
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author:

Title:

Article number:
Year:
Journal:
Volume:
URL:

Copyright:

Chang-ai Sun, Baoli Liu, An Fu, Yiqiang Liu, Huai
Liu
Path-directed source test case generation and
prioritization in metamorphic testing
111091
2022
Journal of Systems and Software
183
http://hdl.handle.net/1959.3/462851

Copyright © 2021 the author(s).

This final, peer reviewed author's accepted manuscript is licensed under Attribution-NonCommercial-
NoDerivatives 4.0 International. See https://creativecommons.org/licenses/by-nc-nd/4.0/.

The published version is available at: https://doi.org/10.1016/j.jss.2021.111091

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

aSchool na
bDepa ,

Abstr

Metam st,
termed e
existin ed
of test ts.
Numer g,
most o ly,
a few s re
effectiv ed
on the ce
among he
efficien al
studies lts
show t so
highlig

Keywo

1. Int

Softw
quality
stratin
stream5

execute
are firs
such as
detecti
tion of10

against
system

The
test res

he
2],
rs

al-
le
of
o-

ies
es
if-
m
of
ill
s,
is
ss
se

st-
ly
Path-Directed Source Test Case Generation and Prioritization in
Metamorphic Testing

Chang-ai Suna,∗, Baoli Liua, An Fua, Yiqiang Liua, Huai Liub

of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, Chi
rtment of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn VIC 3122

Australia

act

orphic testing is a technique that makes use of some necessary properties of the software under te
as metamorphic relations, to construct new test cases, namely follow-up test cases, based on som

g test cases, namely source test cases. Due to the ability of verifying testing results without the ne
oracles, it has been widely used in many application domains and detected lots of real-life faul
ous investigations have been conducted to further improve the effectiveness of metamorphic testin
f which were focused on the identification and selection of “good” metamorphic relations. Recent
tudies emerged on the research direction of how to generate and select source test cases that a
e in fault detection. In this paper, we propose a novel approach to generating source test cases bas
ir associated path constraints, which are obtained through symbolic execution. The path distan
test cases is leveraged to guide the prioritization of source test cases, which further improve t

cy. A tool has been developed to automate the proposed approach as much as possible. Empiric
have also been conducted to evaluate the fault-detection effectiveness of the approach. The resu

hat this approach enhances both the performance and automation of metamorphic testing. It al
hts interesting research directions for further improving metamorphic testing.

rds: Metamorphic testing, source test case, symbolic execution, path constraint

roduction

are testing, a major approach to software
assurance, is mainly targeted at demon-

g “the presence of bugs” [1, p.16]. A main-
way to implement testing is to dynamically
the software under test (SUT): Test cases

t generated according to some objectives,
achieving some degree of code coverage and

ng certain types of fault. After the execu-
a test case, the actual result will be verified
the expected output, normally through a

atic mechanism, termed as test oracle.
basic processes of test case generation and
ult verification are concerned with two fun-

damental problems of software testing, namely t15

reliable test set problem and the oracle problem [
respectively. The former problem basically refe
to the infeasibility of exhaustive testing — It is
most impossible to exhaustively execute all possib
test cases even for a simple program, so a subset20

test cases should be deliberately selected to pr
vide a reliable coverage of as many functionalit
of SUT as possible. A large number of techniqu
have been developed to generate test cases from d
ferent perspectives [3, 4, 5]. However, most of the25

have assumed, at least implicitly, the presence
a test oracle. Their fault-detection capabilities w
be influenced by the oracle problem; in other word
when either there is no test oracle or the oracle
too expensive to apply for verifying the correctne30

of test results, the applicabilities of many test ca
generation techniques are significantly limited.

Among all testing techniques, metamorphic te
ing (MT) [6, 7] is a unique one that can not on

addres35

way fo
of MT
(MRs),
present
ple pro40

the asp
to tran
source
as follo
tion, in45

test ca
are che

Desp
very su
a wide50

ple, sim
tion of
top-ran
wrong
change55

Xie et
machin
of thei
expect
dreds o60

The hi
only du
lem, bu
are com
testing65

In re
core el
tention
16, 17,
attribu70

high po
al. [18]
ber of
to dete
a test o75

temati
METR
MRs b
in the
it was80

throug
and ch
atic me

As a
also pla85

up test

es
so
In
st

st-
he
y

be
e-
et
p-
i-
n,
In
st
[4]
t.

an
es
xt
h-
tic

n-
to
on
gh
re
of
a-
he
s:

ct
n-
ee
ly
ed
ed

ri-
nt

all
nd

al-
r-
h-
s the oracle problem but also provide a new
r generating test cases. The core element
is a set of so-called metamorphic relations
which are the necessary properties of SUT

ed in the form of relationships among multi-
gram inputs and their expected outputs. In
ect of test case generation, MRs can be used
sform some existing test cases (termed as
test cases in MT) into new test cases (termed
w-up test cases). For the test result verifica-
stead of using an oracle for each individual
se, the test results from multiple test cases
cked against the corresponding MRs.
ite the simplicity in concept, MT has been
ccessful in revealing many real-life bugs in
variety of application domains. For exam-
ple equality MRs have led to the detec-
thousands of erroneous behaviors in some
ked autonomous driving models — Fatally
decisions could be made given a minor
in the weather or road conditions [8, 9].

al. [10] also used MT to validate traditional
e learning classifiers and found that some

r behaviours were not consistent with users’
ations. In addition, MT have revealed hun-
f faults in some widely used compilers [11].
gh fault-detection capability of MT is not
e to its ability to address the oracle prob-
t also because it can generate test cases that
plimentary to those created by traditional
techniques [6].
cent years, the identification of MRs, the

ement of MT, has received considerable at-
in the community of MT [12, 13, 14, 15,
18, 19]. Some researchers investigated the

tes of “good” MRs, that is, what MRs have
tentials in detecting software faults. Liu et
, for example, justified that a small num-
“diverse” MRs are sufficient by themselves
ct the most faults that can be revealed using
racle. Other studies were aimed at the sys-

c ways for identifying MRs. For instance, the
IC approach [12] was proposed to construct
ased on the concepts of category and choice
category-partition method [20]. Recently,
extended to the METRIC+ approach [13]

h the inclusion of output-related categories
oices and the introduction of more system-
chanism for deciding appropriate relations.
nother critical component, source test cases
y an important role in MT. Since the follow-
cases (that is, the new test cases created

by MT) are constructed based on source test cas
and MRs, the quality of source test cases is al
a driving factor for the performance of MT.
the majority of previous studies of MT, source te90

cases were normally generated using random te
ing, which could provide a good benchmark as t
performance’s lower bound in empirical studies. B
nature, some more systematic techniques could
applied in the source test case generation and s95

lection to improve MT’s performance. Barus
al. [21], for example, utilized the so-called ada
tive random testing (ART) [3] to improve the d
versity of source test cases in MT, which, in tur
enhanced the fault-detection effectiveness of MT.100

addition, Alatawi et al. [22] generated source te
cases based on the dynamic symbolic execution
and showed promising performance improvemen
Some researchers used the test cases of MT in
iterative way [23, 24]: Some follow-up test cas105

could be re-used the source test cases for the ne
round of testing. Dong et al. [25] proposed a tec
nique to generate source test cases based on gene
algorithm and program path analysis.

