for any node pair (v1, v2) where v1, v2 ∈ V ∩ V0.

3.3.2 Trimming Algorithm

Algorithm 1 gives the whole trimming process in a top-down manner. The queue

tempQueue is used to hold elements waiting to be processed. At the beginning of

each loop, we use the function GetElement() to get an element v from tempQueue

and insert its child elements into tempQueue. And then we check if v is in V0 of the

domain schema. If it does then if it is also a sub-root element we insert v into Vr. If

v is not in V0, there are three trimming cases: (1) v is a sub-root element - all the

edges coming from v will be deleted (Lines 15-17, 30-31). (2) v is a leaf element -

all the edges arriving to v will be deleted (Lines 18-20, 30-31). (3) v is an internal

element - all the edges connecting to v will be deleted while a new set of ad-edges
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Algorithm 1 Trimming Tree Algorithm

input:A domain schema tree T0(V0, E0, vr, Card) and a source schema tree
T (Vt, Et, vrt, Card)
output:A forest F (V, E, Vr, Card)

1: V = Vt;
2: E = Et;
3: push vrt into a temporary queue tempQueue;
4: while tempQueue 6= φ do
5: v = tempQueue.GetElement();
6: if Ch(v) 6= φ then
7: insert {vi ∈ Ch(v)} into tempQueue;
8: end if
9: if v ∈ V0 then

10: if P (v) = φ then
11: insert v into Vr;
12: end if
13: else
14: if P (v) = φ then
15: E = E - {e(v, vi)|vi ∈ Ch(v)};
16: else if Ch(v) = φ then
17: E = E − {e(P (v), v)};
18: else
19: for all vi ∈ Ch(v) do
20: Card(vi) = max{Card(v), Card(vi)};
21: E = E − {e(v, vi)};
22: Ed = Ed + {e(P (v), vi)};
23: P (vi) = P (v);
24: Ch(P (v)) = Ch(P (v)) + vi;
25: end for
26: end ifE = E − {e(P (v), v)}; V = V − v;
27: end if
28: end while
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will be created and inserted into edge set E (Lines 21-29, 30-31).

Corollary 1 Let T0(V0, E0, vr0, Card) be a domain schema tree, T (Vt, Et, vrt, Card)

be a candidate source Schema tree. Let F (V, E, Vr, Card) the trimmed result source

schema forest after applying a series of rules in Rule 1 to Rule 3. Then the order of

applying these rules in Rule 1 to Rule 3 is not significant.

This can be inferred from Theorem 1 because each application of a rule in Rule 1

to Rule 3 preserves similarity.

Corollary 2 Algorithm 1 correctly trims a source schema tree T (Vt, Et, vrt, Card)

based on the domain schema tree T0(V0, E0, vr0, Card).

First, Algorithm 1 filters out all “noise” nodes that are in Vt but not in V0.

Second, from Theorem 1 and Corollary 2, we know that the order of applying rules

is not significant and the trimmed schema forest preserves the similarity of T against

T0.

3.4 Computing Similarity

Given a candidate source schema T and a domain schema T0, we can take T0 as a

base to trim T into a schema forest F by applying Algorithm 1. In this section, we

compute the similarity of F against T0. To speedup the computation, we develop

a new coding scheme and algorithm to code F and T0 first. Based on the coding

information, we develop two algorithms with complexity analysis.

3.4.1 Encoding XML Schema

Most of the previous coding schemes are used to quickly determine the structural

relationship among any pair of tree nodes. To the best of our knowledge, it is Dietz’s
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Algorithm 2 Coding A Forest

input: A forest F (V, E, Vr, Card)
output: A vector V ec of encoded nodes(TreeID, pre, post, C, P, RD)

1: TreeID = pre = post = 0;
2: new stack S;
3: for all root node v in Vr do
4: C = 0;
5: TreeID + +;
6: DFTraverse(TreeID,v);
7: end for
8: Return the vector V ec;

numbering scheme that was firstly used to determine ad relationship between tree

nodes [36] where each node is assigned with a pair of numbers (pre, post). His

proposition is: given two nodes x and y of a tree T , x is an ancestor of y iff x occurs

before y in the preorder traversal of T and after y in the postorder traversal, i.e.

x.pre < y.pre and x.post > y.post. Region coding scheme is another popular scheme

adopted in many work [27, 55] with a pair of numbers (start, end). Element x is the

ancestor of element y iff x.start < y.start and y.end < x.end. In order to reduce

update cost, Li et. al. [63] proposed a variant in the form of (order, size) that reserves

additional code space for elements.

However, most of the previous coding schemes were used to improve the query

efficiency of individual XML documents, rather than to serve for comparison of a pair

of schemas. To this end, we propose a coding scheme that extends Dietz’s numbering

scheme for specifying more information for schema comparison.

Definition 11 Coding Scheme: Any node v in a schema forest F can be repre-

sented with a tuple (pre, post, C, P , RD), where

• pre: represents the position of v when it is traversed in pre-order.

• post: represents the position of v when it is traversed in post-order.



CHAPTER 3. SIMILARITY COMPUTATION BETWEEN SCHEMAS 58

• C: records the cardinality information of v. If Card(v) = “*”, v′s pre is

recorded; otherwise, if ∃va (va is v’s nearest ancestor and Card(va) = “*”),

v′
as pre is recorded; otherwise, let C = 0.

• P : records the parent’s pre of v.

• RD: records the rightmost descendant’s pre of v.

We propose a coding scheme for determining the relationships between elements

and locating the range of elements that need to be compared. It has many appealing

features: (1) Given a forest of n nodes, the pre of all nodes is in the continuous

range of [1, n], therefore, the pre of a node can be served as the index for the node;

(2) Useful information for schema comparison is recorded, including one index for

parents (P − Index) and another for the rightmost descendant (RD − Index); (3)

Cardinality information is also preserved.

The coding information can be used to optimize similarity optimization. For

example, ad-relationship can be easily determined from the codes of a node pair.

Definition 8 can be simplified as follows.

Relative Cardinality: Given any two nodes vi, vj ∈ V , if there exists a path

from vi to vj , then

RCard(vi, vj) =











“1”, vi.C = vj.C

“*”, vi.pre < vj .C ≤ vj.pre
(3.6)

where vi.C = vj .C means that Card(v) = “1” holds for any node v on the path from

vi to vj ; vi.pre < vj .C ≤ vj.pre means that either Card(vj) = “*” holds or Card(v)

= “*” holds for any node v on the path from vi to vj .

Algorithm 2 first initializes several global variables, including pre and post that are

used to assign pre and post codes to nodes. Then it traverses each tree in the schema
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Algorithm 3 DFTraverse(TreeID,v)

1: v.T reeID = TreeID;
2: pre = pre + 1;
3: v.pre = pre;
4: v.RD = pre;
5: if Card(v)=“*” then
6: v.C = v.pre;
7: C = pre;
8: else
9: v.C = C;

10: end if
11: if Ch(v) 6= φ then
12: Push(v,S);
13: while Ch(v) 6= φ do
14: x=GetLeftNode(Ch(v));
15: Ch(v)=Ch(v)-{x};
16: DFTraverse(TreeID,x);
17: end while
18: if S 6= φ then
19: v=pop(S);
20: end if
21: end if
22: if S 6= φ then
23: x =pop(S);
24: v.P = x.pre;
25: x.RD = v.RD;
26: C = x.C;
27: Push(x,S);
28: else
29: v.P = null;
30: end if
31: post + +;
32: v.post = post;
33: V ec[v.pre]=v;
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forest F in a depth-first manner and encodes each node according to Definition 11.

For each tree, we get the root of the tree from Vr and assign it a number TreeID

identifying the tree. Then we call the recursive function DFTraverse() with TreeID

and the root as inputs to encode the nodes in the tree into a vector. Finally, the

vector will be returned with all the encoded nodes.

In Algorithm 3, a recursive function DFTraverse(), with a tree id TreeID and

the root node v as inputs, is used to traverse the tree (or sub-tree) T in a depth-first

manner and to encode the nodes in T . Lines 2-4 increase the pre by 1 and then

assign the value of pre as the pre code of v (v.pre) and as the RD code of v (v.RD)

temporarily. Lines 5-11 are used to assign the C code of v (v.C) as either the pre code

of itself (v.pre) if Card(v) = “*” or the C value (0 as initial value) carry-forwarded

from its parent. Notice, if Card(v) = “*”, C will record the pre code of v and be

passed down the tree as the C code of its descendants possibly. Lines 12-22 check

if v has child nodes. If it does, v is pushed to stack S, then recursively process its

child nodes. After all its child nodes have been processed, pop up v. Line 23-29 are

used to assign the P code of v and pass RD code to its parent node. In case v has

no parent node, the P code of v is set to null (Lines 30-32). Lines 33-35 are used to

increase the global variable post and then set the post code of v (v.post).

3.4.2 Basic Algorithm

Let V and V0 be sets of nodes of F and T0, respectively. A node-to-node map

m : V → V0 is required for similarity computation. This map can be built by using an

element-level matcher [64], structure-level matcher [11], or linguistic matcher. These

techniques compare the attributes, combinations or names of elements, and other

textual descriptions respectively for finding the correspondent elements. We can treat

m as another attribute of each v ∈ V . By using this attribute, we can conduct pair

wise comparisons of the correspondent nodes. The detailed procedure of this basic
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algorithm (BA) is shown in Algorithm 4.

Algorithm 4 Basic Algorithm BA

input:node sets V and V0 with coding information
output:Similarity simi

1: SimiOfPair = 0;
2: n = |V |;
3: n0 = |V0|;
4: for (i = 1; i < n; i + +) do
5: v1 = V [i];
6: v01 = V0[v1.m];
7: for (j = i + 1; j ≤ n; j + +) do
8: v2 = V [j];
9: v02 = V0[v2.m];

10: SimiOfPair+ = SNP (v1, v2, v01, v02);
11: end for
12: end for
13: return simi = 2×SimiOfPair

n0×(n−1)
;

3.4.3 Improved Algorithm

BA uses coding information for computing the similarity of node pairs but fails to

use it for reducing the number of similarity comparison. Given any node pair (v1, v2)

in F , it is important to determine whether we have to check the comparison with its

counterpart pair (v01, v02) in T0. From Equation 3.3, we may observe that if pc(v1, v2)

or ad(v1, v2) holds then we have to check the similarity of node pairs (SNP) with

(v01, v02) because it is possible pc(v01, v02) or ad(v01, v02) also holds and hence neces-

sary comparison is required by using Equation 3.2; otherwise, we do not have to check

the details of the node pairs. With this in mind, we design the improved algorithm

(IA) that makes full use of the coding information to improve the performance of BA.

The detailed procedure is shown in Algorithm 5.

The algorithm proceeds in the pre order of V (Line 4). For v1 ∈ V , its counterpart
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Algorithm 5 Improved Algorithm IA

input:node sets V and V0 with coding information
output:Similarity simi

1: SimiOfPair = ProcessedV = 0;
2: n = |V |;
3: n0 = |V0|;
4: for (i = 1;i < n;i + +) do
5: v1 = V [i];
6: v01 = V0[v1.m];
7: V0[v01.pre].m = −1;
8: for (j = i + 1; j ≤ v1.RD; j + +) do
9: v2 = V [j];

10: v02 = V0[v2.m];
11: v02.m = i;
12: SimiOfPair+ = SNP (v1, v2, v01, v02);
13: end for
14: UntouchedV0;
15: for (j = v01.pre + 1; j ≤ v01.RD; j + +) do
16: if (V0[j].m 6= −1) ∧ (v0[j].m 6= i) then
17: UntouchedV0+ = 1;
18: end if
19: end for
20: j = v01.P ;
21: ParentV0 = 0;
22: while (j 6= 0) do
23: if (V0[j].m 6= −1) ∧ (V0[j].m 6= i) then
24: ParentV0+ = 1;
25: end if
26: j = V0[j].P ;
27: end while
28: ProcessedV + = 1;
29: SimiOfPair+ = n−ParentV0−UntouchV0−ProcessedV −(v1.RD−v1.pre);
30: end for
31: return simi = 2×SimiOfPair

n0×(n−1)
;
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v01 ∈ V0 is selected and is marked as−1 for processed (Lines 5-7). We use the attribute

m of nodes in V0 for marking purpose. With the RD − Index of v1, we only need to

check pairs (v1, v2) that satisfies ad(v1, v2) and compute SNP with their counterpart

pairs (v01, v02) (Lines 8-13). We use v1.pre which equals to i to temporally mark

v02 so that we do not need to reset this mark after use (Line 11). We can easily

get the count (UntouchedV0) of those pairs (v01, v02) in T0 that satisfy ad (v01, v02)

yet inconsistent with their counterparts in F (Lines 14-19). Similarly, we can get the

count (ParentV0) of those pairs (v01, v02) in T0 that satisfy ad(v02, v01) yet inconsistent

with their counterparts in F (Lines 19-24) using P − Index of v01. The matching

number of pairs in T0 with all those pairs (v1, v2) in F where ad(v1, v2) does not

hold can be calculated in Line 25. The similarity of F w.r.t. T0 can be obtained by

Equation 3.5.

3.4.4 Complexity Analysis

The space complexity in both algorithms is equal to the sum of the sizes of node

sets V and V0, i.e. O(n1 + n0). For BA, the time complexity is O(n2) because the

algorithm is conducted by using pair wise comparison of the nodes in V . Let N0 and

N be the maximum out-degree in T0 and F , respectively. Before we analyse the time

complexity for IA, we need to use a property of tree: for an N -ary tree T with height

H , the maximum number of nodes in T is n = NH+1−1
N−1

. IA mainly consists of three

parts:

• Lines 3, 7-12: We know all nodes in V need to be processed. For any node v

and its level i, the number of descendants of v is N i+1−1
N−1

− 1 . And the number

of nodes that are at the same level as v is NH−i. If the maximum height of

the tree is H , then the number of comparisons is
∑H

i=0(
N i+1−1

N−1
− 1)×NH−i. As

H = log
(N−1)n−1
N , the time complexity is O(N × n× log

(N−1)n+1
N );
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• Lines 3, 14-17: Similar to the above, the time complexity is O(N0 × n0 ×

log
(N0−1)n0+1
N0

);

• Lines 3, 19-23: each time Lines 19-23 is executed, the number of ancestors is

less than H0. So the time complexity is O(n× log
(N0−1)n0+1
N0

).

So if the schema trees are relatively balanced, the overall time complexity is O(N×

n × log
(N−1)n+1
N + N0 × n0 × log

(N0−1)n0+1
N0

+ n × log
(N0−1)n0+1
N0

). However, when the

schema trees are unbalanced, the performance of the algorithm will be degraded. The

worst situation (i.e. N = 1) is the same as that of BA.

3.5 Experimental Results

Experiments are carried out on a Pentium IV 3.00GHz PC with 512MB main mem-

ory. The algorithms are implemented in C++. We use both synthetic datasets and

a number of publicly available schemas [87] to compare the performance of our algo-

rithms.

3.5.1 Sensitivity Test

In the first set of the experiments, we carry out a series of sensitivity analysis for

different features of the data.

Sensitivity vs. Similarity Degree: Figure 3.4(a-d) compares the performance

between BA and IA for various similarity degrees when the schema size is 20, 40, 60,

and 80, respectively. The domain schemas are created based on genexml.xsd with

adaptation of size while the candidate source schemas are manually created with

differences from adapted domain schemas. The results show that BA is nearly not

affected by the changes of similarity. For IA, however, the more similar the two
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(d) 80 nodes

Figure 3.4: Response Time vs. Similarity Degree

schemas are, the faster. Moreover, the performance of IA is getting better with the

size increases.

Sensitivity vs. Nested Level: We also use a set of synthetic datasets to

evaluate the effect of nested level where every dataset includes 128 nodes and the

level varies from 4 to 16. The results in Figure 3.5 illustrate that IA is much better

than BA. The response time of IA is around 20% of that of BA. The performance of

IA can be affected with the number of nested levels increases but still much better

than that of BA. In real applications, it is seldom that the number of nested levels

exceeds 20.

Sensitivity vs. Fanout: We finally use synthetic data to compare the perfor-

mance of the two algorithms when the fanout varies. We generate four synthetic

datasets that are of the same size of 128 nodes. The similarity degree is set to 100%
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because we only consider the impact of fanout. Figure 3.6 shows the speedup of the

two algorithms when fanout changes from 2 to 5. The experiment results illustrate

the performance of IA is much better than that of BA when the fanout is equal to or

greater than 3. There are two factors: the nested level will become smaller when the

fanout is greater because we assume the size of schema is stable. On the other hand,

the smaller nested structure is good to search its ancestors for every node when IA

is carried out. But BA has to traverse every node that need to be compared, which

cannot skip over any node.

3.5.2 Efficiency Test

We choose genexml.xsd as a base to evaluate our algorithms. The size varies from 20,

40, 60 and 80. Figure 3.7 shows IA is better than BA when the size is greater than

20. With the size increases, the processing time of BA increases greatly. However, the

increasing trend is slow for IA. The experimental results in Figure 3.7 also show that

IA needs less response time if the similarity degree is higher, e.g., when the schema

size is less than 60, the response time is almost the same for schemas with similarity
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degree 100% and 50%, respectively. When the size adds up to 80, we can see slight

difference. It also shows that the change in similarity degrees has little impact on the

performance of BA.

Figure 3.8 provides the experimental results for the three public datasets: TPC-

H-nested.xsd (17), genexml.xsd (85), and mondial-3.0.xsd (120). In this set of exper-

iments, the domain and source schemas are the same. The results illustrate that IA

performs much better than BA, especially when the schemas contain more nodes. In

real situation, potentially huge number of source schemas need to be compared with

a domain schema. The performance gain of IA over BA will make a big difference.

3.6 Summary

Compared with previous work in Section 2.1, we looked into the problem of efficiently

computing structural similarity of potentially huge number of source schemas against

a domain schema. This study is motivated from enhancing the quality of searching

and ranking of huge number of XML source documents on the Web with the help of

structural information, especially a domain schema against which queries are issued
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and big number of source schemas which source documents may conform to. In this

chapter, we proposed a new similarity model for measuring the structural similarity

of a candidate source XML schema against a given domain schema and justified its

effectiveness by comparing it with edit-distance based methods. To speed up simi-

larity computation, we introduced a trimming process for filtering out uninteresting

objects while preserving similarity. We also devised an efficient coding scheme. Two

algorithms - the basic and the improved algorithms were developed with unnecessary

comparisons removed in the improved algorithm. The experimental results showed

that the improved algorithm outperforms significantly compared with the basic algo-

rithm.



Chapter 4

Adaptive Relaxation of Structured

Query

Searching XML data with a structured XML query can improve the precision of re-

sults compared with a keyword search. However, the structural heterogeneity of the

large number of XML data sources makes it difficult to answer the structured query

exactly. As such, query relaxation is necessary. Previous work on XML query relax-

ation poses the problem of unnecessary computation of a big number of unqualified

relaxed queries. To address this issue, we propose an adaptive relaxation approach

which relaxes a query against different data sources differently based on their con-

formed schemas. In this chapter, we present a set of techniques that supports this

approach, which includes schema-aware relaxation rules for relaxing a query adap-

tively, a weighted model for ranking relaxed queries, and algorithms for adaptive

relaxation of a query and top-k query processing. We discuss results from a com-

prehensive set of experiments that show the effectiveness and the efficiency of our

approach.

69
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Figure 4.1: A query and schemas of XML data sources s1 and s2

4.1 Introduction

As XML becomes the standard for representing web data, there is an increasing need

to search and query XML data. Compared with a keyword search, a structured

XML query allows a user to formulate the search requests more precisely. However,

the structural heterogeneity of the potentially large number of XML data sources

makes it difficult to answer a structured query exactly. The loosely-coupled nature

of the data sources also makes it inapplicable for deploying the traditional federated

database approach for integrating the XML data sources by defining a global schema.

It would be ideal that a query could be smartly relaxed then be answered according

to the data sources against which the query is issued.