In line with the research of source test case ge110

eration, this paper attempts to investigate how
maximize the diversity of source test cases based
their path constraints, which are obtained throu
the symbolic execution [26]. New techniques a
proposed for improving the overall performance115

MT. A comprehensive framework is developed to f
cilitate the automatic implementation of MT. T
paper makes the following four major contribution

� The symbolic execution is applied to constru
path constraints, which, in turn, guide the ge120

eration of source test cases of MT to guarant
(i) that different program paths are thorough
covered, and (ii) that test cases are diversifi
in terms of the execution behaviors trigger
by them.125

� A path distance is defined to guide the p
oritization of source test cases for an efficie
execution of MT.

� A prototype tool is developed to integrate
new techniques into existing MT approach a130

thus to enable automated testing.

� Empirical studies are conducted based on re
world programs and demonstrate the perfo
mance improvement brought by the new tec
niques over traditional MT.135

2

The
tion 2
this stu
tool ar
the des140

sults o
related
nally, S
out fut

2. Ba145

2.1. M

As d
ation p
mechan
proced150

1. Se
pr
sh
ou

2. Ge155

in

3. Co
th

4. Ex
co160

gr

5. Ve
ph
vio
wi165

sp

Note
each m
source
(as sho170

examp
culates
One po
should
sin(b) c175

sin(90◦

based
x, and
and z,
tions o180

P (90◦

lation

he

2,
n-
s-
ce
x-
ce
es
st
on
h-
in

is
o-
to
ri-
ts.
le-
u-
ch

n-
a

in
n,
e-

to

ny
by

p,
ch
e,
te
a

ng
n-
n,
lic
on
ill
i-
”,
ill
rest of the paper is organized as follows. Sec-
introduces the background information for
dy. The new techniques and the prototype

e described in Section 3. Section 4 presents
ign and settings of our experiments, the re-
f which are given in Section 5. The studies
to our work are discussed in Section 6. Fi-
ection 7 summarizes the paper with pointing
ure work.

ckground

etamorphic Testing

iscussed above, MT supports test case gener-
rocess and provides a test result verification
ism, both on the basis of MRs. The basic

ure of MT is as follows:

lect one MR, which represents a necessary
operty of SUT in the form of the relation-
ip among multiple inputs and their expected
tputs.

nerate source test case(s) using some exist-
g testing techniques.

nstruct follow-up test case(s) by applying
e MR to transform source test case(s).

ecute source and follow-up test cases, which
llectively are termed as metamorphic test
oup.

rify the execution results of the metamor-
ic test group against the MR. If the MR is
lated, the SUT is considered faulty; other-

se, the SUT passes the testing of the corre-
onding metamorphic test group.

that the basic concept of MR requires that
etamorphic test group contains at least one
test case and at least one follow-up test case
wn in the above Steps 2 and 3). As an

le to illustrate, suppose a program P cal-
the sine value for an angle as the input.
ssible MR for P is: Given a = b + c, we
have the relation sin(a) = sin(b + c) =

os(c) + cos(b) sin(c) = sin(b) sin(90◦ − c) +
− b) sin(c). When implementing MT on P

on this MR, we generate a source test case
then construct two follow-up test cases y

where x = y + z. There will be five execu-
f SUT, P (x), P (y), P (z), P (90◦ − y), and
− z), and we need to check whether the re-
P (x) = P (y)P (90◦ − z) + P (90◦ − y)P (z)

holds. Any violation of the relation will imply t
detection of a fault.

For the “existing testing techniques” in Step185

the majority of previous studies have randomly ge
erated source test cases [7]. Chen et al. [27] inve
tigated the usage of special values as the sour
test cases for MT. Some studies [28] used the e
isting “classical” real-world inputs as the sour190

test cases. Recently, more advanced techniqu
have been applied to generate “good” source te
cases [21, 22, 25]. The present work is focused
the source test case generation based on the tec
nique of symbolic execution, which is introduced195

the next section.

2.2. Symbolic Execution

The core notion of symbolic execution [26]
to use the symbolic values to represent the pr
gram input parameters, and correspondingly200

utilize symbolic expressions to denote the va
ables in program execution and the output resul
The program analysis and validation will be imp
mented through the simulation of program exec
tions. There are three main components in ea205

step of the symbolic execution:

1. Path condition: Also termed as path co
straint, a path condition is represented by
series of branch conditions. It denotes a certa
path for program execution, which, in tur210

can refer to all inputs that satisfy the corr
sponding branch conditions.

2. Program counter: It defines the statement
be executed next.

3. Symbolic values for program variables: A215

variable in the program will be represented
a symbolic expression.

After combining the state of each execution ste
we can obtain a symbolic execution tree, whi
gives all the execution paths. In the execution tre220

each node refers to a program state, and the sta
transition is denoted by the edge. Figure 1 gives
simple example of a program and its correspondi
execution tree. At the beginning, the path co
dition is “True”. During the program executio225

the variables x and y are replaced by the symbo
values X and Y , respectively. When the executi
reaches the conditional statement (line 3), there w
be two paths, representing the scenarios of “cond
tion is satisfied” and “condition is not satisfied230

respectively. Correspondingly, path conditions w

3

become
two diff
respect
paths a235

1.int

2. in

3. if

4.

5. el

6.