Amer-Yahia et al. [8, 10] proposed a framework FleXPath for relaxing XML tree

pattern queries (TPQs). Given a TPQ q, the closure of the structural and value-based

predicates in q is first inferred and then is used to generate relaxed queries. The set of

generated relaxed queries, including the query that includes the root of q, is complete.

However, the relaxation process is basically blind and wild and the number of relaxed

queries could be big. For a large number of heterogeneous XML data sources, many

of the generated relaxed queries could be unqualified and will result in unnecessary

cost of either computing or testing them.

As an example, we may issue a query against XML data sources maintained in
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all Australian universities for searching those departments that have a group running

project with a name containing “xml” and having publications with a title containing

“query relaxation”. As the number of universities is large and their data source

structures may vary, the query is usually formulated according to users’ understanding

of a university. Figure 4.1(a) shows the query represented as a TPQ and it reflects

the user’s structural and value-based search requirements. Solely based on the query

itself, FleXPath may need to consider 25 options, each could be a relaxed query that

may be executed or tested against the university data sources. Some generated relaxed

queries may be either too blind for some data sources thus return zero answers or

too wild thus return answers that are far from what a user is expected. For example,

the partial structures of the data source s1 and s2 for two universities are shown in

schema d1 in Figure 4.1(b) and schema d2 in Figure 4.1(c), respectively. Obviously,

the query itself will not return any result, and many relaxed queries will be generated

by FleXPath from 25 options and then be evaluated or tested for both data sources.

For example, among the relaxed queries, some of the useless relaxed queries for s2 are

listed in Figure 4.2. Actually, q2 and q3 in Figure 4.2 are useless for s1 either.
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Figure 4.2: Relaxed queries of FleXPath

To deal with this problem, we propose an adaptive query relaxation (AQR) ap-

proach, which relaxes a query adaptively to each XML data source according to its

conformed schema. Hence each relaxed query will be guaranteed to agree with the

structural constraints imposed by the conformed schema of the data source, and as a



CHAPTER 4. ADAPTIVE RELAXATION OF STRUCTURED QUERY 72

" / / " 

11 q 12 q 

/ / d e p t 

g r o u p 

p r o j e c t 

p u b l i c a t i o n 

p n a m e 

t i t l e 

[ " x m l " ] 

[ " q u e r y   r e l a x a t i o n " ] 

/ / d e p t 

g r o u p 

p r o j e c t 
p n a m e 

[ " x m l " ] 

[ " q u e r y   r e l a x a t i o n " ] 

Figure 4.3: Relaxed queries of AQR for s1
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Figure 4.4: Relaxed queries of AQR for s2

result, has high probability of generating an answer. For example, for schema d1 in

Figure 4.1(b) and schema d2 in Figure 4.1(c), the relaxed queries generated by AQR

are shown in Figure 4.3 and Figure 4.4, respectively.

AQR avoids blind relaxation. Each generated relaxed query for an XML data

source is specific to the data source. In other words, a relaxed query that does

not satisfy the structural constraints imposed by the conformed schema will not be

generated. For example, for data source s2, query q1 in Figure 4.2 is useless and

will not return any result because the edge between group and project in q1 does not

match d2.

AQR also avoids wild relaxation. No unnecessary relaxation is needed because of

the requirement that a data source has to conform with its schema. For example,

the *-node project in d2 implies the co-existence of project and pname. As such, for

s2, query q2 in Figure 4.2 is too wild compared with query q21 in Figure 4.4. In
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other words, after q21 is generated and evaluated, the time spent on generating and

computing q2 is unnecessary because no new result will be returned.

We need to explain that it is not groundless to leverage a schema to facilitate query

relaxation, since most of commercial databases, such as IBM DB2 and Oracle, store

and manage XML documents grouped by their XML schema or DTD. Without loss of

generality, here we take DTD as the schema of XML data. In case the schema is not

available for a data source, its structural information can be generated dynamically

with data summarization tools [13, 14].

As a large number of data sources may be evaluated and the relaxed queries

generated for these data sources may be different, it is desirable to first execute the

relaxed query that is closest to the original query against the most promising data

sources so that the most relevant answers will be returned first. This is especially

important to evaluate a top-k query [69, 37]. For example, query q11 in Figure 4.3 is

the closest query to the original query in all the generated relaxed queries in Figure 4.3

and Figure 4.4. One appealing feature of AQR is that the closest relaxed query is

always associated with the data source that contains most relevant results because the

query is generated based on the conformed DTD of the data source. In other words,

a top-k query can be evaluated incrementally on the most relevant data source first

and instead of rank returned results, we can rank the relaxed queries. To compare

how much a relaxed query is close to the original query, we propose a penalty based

ranking model to measure the difference between a relaxed query and the original

query in AQR. For example, if the penalty for relaxing “/” to “//” is 0.1, we can

compute the penalties of q11 and q12 in Figure 4.3 as 2 and 5, and the penalties of q21

and q22 in Figure 4.4 as 2.3 and 5.3. So q11 is the least penalized query or the closest

query to the original query q. The details for computing the penalties can be found

in Section 4.4.

To improve the accuracy and relevancy of the results, we allow a user to specify
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weights on edges of a query and thus incorporate a weight into the ranking model.

If the relationship between two nodes is less important than others, a smaller weight

may be specified compared with the maximum weight 1. Our ranking model is based

on the weight set on the original query and the penalty derived for a relaxed query.

The ranking score of a relaxed query is calculated as the difference between the query

weight for the original query and the penalty of the relaxed query. For example,

when the weights for all edges are set to 1, the weight of the original query is 11. We

know that the penalty for q11, q12, q21 and q22 are 2, 5, 2.3 and 5.3, so the scores for

them are 9, 6, 8.7 and 5.7, respectively, i.e., the ranking list is [q11, q21, q12, q22]. If

a user changes the weight of the edge between group and project to 0.5 while keep

other edges as 1, the ranking list will be changed to [q21, q11, q22, q12]. The details for

computing these ranking scores can also be found in Section 4.4.

In case the schema is not available for a data source, its structural information can

be generated dynamically with data summarization tools [13, 14]. In this chapter,

without loss of generality, we take DTD as the schema of XML data.

In summary, we claim the following contributions in this chapter:

• We propose and formalize the adaptive XML query relaxation problem w.r.t.

different DTDs and devise a set of schema-aware relaxation rules.

• We develop a weight modification and penalty evaluation model to assess to

what extent the original query is relaxed.

• We design a set of algorithms to describe how the rules and penalty model are

leveraged in the process of relaxing queries.

• We run extensive experiments on XMark Benchmark to justify the efficiency

and validity of our adaptive relaxation approach.

The rest of the Chapter is organized as follows. We introduce some relevant



CHAPTER 4. ADAPTIVE RELAXATION OF STRUCTURED QUERY 75

definitions and give an overview of our AQR in Section 4.2. Section 4.3 discusses the

relaxation rules in detail. Section 4.4 provides our weight modification and penalty

evaluation models. The detailed descriptions of our adaptive relaxation algorithm

are provided in Section 4.5. We present the results of extensive experiments and the

conclusions in Section 4.6 and Section 4.7, respectively.

4.2 Overview

The goal of query relaxation is to relax the query constraints such that approximate

answers can be returned if the original query returns no answer or not enough answers.

This is especially useful when we query a big number of heterogeneous XML data

sources using a single structured XML query. Given a TPQ q, FleXPath generates

relaxed queries by enumerating all possible combinations starting from q itself to the

root of q, thus resulting in large number of relaxed queries. Among these queries,

some of them do not even match the structure of any XML data source so return no

result; some of them may return result from some data sources, but return no results

from others. Keep this in mind, our AQR approach does not enumerate the possible

combinations for generating relaxed queries. Instead, we use structural information

of data sources such as DTDs for customizing the generation of relaxed queries for

different data sources. To achieve this, we design a set of adaptive relaxation rules

to guide the generation of relaxed queries for different data sources based on their

conformed DTDs. To evaluate a top-k query incrementally, we choose the closest or

least penalized relaxed query first for execution. As such, we devise a comprehensive

ranking model based on penalties. To improve the accuracy of the returned answers,

we also allow users to specify parameters such as edge weights and coefficient. We see

this as an important alternative to users because users are able to express customised

requirements on their queries in terms of their preferences. We incorporate this
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support into the ranking model and also extend the definition of a tree pattern query.

Definition 12 Weighted Tree Pattern Query (WTPQ): A weighted tree pattern

query q is defined as a tree T (V , E, r, w), where V is a finite set of nodes. Each

v ∈ V is uniquely identified and may have search requirement of a term t denoted as

τ(t). tagname(v) specifies the tag name of v. E consists of two kinds of edges called

pc-edges and ad-edges, corresponding to the child and descendant axes of XPath. r is

the root node that is a distinguished node in V corresponding to the answer node. For

any e(v1, v2) ∈ E, w(v1, v2) ∈ (0, 1] marks a weight for e with 1 as the default value.

For any v ∈ V , ch(v) gives the set of child nodes of v, p(v) specifies the parent node

of v. pc, ad specify parent-child and ancestor-descendant relationships between a pair

of nodes (v1, v2), respectively. pc(v1, v2) if e(v1, v2) ∈ E and e is an pc-edge. ad(v1,

v2) if v1 is an ancestor node of v2, or e(v1, v2) ∈ E and e is an ad-edge.

In AQR, a DTD is defined as a directed acyclic graph (DAG) with a single root

(for the document element). We will extend the definition to allow recursive DTD

definition when we discuss the recursive relationship relaxation.

Definition 13 DTD Graph: A DTD d is defined as a directed acyclic graph G(Vd,

Ad, rd), where Vd is a finite set of nodes. Each node v ∈ Vd specifies an element or an

attribute in XML documents that conform to d and is uniquely identified. tagname(v)

specifies the tag name of v. ch(v) gives the set of child nodes of v. p(v) yields the set

of parent nodes of v. opt(v) specifies if v is optional under p(v). This corresponds to

the cardinality requirement of a node. It will be set to true for “*” and “?”, and to

false for “+” and “1”. bar(v) corresponds to “|” in DTD and specifies if v takes only

one of the child nodes at a time. Ad is a finite set of arcs. pc(v1, v2) if e(v1, v2) ∈ Ad.

ad(v1, v2) if a path exists from v1 to v2. pc, ad specify parent-child and ancestor-

descendant relationships between a pair of nodes (v1, v2), respectively. rd specifies the

root node, rd ∈ Vd and p(rd) = φ.
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Now, we formulate our adaptive query relaxation problem as follows: Given a

WTPQ q = T (V, E, r, w) and a set of DTDs d1, d2, · · ·, dn, we would like to find a set

of relaxed queries Q = Q1 ∪Q2 · · · ∪Qn, where Qi is the set of queries conforming to

di. To determine Qi, we firstly relax q into a relaxed query q′i that preserves maximum

query requirements of q w.r.t. di. Based on query requirements, q′i may be further

relaxed into a set of queries Qi according to the cardinality information, such as “*”

in di. .

4.3 Adaptive Relaxation Rules

As discussed above, AQR relaxes a query for an XML data source based on its

conformed DTD. Basically, AQR avoids blind relaxation by filtering out those query

nodes that do not appear in the DTD and adjusting the node relationships if they

do not match the DTD; AQR also avoids wild relaxation by preserving the query

requirements which are definitely satisfied by the DTD. Before we introduce the set

of adaptive relaxation rules for these purposes, we need the following definitions.

Definition 14 Corresponding Node: Let a WTPQ q = T (V, E, r, w) and a DTD

d = G(Vd, Ad, rd), v′ ∈ Vd is called the corresponding node of a node v ∈ V if

tagname(v′) = tagname(v). A node in V may not always have a corresponding

node.

Definition 15 Consistent Corresponding Node: Let a WTPQ q = T (V, E, r, w),

a DTD d = G(Vd, Ad, rd), and r′, v′ ∈ Vd are the corresponding nodes of r, v ∈ V , re-

spectively, v′ is called the consistent corresponding node of a node v if either pc(r′, v′)

or ad(r′, v′) holds. The corresponding node r′ of the root node r is always consistent.

For a WTPQ q = T (V, E, r, w) and a DTD d, the minimal requirement for the

relaxed query q′ of q w.r.t. d is that the root node r of q keeps in q′, i.e., r has a
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corresponding node r′ in d. For any other node v ∈ V , we need to check if it has a

consistent corresponding node in d. Now we define rules for relaxation.

4.3.1 Ontology Relaxation

Before we discuss ontology relaxation, we assume that a tagname uniquely represents

a concept and different tagnames representing same concept can be renamed as a

single tagname, e.g., a worker can be renamed as an employee. With this assumption,

a tagname can uniquely identify a node in a DTD. This means that a corresponding

node defined in Definition 14 is unique if exists.

For each v ∈ V , if its corresponding node v′ ∈ Vd does not exist, we can search,

say from WordNet, to see if there exists a superclass (hypernym) of tagname(v) that

matches the tagname of a node v′
super ∈ Vd and v′

super is under the corresponding node

of r. If so, the tagname of v is renamed as that of v′
super in the relaxed query q′ for d.

We call v′
super a relaxed consistent corresponding node of v. A fixed penalty applies

for this kind of relaxation.

A query q can be relaxed to q′ for d if either the corresponding node or the relaxed

corresponding node of the root node r exists in Vd.

4.3.2 Node Relaxation

When a node v ∈ V can not find a consistent corresponding node or a relaxed

consistent corresponding node in Vd, v needs to be deleted in the relaxed query q′ for

d. The following two situations need to be treated differently.

Case 1: If the node is a leaf node, i.e., ch(v) = φ, we can directly delete the node

v and the edge e(p(v), v) in the relaxed query q′.

Case 2: If the node is an internal node, i.e., ch(v) 6= φ and v 6= r, we first delete

the node v and the edge e(p(v), v), then for each vi ∈ ch(v), we replace the edge
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e(v, vi) with an ad-edge e′(p(v), vi) in the relaxed query q′ regardless of whether e is

a pc-edge or an ad-edge.

Since a node (an element or attribute) that does not exist in a DTD will not

appear in the corresponding data sources that conform to the DTD, the adoption of

the node relaxation rule can delete the node in advance, rather than leave it in the

query which later will be evaluated uselessly on these data sources. Consequently,

unqualified relaxed queries will not be generated in AQR. That will reduce the number

of relaxed queries generated and improve the performance of relaxed query evaluation.

The deletion of a node in the query may affect the original query requests of a user.

To mark this change in the relaxed query, a structural penalty applies depending on

the importance of the relationships between the node and other nodes. This will be

discussed in detail in Section 4.4.

4.3.3 Term Relaxation

Assume a node v contains search requirements for terms t1, . . ., tm, i.e., v[τ(t1) and

. . . τ(tm)], and its parent node vp[τ(tp1) and . . . and τ(tpn)]. If v is deleted, its terms

will be merged to its parent resulting vp[τ(tp1) and . . . and τ(tpn) and τ(t1) and . . .

and τ(tm)], where ti (1 ≤ i ≤ m) does not match any of tpj (1 ≤ j ≤ n).

While query requirements on XML structure are important for finding accurate

information, search requirements on terms are fundamental to most queries from

users. When a node that contains a term search request is deleted, we can apply

the above term relaxation rule to keep the term search request by promoting it to

its parent using operator “and”, rather than deleting it together with the node. The

semantics of this term promotion widens the search scope from a child node to its

parent node when the child node does not appear in the DTD.

Since penalty has been applied to a node relaxation, no extra penalty applies to

a term relaxation.
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4.3.4 Inconsistent Edge Relaxation

The inconsistent appearance of nodes between a query q and a DTD d is handled by

a node relaxation rule. Now we consider each edge e(v1, v2) ∈ E of q. In q, a user

specifies either pc(v1, v2) (pc-edge) or ad(v1, v2) (ad-edge). In the relaxed query q′ of

q, we try to keep this relationship as close as possible. However, even though there

is no such close relationship between v′
1 and v′

2 in d where v′
1 and v′

2 are consistent

corresponding nodes of v1 and v2, it is better to keep v1 and v2 in q′ than just delete

them, which can keep the maximum semantics of the original query. So we have the

following definition.

Definition 16 eSibling: Given a pair of nodes (v1, v2), if neither pc(v1, v2) or

ad(v1, v2), nor pc(v2, v1) or ad(v2, v1) holds, v1 and v2 are said to satisfy an extended

sibling relationship and is denoted as eSibling(v1, v2).

Note, an eSibling relationship permits that v1 and v2 appear at different levels of

a tree or DAG. Unlike pc or ad relationships, we have eSibling(v1, v2) = eSibling(v2,

v1).

Now we consider an edge e(v1, v2) ∈ E of q, and assume that the consistent

corresponding pair of nodes (v′
1, v

′
2) of (v1, v2) exist in DTD d. If e is a pc-edge and

pc(v′
1, v

′
2) also holds, or e is an ad-edge and either pc(v′

1, v
′
2) or ad(v′

1, v
′
2) holds in d,

we can keep e as it is in q′; otherwise, we need to handle the follwing two situations.

Case 1: Relaxing a pc-edge into an ad-edge. If e is a pc-edge and only ad(v′
1, v

′
2)

(not pc(v′
1, v

′
2)) holds in d, e needs to be relaxed from a pc-edge to an ad-edge in q′.

Case 2: Relaxing a pc-edge or an ad-edge into an eSibling relationship. In d, if

neither pc(v′
1, v

′
2) nor ad(v′

1, v
′
2) holds (i.e., eSibling(v′

1, v′
2) or pc(v′

2, v′
1) or ad(v′

2, v′
1)

holds), e will not appear in q′, instead, a new edge will be created to make v1 and v2

to have eSibling(v1, v2).
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For Case 2, we need to know how to create the new edge, i.e., to connect v2 under

a common ancestor of v1 and v2 based on the positions of v′
1 and v′

2 in d. Again, we

try to keep the relationship as close as possible in q′ with respect to d so a nearest

common ancestor is sought after. The following definition serves for this purpose.

Definition 17 Nearest Common Ancestor (NCA): Let a WTPQ q = T (V, E, r, w),

a DTD d = G(Vd, Ad, rd), and v1, v2 ∈ V are a pair of nodes in q. NCA(v1, v2, q, d)

is defined as a node in V , denoted as vnca, which satisfies all the following conditions:

(1) pc(vnca, v1) or ad(vnca, v1), and pc(vnca, v2) or ad(vnca, v2) hold. (2) v1, v2 and vnca

all have their consistent corresponding nodes v′
1, v′

2 and v′
nca in d. (3) pc(v′

nca, v
′
1) or

ad(v′
nca, v

′
1), and pc(v′

nca, v
′
2) or ad(v′

nca, v′
2) hold. (4) ¬∃vx ∈ V such that vx satisfies

the above conditions, and pc(v′
nca, v

′
x) or ad(v′

nca, v
′
x) holds.

Theorem 2 Existence of NCA: Let a WTPQ q = T (V, E, r, w), a DTD d =

G(Vd, Ad, rd), and e(v1, v2) ∈ E in q. NCA(v1, v2, q, d) exists if and only if

∃v′
1, v

′
2, r

′ ∈ Vd such that they are the consistent corresponding nodes of v1, v2, r ∈ V ,

respectively.

Proof of “←”: Since v′
1 and v′

2 are the consistent corresponding nodes of v1 and v2,

respectively, by Definition 15, we know that both v′
1 and v′

2 are under the consistent

corresponding node r′ of r. In other words, r′ is a common ancestor of v′
1 and v′

2.

This guarantees that the NCA vnca exists with the root node r serves as a guard.

Proof of “→”: Since vnca exists, by Definition 17, we know that the consistent

corresponding nodes v′
1 and v′

2 exist for v1 and v2, respectively, with the consistent

corresponding node r′ of r as the pre-condition.

The algorithm for finding an NCA vnca of (v1, v2) will be introduced in Section 4.5.