7. re

8.}

Figure 1

Sinc
ent tec
under
the so-
of sym240

Godefr
rected
startin
concret
and co245

the sym
same t
a branc
by neg
termed250

been w
mains,
in MT

Tool
symbol255

bolic P
bines t
(JPF)
Workin
SPF c260

executi
strateg
breadt
constra
their co265

solver.
path c
cution
(1) It d
bolic e270

instrum
applica

n-
n-
to
se

e-
on
e-
T.
c-
c-
es
r-
in
le

ng

ti-
e

on
ch
es
of
e-
st

e-
an
al-
ly
ch
e.

on
a-
r-

of
d-
on
x-
el-

n-
es
X < Y and X ≥ Y , which, in turn, lead to
erent symbolic outputs z = X and z = Y ,
ively. In summary, we obtain two execution
nd their conditions.

func(int x, int y){

t z=0;

 (x<y)

z = x;

se

z = y;

turn z;

[PC: true] x = X, y = Y

[PC: X<Y]
x = X, y = Y, z = X

[PC: XY]
x = X, y = Y, z = Y

x<y xy
[PC: true] x = X, y = Y, z=0

return X return Y

: A simple program and its symbolic execution tree

e the invention of symbolic execution, differ-
hniques have been proposed to implement it
various scenarios. One main methodology is
called concolic execution [22, 29], the mixture
bolic and concrete execution. For example,
oid et al. [4] developed a method, namely di-
automated random testing (DART), which,
g from an input with randomly generated
e value, executes the SUT both symbolically
ncretely. The concrete execution will direct

bolic execution on the same path; at the
ime, path constraints will be extracted once
h is reached. Different paths can be explored
ating certain path constraints. DART, also
as dynamic symbolic execution (DSE), has
idely used in a variety of application do-
including the generation of source test cases
[22].

s have also been developed for implementing
ic execution in different paradigms. Sym-
athFinder (SPF) [30, 31], for example, com-
he symbolic execution with Java PathFinder
[32], a model checker for Java programs.
g on the virtual machine supplied by JPF,

an systematically search different symbolic
on paths. SPF also makes use of some
ies provided in JPF, such as depth-first and
h-first, to conduct the search. For the path
ints extracted during symbolic execution,
nditions are obtained through the constraint
Test cases can be created to satisfy these

onditions and thus represent different exe-
paths. SPF has the following advantages:
oes not require seeded inputs to drive sym-

xecution [4, 31]; (2) It does not involve code
entation, thus ensuring high efficiency and

bility [4, 31]; (3) It is powerful in handling

complex path constraints, supporting iterative co
straint solving for hard-to-solve expressions. I
spired by the above advantages, we will use SPF275

implement symbolic execution for source test ca
generation [31, 33].

2.3. Test Case Prioritization

Test case prioritization is a major activity in r
gression testing [34]. Basically speaking, regressi280

testing re-runs some existing test cases, namely r
gression test cases, after changes are made to SU
Its main aim is to verify whether the existing fun
tionalities are affected by the changes — The fun
tions that have passed the regression test cas285

should pass again after the changes are made. Va
ious test cases may have different effectiveness
the regression testing, so it is advisable to schedu
their execution order (in other words, prioritizi
them) for maximizing the testing efficiency.290

One mainstream approach to test case priori
zation is based on the code coverage [35]. Som
prioritization techniques order test cases based
their “total” coverage of certain code elements, su
as the absolute number of statements or branch295

covered by them. Other techniques make use
the “additional” coverage, that is, how many stat
ments/branches that can be covered by new te
cases but not by the already selected ones.

Although originally proposed in the context of r300

gression testing, the prioritization of test cases c
be applied into other testing activities — It is
ways preferable to run the “good” test cases ear
to achieve some goals as quickly as possible, su
as detecting faults and realizing certain coverag305

In this study, we propose prioritizing the executi
order of source test cases and thus the whole met
morphic test group for further improving the pe
formance of MT.

3. Approach and Tool310

In this section, we first discuss the motivation
our work. Then, the approach is described, inclu
ing both techniques for source test case generati
and prioritization, which are illustrated by an e
ample. Finally, we present the tool we have dev315

oped to implement the approach.

3.1. Motivation

Intuitively speaking, to guarantee a high pote
tial of detecting a wide variety of faults, test cas

4

should enable a testing method, like MT, to trig-320

ger as different execution behaviors as possible, in-
cluding those “hard-to-reach” execution paths/s-
tatements, which sometimes even deserve substan-
tial efforts. The symbolic execution technique [26]
provides a direct and effective solution to this is-325

sue. It has attracted increasing attentions due to
its capability of analyzing program behaviors. The
technique represents the program inputs using sym-
bolic values (rather than concrete values) to ex-
plore possible program execution paths and col-330

lect constraints of program branches covered by a
path. Apparently, symbolic execution can be used
to analyze the constraints of hard-to-reach state-
ments. By solving the constraints, test cases that
execute these program paths are generated. Moti-335

vated by its capability of thoroughly covering ex-
ecution paths, we propose the application of sym-
bolic execution into the generation of source test
cases for MT.

Any software development activity is constrained340

by resources. For software testing, its main goal is
to detect as many faults as possible with limited
budget and time. In other words, testing must be
implemented in a cost-effective way. Normally, test
cases are executed in a certain order. In all previous345

studies of MT, unfortunately, the execution order
of test cases was either random or arbitrary; that
is, no systematic prioritization has been applied for
MT’s test cases. In this study, we propose a prioriti-
zation technique that schedules the execution order350

of source test cases such that those with higher po-
tentials of revealing faults are ranked with higher
priorities and hence executed earlier. More specif-
ically, the technique determines the priorities of
source test cases based on their contributions to the355

coverage of program paths/statements. Source test
cases that help achieve the highest statement cov-
erage are executed first. We particularly adopted
the path-directed prioritization for source test cases
due to the following two reasons: (1) Basically, the360

execution paths of test cases reflect certain func-
tionalities of SUT, so the more different paths are
exercised by test cases, the more functionalities will
be covered by them and thus higher likelihood they
have in revealing potential faults; (2) Since it is365

relatively complicated to control the paths to be
covered by follow-up test cases (the construction of
which relies on both source test cases and MRs), we
design simple prioritization techniques for source
test cases in this study.370

The proposed source test case generation and

1. Symbolic Execution

2. Path Constraint Solving

4. Source Test Case Prioritization

Path Constraints

3. Execution Path AnalysisSource
Test Cases

Execution Paths

Program Under Test

Prioritized Test Cases

Source Test Case Generation

Source Test Case Prioritization

Figure 2: Approach overview

prioritization techniques compose our approach, as
elaborated in the following section.

3.2. Our Approach

Figure 2 outlines the overview of our approach,375

which consists of the following steps:

(1) Symbolic Execution : SUT is symbolically
executed to explore its possible execution
paths and acquire the corresponding path con-
straints.380

(2) Path Constraint Solving : Constraint solver is
employed to generate source test cases that sat-
isfy the constraints of each possible execution
path.

(3) Execution Path Analysis : For each generated385

source test case, the sequence of executed
statements is analyzed to form the execution
path.

(4) Source Test Case Prioritization : Source test
cases are prioritized based on the path distance390

(to be defined in Section 3.2.2 below) among
test cases.

5

The
test c
tion 3.395

tute th
tion 3.

3.2.1.

To p
lect Sy400

symbol
Java P
checker
executi
tion, S405

types o
ble to
code of
output
The co410

ecute s
are sym
the sym
path fr
ecution415

suffers
sion pr
loops in
low the
of itera420

Choc
solving
brary f
(CSP).
stating425

must b
based a
isfy the
constra
Choco-430

able va
true. T
test ca

To il
ation t435

MyMeth

1 pub
2
3
4440

5
6
7
8

od

of
lic
n-
i-
er
th
he
th
he

re
ut
he
ed

hs
es
al-
he
ts
).
n-
m
is
n-
ur
te
ch
o-

nt
x-
ur
le,
o-
d;
h-
id

in-
ed
nt
first and second steps constitute the source
ase generation phase (explained in Sec-
2.1), and the third and fourth steps consti-
e source test case prioritization phase (Sec-
2.2).

Path-directed source test case generation

erform symbolic execution on SUT, we se-
mbolic PathFinder (SPF) [30, 36] as our
ic execution engine. SPF is an extension of
athFinder [37], which is a well-known model

for Java Programs. SPF provides symbolic
on for bytecode of Java programs. In addi-
PF supports the symbolization of multiple
f input parameters, which makes it applica-
most Java programs. SPF takes the byte-
SUT and a configuration file as input, and

s the constraints of possible execution paths.
nfiguration file specifies which method to ex-
ymbolically and which method arguments
bolized. The tool constructs and explores
bolic execution tree of SUT, in which each

om the root to a leaf represents a possible ex-
path of SUT. Note that symbolic execution

from some problems, such as the path explo-
oblem, which can happen particularly when
volve symbolic values. In this study, we fol-
traditional solution of limiting the number

tions (up to 30) to address the problem.
o-solver [38, 39] is used as our constraint
tool. Choco-solver is an open-source Java li-

or solving the constraint satisfaction problem
The tool allows the user to model a CSP by
a set of variables with their constraints that
e satisfied. Then the tool leverages search-
lgorithms to find values of variables that sat-
stated constraints. In this study, the path

ints obtained from SPF serve as inputs of
solver. Accordingly, the solver outputs suit-
lues of variables that make the constraints
hese values together constitute the source

se that executes a certain program path.
lustrate the proposed source test case gener-
echnique, let us look at an example method
od, as below.

lic int myMethod(int x, int y){
int z = x + y;
if (z == 0){

if (y > 0){
z = y = x;

}else{
z = x = y;

}

9 }else{445

10 if (x > 0){
11 z = z = x;
12 }else{
13 z = z + x;
14 }450

15 }
16 return z;
17 }

In Step 1 of our approach (Figure 2), MyMeth
is symbolically executed using SPF. The result455

symbolic execution is represented as the symbo
execution tree shown in Figure 3. The path co
straint of each state in the tree specifies the cond
tions that input parameters must satisfy to trigg
the execution of that state. Accordingly, the pa460

constraint of a leaf node in the tree specifies t
conditions for executing a program path. The pa
constraints1 of leaf nodes are summarized in t
“Path Constraint” column of Table 1.

In Step 2 of Figure 2, the path constraints a465

solved by Choco-solver to generate values for inp
parameters that makes the constraints true. T
generated test cases are shown in the “Generat
Source TC” column of Table 1.

It should be noted that for the first two pat470

in Table 1, it is hard to generate source test cas
that execute these paths by selecting random v
ues or special values for x and y, respectively. T
reason is that these paths have strict constrain
(i.e., (y 0 SYMINT+x 0 SYMINT)==CONST 0475

Apparently, under circumstance where such co
straint is unknown, it is not easy to select rando
values or special values for x and y that satisfy th
constraint, and thereby exercising statements co
trolled by this constraint could be difficult. O480

approach can obtain such constraint and genera
source test cases that satisfy the constraint, whi
makes it possible to effectively cover the hard-t
reach program statements when conducting MT.

Note that some inherent limitations of constrai485

solving may hinder the effectiveness of symbolic e
ecution [26], and thus affect the performance of o
source test case generation approach. For examp
the constraint solver may fail to return a viable s
lution when path constraints are too complicate490

and those constraints that involve non-linear arit
metic are normally undecidable [40]. Having sa

1Note that “y 0 SYMINT” represents a symbolized
teger variable y0, “x 0 SYMINT” represents a symboliz
integer variable x0, and “CONST 0” represents a consta
whose value is 0.

6

NS:

SS:

P

NS: L

SS

P

that, C
very w
mance495

3.2.2.

Befo
tion tec
as the

Defini500

quence
sequen
program

Give
statem505

test ca

7.
e-
<

is
e-

>.
as
e-
a

et

n}
he
is,
NS: Line 4. if (y＞0){

SS: x= x0, y=y0, z=x0+y0

NS: Line 3. if (z == 0){

SS: x= x0, y=y0, z=x0+y0

NS: Line 2. int z=x+y

SS: x= x0, y=y0

x0+y0=0 x0+y0≠0

NS: Line 10. if (y＞0){

SS: x= x0, y=y0, z=x0+y0

 Line 5. z = y-x;

 x= x0, y=y0, z=x0+y0

NS: Line 7. z = x-y;

SS: x= x0, y=y0, z=x0+y0

y0＞0 y0≤0

PC: true

PC: true

PC: x0+y0=0 PC: x0+y0≠0

C: x0+y0=0  y0＞0 PC: x0+y0=0  y0≤0

NS: Line 11. z = z-x;

SS: x= x0, y=y0, z=x0+y0

PC: x0+y0≠0  x0＞0

NS: Line 13. z = z+x;

SS: x= x0, y=y0, z=x0+y0

PC: x0+y0≠0  x0≤0

x0＞0 x0≤0

ine 16. return z;

: x= x0, y=y0, z=y0-x0

C: x0+y0=0  y0＞0

NS: Line 16. return z;

SS: x= x0, y=y0, z=x0-y0

PC: x0+y0=0  y0≤0

NS: Line 16. return z;

SS: x= x0, y=y0, z=y0

PC: x0+y0≠0  x0＞0

NS: Line 16. return z;

SS: x= x0, y=y0, z=y0+2×x0

PC: x0+y0≠0  x0≤0

x0+y0=0  y0＞0 x0+y0=0  y0≤0 x0+y0≠0  x0＞0 x0+y0≠0  x0≤0

Figure 3: Symbolic execution tree of MyMethod

Table 1: A summary of path constraints of MyMethod and generated source test cases.

Path ID Path Constraint Generated Source TC

1
y 0 SYMINT>CONST 0 &&

t1 : x0 = −5, y0 = 5
(y 0 SYMINT+x 0 SYMINT)==CONST 0

2
y 0 SYMINT≤CONST 0 &&

t2 : x0 = 2, y0 = −2
(y 0 SYMINT+x 0 SYMINT)==CONST 0

3
x 0 SYMINT>CONST 0 &&

t3 : x0 = 3, y0 = 2
(y 0 SYMINT+x 0 SYMINT)! =CONST 0

4
x 0 SYMINT≤CONST 0 &&

t4 : x0 = −4, y0 = −1
(y 0 SYMINT+x 0 SYMINT)! =CONST 0

hoco-solver used in our study had worked
ell in the sense of ensuring a good perfor-
of our technique.