Now we can create a new ad-edge en(vnca, v2) in q′ to replace e(v1, v2). Furthermore, to

guarantee relaxation precision, we also move the child nodes of v2 adaptively. For each

node vi ∈ ch(v2), if its consistent corresponding node v′
i exists, and either pc(v′

2, v
′
i) or
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Figure 4.5: Inconsistent Relaxation

ad(v′
2, v

′
i) holds in d, no change is required to the edge ei(v2, vi); otherwise, ei(v2, vi)

will be deleted and a new ad-edge ei(v1, vi) will be created.

We take the query tree q and DTD d shown in Figure 4.5 as an example. q

needs to be relaxed using the inconsistent edge relaxation rule (Case 2) when v2 is

considered because the inconsistent relationship for (v1, v2) in q and d. Before moving

node v2 to put under node v - the NCA of v1 and v2, we first check the relationships

between v2 and v2’s child nodes v21 and v22. Based on pc(v′
1, v′

21) and pc(v′
2, v′

22), v21

will be connected to v1 and v22 will follow v2, resulting the relaxed query q′ shown in

Figure 4.5.

Different penalties apply to Case 1 and Case 2 of the inconsistent edge relaxation

rule. Detailed penalty computation will be discussed in Section 4.4.

4.3.5 Recursive Relationship Relaxation

In Definition 13, a DTD is defined as a directed acyclic graph. When a DTD includes

some recursively defined elements, cycles may appear in the graph. Fortunately, cycles

can be efficiently detected [89]. For the previous rules work properly, we can treat

a cycle as a node for simplicity. However, when a user’s query involves nodes in a

cycle, proper processing is required. When a query path including nodes that appear

in some cycles, we find that two patterns can be used for different treatments. One

is non-repetitive while the other is repetitive. A node in a cycle only appears once
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Figure 4.6: Recursive Relaxation

in a non-repetitive pattern while more than one in a repetitive one. The difference

between these two patterns is that users expect recursively defined elements in source

DTDs in the latter while not in the former. In either case, we call the first node that

appear in both a cycle and the query as a recursion start node and the last node that

connects to a recursion start node a recursion entry node. For example, v1 and v are

the recursion start and entry nodes, respectively in both queries q1 and q2 shown in

Figure 4.6.

Case 1: Consider a non-repetitive pattern query q where the nodes in a cycle

appear in the same sequence as that in the recursively defined DTD d. Let v0 and

v1 be the recursion entry node and start node, respectively. If the edge e(v0, v1) is a

pc-edge, based on the assumption that the user is not aware of a recursively defined

source DTD, e(v0, v1) is relaxed to an ad-edge in the relaxed query q′. For example,

the non-repetitive query q1 is relaxed as q′1 in Figure 4.6.

Case 2: Consider a repetitive pattern query q where the nodes in a cycle appear

in the same sequence as that in the DTD d but d does not include the corresponding

cycle. We apply the node relaxation rule to retain only a single occurrence for those

nodes that appear multiple times. If there are different term search conditions on

each occurrence of the node, they are merged as the search conditions of the single

occurrence of the node. This relaxation allows q to be evaluated on the sources that

conform to d.
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Case 3: Consider a repetitive pattern query q where the nodes in a cycle ap-

pear in the same sequence as that in the recursively defined DTD d. Let v0 and

v1 be the recursion entry node and the recursion start node, respectively. Assume

v1, . . . , vn, . . . , v1, . . . , vk (k ≤ n) the repetitive pattern, we relax the edge e(v0, v1) the

same as Case 1 and shorten the repetitive pattern to v1, . . . , vn, v1, . . . , vk (k ≤ n).

Case 4: Consider either a non-repetitive or repetitive pattern q where the nodes

in a cycle appear in a different sequence from that in the recursively defined DTD

d. We can delete the inconsistent nodes using a node relaxation rule. Similarly we

can adjust the inconsistent edges using the inconsistent edge relaxation rule with the

difference that the recursion start node takes the role of the NCA node. For example,

the repetitive query q2 with the inconsistent node sequence compared with the DTD

cycle is relaxed as q′2 in Figure 4.6.

Penalty allocations of the above relaxation rules are similar to that of non-recursive

relaxation rules.

In summary, we adaptively relax users’ queries based on source DTDs, which

allows the relaxed queries to be more accurate and to preserve more in the original

queries. Moreover, the relaxed queries are very succinct because the excess repeated

nodes or edges are deleted or adjusted in advance by utilizing DTD information.

4.4 Weight and Penalty

In order to improve the precision of a user specified query, we allow users to assign

weights to edges in the query to show their preferences for different paths. The

weight information will serve as a foundation of associating each relaxed query with a

reasonable penalty. Obviously, a less modified query with a low penalty is supposed

to capture the user’s original query aim more accurately.
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4.4.1 Weight Model

Weights are assigned on edges in users’ queries, as defined in Definition 12. With

a weight specified on an edge e(v1, v2), users can specify how close v1 and v2 are

associated with each other. However, relaxing a query may call for structural changes

in the query tree, weighted relationships between only adjacent nodes are inadequate

to rectify edge weights and determine the penalty after a relaxation step, especially

in node relaxation and inconsistent edge relaxation. For instance, when deleting

a node v1, new edge weight on e(p(v1), v2) between v1’s parent p(v1) and v1’s child

v2 ∈ ch(v1) should be determined; similarly when moving a node v2 under a new node

vnca=NCA(v1, v2, q, d), the relationship between vnca and v2 needs to be found out to

determine the new edge weight for e(vnca, v2). To this end, we introduce the concept

of extended edge weight between a pair of nodes with ad relationship, ad(vi, vj). The

extended edge weight can be derived by multiplying weights along the path from vi

to vj . If eSibling(vi,vj) holds, the extended edge weight for (vi, vj) is 0.

Definition 18 Extended Edge Weight: Let a WTPQ q = (V, E, r, w), for two

nodes vi, vj ∈ V (i 6= j), the extended edge weight between vi and vj, denoted as we(vi,

vj), is defined as follows: if ad(vi,vj) or ad(vj,vi) holds, let w1,w2,. . .,wn be weights

on edges along the path from vi to vj, we(vi,vj)=
∏n

t=1 wt; otherwise, we(vi,vj)=0. For

convenience, define we(vi,vi)=0.

According to the above definition, we find: (1) the more path steps there are be-

tween two nodes, the less related the two nodes may be; (2) nodes lying on different

paths are not related with each other, i.e. nodes are only related with their ances-

tors and descendants. These two aspects reflect our common understandings about

queries. With the concept of an extended edge weight, we can easily determine the

weight between two nodes that will be connected by a new ad-edge. Extended edge
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weights can be computed on the fly when required, or be calculated out beforehand,

and then maintained dynamically.

Definition 19 Query Weight: The whole weight of a query tree q, query weight,

denoted as wq(q) is constructed by summing all extended edge weights:

wq(q) =
∑

∀vi,vj∈V,ap(vi,vj) we(vi, vj)

where ap(vi, vj) means either ad(vi, vj) or pc(vi, vj).

Query weight contains every extended edge weight, because the importance of a

node in the query tree is reflected by the relationships between the node with all other

nodes, not only with its parent node. Furthermore, it is obvious that query weight

should be decreased after each relaxation step, since any relaxation that increases the

value will be considered to add in additional relationships, and should not be carried

out. This common sense is also implicitly reflected in our model.

Take the query q in Figure 4.1(a) as an example. Assume the weight of each edge

is set as 1, we have wq(q) = we(dept, group) + we(dept, project) + ... + we(group,

project) + ... + we(project, pname) + we(publication, title) = 11.

4.4.2 Penalty Evaluation

A penalty needs to be determined when a query is relaxed into a new form, accom-

panied with possible weight modification. There are mainly three basic operations

when utilizing rules to relax user’s queries: (a) deleting a node, (b) relaxing a pc-edge

into an ad-edge, and (c) moving a node. For example, (a) is used in node relaxation

while all the three operations may be used in the recursive relationship relaxation.

Deleting a node: Let the deleted node be v, its parent node and one of the

child nodes (if exists) be p(v) and vc ∈ ch(v). In this case, the weight of the new

ad-edge established between p(v) and vc will be assigned with their extended edge

weight we(p(v), vc), i.e. w(p(v), vc) = we(p(v), vc) = w(p(v), v) · w(v, vc). Moreover,
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as the relationships between v and all the other nodes in the query disappear after

this operation, the penalty is calculated as:

f1 =
∑

∀vi∈V,v 6=vi

we(v, vi) (4.1)

After weight modification on the new edge, extended edge weight between any pair of

nodes in the relaxed query keeps unchanged. And deleting a node at the conjunction

of two branches may lead to heavier penalty than deleting a node on a single path.

This also accords with common sense.

Relaxing a pc-edge into an ad-edge: Let the inconsistent pc-edge be e(v1,v2).

pc(v1, v2) needs to be relaxed into ad(v1, v2). Edge weight w(v1, v2) will be reduced

to λ · w(v1, v2), where λ ∈ [0, 1] is a coefficient specified by users. λ shows, to what

extent, a pc relationship in the query can be taken place by an ad relationship. Now

considering v2’s ancestor vi, v1’s descendant vj , relationship between vi and vj is sort

of weakened, as e(v1,v2) along the path between them is relaxed; while such variation

should not affect the other paths. And the penalty of this operation is:

f2 = (1− λ) ·
∑

{we(vi, vj)|(∀i∀j, ad(vi, v2) ∧ ad(v1, vj))} (4.2)

After weight modification on the edge, the extended edge weight between vi and

vj, satisfying ad(vi, v2) ∧ ad(v1, vj), will be changed.

Moving a node: Let the inconsistent edge and their NCA be e(v1,v2) and vnca,

and let the path from vnca to v1 be vnca,vin ,· · ·,vi1 ,v1. The new established ad-edge

weight w(vnca, v2) will be assigned with we(vnca, v2). And v2 will lose relationship with

the nodes between vnca and v2. The penalty of moving node v2 exclusively (without
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considering descendants of v2) is:

fv2
= we(v1, v2) +

n
∑

t=1

we(vit , v2) (4.3)

However, as is discussed in Section 4.3.4 Case 2, for any subtree rooted at v2c ∈ ch(v2),

it may remain under v1 or follow v2 after inconsistent edge relaxation. Hence further

weight modification and penalty evaluation about the subtree are triggered according

to different cases. Let the subtree rooted at v2c be qs, the node set of the subtree qs

be Vs, the penalty related with subtree qs be fs, and penalties of all subtrees be
∑

fs,

we discuss further adjustments as follows:

Case 1: subtree qs rooted at v2c will remain under v1: new edge weight estab-

lished between v1 and v2c is w(v1,v2c) = we(v1,v2c). Further penalty is the deletion of

relationships between v2 and nodes in Vs, for v2 is also separated away from qs.

fs =
∑

∀vj∈Vs

we(v2, vj) (4.4)

Case 2: subtree qs rooted at v2c will follow v2: No weight modification on edges

are required for nodes in Vs. As to penalty, different from the above case, relationships

between nodes in Vs and nodes along path vin to v1 are removed, while relationships

between nodes in Vs and v2 are kept.

fs =
∑

∀vj∈Vs

we(v1, vj) +
∑

∀vj∈Vs

n
∑

t=1

we(vit , vj) (4.5)

After edge weight modification, extended edge weights between the nodes separated

into two branches are also needed to be rectified to 0. Total penalty of moving a node

is the sum of two parts:

f3 = fv2
+

∑

fs (4.6)

Two properties can be inferred on the penalty for moving a node:
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Property 1 Moving a node to an upper level will cause more penalty than to a lower

level.

Proof: Let v2 be moved to vim or vin and the path from vim to v2 be vim , · · ·, vin+1
,

vin , · · ·, vi1 , v1, v2 (m > n ≥ 1). Suppose v2 has a single child v2c (multiple children

case can be proved similarly), let ∆f = f3(v2 → vim) − f3(v2 → vin), both in case 1

and case 2, based on Equations 4.3, 4.4, 4.5, 4.6, we have ∆f > 0.

∆f =



















m−1
∑

t=n
we(vit , v2) case1

m−1
∑

t=n
we(vit , v2) +

∑

∀vj∈Vs

m−1
∑

t=n
we(vit , vj) case2

Property 2 Deleting a node will be more penalized than moving a node without con-

sidering child distribution.

Proof: Let the path from vnca to v2 be vnca,vin ,· · ·,vi1 ,v1,v2. When v2 is moved

under vnca, the difference between deleting v2 and moving v2 based on Equations 4.1,

4.3 is:

∆f =
∑

∀vm,ad(vm,vnca)

we(vm, v2) + we(vnca, v2) > 0

In Section 4.4.1, we have computed wq(q) = 11 for the weight of the original query

q, where the weight of each edge is set as 1. When q is relaxed to q11, node publication

is moved under node dept based on the inconsistent edge relaxation rule. During the

procedure of relaxation, we compute the penalty with Equation 4.6 in which fs is

calculated with Equation 4.5. In this case, we have fpublication = we(group, publication)

= 1 and fs = we(group, title) = 1 since the edges group/publication and group/title

are lost. Therefore, the weight of q11 can be computed as wq(q11) = 11 - 2 = 9.

Similarly, we have wq(q12) = 6. When q is relaxed to q21, the pc-edge between node

dept and node group is relaxed to an ad -edge. Assume the coefficient λ is set to 0.9,

the penalty of this relaxation can be computed as 0.3 with Equation 4.2. Similar to



CHAPTER 4. ADAPTIVE RELAXATION OF STRUCTURED QUERY 90

q11, the penalty caused by moving node project under node dept is also 2. So wq(q21)

= 11 - 0.3 - 2 = 8.7. Similarly we have wq(q22) = 5.7. Now we can sort these four

relaxed queries and get the ranking list [q11, q21, q12, q22]. However, if a smaller weight

0.5 is specified on the edge between group and project while others remain the weight

1, we can recompute the weights of these four relaxed queries and have wq(q11) = 7,

wq(q12) = 4, wq(q21) = 7.7, wq(q22) = 5.7. Consequently, the ranking list is changed

to [q21, q11, q22, q12].

4.4.3 Penalty Fitness Discussion

Evaluating penalty is subject to different weight models and penalty plans. It is

difficult to reach a consensus for finding out a perfect model. In the former section,

we have shown that our penalty deduced is sound and suits real cases by justifying

the possession of some basic qualities that a good penalty strategy should provide.

We will now give two other features with respect to weight and penalty rendered on

an overall basis.

Free order of processing eSibling nodes: Query relaxation is done in a top-

down manner. After processing node v, the order of processing nodes in ch(v) should

not make any difference. More generally speaking, for any two nodes of eSibling

relationship, processing order should also be free. Suppose vi, vj be a pair of eSibling

nodes, basic operations on vi will affect vj ’s extended edge weights. Then from penalty

evaluation of basic operations about vi, affected edge weights may be w(p(vi), vi),

w(p(vi), vc), w(vnca, vi), where vc ∈ ch(vi) and vnca is the NCA which vi will be moved

under. Given another node vk, let we(vj , vk) be affected by one of the edge weights

above, then from the definition of the extended edge weight, there should exist an

edge e ∈ S = {(p(vi), vi), (p(vi), vc), (vnca, vi)} on the path from vj to vk. No matter

which edge e ∈ S is on the path, we will have ad(vi, vj) or ad(vj, vi). This contradicts

to the supposition. Thus operations on vi cannot affect vj ’s extended edge weights,
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and processing eSibling nodes is of free order.

Equal penalty for step-by-step computation and batch computation:

Penalty can be computed at each step and accumulated together, or evaluated by

comparing query weight between the final relaxed query and the original user spec-

ified query. Our model conforms to the fact well, as penalty is regarded as losing

relationships and is implicitly defined by the decrease of query weight, in which all

relationships between nodes in user’s query are contained. An interesting question

is in which way, penalty can be computed efficiently. Unluckily, the answer is not

definite. Step-by-step computation suits the situation where few relaxation occurs,

while batch overwhelms the former in case of more relaxation steps. In practice, it

is difficult to determine how much relaxation will be done on the original query in

advance. We reserve the problem as future work.

4.5 Adaptive Relaxation Process

Given a user’s query q and a certain DTD di, we can relax q and generate a set of

relaxed queries Qi using the relaxation rules discussed in Section 4.3. Alternatively,

we can first relax q and generate a relaxed query qi that preserves maximum query

requirements of q w.r.t. di. Then we can further relax qi when needed, based on the

cardinality and disjunctive information provided in di. In this section, we introduce

the relaxation algorithm for generating qi from q w.r.t. di.

4.5.1 AQR Algorithm

Our main algorithm relaxes the query tree q in a top-down manner, i.e. relaxation

operations carried out on a certain node v are always handled before the operations

of p(v). This guarantees that edge adjustments brought in by later processed nodes

will not violate the established relationships between earlier processed nodes. The
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Algorithm 6 Adaptive Query Relaxation

input: q=T (V , E, r, w), we(q) and d=G(Vd, Ed, rd)
output: relaxed query q′ and we(q

′)

1: globalQueue.addElement(r); f=0;
2: while globalQueue is not empty do
3: v = globalQueue.pop();
4: v′ = FindConsistentDTDNode(v, q, d);
5: if v′ 6= NIL then
6: if v′ ∈ RecursiveTable then
7: Taking vp = p(v), v, q, v′, and d as input to call Algorithm 8;
8: else
9: if existAncestor(v) then

10: globalQueue.addElement(each vc ∈ ch(v));
11: processing repeated node with Case 2 in Section 4.3.5 while computing

penalty f1 with Equation 4.1 and f = f + fx;
12: else if pc(p(v), v) ∧ ad(p(v)′, v′) then
13: relaxing pc(p(v), v) with Case 1 in Section 4.3.4 while computing penalty

f2 with Equation 4.2 and f = f + f2;
14: globalQueue.addElement(each vc ∈ ch(v));
15: else if

pc(v′, p(v)′) ∨ ad(v′, p(v)′) ∨ eSibling(v′, p(v)′) then
16: Taking vp = p(v), v, v′

p = p(v)′, v′, q and d as input to call algorithm 9;
17: end if
18: end if
19: end if
20: end while
21: return q and we(q

′) = we(q) - f ;

implied subtree constituted by the relaxed nodes always conforms to the DTD during

the whole relaxation process, which reflects the correctness of our AQR algorithm.

The query tree is scanned in a way similar to breadth-first traversal. For each node in

a query tree, ontology relaxation, node relaxation, recursive relationship relaxation

and inconsistent edge relaxation are checked in order. Here recursive relationship

relaxation may trigger other relaxation rules as well.