Path-directed source test case prioritization

re the introduction of our test case prioritiza-
hnique, we first give the following definitions
theoretical foundation.

tion 1 (path). A path is defined as a se-
of statements that a given source test case

tially (or continuously) executes during a
run.

n a program P which consists of a set of
ents P = {s1, s2, . . . , sn}. Consider a source
se t that executes the following statements

one by one until the program exits: s1, s3, s5, s3, s
The path of t is the sequence composed of the afor
mentioned statements, denoted as path(P, t) =
s1, s3, s5, s3, s7 >.510

Definition 2 (statement set). A statement set
defined as a set composed of elements in the stat
ment sequence of a path.

Recall t with its path(P, t) =< s1, s3, s5, s3, s7
The corresponding statement set is denoted515

set(P, t) = {s1, s3, s5, s7}. Apparently, a stat
ment set includes the statements covered by
given source test case. Similarly, a statement s
of a given set of test cases TS = {t1, t2, . . . , t
is denoted as set(P,TS), which includes all t520

statements covered by test cases in TS , that

7

set(P, t

Defini
defined

Reca525

length
On t

we defi
cases a

Defini530

between
t is defi
t but n

Reca
Given535

set se
path
lated a
|{s | s

Base540

pose a
The in
key-val
tn, set(
KV , th545

value r
The ou
source
in the

Algo
tion b

Inpu

Outp
1 Initia
2 while
3 I
4 f

5

6

7

8

9

10 e
11 S
12 L
13 K

14 end
15 retur

In A550

set of

ue
st

pri

x)

pri

n,
re
13
he
lly
he

ur
st
n-
ti-
se
ee
st

la-
nd
u-
he
ed
of

.1
ep
on
a-
ri-
ce
m
he

p-
e-

1],
u-
o-
o

ne
rt

le-
p-
re
ng

is
1) ∪ set(P, t2) ∪ · · · ∪ set(P, tn).

tion 3 (path length). The length of a path is
as the size of statement set of a path.

ll t with its path(P, t) and set(P, t). The
of path(P, t) is |set(P, t)| = 4.
he basis of the aforementioned definitions,
ne the path distance between a set of test
nd a single test case as follows.

tion 4 (path distance). The path distance
a set of test cases TS and a single test case

ned as the number of statements covered by
ot covered by TS.

ll t with its statement set {s1, s3, s5, s7}.
a test case set TS with statement
t(P,TS) = {s1, s2, s6, s7, s8}. The
distance between t and TS is calcu-
s dist(t,TS) = |set(P, t) \ set(P,TS)| =
∈ set(P, t) ∧ s /∈ set(P,TS)}| = 2.
d on the aforementioned definitions, we pro-
n algorithm to prioritize source test cases.
put of our algorithm is a collection of
ue pairs KV = {< t1, set(P, t1) >, . . . , <
P, tn) >}. For each of the key-value pair in
e key represents a source test case and the
epresents the corresponding statement set.
tput of our algorithm is a list of prioritized
test cases Lpri where the higher the ranking
list, the higher the execution priority.

rithm 1: Source test case prioritiza-
ased on path distance

t: KV = {< t1, set(P, t1) >,< t2, set(P, t2) >
, . . . , < tn, set(P, tn) >}

ut: Lpri

lize Lpri EmptyList(), Spri ← ∅;
KV 6= ∅ do

nitialize d = 0,max = 0, tmax NULL;
or each key-value pair < ti, set(P, ti) > in KV
do
d = dist(ti, Spri) =| set(P, ti) \ set(P, Spri) |;
if d > max then

max = d;
tmax ti;

end

nd

pri Spri ∪ {tmax};
pri Append(tmax);
V KV \ {< tmax, set(P, tmax) >};

n Lpri

lgorithm 1, the ranking list (Lpri) and the
prioritized source test cases (Spri) are first

initialized as empty (Line 1). For each key-val
pair in KV , the algorithm searches for the te
case that has the longest path distance from S
(Lines 3-10). Then, the source test case (tma555

in the resulting key-value pair is added to S
and appended to Lpri (Lines 11-12). In additio
< tmax, set(P, tmax) > is removed from KV befo
the next iteration starts. The steps in lines 3-
are repeated until KV is empty. Apparently, t560

list of prioritized source test cases is incrementa
updated with the test case that is farthest from t
already prioritized ones.

Intuitively speaking, the basic principle of o
prioritization technique is to rank the source te565

cases based on the extent to which they can i
crease the coverage of statements/paths. Theore
cally speaking, since each generated source test ca
corresponds to a path in the symbolic execution tr
of SUT, the execution path of a given source te570

case can be obtained based on the mapping re
tionship between the symbolic execution tree a
the source code. In practice, we obtain the exec
tion path of a source test case by monitoring t
output of special statements that are instrument575

in the beginning each of the branches and loops
the SUT.

Let us revisit the example given in Section 3.2
to illustrate the prioritization technique. After St
3 in our approach (Figure 2), we get the executi580

paths of generated source test case, as shown in T
ble 2. Then, in Step 4, the source test cases are p
oritized based on their execution paths. The sour
test cases selected in each iteration of our algorith
are shown in Table 3. The final outcome of t585

source test case prioritization is < t4, t2, t1, t3 >.

3.3. Supporting Tool

A tool has been developed to automate our a
proach as much as possible. The tool was also int
grated with an existing tool, namely MT4WS [4590

which supports MT for Web services. We partic
larly extended the “Test Case Generator” comp
nent of MT4WS to support our approach from tw
perspectives: (1) the integration of the SPF engi
and Choco-solver into the component to suppo595

generation of source test cases, and (2) the imp
mentation of Algorithm 1 in the component to su
port the prioritization of source test cases. Mo
specifically, the supporting tool aids the followi
tasks.600

1) Configuration of Symbolic Execution : Th

8

ta
sy
tio
na605

for
ra
di
du
in610

str
tio

2) Ge
pl
ta615

SU

3) Ge
so
ge
pa620

co

4) Pr
or
Al
of625

pr

he
ce
on

ng

he
?

r-
h-

m
n-

n-

ng
es.
Table 2: The execution paths of generated source test cases

Path ID Source Test Case Execution Path

1 t1 : x0 = −5, y0 = 5
Line 1 → Line 2 → Line 3 → Line 4 →
Line 5 → Line 16

2 t2 : x0 = 2, y0 = −2
Line 1 → Line 2 → Line 3 → Line 4 →
Line 6 → Line 7 → Line 16

3 t3 : x0 = 3, y0 = 2
Line 1 → Line 2 → Line 3 → Line 9 →
Line 10 → Line 11 → Line 16

4 t4 : x0 = −4, y0 = −1
Line 1 → Line 2 → Line 3 → Line 9 →
Line 10 → Line 12 → Line 13 → Line 16

Table 3: Details of each round of iteration of prioritization algorithm

Round of Remaining Elements
dist(ti, Spri) tmax

Lpri after
iteration Source TCs in Spri iteration

1

t1

∅
6

t4 < t4 >
t2 7
t3 7
t4 8

2
t1

t4

2
t2 < t4, t2 >t2 3

t3 1

3
t1 t4, t2

1
t1 < t4, t2, t1 >t3 1

4 t3 t4, t2, t1 1 t3 < t4, t2, t1, t3 >

sk allows the user to specify key settings of
mbolic execution and outputs a configura-
n file for SPF. The key settings include the
me of SUT, the method of interest to per-
m symbolic execution, and the method pa-

meters that need to be symbolized. In ad-
tion, the user can specify the decision proce-
re of symbolic execution, the listener to print

formation about symbolic run, the search
ategy and search depth of symbolic execu-
n tree.

neration of Path Constraints : SPF is em-
oyed to perform symbolic execution on the
rget method and outputs path constraints of
T.

neration of Source Test Cases : Choco-
lver is used to solve the path constraints and
nerate values of variables that satisfy the
th constraints. Then, source test cases are
nstructed using the generated values.

ioritization of Source Test Cases : The pri-
ity of source test cases is ranked using our
gorithm 1. The outcome of this task is a list
source test cases in which higher ranking

iority represents earlier execution.

4. Experimental Studies

Empirical studies were conducted to evaluate t
performance of our approach, including both sour
test case generation and prioritization. This secti630

presents the settings of experimental studies.

4.1. Research Questions

The experiments attempt to answer the followi
research questions:

RQ1 How effective is MT in fault detection using t635

source test cases generated by our approach

RQ2 To what extent does our approach outpe
form existing source test case generation tec
niques?

RQ3 Can the proposed technique reveal progra640

faults faster than baseline techniques with ra
dom execution order?

RQ4 What is the overhead of our approach for ge
erating source test cases?

4.2. Object Programs645

We selected seven objects programs representi
different application domains from various sourc
They are:

9

� Ai
GA650

th
ch
pe
fac
ca655

an

� Ph
bi
Ch
ph660

tim

� Pa
vid
in
de665

we
an
to

� M
lat670

on
for
fol
an
re675

co
na
am

� Nu
co680

La
Th
ty
on
cr685

co
ce
nu

� Ge
cu690

th
go
ou

2http
3http

he
o-
us
h-
of
rs,
ce

ze
is

e-
on
d-
s

of
se
he
he

to
E,
eir
ng
a-
p-
3

X,
u-
r-
.
at

ed
or
G,
on
he
ed
he
he
ist
he
o

ed
st
ed
rlines Baggage Billing Service (BAG-
GE) [42] enables passengers to calculate

eir own baggage fees using the baggage
arge scheme of Air China. BAGGAGE
rforms the calculation based on several
tors, including the relevant flight, aircraft

bin, flight region, baggage weight, airfare,
d eligibility for student discount.

one Bill Calculation (PHONE) [42] is a mo-
le phone charge calculation system used by
ina Unicom. It computes a user’s monthly
one charge based on the communication
e, data usage, and mobile phone tariffs.

rking Fee Calculation (PARKING) [12] pro-
es the calculation service of a vehicle’s park-

g fee for a driver. It accepts the parking
tails including the vehicle type, day of the
ek, discount coupon, and hours of parking,
d then calculates the parking fee according
the predefined hourly rates.

oney Transfer Charging (CHAGRE)2 simu-
es Alipay’s money transfer operation from
e account to another, and calculates the fee
money transfer. The program accepts the

lowing information to make a transaction
d charge for transfer fee: (1) the ID, balance,
maining amount of fee-free transfer of the ac-
unt sending the money, (2) the ID and holder
me of the account receiving the money, (3)
ount of transfer, and (4) way of settlement.

mberUtil (NUMBER) [43] is a data type
nversion program in the Apache Common
ng library for Java programming language.
e program converts a number of String

pe into a number of Number type based
a series of type conversion rules. The

eateNumber method provides the primary
nversion function of the program, which ac-
pts a number of string form and outputs that
mber of Number type.

t Tax (TAX)3 enables a customer to cal-
late the total amount of sale taxes paid for
e purchased goods. TAX accepts the list of
ods with amount, price, and rate of tax, and
tputs the total amount of taxes.

s://github.com/PaDMT-USTB
s://github.com/elainechan/sales-tax-calculator

� MathUtil (MATH) [43] is a utility class in t
Apache Common Math library for Java pr695

gramming language. It provides miscellaneo
utility functions that address common mat
ematical problems such as the calculation
the greatest common divisor of two numbe
the normalization of an angle, and the distan700

calculation between two points.

All object programs are written in Java. The si
of each object, measured by lines of code (LOC),
given in the second column of Table 4.

4.3. MR Identification705

For programs BAGGAGE and PHONE, we r
used existing MRs that were identified based
the µMT approach [42]. We examined the vali
ity of the original MRs, and found that some MR
actually represent the same necessary properties710

SUT, only with different forms. After merging the
MRs, we finally obtained 18 MRs for each of t
BAGGAGE and PHONE programs, as given in t
third column of Table 4.

We also followed the µMT approach [42]715

identify MRs for programs PARKING, CHARG
NUMBER, TAX, and MATH. We defined th
data mutation operators (DMOs) and mappi
rules for output relations based on their specific
tions. By manually composing the DOMs and ma720

ping rules, we finally derived 5, 20, 13, 24, and
MRs for PARKING, CHARGE, NUMBER, TA
and MATH, respectively. Note that we also man
ally checked their validity to ensure that they co
rectly expressed the necessary properties of SUT725

Details of the identified MRs are available
https://github.com/PaDMT-USTB.