Algorithm 6 gives the whole relaxation process. The queue globalQueue is used to

hold nodes waiting to be processed. At the beginning of each loop, globalQueue.pop()
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Algorithm 7 Find Consistent Corresponding Node FindConsistentDTDNode()

input: current node v, DTD d, query q′ and globalQueue
output: the consistent corresponding node of v

1: if checkConsistentNode(v, q′, d) then
2: return getConsistentDTDNode(v, q’, d);
3: else
4: Get the superclass node vsuper of v;
5: if checkConsistentNode(vsuper, q

′, d) then
6: Relaxing v with ontology relaxation rule in Section 4.3.1 and recording the

corresponding penalty into f ;
7: return getConsistentDTDNode(vsuper, q’, d);
8: else
9: globalQueue.addElement(each vc ∈ ch(v));

10: Relaxing v with node relaxation rule in Section 4.3.2 and recording the cor-
responding penalty into f ;

11: return NIL;
12: end if
13: end if

serves a node to be relaxed. Firstly, we try to find its consistent corresponding

node v′ in DTD d using function FindConsistentDTDNode() in Algorithm 7. Node

relaxation will apply when neither a consistent corresponding node is found in DTD,

nor a superclass node is sought out. If v′ can be found and is in a recursive circle in d,

Algorithm 8 is called to relax recursive relationships. Otherwise, there are three other

relaxation cases : (1) A repetitive pattern appears in the query tree with recursion

start node v, but no recursive cycle including v′ exists in DTD. Based on Case 2

in Section 4.3.5, we delete the repetitive node in the query if the node has already

appeared once on the path from v to r (detected by function existAncestor(v)). (2)

If node v is not repetitive, and there is an inconsistent edge between p(v) and v

on condition that pc(p(v), v) holds in q but ad(p(v)′, v′) in d, we will relax the pc-

edge into ad-edge based on Case 1 in Section 4.3.4; (3) If node v is not repetitive

and the inconsistent edge between v and p(v) satisfies pc(v′, p(v)′) or ad(v′, p(v)′) or

eSibling(v′, p(v)′), we call Algorithm 9 to promote node v under the NCA of p(v) and
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Algorithm 8 Relaxing recursive relationship

input: entry node vp, start node v, current query q′, consistent corresponding nodes
v′ and DTD d
output: relaxed query q′

1: if pc(vp, v) then
2: relaxing pc edge with Case 1 in Section 4.3.5 while computing penalty f2 with

Equation 4.2 and f = f + f2;
3: end if
4: qPatternBase = getPatternBase(vp, v, q′);
5: qPatternTail = getPatternTail(vp, v, q′);
6: while nextPattern(qPatternBase)6=qPatternTail do
7: deleteNextPattern(qPatternBase) and compute penalty and add it into f ;
8: end while
9: Connect qPatternBase to qPatternTail with ad edge;

10: DTDPattern = getDTDPattern(v′, d);
11: if ¬exactMatch(qPatternBase, DTDPattern) then
12: Call Case 4 in Section 4.3.5 and compute penalty and add it into f ;
13: end if
14: return q′;

v. In this way, we continuously deal with the nodes in globalQueue until the queue is

empty. Finally, the relaxed query q′ and its query weight we(q
′) can be obtained.

Algorithm 7, containing ontology relaxation and node relaxation, is actually a

function. It firstly check if the consistent corresponding node v′ of v exists in d

by calling checkConsistentNode(). If does, the node v′ will be obtained by function

getConsistentDTDNode(). Otherwise, it will continue to check if the superclass node

vsuper of v exists in d. After making sure vsuper can be found in d, node v will be relaxed

with ontology relaxation rule in Section 4.3.1 and return the consistent corresponding

node v′
super of vsuper. If no match either, node relaxation rule in Section 4.3.2 will be

revoked and NIL will be returned.

4.5.2 Relaxing Recursive Relationship
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Algorithm 8 handles recursive relationship relaxation. Let vp and v be the recur-

sion entry node and recursion start node in current query tree q′, respectively. v′ is

the consistent corresponding node of v in DTD d. We firstly check the relationship

of node pair (vp, v). If pc(vp, v) holds in the query, we will generalize the pc-edge be-

tween vp and v into an ad-edge based on Case 1 in Section 4.3.5. Then we determine

the first repetitive pattern qPatternBase and the last part qPatternTail in query q′ by

calling functions getPatternBase() and getPatternTail(), respectively. After that, we

delete the repetitive pattern between qPatternBase and qPatternTail based on Case

3 in Section 4.3.5 if the pattern is repeated for many times. Moreover, we create an

ad-edge to connect qPatternBase with qPatternTail. Finally, we use function getDT-

DPattern() to obtain the current recursive pattern DTDPattern starting from node

v′ in DTD d. If qPatternBase and DTDPattern do not match exactly, we follow Case

4 in Section 4.3.5 to relax qPatternBase against DTDPattern using other relaxation

rules. During the above process, the corresponding penalties will be computed and

recorded.

4.5.3 Determining NCA and Moving Nodes

Algorithm 9 describes the procedure to determine the NCA vnca for node pair (v1, v2)

in query q and DTD d, and promote node v2 as a descendant under vnca. We begin to

search vnca from the parent node of v1 using the function checkCommonAncestor(v′,

v′
1, v′

2, d) to check if the node v′ satisfies pc or ad relationship with v′
1 and v′

2 in DTD

d. Fortunately, lots of work can serve to efficiently judge the pc or ad relationship

between any two nodes in a DTD DAG, in this chapter, we use an auxiliary structure

called reachability matrix in [28, 32] to solve the problem. After vnca is found, we

further distribute the child nodes of v2 according to different relationships between

the child nodes to v1 and to v2. For each child node v2c ∈ ch(v2), after checking

the existence of its consistent corresponding node in DTD, we promote the subtree
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Algorithm 9 Determine NCA and Move Nodes

input: a pair of nodes v1, v2 and their consistent corresponding nodes v′
1, v′

2, query
q, source DTD d and globalQueue
output: relaxed query q′

1: v = p(v1);
2: v′ = getConsistentDTDNode(v, q, d);
3: while ¬checkCommonAncestor(v′, v′

1, v′
2, d) do

4: v = p(v);
5: v′ = getConsistentDTDNode(v, q, d);
6: end while
7: for all v2c ∈ ch(v2) do
8: v′

2c = FindConsistentDTDNode(v2c, q′, d);
9: if v′

2c 6= NIL then
10: if ¬pc(v′

2, v
′
2c) ∧ ¬ad(v′

2, v
′
2c) then

11: Connect subtree rooted at v2c to v1;
12: end if
13: globalQueue.addElement(v2c);
14: end if
15: end for
16: delete e(v1, v2), move the subtree rooted at v2 to NCA v and compute penalty

and add it into f ;
17: return q′;

rooted at v2c under v1, if neither pc(v′
2, v′

2c) nor ad(v′
2, v′

2c) holds in DTD; otherwise

we move the subtree together with v2.

4.5.4 Generation of Relaxed Query Set

From the definition of DTD, we know “|” denotes disjunction semantics, and cardinal-

ity information, such as “*”, “?”, declares that a child element may occur zero/many

times or zero/one time under its parent element. Therefore, documents conforming

to the same DTD may also have different structures depending on the three signs. We

omit the discussions about “+”, for its semantics don’t affect the form of the query

tree q′. In this section, we continuously relax the intermediate query q′ produced by

the above algorithms into a set of sub queries Q by enumerating different semantic
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combinations of the three signs. Precisely speaking, if “a|b” appears in a DTD, we

keep either “a” or “b” for the relaxed queries in Q; if cardinality information “*”, “?”

w.r.t. a node v in q′ also appears in a DTD, we add an additional query q′′ with the

subtree rooted at v in q′ deleted.

At this stage, we utilize a DAG to maintain the set of relaxed queries, which are

represented as nodes in the DAG, similar to the work [9]. However, the advantage of

our work lies in that no unqualified queries to the current relaxation reference DTD

will be generated. The size of our DAG depends on the real needs, rather than the

number of elements in the original query.

Algorithm 10 illustrates the procedure of building a DAG. We firstly insert the

relaxed query q′ as DAG root node and push it into stack s. In each loop, we pop

a query q from stack and seek out its corresponding DAG node currentDAGNode.

For each node v in the query tree q, we check the information about “|”, “*” or

“?” in v’s consistent corresponding node v′: If bar(v′) is true and v has more than

one child nodes in the query q, we call function BarProcess() to generate a set of

new relaxed queries newQuerySet, where every relaxed query contains only one child

node under v. After that, we check if each qi ∈ newQuerySet exists in current DAG

by calling function addQueryToDAG. If does, we only need to set up an arc from

currentDAGNode to the existNode using function ToConnect(). Otherwise, qi will

be inserted to DAG as a child of currentDAGNode. Let vc be a child node of v. If

opt(v′, v′
c) is true, implying “*” or “?” on v′

c, we directly generate a new query qnew by

deleting the subtree rooted at vc in q using function DeleteProcess(), and add it into

DAG with checking its existence beforehand. Finally, we get a set of relaxed queries

Q represented as nodes in the DAG.
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Algorithm 10 Generating Relaxed Query Set

input: query q′, a DTD d
output: A set of relaxed queries managed by DAG

1: SetDAGRoot(q′);
2: push q′ in stack s;
3: while stack s is not empty do
4: pop a query q from s;
5: currentDAGNode = GetDAGNode(q, DAG);
6: for all node v in q do
7: v′ = FindConsistentDTDNode(v, q, d) by calling for Algorithm 7;
8: if bar(v′) and |ch(v)| > 1 then
9: newQuerySet = BarProcess(q, v);

10: addQueryToDAG(each qi ∈ newQuerySet, currentDAGNode) by calling
for the following function;

11: else
12: for all vc ∈ ch(v) do
13: v′

c = FindConsistentDTDNode(vc, q, d);
14: if opt(v′, v′

c) then
15: qnew= DeleteProcess(q, vc);
16: addQueryToDAG(qnew, currentDAGNode);
17: end if
18: end for
19: end if
20: end for
21: end while

Function addQueryToDAG(query q, currentDAGNode);

1: if CheckQueryInDAG(q, DAG) then
2: existNode = GetDAGNode(q, DAG);
3: ToConnect(currentDAGNode, existNode);
4: else
5: insert q as a child to currentDAGNode;
6: push q into stack s;
7: end if
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4.6 Experimental Results

We ran the experiments on an Intel P4 3GHz PC with 512M memory. Wutka DT-

Dparser [2] was used to analyze the source DTDs and extract their structural infor-

mation. All relaxed queries were evaluated as XPath patterns in Oracle Berkeley DB

XML [1].

Dataset and Queries: We used XMark XML data generator [3] to create a

set of XML documents with different size from 5MB to 40MB, which conform to

auction.dtd [80]. These XML documents can be used to test the efficiency of AQR.

In order to compare the effectiveness between AQR and FleXPath, we selected the

10MB document as a base to generate other three 10MB documents that have dif-

ferent structures. The generated three documents conform to the DTDs d1 in Fig-

ure 4.7(a), d2 in Figure 4.7(b) and d3 in Figure 4.7(c), respectively. To keep readers

clear, the three documents are named as xmark10MBd1.xml, xmark10MBd2.xml and

xmark10MBd3.xml, respectively.

i t e m + 

l o c a t i o n p a y m e n t 
d e s c r i p t i o n * 

s h i p p i n g * 

r e g i o n 

(a) Schema d1

i t e m + 

l o c a t i o n 
p a y m e n t 

d e s c r i p t i o n * 

s h i p p i n g * 

r e g i o n 

s h i p 

(b) Schema d2

i t e m + 

l o c a t i o n 

p a y m e n t 

d e s c r i p t i o n * 

s h i p p i n g * 

r e g i o n 

s h i p 

(c) Schema d3

Figure 4.7: Partial Schemas of Generated 10MB Documents

With the structures of the three DTDs in mind, we first designed a query q with

some keywords as follows.

• q: //item[ ./description [./payment. contains(’Creditcard’) and ./ship [./loca-

tion. contains(’United States’) and ./shipping. contains(’international’)]]]
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This query implies that the users are interested in the items: (1) the returned

items can be paid with credit card; (2) the returned items can be shipped world

wide, i.e., international; and (3) the returned items maybe export to or import from

United States. Due to the different structures between the query and the three DTDs,

the query q will be relaxed differently for each document in AQR. By analyzing the

relaxed queries and corresponding answers, we can show the benefits of AQR in an

intuitive way.

To study the efficiency of AQR, we further designed a set of queries with complex

structures based on auction.dtd as follows.

Table 4.1: Designed Queries for Testing Relaxation
q1: //item [./description /parlist and ./mailbox /mail]
q2: //item [./description /parlist /mailbox /mail [./text and ./from and ./to]]
q3: //item [./description /parlist /listitem and ./mailbox /mail /text[./keyword

and ./emph] and ./name and ./payment]
q4: //item [./description /xxx /yyy and ./mailbox /mail /text[./keyword and

./emph] and ./name and ./payment]
q5: //item[./description [./xxx /yyy and ./mailbox /mail /text [./keyword and

./emph]] and ./name and ./payment]
q6: //item[./description [./xxx /yyy and ./mailbox /mail /text [./keyword

/keyword /keyword and ./emph /xxx]] and ./name and ./payment]

In these queries in Table 4.1, we focused on the structural requirements by con-

sidering the structural difference between the queries and the DTD, such as the edge

“parlist/mailbox” does not exist in the DTD, the edge “description/parlist” satisfies

disjunctive semantics and the nodes “mail” and “text” satisfy optional semantics. We

further added “xxx” and “yyy” into some of the queries as noise nodes that do not

appear in the DTD. We would like to guarantee certain level of computational scale

so keywords are not included.
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k=39 k=46 k=55 k=60 

xmark10MBd1 
FleXPath 6 queries 7 queries 10~15 queries 17~27 queries but 

no new results 

AQR 1 queries 2 queries 3 queries no new queries 

xmark10MBd2 
FleXPath 5 queries 6~8 queries 9~15 queries 22~32 queries but 

no new results 

AQR 1 queries 2 queries 3 queries no new queries 

xmark10MBd3 
FleXPath 4~7 queries no new 

queries 
15~20 queries 

with 1 new result no new queries 

AQR 1 queries no new 
queries 

2 queries with 1 
new result no new queries 

Figure 4.8: Relaxed queries of q over different documents with the increase of k

4.6.1 Effectiveness of Relaxation

To demonstrate the effectiveness of AQR, we compared it with FleXPath to show

the advantage of leveraging DTD in relaxing users’ queries. For the query q designed

for testing effectiveness, the maximum number of results is the same as that of the

answers when we evaluate the simple query “//item[ ‘United States ’, ‘Creditcard ’,

‘international ’]”, which returns those item nodes containing all the three keywords.

To check if a relaxed query will generate further results, we checked these documents

and found that the maximum number of results are 55, 55, 46 for xmark10MBd1,

xmark10MBd2 and xmark10MBd3, respectively. Figure 4.8 shows the number of

relaxed queries to be generated with the increase of k value when we evaluate q as a

top-k query over the three documents.

When k = 39, FleXPath has to generate 6, 5, 4∼7 relaxed queries and evaluate

all of them over the three XML documents, respectively. However, only one relaxed

query needs to be generated and evaluated for each document with AQR. When k

= 46, FleXPath needs to generate 7 relaxed queries for xmark10MBd1, 6∼8 relaxed

queries for xmark10MBd2 and 4∼7 relaxed queries for xmark10MBd3. However, AQR

only generates and evaluates 2, 2 and 1 relaxed queries for the three XML documents
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to obtain the same number of results. Interestingly, we find that the numbers of

relaxed queries generated over xmark10MBd3 for k=39 and k=46 are the same. This

is because the relaxed queries generated for k=39 can also be used for k=46, i.e.,

to return top 46 results. Compared with k = 39 and k = 46, FleXPath generates a

lot more new relaxed queries for k=55, most of them either return no new result or

output the same results repeatedly. In contrast, AQR only generates 1 new relaxed

query for each document, but produces the same set of results as FleXPath. When we

process xmark10MBd3 for k=55, both approaches return no new result, yet generate

new relaxed queries. However, AQR only generates 1 new query while FleXPath

generates 8∼16 new queries.

When k=60, no new result can be found from all the three documents by both

approaches because the current value of k (i.e., 60) is larger than the maximum

number of results (i.e., 55) for all three documents. In this case, AQR stops generating

new queries while FleXPath continues generating 2∼17 and 7∼23 new queries for

xmark10MBd1 and xmark10MBd2, respectively.

From the experiments, we find that FleXPath generates far more relaxed queries

compared with AQR. The reason behind this finding is that to meet a large k, FleX-

Path has to relax a user’s query and evaluate it until the root node of the query

if necessary. However, AQR is able to stop unnecessary query relaxations early as

possible for a particular data source with the guideline of its conformed DTD.

4.6.2 Validation of Weight Modification

In this section, we will show the impact of the specified query weight on the returned

search results. Let’s take the query in Figure 4.9 hiding the term information from q

and two of the source schemas d2 in Figure 4.7(b), d3 in Figure 4.7(c) as an example.

The relaxed queries with AQR are illustrated in Figure 4.10 and Figure 4.11.

Firstly, assume all the edges in the query q in Figure 4.9 hold the default edge
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//item 

description 

payment 

location 

ship 

shipping 

Figure 4.9: Query q with the default edge weight 1.0

weight value 1. According to the AQR algorithm, we can get the most relevant

relaxed queries q21 and q31 for the corresponding schemas d2 and d3, respectively.

The weight of the query q21 is 7 while the weight of the query q31 is 9. Therefore, we

should evaluate the query q31 before the query q21 since the query with higher query

weight preserves more request information of the original query than the query with

less query weight. After we evaluate the query q31, we may continuously relax the

query q31 into the query q32 by deleting the node shipping if more results are required

for users. The weight of the new relaxed query q32 is 6 that is less than that of the

query q21. Subsequently, we need to evaluate the query q21. Based on the similar

procedure, we can get a fixed order to process the relaxed queries. In this case, the

sequence is q31 (weight=9) → q21 (weight=7) → q32 (weight=6) or q22 (weight=6) →

q23 (weight=5) → q24 (weight=4) → q33 (weight=1).

Now let’s modify the weight of edge (e.g., ship/shipping) in the query. To make the

description simple, the two queries in Figure 4.12 and Figure 4.13 express different

users’ preferences from the query in Figure 4.9. Although the same set of relaxed

queries will be generated with AQR, which are shown in Figure 4.10 and Figure 4.11,

the query with different edge weights may produce different search results due to

different query processing order. q21 and q31 are still the most relevant relaxed queries

with regards to schemas d2 and d3, respectively.

For the query in Figure 4.12, the weight of the query q21 is 5.2 while the weight of
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//item 

description payment 

location 

ship 

shipping 

"//" 
"//" 

21 q 

//item 

description payment 

location 

ship 

shipping 

"//" 
"//" 

22 q 

//item 

description payment 

location 

ship 

shipping 

"//" 
"//" 

23 q 

//item 

description payment 

location 

ship 

shipping 

"//" 
"//" 

24 q 

Figure 4.10: Relaxed queries w.r.t. schema d2
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description 

payment 
location ship 

shipping 

"//" 
"//" 

31 q 

//item 
description 

payment 
location ship 

shipping 

"//" 
"//" 

32 q 

//item 
description 

payment 
location ship 

shipping 

"//" 
"//" 

33 q 

Figure 4.11: Relaxed queries w.r.t. schema d3

//item 

description 

payment 

location 

ship 

shipping 

0.1 

1 

1 
1 

1 

Figure 4.12: Query q1 with we(ship, shipping)=0.1
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the query q31 is 6.1 (we assume λ = 0.9 that means the edge weight of description//-

payment will be reduced from 1 to 0.9 due to edge relaxation pc-to-ad). Therefore, we

should evaluate the query q31 before the query q21. If required, we may continuously

relax the query q31 into the query q32 by deleting the node shipping. The weight of

the new relaxed query q32 is 5.8 that is still larger than that of the query q21. Sub-

sequently, q32 starts to be evaluated. If more results are needed, we may relax the

query q32 to the query q33 whose weight is 1. At the next step, it turns to evaluate

q21 to get more results. Based on the similar procedure, we can get a different fixed

order to process the relaxed queries, which is q31 (weight=6.1) → q32 (weight=5.8)

→ q21 (weight=5.2) → q23 (weight=5) → q22 (weight=4.2) → q24 (weight=4) → q33

(weight=1).

//item 

description 

payment 

location 

ship 

shipping 

1 

1 

0.1 
0.1 

1 

Figure 4.13: Query q2 with we(description, payment) = we(description, ship) = 0.1

For the query in Figure 4.13, the weight of the query q21 is 3.4 while the weight

of the query q31 is 2.68 (we assume λ = 0.9 that means the edge weight of descrip-

tion//payment will be reduced from 0.1 to 0.09 due to edge relaxation pc-to-ad).

Therefore, we should evaluate the query q21 before the query q31. If required, we may

continuously relax the query q31 into the query q32 by deleting the node shipping. The

weight of the new relaxed query q32 is 1.48 that is less than that of the query q21.

Subsequently, we need to evaluate the query q21. If more results are needed, we may

relax the query q21 to the query q22 with the weight 2.4. Because the query q22 (weight

= 2.4) has higher query weight than the query q32 (weight = 1.48), we continue to
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evaluate the query q22. Based on the similar procedure, we can get a different fixed

order to process the relaxed queries, which is q21 (weight=3.4) → q31 (weight=2.68)

→ q22 (weight=2.4) → q23 (weight=2.3) → q32 (weight=1.48) → q24 (weight=1.3) →

q33 (weight=0.1).