4.4. Faulty Versions of Object Programs

Our experiments used both artificially seed
faults (or mutants) and real-life faults. F730

programs BAGGAGE, PHONE, PARKIN
CHARGE, TAX, and MATH, we applied mutati
analysis [44] to generate mutants based on t
MuJava tool [45]. Each mutant was generat
by applying a singe syntactic change, namely t735

mutation operator, to a certain statement in t
object program. It is well known that there ex
some “equivalent mutants”, which always have t
same execution behaviors as the base program. T
identify these equivalent mutants, we investigat740

the mutants that were not killed by all the te
cases generated in this study, and manually check

10

O

whethe
base p
mutant745

manua
754, 5
for BA
TAX, a

For750

world f
project
Number

IDs are
in our755

The
rize th

4.5. G

In o
proach760

object
hauste
SPF a
path c
path c765

52, 18,
PHON
and M

Note
all sou770

followi
of app
Then,
based o

is
u-
ed
or

-

ch
n-
ue
or
st

ed
1]
on
re
ut

ed
E

ed
p-
st
ne
in
-

i-
re
Table 4: Basic information of object programs

bject program LOC # MRs # Faulty versions Source of faulty versions

BAGGAGE 101 18 56
MuJava with mutation operators

AOIS, AORB, COI, LOI, ROR, AOIU

PHONE 113 18 112
MuJava with mutation operators

AOIS, AOIU, AORB, COI, LOI, ROR

PARKING 266 5 754
MuJava with mutation operators

AODU, AOIS, AORB, COD, COI, COR, LOI, ROR

CHARGE 1008 20 541
MuJava with mutation operators

AODU, AOIS, AORB, AOIU, CDL, COD, COI,
COR, LOI, ODL, ROR, SDL, VDL

NUMBER 1438 13 8
Real Bugs from Apache Common Lang in Defects4J

Bug IDs: 1, 3, 5, 16, 27, 36, 44, 58

TAX 2150 24 1565
MuJava with mutation operators

AODU, AOIS, AORB, AOIU, CDL,
COR, COI, LOI, ODL, ROR

MATH 2002 3 435
MuJava with mutation operators
AOIS, AORB, AOIU, CDL, COI,

LOI, ODL, ROR, SDL, VDL

r they are semantically equivalent to the
rogram. Since the number of candidate
s was relatively small, it is feasible to do the
l checking. Finally, we generated 56, 112,
41, 1565, and 435 non-equivalent mutants
GGAGE, PHONE, PARKING, CHARGE,
nd MATH, respectively.
program NUMBER, a collection of real-
aults have been provided in an open-source
[43]. All these faults are located in the
Util class. As a result, 8 faults (whose bug
1, 3, 5, 16, 27, 36, 44, and 58) were included

experiments.
fourth and fifth columns of Table 4 summa-
e basic information of these faulty versions.

eneration of Test Cases

ur experiments, we first employed our ap-
to generate source test cases for all seven

programs. For each object program, we ex-
d all possible execution paths obtained by
nd attempted to solve their corresponding
onstraints. After excluding the unsolvable
onstraints, we generated 34, 32, 144, 25,

and 68 source test cases for BAGGAGE,
E, PARKING, CHARGE, NUMBER, TAX,
ATH, respectively.

that some MRs may not be applicable to
rce test cases. Therefore, before generating
ng-up test cases, we first determined a subset
licable MRs for a certain source test case.
the follow-up test cases can be constructed
n the selected MRs.

4.6. Variables and Measurements775

4.6.1. Independent variable

The independent variable in our experiments
related to the techniques under study. A nat
ral choice is our approach based on Path-D irect
source test case generation and prioritization f780

MT (abbreviated as PaDMT hereafter).
Three baseline techniques were selected for com

parison in RQ2 and RQ3. They are:

� RT (random testing based method): For ea
input parameter of an object program, we ra785

domly generated a value within the valid val
range of parameter. The generated values f
input parameters together constituted a te
case of an object program.

� ART (Adaptive random testing bas790

method): We followed the previous study [2
to use ART to generate test cases – In additi
to the random generation, test cases we
further evenly spread across the whole inp
domain.795

� DSE (Dynamic symbolic execution bas
method): The original work [22] applied DS
into C# programs. In this study, we adapt
the method to Java programs with the su
port of SPF. DSE requires some initial te800

cases that drive the symbolic execution engi
to exercise certain program paths and obta
the corresponding path constraints. A com
mon way is to use random test cases as the in
tial ones [4]. Since both DSE and SPF sha805

11

th
im
ex
fie
to810

For f
niques
every o
dition,
the stu815

some r
techniq
object
ity of o

4.6.2.820

The
the me
tation
effectiv
of the n
against
(or all

where
numbe
numbe
mutant
be kille825

an MR
respon
the hig
ing tec

The830

was us
tion as
a whol
ery ob
cases a835

of fault
numbe
itively
test ca
the fau840

to MS.
For R

detecte
ficiency

ect

he
ts,
ed
is
of
ed
st
as

n-
he
i-
s:

3)

of
he

of

ch

a-
of
),
ct
he
th
e,

lts

m
ut
at
e similar principle in test case generation, we
plemented DSE using SPF in order to save
perimental efforts. Unless otherwise speci-
d, DSE baseline technique hereafter refers
the implementation of SPF.

air comparisons, each of these baseline tech-
generated the same number of test cases for
bject program as that of PaDMT. In ad-
all baselines used random prioritization for
dy of RQ3. Since our experiments involved
andomness, especially for RT and ART, each
ue was repeatedly run for 30 times on every
program to guarantee the statistical reliabil-
ur experimental results.

Dependent variable

dependent variable mainly concerns about
trics for evaluation. For RQ1, we used mu-
score (MS) to examine the fault detection
eness of PaDMT. MS is defined as the ratio
umber of killed mutants (or revealed faults)
the total number of non-equivalent mutants

faults). It is formally defined as:

MS(P,TS) =
Nk

Nm − Ne
, (4.1)

P is the SUT, TS is a test suite, Nk is the
r of mutants killed by TS, Nm is the total
r of mutants, Ne is the number of equivalent
s. In the context of MT, a mutant is said to
d whenever an MR is violated in testing (i.e.,
does not hold among the outputs of its cor-

ding metamorphic test group). Apparently,
her value MS has, the more effective a test-
hnique is.
fault detection rate, a metric similar to MS,
ed for RQ2 to show the trend of fault detec-
the number of test cases increases. Within

e test suite TS for each technique on ev-
ject program, we selected the first k% test
nd measured the percentage of the number
s detected by these test cases over the total
r of faults. A higher fault detection rate intu-
implies a better effectiveness of the first k%
ses. In our study, k = 10, 20, . . . , 100, where
lt detection rate when k = 100 is identical

Q3, we used the average percentage of faults
d (APFD) to evaluate the fault detection ef-
. APFD is formally defined as:

APFD = 1−
∑m

i−1 TFi

nm
+

1

2n
, (4.2)

Table 5: Mutation scores of source test suites for obj
programs

Type of Fault Object Program Mutation Score

BAGGAGE 73.21%
Seeded PHONE 38.39%
Faults PARKING 33.55%

CHARGE 71.16%
TAX 97.96%

MATH 94.71%
Average 68.16%

Real Faults NUMBER 37.50%

where n refers to the number of test cases in t
test suite, m represents the total number of faul
and TFi denotes the number of test cases requir
for detecting the ith fault. The value of APFD845

between 0 and 1, and a larger APFD of a set
prioritized test cases indicates that the prioritiz
test cases can detect more faults with fewer te
cases, and thereby the corresponding technique h
a better fault detection efficiency.850

For RQ4, we used the average time spent on ge
erating a fixed number of test cases to evaluate t
overhead of source test case generation. In add
tion, the overhead of prioritization is calculated a

PO =
TPaDMT − TDSE

TPaDMT
, (4.

where TPaDMT and TDSE denote the time cost
PaDMT and DSE, respectively. Apparently, t
smaller PO, the lower the overhead.