AQR k=39 k=40 k=86 k=93 
xmark10MBd2 

q31 q21 q32 q22 
xmark10MBd3 
xmark10MBd2 

q31 q32 q21 q23 
xmark10MBd3 
xmark10MBd2 

q21 q31 q22 q23 
xmark10MBd3 

q 

1 q 

2 q 

Figure 4.14: Result comparison with the increase of k when the edge weights are
assigned differently

Figure 4.14 shows that when k = 39, q and q1 can generate the same results con-

forming to the structure of q31 while q2 will generate another set of results conforming

to the structure of q21. Similarly, we find that when k = 40, q and q2 have the same

results while q1 does not; when k = 86, q and q1 have the same results while q2 does

not again; when k creases to 93, the three queries q, q1 and q2 will have different sets

of search results, respectively. Therefore, we can say that a query with different edge

weights may return different sets of results to users.

4.6.3 Efficiency of Relaxation

To demonstrate the efficiency of the AQR algorithm, we chose the SSO algorithm of

FleXPath[10] for comparison.

Varying query size: We selected four queries q1, q2, q3 and q6 consisting of

different number of nodes, i.e. 5, 8, 11 and 14, respectively, and then relaxed them

against auction.dtd. q4 and q5 were not used because they have the same number of

nodes (i.e., 11) as q3. Figure 4.15 shows the number of relaxed queries and valuable
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Figure 4.15: Relaxed Number vs. Different Queries

relaxed queries (which can return at least one answer). Most of the relaxed queries

produced by AQR are valuable, while for SSO, only part of relaxed queries can re-

turn query results, such as q2 and q6, which do not totally conform to auction.dtd.

The valuable relaxed query sets for AQR and SSO may not be identical. The set of

queries generated by AQR is contained in that generated by SSO. This is because

SSO also generates some queries that are too wild, such as “//item” and “//item/de-

scription”, and the answers returned by these wild queries may not relevant and thus

not significant to users. This shows that AQR can guarantee the quality of relaxed

queries.
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Figure 4.16: Elapsed Time vs. Query Size

From Figure 4.16, both algorithms can handle q1 with the same time cost. This
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is because q1 matches the DTD well and the number of nodes is also small. For

q2, q3 and q6, the elapsed time goes up in both algorithms as the number of query

nodes increases. AQR is superior in efficiency, because by utilizing DTD, AQR avoids

generating a large number of unqualified queries. In addition, although the size of

q6 is larger than that of q3, AQR needs less time to relax q6 than q3. The reason

is that the recursive nodes keyword can be efficiently relaxed based on our recursive

relaxation rule.
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Figure 4.17: Elapsed Time vs. Query Type

Varying query types: To verify the effectiveness for processing different types

of queries, we took q3, q4, q5 because they have same number of nodes but different

types, and q6 with the recursive relationship and bigger number of nodes (i.e., 14).

From the results in Figure 4.17, we find the elapsed time of AQR increases slowly in

relaxing the former three queries, and falls down when processing q6, this is because

recursive relaxation reduces the cost of evaluating q6. AQR guarantees that no noise

nodes or edges exist in relaxed queries. As to SSO, it took almost same time to relax

q3 to q5 due to the similar size of these queries. However, the elapsed time increases

for processing q6 because SSO has to spend more time for useless relaxation of noise

nodes, and relaxation on recursion and inconsistent edges.
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4.7 Summary

Different from previous work, the purpose of our adaptive query relaxation is to find

the set of most relevant answers that best match users’ intention specified in a query

from large number of heterogeneous data sources. It would be very time-consuming

and thus not acceptable to relax the query blindly and wildly. For this purpose,

AQR chooses to relax users’ queries based on source DTDs, which guarantees the

relaxed queries are best suited for those sources that conform to the DTDs. During

query relaxation, no unqualified or unnecessary relaxed queries will be produced.

In addition, different from [10, 66], we compute the ranking score for each relaxed

query by taking into account both the relaxing operations and the weights of edges,

which allows to specify and adjust search requirements specific to users. Adaptive

relaxation algorithms were implemented and illustrated through a comprehensive set

of experiments to show the effectiveness and efficiency of AQR.



Chapter 5

Top-K Query Scheduling Strategies

An important issue arising from XML query relaxation is how to efficiently search the

top-k best answers from a large number of XML data sources, while minimizing the

searching cost, i.e., finding the k matches with the highest computed scores by only

traversing part of the documents. This chapter resolves this issue by proposing two

methods - a brute-force strategy and a bound-threshold based scheduling strategy.

Both strategies can be used to answer a top-k XML query as early as possible by dy-

namically scheduling the query over XML documents. The first method will generate

all the relaxed queries in advance and then evaluate them one by one in a sequence

until the k most relevant results are determined. In comparison, the second method

will select the most relevant document to be evaluated according to the intermediate

results at a time. Therefore, the total amount of documents that need to be visited

can be greatly reduced by skipping those documents that will not produce the desired

results with the bound-threshold strategy. Furthermore, most of the candidates in

each visited document can also be pruned. Most importantly, the partial results can

be output immediately during the query execution, rather than waiting for the end of

all results to be determined. Our experimental results show that our query scheduling

and processing strategies are both practical and efficient.

110
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5.1 Introduction

Over decades, processing top-k query has been extensively studied in different research

areas, such as relational databases [21, 17, 26], multimedia databases [41, 44, 42, 70,

22, 20] and keyword search [86, 57]. Recently, Efficiently computing top-k answers

to XML queries is gaining importance due to the increasing number of XML data

sources and the heterogeneous nature of XML data. Top-k queries on approximate

answers are appropriate on structurally heterogeneous data. On the one hand, it is

difficult for users to formulate their queries exactly and search the exact answers. On

the other hand, an XML query may have a large number of answers, and returning

all answers to the user may not be desirable. The top-k approach can limit the

cardinality of answers by returning k answers with the highest scores.

The problem of finding top-k answers within a large XML repository has been

studied in [69], where an adaptive strategy is proposed for filtering out some un-

qualified candidates. However, its searching overhead is expensive due to frequent

adaptivity among possible candidates and dynamic sort of partial matches. Further-

more, this work only considers query evaluation in a single XML document. For many

applications, it is more meaningful to find top-k results from multiple heterogeneous

XML data sources. In this chapter, we target this problem by proposing a brute-force

strategy (in short BF strategy) and a bound-threshold based scheduling strategy (in

short BT strategy) with the help of schema information of each XML data source. We

are not required to evaluate a top-k query over all data sources. Instead, we schedule

the query to the most relevant ones by leveraging the schema information, which can

produce top k results as early as possible and output each result immediately after

it is generated. Compared with BT strategy, BF need to generate all the relaxed

queries and most of them are not qualified.

Example 1 Consider two bookshop XML data sources in Figure 5.1 that maintain
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b o o k s h o p 1 

b o o k   ( B 5 ) 

t i t l e i s b n p u b l i s h e r t i t l e i s b n p r i c e p u b l i s h e r 
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t i t l e p u b l i s h e r 

b o o k   ( B 3 ) 

(a) Bookshop S1

b o o k s h o p 2 

b o o k   ( B 1 ) 

t i t l e p r i c e 

p u b l i s h e r 

b o o k   ( B 2 ) 

i n f o p u b l i s h e r 

b o o k   ( B 4 ) 

i n f o 

y e a r t i t l e y e a r 

i n f o 

t i t l e i s b n 

(b) Bookshop S2

Figure 5.1: Bookshop Example

the partial or full information of each book: title, isbn, price, publisher and year. To

search for two books (top-k=2) that contain “XML” in their titles and also include

other specific information: expected price, published time and publisher, we can rep-

resent it as a tree pattern query q in Figure 5.2(a) where nodes are labeled by element

tags, leaf nodes are labeled by tags and values, and edges are XPath axes (e.g. pc

for parent-child, ad for ancestor-descendant). The root of the tree (shown in a solid

circle) represents the distinguished node.

A naive solution to the above top-2 query is to retrieve the two most relevant

books from each source and then select the more relevant ones by comparing their

scores. However, this approach is not desirable for a large number of data sources

due to amount of unnecessary processing cost. To solve this problem, we deploy

XML schema information because a schema embodies to some extent the maximal

structural information in the corresponding data sources that conform to the schema.
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b o o k 

t i t l e p r i c e p u b l i s h e r 

p c 
a d 

a d 
1 0 . 8 0 . 4 8 

" x m l " 

(b) Relaxed query to
the 1st schema q1

b o o k 

t i t l e 

y e a r p r i c e 

i n f o p u b l i s h e r 
p c 

p c p c 

a d a d 
0 . 9 0 . 8 

1 0 . 5 

0 . 4 8 

" x m l " 

(c) Relaxed query to the
2nd schema q2

Figure 5.2: Query Tree and Relaxed Forms to different schemas
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(a) Schema of the 1st Shop d1
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t i t l e + i s b n * p r i c e * p u b l i s h e r ? 

i n f o + 

y e a r * 

(b) Schema of the 2nd Shop d2

Figure 5.3: Bookshop Schema Example

For example, in Example 1, the two bookshop sources conform to schema d1 in Fig-

ure 5.3(a) and d2 in Figure 5.3(b), respectively. Apparently, we can see that d2 is

more similar to the query q than d1 in Figure 3. Consequently, we may expect to get

more relevant results from S2 than S1 at the first instance. To achieve this, query

relaxation can be used[79, 8]. The top-2 query q against d1 and d2 can be relaxed

into q1 and q2, which are shown in Figure 5.2(b) and Figure 5.2(c), respectively. In

other words, q2 is more similar to q than q1, therefore, we may schedule to evaluate

q2 on S2 first. If we are able to get enough qualified books from S2, we do not need

to evaluate q1 on S1 at all. By a qualified book, we mean that the book contains

more required information than any book in all other sources. In the example, two

approximate results B1 and B2 in S2 are qualified because both of them contain more

information than any book in S1 with regards to the original query q. As such, these

two books may be returned as the results for the top-2 query.
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However, not every approximate result returned from q2 is qualified. For example,

if we are evaluating a top-3 query, B4 in S2 may not be qualified because it contains less

information than B3 in S1. This is because that a result (XML fragment) conforming

to a schema may not necessarily contain all structural information of the schema.

For a schema represented in DTD, we are allowed to specify disjunctive semantics

(denoted as “|”) and optional semantics (denoted as “*” or “?”). In other words,

XML documents conforming to the same schema may vary in their structures. If we

fail to find any or enough qualified results in one data source, we may try the next

most relevant data source, say S1 in the example to work out the results or rest of

the results, say B3 in the example for the top-3 query.

From the motivating example, it is not hard to find that for a large number of

data sources, the processing time can be reduced significantly by adaptively scheduling

user’s query on the most relevant data source at the time and progressively evaluating

it according to schema information. Bearing this in mind, we design our upper/lower

bounds and threshold for the BT-based strategy.

We make the following contributions in this chapter:

• It proposes a BT-based scheduling strategy for efficiently searching top k re-

sults where we can skip most of the XML data sources according to schema

information and also prune most candidates in each visited data source.

• It guarantees that results generated can be output immediately without waiting

for the end of query evaluation.

• It provides stress tests and large-scale performance experiments that demon-

strate the scalability and significant benefits of the proposed scheduling strate-

gies.

The rest of this chapter is organized as follows. In Section 5.2, we first introduce

preliminary knowledge for query relaxation and then formalize top-k problem over
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a large number of XML data sources. The detailed discussions of the brute-force

strategy and the BT-based scheduling strategy and their corresponding algorithms

are given in Section 5.3 and Section 5.4, respectively. The experimental results are

reported in Section 5.5. Finally, we conclude the study in Section 5.6.

5.2 Preliminary and Problem Statement

XML Query Relaxation: In this chapter, we represent XML queries as Tree Pat-

terns [59] and allow users to add a weight on each edge to show their preferences

on different path steps. We relax an XML query to different data sources based on

the structural information provided in their corresponding DTDs while compute the

changing weight of edges in query.

To guarantee that a relaxed query can be evaluated on a source, we need to collect

information such as whether a node in the query appears in a DTD, the relationships

between two query nodes, and the cardinality of a query node in a DTD, etc. Given

a query q and a DTD d, the target of query relaxation is to find the relaxed query

q′ that is best suited to be evaluated on sources that conform to d by calling a set

of relaxation operations: deleting a node, generalizing a pc-edge into a ad-edge and

promoting a node [79, 8]. The minimal requirement for the relaxed query q′ is that

the root node r is kept in q′. For example, the query q in Figure 5.2(a) does not match

exactly with the schema d1 of the 1st shop in Figure 5.3(a). Therefore, in order to

provide considerate and reliable service for users, relaxing the query against DTDs

for the conformed documents is strongly in demand. According to the structural

information in the schema d1, we firstly delete the nodes info and year. And then

the nodes price and publisher are promoted under the distinguished node book where

they are connected with ancestor-descendant (ad) edges. The relaxed query is shown

in Figure 5.2(b).
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Problem Statement: Consider a weighted top-k query q and a large number

of data sources {S1, S2, ..., Sn} that conform to different DTDs {d1, d2, ..., dn} respec-

tively. Let {q1, q2, ..., qn} be the set of weighted relaxed queries of q with regards to

the set of DTDs. Our aim in this chapter is to efficiently search top k results by

scheduling the evaluation of {q1, q2, ..., qn} over the set of data sources.

As stated in the problem statement, a set of relaxed queries {q1, q2, ..., qn} can be

generated from the original query q based on the conforming DTDs {d1, d2, ..., dn},

respectively. To start with, we require to rank the similarity between each qi and q.

During the query evaluation on a data source, we also check if a returned result is

qualified or not. In this regard, we need a scoring function.

In a tree pattern query q, a user may specify, on an edge e(v1, v2), how close

v1 and v2 are associated with each other. To compute the weight of a query q, a

naive function is to combine the weights of all edges in the query together where

the edges are assumed to be independent from each other [8]. However, according

to common understandings about XML queries, we find (1) the more path steps

there are between two nodes, the less related the two nodes may be; (2) nodes lying

on different paths are not related with each other, i.e., nodes are only related with

their ancestors and descendants. Keeping these two features in mind, we introduce

the concept of extended edge weight between a pair of nodes with ad relationship,

ad(vi, vj). The extended edge weight can be derived by multiplying weights along the

path from vi to vj . Extended edge weights can be computed on the fly when required,

or be calculated out beforehand, and then maintained dynamically.

Based on Definition 18 in Chapter 4, we can score the weight of a tree pattern query

q by summing all extended edge weights of q, i.e., score(q) =
∑

∀vi,vj∈V,ap(vi,vj) we(vi, vj)

where ap(vi, vj) means either ad(vi, vj) or pc(vi, vj). Similarly, we can measure the

similarity of a potential result rooted at any node v in source S with q by summing

the weights of those extended edges that match q. We denote this as score(v, q).
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For q1 and q2 in Figure 5.2, we have score(q1) = we(book, title) + we(book, price)

+ we(book, publisher) = 1 + 0.8 + 0.48 = 2.28 and score(q2) = we(book, title) +

we(book, info) + we(book, publisher) + we(book, price) + we(book, year) + we(info,

price) + we(info, year) = 0.9 + 0.8 + 0.48 + 0.8 × 1 + 0.8 × 0.5 + 1 + 0.5 =

4.88. For the potential results, we have score(B1, q2) = score(q2) because B1 covers

all edges of q2; score(B2, q2) = score(q2) − we(book, price) − we(info, price) = 3.08;

Similarly, we have score(B3, q1) = score(q1) = 2.28 and score(B4, q2) = 1.7, and

scores for B5 and B6 are less than that of B4.

5.3 Brute-Force Scheduling Strategy

To find top k results for WTPQ q from data sources s1, s2, ..., sn, we may take a brute-

force strategy. The first step is to generate all relaxed queries for each data source.

That is, for each qi, we generate the set of relaxed queries Qi = {qi1, qi2, . . . , qimi
}

based on di. In this step, the score of each qij will also be returned. Next, we can

rank the generated relaxed queries in Q1, ..., Qn for all data sources. Finally, we can

evaluate the queries in order from the ranked list of queries until we get k results.

The generation of Qi from qi is based on the consideration of the optional semantics

“*” and “?” and the disjunctive semantics “|” defined in the DTD di. For example,

the node project in d2 in Figure 4.1(c) is a *-node. This means that data source s2

may have either many projects or zero project. We need to generate a relaxed query

q22 from q21 to include the case of zero project. The relaxation of a query node with

“?” defined in its correspondent node in DTD is similar to a *-node. If a query node

a defined in its correspondent node in DTD has a disjunctive relationship “|” with

another node b, i.e., “a|b”, we generate two relaxed queries, one containing “a” while

the other containing “b”.

If q includes quite a few nodes with their correspondent nodes having disjunctive
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and optional semantics in di, the size of Qi may be increased. In this case, it is

time-consuming to generate and sort all possible relaxed queries. To deal with this

issue, we propose an effective scheduling strategy to adaptively evaluate the relaxed

queries in the following section.

5.4 BT-based Scheduling Strategy for top-k Queries

In this section, the BT-based scheduling strategy for evaluating top-k queries will be

discussed in detail. Specifically, in Section 5.4.1 we first provide the motivation of

BT-based scheduling strategy. After that, we introduce data source and result deter-

mination properties that can be applied to schedule query evaluation over different

data sources in Section 5.4.2. Then, in Section 5.4.3 static/dynamic strategies are

proposed to evaluate the edges, which can reduce unnecessary computational cost.

Finally, in Section 5.4.4 we design a set of algorithms for the BT-based scheduling.

5.4.1 Motivation

Assume we have the scores of the relaxed queries {q1, q2, ..., qn} as score(q1), score(q2),

..., score(qn) respectively. The BT-based strategy we propose is based on the concepts

of upper/lower bounds [18] and threshold. We initialize the upper bound U(i) and

lower bound L(i) of each source Si as score(qi) and zero, respectively. To start our

adaptive scheduling, we first choose the data source to be evaluated as Sk1 if U(k1)

= max{U(i)|1 ≤ i ≤ n} (i.e., the highest upper bound) and the threshold σ = U(k2)

= max{U(i)|1 ≤ i ≤ n ∧ i 6= k1} (i.e., the next highest upper bound). Then we

start to evaluate qk1 on Sk1 by probing an edge e(v1, v2) of qk1 at a time. If e(v1, v2)

cannot be found in Sk1, U(k1) will be decreased; otherwise, L(k1) will be increased.

The probing continues for next edge of qk1 until either L(k1) ≥ σ or U(k1) < σ. If

L(k1) ≥ σ, all the candidates may become possible results depending on the value of
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k required in top-k. If the number of candidates equals to k, all the candidates can

be returned as qualified results and the process stops; if the number of candidates

is less than k, all the candidates can also be returned as qualified results (with the

adjustment of k) but the probing process continues on Sk1; otherwise, more probing

is required to refine the qualified results. If U(k1) < σ, we will continue the process.

The next data source to be evaluated will be Sk2 and the threshold will be chosen

based on the updated list of the upper bounds. The process stops until k results are

returned.

In our example, S2 is chosen as the the data source to be evaluated first because

U(2) = score(q2) > U(1) = score(q1) at the beginning. If we have a top-2 query,

B1 and B2 in S2 will be returned as qualified results because both score(B1, q2) and

score(B2, q2) are no less than the threshold U(1) = score(q1). If we have a top-3

query, we will first have B1 and B2 in S2 as qualified results but the probing in S2

continues until B4 is met. At this time, U(2) is decreased to score(B4, q2) = 1.7, which

is less than the threshold U(1) = score(q1) = 2.28. So the next source to be evaluated

is switched to S1, and its threshold is score(B4, q2) = 1.7. Since score(B3, q1) (=2.28)

is greater than the new threshold, B3 becomes the third qualified result.

If the number of the data sources is large, we can avoid to evaluate most of the

data sources based on the BT scheduling strategy. In addition, the qualified results

can be returned immediately without waiting for all results to be determined.

5.4.2 Data Source and Result Determination Properties

From the motivation of the BT-based scheduling strategy in Section 5.4.1, we can get

the following two properties.

Property 3 Data Source Determination and Switching: At any time of query

evaluation, we always evaluate the data source Sk1 that has the highest upper bound
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U(k1) = max{U(i)|1 ≤ i ≤ n}. When an edge e(v1, v2) in qk1 is evaluated on the

data source Sk1, if it turns out that e(v1, v2) cannot be successfully evaluated on the

fragments rooted from all of the distinguished nodes of Sk1, then the upper bound

U(k1) will be decreased by U(k1) = U(k1) − score(v2, qk1) − we(v1, v2). Suppose that

the threshold σ = U(k2), then we have:

• If the updated upper bound U(k1) is still larger than or equal to the threshold σ,

then we need to continuously evaluate other edges in the query over the current

data source Sk1.

• If the updated upper bound U(k1) becomes lower than the threshold σ, then

the current data source Sk1 needs to be suspended and query evaluation will be

switched to the data source Sk2.

Property 4 Result Determination: When an edge e(v1, v2) in qk1 is evaluated on

the data source Sk1, if it turns out that e(v1, v2) can be successfully evaluated on the

fragments rooted from some of the distinguished nodes of Sk1, then the lower bound

L(k1) will be increased by L(k1) = L(k1) + we(v1, v2). Suppose that the threshold

σ = U(k2) and the updated lower bound becomes larger than σ. Then we can affirm

that some candidates generated so far in Sk1 must be qualified as top-k results. We

divide the set of candidates in Sk1 into two groups G1 that satisfies e(v1, v2) and G2

that does not, then the two groups will have different upper/lower bounds. Suppose

that σ ≥ U(k1)(G2), then we have:

• If |G1| = k, all the candidates in group G1 can be returned as the qualified results

and searching task would be terminated.

• If |G1| < k, all the candidates in group G1 can be returned as the qualified results

and the k value will be decreased by k = k − |G1|. Then the group G2 should

be evaluated if it is not suspended. If all the other groups in the data sources
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have been suspended, then we should switch to the next data source based on

Property 3.

• If |G1| > k, we will evaluate other edges in the query qk1 on G1 to find the top

k results.

Consider the top-2 query in our example again. We first evaluate q2 on S2 because

U(2) is larger than U(1) (Property 3). Then we will choose some edges in q2 to be

evaluated, such as (book, title), and (book, info). All the edges can be found in the

candidates of S2. After that, the lower bound of the data source will increase to 1.7

(i.e., L(2) = 0.9 + 0.8). Then suppose we continue to evaluate (info, year), at this

point, we have two groups. The group G1 of B1 and B2 satisfies (info, year) while

the group G2 of B4 does not. The lower bound of G1 is increased to 2.6 (L(2)(G1) =

0.9 + 0.8 + 0.8 × 0.5 + 0.5) while the upper bound of G2 is decreased (U(2)(G1) =

4.48 - 0.9 = 3.58). When (info, price) is evaluated, the upper bound of G2 is further

dropped to 1.78 (3.58 - 0.8 × 1 - 1). To this point, the 2 candidates in G1 can be

output as qualified results because L(2)(G1) > σ and U(2)(G2) < σ. The process

stops here.

5.4.3 Edge Selection and Unqualified Edge Reduction

According to the above properties, the relationships among U(k1), L(k1) and σ need

to be checked during query evaluation. Obviously, changing the value of the three

variables will produce different query evaluation sequences over the large number of

data sources. But the changing is likely to be influenced to some extent by the next

edge that will be evaluated. Therefore, the selection of next edge can also affect the

performance of query evaluation. In this section, we first introduce three ways to

determinate the next edge. Then we discuss how to filter unqualified edges during

query evaluation.
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Intuitively, there are three processing strategies for determining next edge: random

i.e., the next edge can be evaluated at random; min−weight i.e., the edge with the

minimal weight can be evaluated first and max−weight i.e., the edge with the max-

imal weight can be evaluated first. For the first two strategies, the possibility that

some data sources would be visited frequently is likely to be increased to some extent,

which may lead to unnecessary costs. For the third one, at every time the edge with

the maximal weight is selected to be evaluated, so that it has the higher possibility

to increase the score of L(k1) if the edge can be found, otherwise, the score of U(k1)

would be decreased at most. Both of the trends are likely to locate the data sources

as early as possible that can return the answers. Therefore, the last one would yield

a better performance.

Besides next edge selection, the determination of selection range is another im-

portant factor to improve the performance of query evaluation. A simple method is

to consider all edges together at the beginning and rank them based on the weights

of their corresponding subtrees, denoted as static style. Although it makes next edge

selection very easy in real application, some edges that should be filtered out based

on the intermediate feedbacks have to be still evaluated. Therefore, an optimized

approach is proposed to incrementally expand the selection range, denoted as dy-

namic style. The reason that the dynamic approach can do better than the static

one depends on the disjunctive and optional semantics in DTD. For example, if an

edge (e.g. x/y) in a query is specified as optional in a DTD and does not exist in a

data source conforming to the DTD, then all the edges coming from the element y

are not required to be evaluated because they cannot exist in the current fragments.

Therefore, if we expand the selection range in a dynamic style, some edges can be

filtered beforehand based the intermediate results.
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5.4.4 BT-based Scheduling Algorithms

Algorithm 11 BT-based Scheduling Strategy

input: a set of weighted relaxed queries {q1, q2, ..., qn} rooted at {r1, r2, ..., rn} and a
set of data sources {S1, S2, ..., Sn}
output: top k results

1: call for the function computingScore() in Algorithm 14 to compute query weight
as upper bound for each data source and denote the two highest upper bound as
U(k1) and σ = U(k2) where U(k1) ≥ U(k2), L(k1) = 0;

2: //{Sk1 will be first evaluated}
3: put all candidates in Sk1 into group G;
4: if ch(rk1) 6= φ then
5: list l = sortAllChildNodes(ch(rk1));
6: ScheEval(l, qk1, G, U(k1)(G), L(k1)(G), σ) in Algorithm 12;
7: end if

We use Algorithm 11 to initialize query evaluation over the data source Sk1. Algo-

rithm 14 is used to compute the weight of each subtree in the query qk1 and score(qk1)

is taken as the initial value of the upper bound U(k1). Based on the BT scheduling

strategy, we always evaluate the query qk1 on the data source Sk1 with the highest up-

per bound U(k1) at any point. Then all the candidates in the data source Sk1 can be

clustered initially into one group G by using index or other technologies. After that,

we will evaluate the edges in the query qk1 in a similar breadth-first search (BFS). To

this end, three functions are deployed during query evaluation: sortAllChildNodes()

sorts a list of nodes based on the weight of the subtrees rooted at these nodes where

any traditional sorting algorithm can be applied (e.g., Insert Sort in [31]); merge-

sort() merges two sorted lists like Merge Sort in [31], which can improve the sorting

efficiency because the previous list has been sorted before; getFirstNode() gets the

first node from the sorted list l. At last, we will call for Function ScheEval() to probe

a data source. Based on the evaluated results, we determine how to proceed at next

step. The detailed procedure is described in Algorithm 12.

In Algorithm 12, we first get a node v with the function getFirstNode() and
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Algorithm 12 ScheEval( a list l, query q, group G, U(k1)(G), L(k1)(G), σ)

1: while l 6= φ do
2: node v = getFirstNode(l) and delete the node v from the list l;
3: evaluate the edge e(v′parent, v) in query q over the candidates G;
4: if No candidates in G satisfy the edge e then
5: U(k1)(G) = U(k1)(G)− score(v, q)− we(e);
6: if U(k1)(G) < σ then
7: suspend the current group G;
8: if σ == U(k1)(Gx) then
9: Switching to probe the group Gx in the current data source Sk1;

10: ScheEval(l, q, Gx, U(k1)(Gx), L(k1)(Gx));
11: else
12: Switching to the next data source Sk2 due to σ = U(k2);
13: end if
14: end if
15: else if All candidates in G satisfy the edge e then
16: L(k1)(G) = L(k1)(G) + we(v

′parent, v);
17: if L(k1)(G) ≥ σ then
18: determineCandidates();
19: else
20: list l′ = sortAllChildNodes(ch(v)) and list l = mergeSort(l, l′);
21: end if
22: else
23: //{Partial candidates in G satisfy the edge e}
24: divideGroup(e, q, G) into two groups G1 that satisfies the edge and G2 that

doesn’t and putActiveGroup(G2);
25: U(k1)(G2) = U(k1)(G2)− score(v, q)− we(v

′parent, v);
26: L(k1)(G1) = L(k1)(G1) + we(v

′parent, v);
27: if U(k1)(G2) > σ then
28: σ = U(k1)(G2);
29: //{The group G2 in k1 data source would be evaluated at next step.}
30: end if
31: if L(k1)(G1) ≥ σ then
32: determineCandidates();
33: else
34: list l′ = sortAllChildNodes(ch(v)) and list l = mergeSort(l, l′);
35: end if
36: end if
37: end while
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evaluate the edge e(v′parent, v) over the group of candidate nodes G. There are

three possibilities. (1) Line 4 - 14: If no candidates in G satisfy the evaluated edge

e, then the upper bound U(k1)(G) for the group will get a penalty score(v), i.e.,

subtracting the score of the subtree rooted at v from the current upper bound. After

that, we will compare the updated U(k1)(G) with the threshold σ. If U(k1)(G) is

lower than σ, the current group will be suspended. And then previous groups or

next data source will be evaluated depending on the conditions σ = U(k1)(Gx) or

σ = U(k2), respectively. (2) Line 15 - 21: If all candidates in G satisfy the evaluated

edge e, then the lower bound L(k1)(G) for the group will be increased by summing

the extended weight we(v
′parent, v) of the edge. If L(k1)(G) is higher than σ, it

means that the current group contains part or all results that can be determined

by Function determineCandidates() in Algorithm 13. Otherwise, we open the child

nodes of the node v to expand the current range of edges because the group of

candidates can not be determined based on the current edge e so far. (3) Line 22 -

36: Most of the time, only part candidates in G satisfy the edge e, e.g., a subgroup

G1 of candidates satisfy while another subgroup G2 of candidates do not. We use the

function divideGroup(e, q, G) to divide the group G of candidates into G1 and G2.

Then we compute the upper bound, lower bound for each group. For G1, its upper

bound U(k1)(G1) does not change, but its lower bound L(k1)(G1) will increase. For

G2, its upper bound U(k1)(G2) will decrease, however its lower bound L(k1)(G2)

keeps unchanged. Obviously, we have U(k1)(G1) > U(k1)(G2). Therefore, we prefer

searching in group G1 to G2 while cache group G2 with Function putActiveGroup().

If σ < U(k1)(G2), we should take U(k1)(G2) as the new threshold for the current

group G1. And if L(k1)(G1) is greater than or equal to the updated threshold σ, we

will call for Function determineCandidates() in Algorithm 13. Otherwise, a new edge

need to be evaluated on the current group of candidates.

Algorithm 13 can be designed to determine the correct ones from the group if we
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Algorithm 13 Function: determineCandidates()

1: if |G| = k then
2: return k results while Stop searching;
3: else if |G| < k then
4: return λ results and k = k - |G|;
5: if σ == U(k1)(Gx) then
6: Switching to probe the group Gx in the current data source Sk1;
7: ScheEval(l, q, Gx, U(k1)(Gx), L(k1)(Gx));
8: else
9: Switching to the next data source Sk2 due to σ = U(k2);

10: end if
11: else
12: list l′ = sortAllChildNodes(ch(v)) and list l = mergeSort(l, l′);
13: ScheEval(l, q, G, U(k1)(G), L(k1)(G));
14: end if

find that a group of candidates in a data source would contain the correct answers for

top-k query. There are three ways to process the candidates in G. (1) If |G| = k, the

group of candidates are correct answers for top-k query and searching is terminated;

(2) If |G| < k, the group of candidates are part of the correct answers and the value

of k will be decreased by k = k - |G|. At next step, we would probe the previous

groups Gx in the current data source Sk1 if we have σ = U(k1)(Gx) or switch to the

next data source Sk2 if we have σ = U(k2) (3) Otherwise, we will expand the edges

and continuously evaluate them over the group G for determining the k best ones.

Algorithm 14 is used to mark the weight for each subtree in deepth-first search

style. For each internal node v (i.e., ch(v) 6= φ), we should push it into the stack S

while update its score by computing the extended edge weight between the node v

and its ancestor. For each leaf node or internal node that its child nodes have been

processed, we will pop the node from the stack S while update its parent’s score

by propagating its score to its parent. Two important functions getEdgeScore() and

updateEdgeScore() are used to retrieve and update the score of each node, respectively.
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Algorithm 14 ComputingScore()

input: a weighted query rooted at r
output: a query that every subtree is marked with scores

1: push(the root r, a stack S);
2: while the stack is not empty S 6= φ do
3: v = getStackTop(S);
4: existEdgeScore = getEdgeScore(v);
5: if ch(v) 6= φ then
6: for all vc ∈ ch(v) do
7: newEdgeScore = getEdgeScore(vc);
8: currentEdgeScore = existEdgeScore× newEdgeScore;
9: updateEdgeScore(vc, currentEdgeScore);

10: push vc into the stack S;
11: ComputingScore(vc);
12: end for
13: else
14: pop(a node, a stack S);
15: vx = getStackTop(S);
16: xEdgeScore = getEdgeScore(vx);
17: updateEdgeScore(vx, xEdgeScore + existEdgeScore);
18: end if
19: end while

5.5 Experimental Results

The presented algorithms for the BT strategy are implemented in a Java prototype

using JDK 1.4. B+-tree indexes are used to access the nodes in each data source.

Wutka DTDparser 1 is used to analyze the source DTDs and extract their structural

information. We run our experiments on an Intel P4 3GHz PC with 512M memory.

Table 5.1: Designed Queries
q1: //item [./description /parlist]
q2: //item [./description /parlist /mailbox /mail [./text]]
q3: //item [./mailbox /mail /text [./keyword and ./xxx] and ./name and ./xxx]

1Wutka DTD parser. http://www.wutka.com/dtdparser.html.
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Dataset and Queries: We use XMark XML data generator 2 to generate a

number of data sets, of varying sizes and other data characteristics, such as the fanout

(MaxRepeats) and the maximum depth, using the auction.dtd and changed versions

by deleting some nodes. We also use the XMach-1 3 and XMark 4 benchmarks,

and some real XML data. The results obtained are very similar in all cases, and

in the interest of space we present results only for the largest auction data set that

we generated. We evaluate the presented algorithms using the set of queries shown

in Table 5.1 where the symbol “xxx” is added as noise node that do not appear in

the DTD. In our query set, we consider the structural difference between the query

and the DTD, such as the edge “parlist/mailbox” does not exist in the DTD. It

will be adjusted by calling for previous query relaxation. We also take into account

two semantics in DTD, such as the edge “description/parlist” satisfies disjunctive

semantics and the nodes “mail” and “text” satisfy optional semantics.

Test Results: In our experiments, we implement the brute-force (BF) strategy

and the BT-based scheduling strategy together. Our test results show that the BT

scheduling strategy is faster than the BF strategy to search top-k matches over mul-

tiple data sources. Especially, when the number of data sources or the value of top-k

are large, more benefits would be gained.

Figure 5.4 shows that dynamic sort-based BT scheduling strategy can improve the

performance more than static sort-based BT scheduling strategy, in terms of evalua-

tion of unqualified edges for some documents where the three queries are evaluated

over 5, 10, 15 and 20 number of XML documents respectively and top-k is set as 80.

In the following paragraph, we mainly choose the experiments about dynamic sort-

based BT scheduling strategy in different conditions. Figure 5.5 shows BT scheduling

strategy outperforms BF strategy greatly. Two appealing features can be obtained:

2Xmark XML data generator. http://monetdb.cwi.nl/xml/index.html.
3XMach-1. http://dbs.unileipzig. de/en/projekte/XML/XmlBenchmarking.html.
4The XML benchmark project. http://www.xml-benchmark.org.
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Figure 5.4: Static Sort vs. Dynamic Sort
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Figure 5.5: BF Schedule vs. BT Schedule

one the one hand, the larger the number of XML documents to be searched, the more

benefits the BT scheduling strategy can gain; on the other hand, the BT scheduling

strategy has good scalability, i.e., the increasing trends will become slow after the

number of XML documents is relatively large. For example, the trends evaluating

the three queries over 10, 15, and 20 documents are much slower than the trend

between 5 and 10 documents. This is because a larger number of documents have

higher possibility to contain noise documents.
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Figure 5.6: Varying Top-k Size
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Figure 5.7: Varying Top-k Size

Figure 5.6 and Figure 5.7 illustrate the performance when we vary the size of

top-k value across 20, 40, 80 and 120 where all the three queries are evaluated over

15 documents. From Figure 5.6, the both strategies can gain similar time cost when

the top-k value is small. But the gap between the BT scheduling strategy and the
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BF strategy will become much larger when top-k is 120. In addition, Figure 5.7

shows the number of documents that need to be visited in order to answer the three

queries. Obviously, for the BF strategy, most of the documents require to be checked.

However, for the BT scheduling strategy, only part of the documents are visited during

query evaluation. Furthermore, the same number of documents are traversed for q2

and q3 when top-k is 80 or 120. This is because some elements in query like mailbox

are distributed in the same documents when we design our data sets.

5.6 Summary

The primary contribution of this chapter lies in the two proposed methods - the

brute-force strategy and the BT-based scheduling strategy. Especially, based on the

BT strategy, we are able to avoid the evaluation of big number of data sources,

and prune unqualified results in the visited data sources. Besides, the strategy also

satisfies monotonic feature for returning qualified results. The experimental results

demonstrated the BT scheduling strategy can gain more benefits when the value

of top-k and the number of data sources are large. Additionally, the results also

shown that the BT scheduling strategy can skip most of data sources during query

evaluation. Therefore, it is appropriate and practical for the BT scheduling strategy

to be applied to XML searching system.



Chapter 6

Effective Processing of XML

Keyword Search

Recently, keyword search has attracted a great deal of attention in XML database.

Most of previous work address this problem by selecting keyword-matched data nodes

and merging them in a meaningful way. However, it is hard to directly improve the

relevance and performance of keyword search because lots of keyword-matched nodes

may not contribute to the results. To address this challenge, in this chapter we will

design an adaptive XML keyword search approach, called XBridge, that can derive

the semantics of a keyword query consists of different label-term pairs and generate

a set of effective structured queries by analyzing the given keyword query and the

schemas of XML data sources. To efficiently answer keyword query, we only need

to evaluate the generated structured queries over the XML data sources with any

existing XQuery search engine. In addition, we will extend our approach to process

top-k keyword search based on the execution plan to be proposed. The quality of the

returned answers can be measured using the context of the keyword-matched nodes

and the contents of the nodes together. The effectiveness and efficiency of XBridge

is demonstrated with an experimental performance study on real XML data.

131
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6.1 Introduction

Keyword search is a proven user-friendly way of querying XML data in the World

Wide Web [81, 85, 52, 30, 65]. It allows users to find the information they are

interested in without learning a complex query language or knowing the structure

of the underlying data. However, the number of results for a keyword query may

become very large due to the lack of clear semantic relationships among keywords.

There are two main shortcomings: (1) it may become impossible for users to manually

choose the interesting information from the retrieved results, and (2) computing the

huge number of results with less meaning may lead to time-consuming and inefficient

query evaluation. As we know, users are able to issue a structured query, such as

XPath and XQuery, if they already know a lot about the query languages and the

structure of the XML data to be retrieved. The desired results can be effectively and

efficiently retrieved because the structured query can convey complex and precise

semantic meanings. Recently, the study of query relaxation [8, 62] can also support

structured queries when users cannot specify their queries precisely. Nevertheless,

there are many situations where structured queries may not be applicable, such as a

user may not know the data schema, or the schema is very complex so that a query

cannot be easily formulated, or a user prefers to search relevant information from

different XML documents via one query.

Consider the example in Figure 6.1 showing the same bibliography data arranged

in two different formats: XML document d1 conforming to t1 organizes publications

based on the year of publication while XML document d2 conforming to t2 organizes

publications according to their type (book or article). Both of them are modeled as

the conventional labeled trees. Suppose a user wants to see the publications that is

written by Philip as an author in 2006, and the term xml appears in the title.

In this case, a user can quickly issue a keyword query “Philip, 2006, xml” to obtain
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Figure 6.1: XML Documents with Different Schemas

a list of answers. Node #4 book and node #8 article will be returned as relevant an-

swers. From Figure 6.1(a), we can see that only node #4 book satisfies the searching

requirement. For node #8 article, only the abstract contains the term xml, as such

it does not meet the users’ original intention. It would be impossible for an IR-style

keyword query to differentiate the semantics, e.g. one term can represent different

meanings in different positions. In addition, when the size of XML documents be-

comes larger, it is difficult to choose the meaningful answers from the large number

of returned results. As an alternative, users can construct an XQuery to represent

this simple query and specify the precise context. But there are two challenges: first,

they have to know that “publication” in the schema is actually presented as book and

article in both schemas; second, they have to know that title and author are the child

elements of “publication”, while year could be either a child or a sibling. Writing

an accurate XQuery is non-trivial even for this simple example due to the complex
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structure of XML schemas. Therefore, it is highly desirable to design a new keyword

search system that not only permits users specify more expressive queries, but also

implement keyword search as efficiently as structured queries.

To address this problem, a formalized keyword query consisting of a set of label-

term pairs is deployed in [30] and [92]. In [30], labels in the given keyword query are

used to filter the node lists. In [92], labels are used to construct answer templates

that includes all combinations together according to the schema of XML data stream.

When the data stream is coming, all matched nodes will need to be maintained

until the template-matched results are generated or the end of the stream is reached.

Different from them, in this work we develop a keyword search system called XBridge

that first infers the context of the set of labels and the required information to be

returned according to XML data schema. And then it may generate a set of precise

structured queries and evaluate them by using existing XML search engines. To

evaluate the quality of the results, in XBridge we propose a scoring function that

takes into account the structure and the content of the results together. In addition,

we also design an execution plan to retrieve the more qualified results as soon as

possible, which is suitable to process top-k keyword search.

F o r   $ b   i n   b i b l i o g r a p h y / b i b 
F o r   $ b 2   i n   $ b / b o o k 
W h e r e   $ b / y e a r   =   ' 2 0 0 6 ' 
                      a n d   c o n t a i n s ( $ b 2 / t i t l e ,   ' x m l ' ) 

          a n d   c o n t a i n s ( $ b 2 / a u t h o r ,   ' P h i l i p ' ) 
R e t u r n   $ b 

F o r   $ b   i n   b i b l i o g r a p h y / b i b 
F o r   $ a   i n   $ b / a r t i c l e 
W h e r e   $ b / y e a r   =   ' 2 0 0 6 ' 
                      a n d   c o n t a i n s ( $ a / t i t l e ,   ' x m l ' ) 

          a n d   c o n t a i n s ( $ a / a u t h o r s / a u t h o r ,   ' P h i l i p ' ) 
R e t u r n   $ b 

Figure 6.2: Structured Queries w.r.t. XML Schema t1

Consider the same example again, the user may change to issue “author :Philip,

year :2006, title:xml” as a keyword query to search the relevant publications. For

this keyword query, XBridge is able to automatically construct different structured

queries for XML documents conforming to different XML schemas. For example, for
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Figure 6.3: Structured Queries w.r.t. XML Schema t2

the source schemas of the two XML documents shown in Figure 6.1, we can construct

two sets of structured queries as shown in Figure 6.2 and Figure 6.3, respectively.

After that, we can evaluate the structured queries to answer the original keyword

query. The book node #4 will be returned as answers. We do not need to identify

whether or not the title node #5 and the author node #11 belong to the same

publications. As such, the processing performance would be improved greatly due to

the specific context in structured queries.

This work makes the following contributions:

• For different data sources, XBridge can infer different semantic contexts from

a given keyword query with label-term, which can be used to construct adaptive

structured queries.

• A scoring function is proposed to evaluate the quality of the answers by consid-

ering the context of the keyword-matched nodes and the contents of the nodes

in the answers.

• An execution plan, adapting to the proposed scoring function, is designed to

efficiently process top-k keyword search.

• Experiments show that XBridge can obtain improved performance over previ-

ous keyword search approaches.

The rest of this chapter is organized as follows: In Section 6.2, we discuss and

define the syntax of a keyword query. Section 6.3 provides the definition of XML
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schema and presents how to identify the context of terms and derive the returned

nodes by considering keyword queries and XML schemas together. Section 6.4 pro-

poses a scoring function to evaluate the quality of returned answers by considering

contexts and contents of the answers w.r.t. keyword query. Section 6.5 shows the

structure of XBridge and describes the algorithms for constructing and evaluating

the generated structured queries. The experimental results are reported in Section

6.6. Finally, we conclude the study of this work in Section 6.7

6.2 Query Syntax

The query language of a standard search engine is simply a list of terms. In some

search engines, each term can optionally be prepended by a plus sign (“+”). Terms

with a plus sign must appear in satisfying document, whereas terms without a plus

sign may or may not appear in a satisfying document (but the appearance of such

term is desirable). This functionality has been deployed in XSEarch [30]. In addition

to specifying terms, the query language in XSEarch [30] allows the user to specify

labels and label-term combinations that must or may appear in a satisfying document.

Formally, a search term has the form l : k, l : or : k where l is a label and k is a

term. A search term may have a plus sign prepended, in which case it is a required

term. Otherwise, it is an optional term. Besides the above two points, the query

model in our work XBridge permits users to distinguish the semantics of predicates

from the returned nodes. For example, given a pair l :, it is hard to know whether

we should consider it as a predicate or a required node to be returned. To make the

query expression more clear, we extend this form to l : ∗ and l :?. The former means

that one node should exist in the returned answers where the node’s tagname is same

to the label l and the node’s values may be anything. The latter shows that the

information of the nodes will be returned as answers if the nodes’ tagname is same
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to the label l.

When the kind of pair : k exists in the given keyword query, the number of

plausible structured queries would be increased greatly. This is because the term k

may appear anywhere in data source. The possibility will become much higher to

combine the labels matching the term k with other labels in the given keyword query.

We cannot directly construct structured queries for this case. To address this issue,

we can apply for the technique in [19] to determine the best matched label with the

term k and the other keyword pairs. Here, we assume all the labels are provided in

the input keyword query.

The formal definition is as follows.

Definition 20 (Keyword Query) a keyword query is defined as a set of label-term

pairs q = {li : ki|1 ≤ i ≤ n} where li is a label and ki consists of three optional

symbols: t, * or ?. li : ki means that the value containing the term ki is bound to the

label li as the tagname, li : ∗ means that a value with li as the tagname must appear,

and li :? means that the content with li as the tagname is expected in the result.

In summary, users can issue a keyword query q by following the three basic forms

l : k, l : ∗ or l :?. If all pairs in query q conform to l : k or l : ∗, we will derive

the type of returned nodes as the approaches in [67]. The detailed procedure will be

introduced in the following sections.

6.3 Identifying Context and Returned Nodes of

Keyword Query

In this section, we show how to identify the context and the types of return nodes for

a keyword query w.r.t. XML schema. XML schema is the foundation to construct

structured queries from a keyword query. In case the schema is not available, we can
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infer the schema based on data summarization, such as [94, 14]. In this chapter, we

use XML schema tree to represent the structural summary of XML documents.

Definition 21 (XML Schema Tree) An XML Schema Tree is defined as T = (V , E,

r, Card) where V is a finite set of nodes, representing elements and attributes of the

schema T ; E is set of directed edges where each edge e(v1,v2) represents the parent-

child (containment) relationship between the two nodes v1, v2 ∈ V , denoted by P (v2)

= v1 or v2 ∈ Ch(v1); r is the root node of the tree T ; Card is a set of mappings that

maps each v ∈ V to {1, ∗} where “1” means that v can occur once under its parent

P (v) in a document conforming to T while “*” means that v may appear many times.

6.3.1 Identifying Context of Keywords

From the set of labels given in a keyword query defined in Definition 20, we can infer

the contexts of the terms for a data source based on its conformed XML schema.

As we know each node in an XML document, along with its entire subtree, typically

represents a real-world entity. Similarly, given a list of labels l1, ..., ln and an input

XML schema tree T , an entity of these labels can be represented with a subtree of T

such that it contains at least one node labeled as l1, ..., ln. We define the root node

of the subtree as a master entity.

Definition 22 (Master Entity) Given a set of labels {li|1 ≤ i ≤ n} and an XML

schema tree T , the master entity is defined as the root node of the subtree Tsub of T

such that Tsub contains at least one schema node labeled as l1, ..., ln.

Based on Definition 22, a master entity may contain one or more than one schema

nodes taking a label as their tagnames. If one master entity node only contains one

schema node for each label, we can directly generate FOR and WHERE clauses. For

example, let q(year :2006, title:xml, author :Philip) be a keyword query over the XML
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document d2 in Figure 6.1(c). Based on the schema t2 in Figure 6.1(d), we can obtain

two master entities book and article. Since the master entity book only contains one

node labeled as year, title and author respectively, we can directly construct “For $b

in bibliography/bib/book” and “Where $b/year=’2006 ’ and contains($b/title, ’xml ’)

and contains( $b/author, ’Philip’)”. Similarly, we can process another master entity

article. The constructed queries are shown in Figure 6.3.

If one master entity node contains more than one nodes taking the same label,

to construct FOR and WHERE clauses precisely, we need to identify and cluster the

nodes based on the semantic relevance of schema nodes within the master entity. To

do this, we may deploy the ontology knowledge to precisely estimate the semantic

relevance between schema nodes. However, the computation adding additional mea-

surement may be expensive. Therefore, in this chapter we would like to infer the

semantic relevance of two schema nodes by comparing their descendant attributes or

subelements. For example, given any two schema nodes v1 and v2 ∈ a master entity

Tsub, we can infer that the two schema nodes v1 and v2 are semantic-relevant nodes

if they hold: semi(v1, v2) ≥ σ. Here σ is the similarity threshold. If σ is set to 0.8,

then it means that v1 and v2 contain 80% similar attributes or subelements.

Consider the same query q and the document d1 in Figure 6.1(a). Based on

the schema t1 in Figure 6.1(b), we know there exists one master entity bib that

contains one node with the label year and two nodes with the same labels title and

author respectively. In this case, we first cluster the five nodes as C: { year, {title,

author}book, {title, author}article }bib, and then identify whether or not the subclusters

in C are semantic-relevant schema nodes. For instance, although {}book and {}article

have different labels, both of them contain the same nodes title and author, i.e., the

two nodes book and article contain 100% similar attributes. Therefore, the cluster

C is partitioned into two clusters: C1: { year, {title, author}book }bib and C2: {

year, {title, author}article }bib. When all subclusters cannot be partitioned again, we
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can generate different sets of FOR and WHERE clauses. For C1, we have “For $b

in bibliography/bib” for {}bib and “For $b2 in $b/book” for {}book together. And its

WHERE clause can be represented as “Where $b/year=’2006’ and contains($b2/title,

’xml’) and contains($b2/author, ’Philip’)” according to the labels in the subclusters of

C1. Similarly, we can process C2 to generate its FOR and WHERE clauses. Figure 6.2

shows the expanded structured queries.

The contexts of the terms can be identified by computing all the possible master

entities from the source schemas first, and then specifying the precise paths from each

master entity to its labels by checking the semantic-relevant schema nodes. Once

the contexts are obtained, we can generate the FOR and WHERE clauses of the

structured queries for a keyword query. By specifying the detailed context in FOR

clauses, we can limit the range of evaluating the structured queries over the XML

data sources, which can improve the efficiency of processing the keyword queries.

6.3.2 Identifying Returned Nodes

Given a keyword query q = {li : ki|1 ≤ i ≤ n} and an XML schema tree T =

(V, E, r, Card), we may retrieve a set of master entities Vm ⊆ V for q w.r.t. T based

on the above discussion. In this section, we will derive the returned nodes only by

identifying the types of the master entities Vm. For any master entity vm ∈ Vm, if

Card(vm) = “*”, we can determine that the node vm can be taken as return nodes

in the corresponding RETURN clauses because the node represents the real entity at

the conceptual level. However, if Card(vm) = “1”, the node vm may not represent an

entity. In this case, we probe its ancestor nodes until we find its nearest ancestor va,

such that Card(va) =“*”.

Consider another keyword query q(title:xml, author :Philip) over the XML docu-

ment d1 conforming to t1. We are able to obtain two master entities book and article.

Since Card(book) = “*” and Card(article) = “*”, we can take them as the return
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nodes in the corresponding RETURN clauses. However, if users issue a simple query

q(title:xml) over d1, the master entity of this query is the title that is only an attribute

of the book or article nodes. In this case, we can trust that users would like to see

the information of the whole entity (book or article), rather than one single attribute.

Therefore, to generate meaningful RETURN clauses, we have to extend the title node

to its parent book or article nodes as the return nodes because book or article nodes

belong to *-node type.

If there are some label-term pairs in the form of {ljk
:?|1 ≤ k ≤ m ≤ n ∧ 1 ≤

jk ≤ n} in q = {li : ki|1 ≤ i ≤ n}, instead of returning the master entity of q, we

will compute the master entity of {ljk
} and use it to wrap all return values of ljk

in

the RETURN clause. This is because users prefer to see those nodes with the labels

{ljk
} as the tagnames according to Definition 20.

6.4 Scoring Function

Given a keyword query q and an XML schema tree T , a set of structured queries Q

may be constructed and evaluated over the data source conforming to T for answering

q. The answer to the XML keyword query q may be a big number of relevant XML

fragments. In contrast, the answer to the top-k keyword query is an ordered set of

fragments, where the ordering reflects how closely each fragment matches the given

keyword query. Therefore, only the top k results with the highest relevance w.r.t.

q need to be returned to users. In this section, our scoring function consists of the

context of the given terms and the weight of each term.

Let a fragment A be an answer of keyword query q. It is true that we can determine

a structured query qi that matches the fragment A. This is because we first construct

the structured query qi from the keyword query q and then obtain the fragment A

by evaluating qi over XML data. Therefore, we can compute the context score of the
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fragment A by considering the structure of the query qi.

Definition 23 (Context Score) Assume the structured query qi matching the answer

A consists of the labels {li|1 ≤ i ≤ n}. Let its master entity be vm and an XML

schema be T = (V, E, r, Card), we can obtain a list of nodes V ′ ⊆ V that match each

label respectively.

ContextScore(A, qi) =
1

n
×

n
∑

i=1

Kcontext(vi, vm) (6.1)

where Kcontext(vi, vm) is computed based on the distance from the node vi ∈ V ′ match-

ing the label li to its master entity vm, i.e., LengthOfPath−1(vi, vm).

In order to effectively capture the weight of each individual node, we are motivated

by the tf ∗ idf weight model. Different from IR research, we extend the granularity

of the model from document level to element level.

Definition 24 (TF value)

tf(vi, ti) = |{v ∈ Vd|tag(v) = tag(vi)&ti ∈ v}| (6.2)

Intuitively, the tf of a term ti in a node vi represents the number of distinct

occurrences within the content of vi.

Definition 25 (IDF value)

idf(vi, ti) = log(
|{v ∈ Vd : tag(v) = tag(vi)}|

|{v ∈ Vd : tag(v) = tag(vi)&ti ∈ v}|
) (6.3)

Intuitively, the idf quantifies the extent to which the nodes v with the same

tagname as vi in XML document node set Vd contain the term ti. The fewer vi nodes

whose contents include the term ti, the larger the idf of a term ti and a node vi.
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Without loss of generality, we will also assume that the weight value of each node

is normalized to be real numbers between 0 and 1.

Definition 26 (Weight of Individual Keyword) The answer A contains a set of leaf

nodes as tagnames with the given labels {li|1 ≤ i ≤ n} where each leaf node should

contain the corresponding term at least once a time. For each node vi with label li,

we have:

ω(vi, ti) =
tf(vi, ti)× idf(vi, ti)

max{tf(vi, ti)× idf(vi, ti)|1 ≤ i ≤ n}
(6.4)

Definition 27 (Overall Score of Answer) Given a generated structured query qi and

its answer A, the overall score of the answer can be computed as:

Score(A, qi) =
1

n
×

n
∑

i=1

ω(vi, ti)

LengthOfPath(vi, vm)
(6.5)
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Figure 6.4: XML Document d2

Now let me show how we compute the overall score of an answer. Assume q is a

keyword query that consists of three pairs “author :Philip, year :2006, title:xml”. We

evaluate the keyword query q over the XML document in Figure 6.4. After that,

the fragment book in the box will be returned as an answer. Based on the pre-

computation, we can get the weight of each keyword-matched node in the fragment

where we assume each term only occurs once a time in the corresponding nodes.

According to the pre-computed information in Table 6.1 and Table 6.2, we have

ω(year, 2006) = 1× 0.301 = 0.301, ω(title, xml) = 1× 0.602 = 0.602 and ω(author, Philip)
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tf(vi, ti) value
(year:2006) 1
(title:XML) 1
(author:Philip) 1

Table 6.1: tf values of book in the box

idf(vi, ti) value
(year:2006) log(4

2
)= 0.301

(title:XML) log(4
1
)= 0.602

(author:Philip) log(5
2
) = 0.398

Table 6.2: idf values of book in the box

= 1 × 0.398 = 0.398. The maximal weight is 0.602. In addition, we also need to nor-

malize each weight value into (0,1) by dividing by the maximal value. So the final nor-

malize weight values are ω(year, 2006) = 0.5, ω(title, xml) = 1, and ω(author, Philip)

= 0.661 respectively. Then we can compute the overall score by combining the weight

of each node and its context. Score(book, qi) = 1
3
× (1 × 0.5 + 1 × 1 + 1 × 0.661)

= 0.720. If we have more results, we can compute its overall score in the same way.

According to Equation 6.1, Equation 6.4, Equation 6.5, we find that the overall

score of an answer is equal to its context score when the weight of each keyword is

set to 1 (the maximal value). Therefore, the context score can be taken as the upper

bound of the answer. Based on the relationships among the three equations, we can

design an execution plan to determine whether the current results are more relevant

to the user’s query than the rest to be searched. The detailed procedure has been

provided in the following section.

6.5 Implementation of XML Keyword Query

Figure 6.5 shows the structure of XBridge system. Given a keyword query, we

first construct a set of structured queries based on the labels in the keyword queries
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Figure 6.5: Architecture of XBridge System

and the XML schemas, i.e., query structuring. Then the set of queries Q will be

sorted according to their context score based on Definition 23, i.e., structured query

ranking. After that, we get a query qi ∈ Q with the highest context score from the

set of structured queries and send it to XQuery engine. We will evaluate the query

qi over XML data and retrieve all the results matched qi. At last, we will process all

the current results, i.e., computing the overall score for each result and caching the k

results with the higher overall scores. After we complete the evaluation of the query

qi, we need start a new loop to process another structured query that comes from the

current set {Q−qi} until the top k qualified results have been found. In the following

sections, we will discuss the detailed procedures of query structuring and execution

plan.

6.5.1 Query Structuring

Query structuring is the core part of XBridge where we compute the master entities,

infer the contexts and derive the return nodes. To search the master entities quickly,

Dewey number is used to encode the XML schema. For example, Figure 6.6(a) shows

the schema for XML document d2 in Figure 6.1(c) and gives the Dewey number for

each schema node. Given two nodes year (0.0.0.0) and title (0.0.0.1), we can say the

node book (0.0.0) is their nearest common ancestor (NCA) node because the Dewey
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numbers of year and title share the same prefix 0.0.0 and no other common prefixes

exist in the subtree rooted at the node book (0.0.0). Therefore, we use Dewey number

to compute the master entities for a given keyword query.
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Figure 6.6: Example of Implementation

Given a keyword query q = {li : ki|1 ≤ i ≤ n} and an XML schema tree T =

(V, E, r, Card), we first retrieve a list of nodes Vi ⊆ V for each li in T and sort them in

a descending order, such that we have 0.0.0.0 ≺ 0.1.0.0 in Vyear. To compute master

entities, we propose two approaches:

• Pipeline: We take each node vi from the list Vi where |Vi| = min{|V1|, |V2|, ...,

|Vn|} and compute the NCA of vi and the nodes in the other lists Vj (1 ≤ j ≤

n ∧ j 6= i) in a sequence. At last, we preserve the NCA nodes as the master

entity candidates in Vm.

• Pipeline+σ: When we get any node vix from Vi, we may take its next node

vix+1 as a threshold σ if the node vix+1 exists in Vi. During the computation

of NCA, we only probe the subset of nodes V in the other lists such that for

v ∈ V we have v ≺ vix+1.

As an optimization approach, the second one can reduce the negative computations

of NCA while it can obtain the same structured queries as the first one does.
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Algorithm 15 Constructing structured queries

input: a query q = {li : ki|1 ≤ i ≤ n} and an schema T = (V, E, r, Card)
output: a set of structured queries Q

1: Retrieve a list of nodes Vi ⊆ V for each li in T ;
2: Compute the master entities Vm by calling for Pipeline+σ approach;
3: for each master entity vm ∈ Vm do
4: Generate FOR clause with vm, i.e. “For $x in r/.../vm”;
5: Cluster the nodes matching with labels li in the subtree of vm w.r.t. domain

knowledge D by calling for Cluster Domain({li}, vm, D);
6: for each cluster do
7: Construct a set of FOR clauses for the entity nodes representing the similar

semantic in each cluster;
8: Generate WHERE clause with n paths from vm to each node li;
9: Generate RETURN clause by identifying the types of vm (Card(vm)=* or

1) and ki (“?” symbol exists or not) and put the structured query into Q;
10: end for
11: end for
12: return the set of structured queries Q;

Since the subtree of a master entity vm may cover one or more than one schema

nodes labeled with the same label and the nodes may have different semantic rel-

evances, we develop a function Cluster Domain() to identify and cluster the nodes

matching with the labels li (1 ≤ i ≤ n) in the subtree according to the labels and the

data types of their attributes or subelements. For each cluster c, we do not generate

a structured query if the cluster c only contains a part of the labels in the given

keyword query. Otherwise, we construct a structured query for the cluster c. In this

case, we first generate a set of FOR clauses according to the classified clusters in the

cluster c and then construct a WHERE clause for c. Finally, a RETURN clause is

derived by identifying the type of the master entity node vm. After all the clusters

are processed, we may generate a set of structured queries Q. The detailed procedure

has been shown in Algorithm 15.

Let us look at the procedure of Algorithm 15 with an example. Users issue a

keyword query q(year:2006, title:xml, author:Philip) over XML document d2 that
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conforms to the schema in Figure 6.6(a). At the beginning, we retrieve the relevant

nodes for the given labels, such as Vyear, Vtitle and Vauthor shown in Figure 6.6(b).

Based on Line 2, we can obtain the master entities, i.e., Vm={0.0.0, 0.1.0}. For

the book node 0.0.0, we generate a FOR clause: “For $b in bibliography/bib/book”.

Based on Line 5-8, we know the three nodes year 0.0.0.0, title 0.0.0.1 and author

0.0.0.2 belong to one entity book 0.0.0. Therefore, we can directly produce a WHERE

clause: “Where $b/year=’2006’ and contains($b/title, ’xml’) and contains($b/author,

’Philip’)”. After that, we generate a RETURN clause: “Return $b” because the book

node is *-node. Similarly, we can generate another structured query for master entity

article 0.1.0. The constructed queries have been shown in Figure 6.3.

6.5.2 Execution Plan for Processing Top-k Query

Given a keyword query q and XML documents D conforming to XML schemas,

we may generate a set of structured queries Q. To obtain top-k results, a simple

method is to evaluate all the structured queries in Q and compute the overall score

for each answer. And then we select and return the top k answers with the k highest

scores to users. However, the execution is expensive when the number of structured

queries or retrieved results is large.

To improve the performance, we design an efficient and dynamic execution plan

w.r.t. our proposed scoring function, which can stop query evaluation as early as

possible by detecting the intermediate results. Our basic idea is to first sort the

generated structured queries according to their context scores, and then evaluate the

query with the highest score where we take the context score of the next query as

the current threshold. This is because the weight of each keyword is assumed to be

set as 1 (the maximal value). In this case, the overall score would be equal to the

context score. Therefore, if there are k or more than k results, we will compute their

overall scores based on Equation 6.5 and cache k results with the k highest scores.
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Algorithm 16 Dynamic Execution Plan

input: A set of ranked structured queries Q and XML data D
output: Top k qualified answers

1: Initialize the answer set SA=null;
2: Initialize a boolean symbol flag = false;
3: while Q 6= null and flag 6= true do
4: Get a structured query q = getAQuery(Q) where q has the maximal context

score;
5: if |SA| = k and (minScore{A ∈ SA} ≥ ContextScore(q)) then
6: flag = true;
7: else
8: Issue q to any XQuery search engine and search the matched fragments Fm;
9: for ∀A ∈ Fm do

10: Compute overall score Score(A, q);
11: if |SA| < k then
12: Input the result A into SA;
13: else if ∃A′ ∈ SA and Score(A′, q′) < Score(A, q) then
14: Update the intermediate results updateSA(A, SA);
15: end if
16: end for
17: end if
18: end while
19: return Top k qualified answers SA;

At the same time, we will compare the scores of the k results and the threshold. If

all the scores are larger than the threshold, we will stop query evaluation and return

the current k results, which means no more relevant results exist.

Algorithm 16 shows the detailed procedure of our execution plan. At the be-

ginning, the function getAQuery() is called to get the structured query q with the

maximal context score from the query set Q. Then we evaluate the query q with any

existing XQuery search engine and retrieve all the matched results Fm. If the answer

set SA is empty or contains less than k results, we can directly get the k or partial

qualified results from Fm and cache them into temporary answer set SA. If the answer

set SA has contained k temporary results, we need to compare the existed results in
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SA and the new retrieved ones in Fm. If we find that there are more qualified results

in Fm, we will use them to replace the less qualified results in SA, i.e., updating the

temporary answer set updateSA(). Before we start another new iteration, i.e., we get

a new structured query q′ from Q, we need to compare the context score of the query

q′ with the overall scores of the temporary results in SA. If the overall score of any

result is larger than or equal to the context score of q′, then we can guarantee all

the qualified answers have been found. Therefore, it is not necessary to process the

query q′ and the rest of the queries in Q. Otherwise, we need to evaluate the query

q′ continuously.

6.6 Experiments

We implemented XBridge in Java using the Apache Xerces XML parser and Berkeley

DB1. To illustrate the effectiveness and efficiency of XBridge, we also implemented

the Stack-based algorithm[49] because the other related approaches in [90, 67, 83] are

biased to the distribution of the terms in the data sources. All the experiments were

carried out on a Pentium 4, with a CPU of 3GHz and 1GB of RAM, running the Win-

dows XP operating system. We selected the Sigmod Record2 XML document (500k)

and generated three DBLP3 XML documents as the dataset where we evaluated the

following keyword queries in Table 6.3.

Table 6.3: Keyword Queries
q1: (author : David, title : XML)
q2: (year : 2002, title : XML)

q1 means users want to search the publications that are written by David and their

1http://www.sleepycat.com/
2http://www.sigmod.org/sigmod/record/xml/index.html
3http://dblp.uni-trier.de/xml/
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titles contain XML. q2 means users want to know the publications that are published

in year 2002 and their titles contain XML. Table 6.4 gives the sizes of datasets and

the number of each keyword pair in different datasets.

XML Data Data Size # author:David # title:XML # year:2002

SigmodRecord.xml 0.49M 74 117 0
dblp 01.xml 23.26M 1953 522 4871
dblp 02.xml 51.20M 4586 1476 11949
dblp 03.xml 76.48M 7279 2196 17202

Table 6.4: The Number of Keyword-matched nodes in Different Documents

Keyword queries SigmodRecord dblp 01 dblp 02 dblp 03
q1 (author:David, title:XML) 3 2 21 33
q2 (year:2002, title:XML) 0 45 153 214

Table 6.5: The Number of Results Returned by XBridge

Keyword queries SigmodRecord dblp 01 dblp 02 dblp 03
q1 (author:David, title:XML) 74 522 1476 2196
q2 (year:2002, title:XML) 0 522 1476 2196

Table 6.6: The Number of Results Returned by Stack-based Algorithm

Table 6.5 and Table 6.6 show the number of results returned by XBridge and

Stack algorithm, respectively. Comparing the two tables, we find that the results of

XBridge is a small part of Stack algorithm. In addition, the small part of results

is more meaningful than the rest in the results of Stack algorithm. For exmaple, in

Sigmod Record, there are 74 articles that are written by David and 117 articles that

their titles contained XML. But for the two keywords only 3 results are found by

XBridge while 74 relevant results will be returned by Stack algorithm. This situation

may become worse in DBLP XML documents. For example, dblp 01.xml contains

1953 author:David pairs and 522 title:XML pairs, but for q1 only 2 results can be

returned by XBridge while 522 relevant results are found by Stack algorithm. This
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is because Stack algorithm does not consider the semantic relevance during query

evaluation.
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Figure 6.7: Keyword Query q1
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Figure 6.8: Keyword Query q2
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Figure 6.9: Keyword Query q1 (k = 10)
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Figure 6.10: Keyword Query q2 (k = 20)

As we know, the Stack-based algorithm may avoid some unnecessary computations

by encoding the documents with the Dewey scheme. But it has to preserve all possible

intermediate candidates during query evaluation and lots of them may not produce the

results. However, XBridge can infer the precise contexts of the possible results based
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on the source schemas before query evaluation. Therefore, XBridge can outperform

the Stack-based algorithm. For example, the Stack-based algorithm spent 188ms to

evaluate q1 on SigmodRecord.xml while XBridge only used 78ms to process the same

keyword search. In addition, if the size of an XML document increases, most of the

time it may contain more nodes that match a single keyword. But the number of

return nodes that match all the keywords may not be increased significantly. In this

case, the performance of query evaluation may be relatively decreased.

Figure 6.7 and Figure 6.8 illustrate the time cost of both methods when we evalu-

ate q1 and q2 on the given three DBLP datasets respectively. From the experimental

results, we find that in XBridge the change in time is not obvious when the size of

dataset is less than 50M. But when the size of document is nearly 70M, the process-

ing speed was decreased by 80%. This is because compared with dblp 01 or dblp 02,

dblp 03.xml contains a huge number of nodes that match each single keyword but fail

to contribute to return nodes. The figures also shows that XBridge would outperform

over Stack-based algorithm in our experiments.

Figure 6.9 and Figure 6.10 compare the performance of the methods when k value

is set as 10 or 20 respectively. Since Stack-based algorithm has to retrieve all the

results and then select the k qualified answers, its response time for top-k query is

nearly same to process general query. However, XBridge depends on the dynamic

execution plan, which can stop query evaluation as early as possible and guarantee

no more qualified results exist in the data source. Generally, XBridge is suitable to

process top-k keyword search and most of the time, it only needs to evaluate parts of

the generated structured queries. But when the number of relevant results is less than

k, XBridge also needs to evaluate all the generated structured queries. For example,

as we know the document dblp 01 only contains 2 qualified answers for the keyword

query q1. When the specified value of k is 10, there is no change of the response time.

Therefore, in this special case, its efficiency cannot be improved.
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6.7 Summary

The main contribution of this work is to propose the XBridge system for processing

keyword search by constructing effective structured queries. It can improve the rele-

vance and performance of keyword search greatly by specifying the precise contexts

of the constructed structured queries. In addition, we also provide a scoring function

that considers the context of the keywords and the weight of each keyword in the data

source together. Especially, an execution plan for processing top-k keyword search is

designed to adapt to our proposed scoring function.



Chapter 7

Conclusions and Future Work

We first give a report on the major conclusions of this thesis in Section 7.1, and then

propose some directions for future work in Section 7.2.

7.1 Summary of this Thesis

The research objective described in this thesis is to investigate a series of problems

related to adaptive query processing in XML.

We first studied the features of XML schema and proposed a structural similarity

model to compare the S tructures of XML Source schemas with an XML Domain

schema (SSD). SSD provided an accurate similarity measure by taking into account

two main factors that contribute to the structural similarity or difference: element

coverage and consistency of relationships of element pairs. In addition, it also consid-

ered the difference of element cardinality in the model. The computed similarity can

be used to decide which data source is more relevant to users’ query requirements,

i.e., the most relevant data source should be accessed as early as possible during query

evaluation. To speed up similarity computation, we introduced a trimming process

for filtering out uninteresting objects while preserving similarity. Meanwhile, we also

155
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proposed a coding scheme to serve for comparison of a pair of schemas by extending

Dietz’s numbering schema that is often used to improve the query efficiency of individ-

ual XML documents. Two algorithms - the basic and the improved algorithms were

developed with unnecessary comparisons removed in the improved algorithm. We

conducted a thorough experimental evaluation of the two approaches using synthetic

and public datasets. Our evaluation showed that the improved algorithm outperforms

significantly compared with the basic algorithm for different features of the data.

Second, we presented an Adaptive Query Relaxation (AQR) for evaluating XML

query over heterogeneous XML data sources. AQR consists of a series of relaxation

operations: Ontology Relaxation, Node Relaxation, Term Relaxation, Inconsistent

Edge Relaxation, and Recursive Relationship Relaxation. It can avoid blind relax-

ation by filtering out those query nodes that do not appear in the DTD and adjusting

the node relationships if they do not match the DTD. It can also avoid wild relax-

ation by preserving the query requirements which are definitely satisfied by the DTD.

All of these advantages can improve the performance of query relaxation and evalua-

tion. In AQR, we devised a penalty/ranking model that is extended from the model

SSD. Compared with SSD, the penalty/ranking model is more accurate to detect the

structural differences of the original query and its counterpart in data source, such

as AQR considers the distance of two nodes that satisfy ancestor-descendant rela-

tionship while SSD does not. In addition, a set of adaptive relaxation algorithms are

proposed to efficiently relax a user’s query and all of these algorithms were tested and

compared with FleXPath method [10] using the generated XML documents. From

the perspective of effectiveness, we find that FleXPath generated far more relaxed

queries compared with AQR. The reason behind this finding is that to get a large

number of results, FleXPath has to relax a user’s query and evaluate it until the

root node of the query if necessary. However, AQR is able to stop unnecessary query
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relaxations early as possible for a particular data source with the guideline of its con-

formed DTD. From the perspective of efficiency, AQR can obtain better performance

than FleXPath in most cases where more relaxations are necessary to answer a user’s

query.

Third, based on the adaptive query relaxation, we proposed two scheduling strate-

gies to support efficient top-k query evaluation - a brute-force scheduling strategy and

a BT-based scheduling strategy. The brute-force scheduling strategy is a simple but

not naive approach, which first generates all the relaxed queries according to the

optional and disjunctive semantics of the corresponding XML elements, and then

ranks the generated queries based on their weights. After that, we will evaluate the

generated queries one by one in the descendant order. It is possible for the brute-

force strategy to generate a large number of unqualified relaxed queries, which is the

main shortcoming of the method. To efficiently address the issue, we also proposed

BT-based scheduling strategy by computing the upper/lower bound and threshold

values. The upper bound value is obtained by computing the weight of each relaxed

query w.r.t. a data source while the lower bound value can be derived during query

evaluation. By monitoring the updated values of lower/upper bound and threshold,

we can determine which data source should be evaluated first and what kind of in-

termediate candidates are the top k most relevant results as early as possible, rather

than accessing all the data sources and working out all the candidates. To formalize

the scheduling procedures, we proposed two corresponding properties: Data Source

Determination and Switching and Result Determination. Additionally, we also de-

ployed an adaptive query relaxation strategy to filter out some unqualified edges in

the query for some data sources based on schema information, which can further

improve query evaluation efficiency. The experimental results demonstrated the BT

scheduling strategy can gain more benefits when the value of top-k and the number

of data sources are large.
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Finally, we studied the problem of keyword search in XML. we designed an adap-

tive XML keyword search approach, called XBridge, that can derive the semantics of

a keyword query and generate a set of effective structured queries by analyzing the

given keyword query and the schemas of XML data sources. To derive the mean-

ingful context for a keyword query, we recognized the different semantics of two

schema nodes by deploying the ontology knowledge or comparing their descendant

attributes/subelements. In XBridge, we proposed a scoring function that takes into

account the structure of the results and the weight of each corresponding keyword-

matched node in the results together, which can evaluate the quality of the results.

To improve the performance of evaluation, we also designed an execution plan to

retrieve the more qualified results as early as possible. Given a top-k keyword query,

the k relevant results with the higher ranking scores would be searched and output

efficiently where the relevance of the results is measured by our proposed ranking

function.

7.2 Future Work

Because in this work we use the existing XQuery search engine to evaluate the struc-

tured queries, it is possible to repeatedly visit some nodes or compute some rela-

tionships. To further improve the performance of keyword search, in the future we

will design a more efficient query evaluation plan that can reduce or eliminate the

repeated computations.

Parallel Processing of Keyword Query: Nowadays, keyword search has been

studied extensively in XML. Its appeal stems from the fact that keyword queries can

be easily posed without knowing a query language and the schema or structure of

the data being searched. For XML, where the data is viewed as a hierarchically-

structured rooted tree, a natural keyword search semantic is to return all the nodes
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in XML tree that contain all the keywords in their subtrees. However, this simple

search semantics always result in a great number of intermediate results, many of

which can not produce the final answers or are only remotely linked to the nodes

containing the keywords. To address this problem, in this thesis we have proposed a

method XBridge for processing keyword search where we used the existing XQuery

search engine to evaluate the constructed answer templates. Although it improves the

relevance and performance of keyword search, it is still possible to visit some nodes

or compute some relationships repeatedly. To further improve the performance, we

will design an optimal keyword query evaluation plan that can efficiently compute the

qualified results and prune the unqualified keyword-matched nodes or intermediate

results as early as possible. To construct the evaluation plan, we will analyze the

relationships among all possible answer templates. As we know, in large XML data

some of the answer templates are independent from each other while others may be

dependent through some relations. The independent answer templates can be done

in a parallel way while the dependent ones can be processed in an optimal schedule

based on the overlapped relations. Therefore, our future approach shoud be adaptive

to the XML data by combining the merits of the independent and dependent answer

templates together, rather than merging all the keyword-matched nodes in a same

way.

Efficient Processing of Multiple Keyword Queries: Another issue is moti-

vated by the real application of efficiently processing a set of keyword queries over

large XML data sources. As we know, most previous keyword search methods are

based on the similar strategy that first retrieves the matched nodes and then produces

the results by merging the retrieved nodes together. However, the straightforward

strategy may become impractical when a set of keyword queries is coming at the same

time. For instance, many users may access the same database at the same time. If we
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process the set of queries one by one, some of them may wait for a long time. To ad-

dress this issue, one way is to transform the set of keyword queries into different sets

of structured queries. Based on the relationships among the structured queries, we

can answer the set of keyword queries by processing the structured queries together.

However, when the relationships are very complex, the transformation-based strategy

may become too expensive to meet users’ needs. Another way is to build an efficient

index that can be used to identify the probabilistic reachability of each keyword query.

Given a set of keyword queries, we first derive their corresponding reachabilities and

then infer their relationships. Based on the relationships, one optimal execution plan

may be designed. To do this, the first challenge is how to identify the probabilistic

reachability over XML data for a keyword query. The second challenge is how to infer

the relationships among the given set of keyword queries based on their reachabilities.
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