5. Experimental results

This section reports and analyzes the results855

our experiments.

5.1. Fault Detection Effectiveness of Our Approa
(RQ1)

To answer RQ1, we leveraged MS to quantit
tively measure the fault detection effectiveness860

test cases generated by our approach (PaDMT
as summarized in Table 5. Across the six obje
programs with seeded faults (that is, mutants), t
average MS ranged from 33.55% to 97.96%, wi
a mean value of 68.16%. In a word, on averag865

our approach could detect nearly 70% of the fau
seeded by mutation analysis.

With regard to the real faults in object progra
NUMBER, over one third of the real faults (3 o
of 8) were detected. This observation indicates th870

12

MT mi
with th
as disc
tation
cases t875

real fa
ated m
to-kill”
from t
trivial880

ready b

More
stead o
not sur
flected885

justifie
be suffi
that ar
sults in
for the890

to cove
SUT a

5.2. Fa
V

To a895

detecti
10, 20,
of RT,
fault d

Amo900

perform
finally
one th
bounda
indicat905

veal as
RT w

niques.
erating
tivenes910

expect
inforcin
ies [21]

It is
forman915

vast m
than D
DSE co
for BA
tion ra920

o-
E
ld
re
c-
e-

es.

r-
ed
m
ic-
n-
he
ed
he
es
es,
d-
or
e
E

90
nd
m
s,

ng
u-
ar

r-
%
ur
st
v-
an
of
T
b-
T
%
es
ge
if-
ct
as
E.

of
r-

nd
ght be less effective for real faults compared
at for seeded faults. One plausible reason,

ussed in a previous study [46], is that mu-
is just a simulation of real faults, and test
hat kill mutants are not guaranteed to reveal
ults. In addition, the automatically gener-
utants often include a large number of “easy-
faults, whereas the real-life faults collected

he open-source projects are normally non-
ones as some easy-to-detect faults might al-
e removed before the release of a version.

importantly, MT made use of MRs, in-
f a test oracle, to verify test results. It is
prising at all if some faults could not by re-
by MR violations. Previous studies [18] have
d that a small number of diverse MRs may
cient by themselves to detect most faults
e revealed by an oracle. Our evaluation re-
dicate that much work is yet to be done
identification of adequate and diverse MRs

r most functionalities/execution behaviors of
nd thus a wide variety of faults.

ult Detection Effectiveness: Our Approach
s. Baselines (RQ2)

nswer RQ2, we compared the average fault
on rate of the top k% test cases (k =
. . . , 100) generated by PaDMT against those
ART and DSE. Figure 4 shows the trend of
etection rate on each object program.

ng all four techniques, PaDMT generally
ed the best, followed by DSE, ART, and

RT. The curve of PaDMT is always the first
at approaches and then reaches the upper
ry of fault detection rate. This observation
es that our approach can enable MT to re-
many faults as early as possible.
as always the worst performer in all tech-
Since all three other techniques aim at gen-
test cases with high fault-detection effec-

s, such an observation is consistent with our
ation. ART constantly outperformed RT, re-
g the observation made in previous stud-

.
particularly interesting to compare the per-
ce trend between PaDMT and DSE. In the
ajority of cases, PaDMT performed better
SE. However, in some cases of k being small,
uld outperform PaDMT (e.g., when k = 30
GGAGE). As k increased, the fault detec-
te of DSE was gradually approaching that of

PaDMT (e.g., when k = 100 across all object pr
grams). The reason is that both PaDMT and DS
exercised the maximum number of paths they cou
find when all the generated source test cases we
exhausted. Accordingly, their fault detection effe925

tiveness would be very close to each other with r
gard to the entire set of generated source test cas

In addition, it is interesting to compare the pe
formance trend between symbolic-execution bas
approaches (DSE and PaDMT) and the rando930

approaches (RT and ART). Overall, the symbol
execution based approaches outperformed the ra
dom approaches. When k approached 100, t
fault detection rates of symbolic-execution bas
approaches were always better than those of t935

random approaches. The reason is that test cas
generated by RT and ART are still random on
for which it is very difficult to cover some “har
to-reach” statements/paths, which are one maj
target of DSE and PaDMT. However, in som940

cases of k being small, ART could outperform DS
(e.g., when k = 10 for NUMBER and k =
for PHONE). In these cases, the randomness a
even spreading of test cases might help rando
approaches quickly cover some “rare” scenario945

whereas the systematic mechanism of explori
path space limited the flexibility of symbolic exec
tion based approaches in reaching some particul
paths quickly.

For each object program, we used SPSS to pe950

form t-test on the fault detection rates of top k
tst cases generated by each pair of techniques (o
approach vs. each benchmark technique) to te
whether there is a significant difference in their a
erages. The results are shown in Table 6. It c955

be observed that the average fault detection rate
PaDMT was significantly higher than those of R
and ART (p < 0.05) across all values of k and o
ject programs (except for the scenario of PaDM
versus ART for the fault detection rate of top 10960

test cases of PHONE). In the vast majority of cas
where the value of k was below 100, the avera
fault detection rate values of PaDMT were sign
icantly higher than those of DSE across all obje
programs. However, when k reached 100, there w965

no significant difference between PaDMT and DS

5.3. Fault Detection Efficiency (RQ3)

For answering RQ3, we calculated the APFD
PaDMT, in comparison with that of random prio
itization of test cases generated by RT, ART, a970

13

0
20

30

40

50

60

70

80

Fa
ul

tD
et

ec
tio

n
R

at
e

(%
)

0

25

30

35

Fa
ul

tD
et

ec
tio

n
R

at
e

(%
)

0
10

20

30

40

Fa
ul

tD
et

ec
tio

n
R

at
e

(%
)

Figur
20 40 60 80 100
Top k% Test Cases (k= 10, 20, ..., 100)

RT
ART
DSE
PaDMT

(a) BAGGAGE

0 20 40 60 80 100
10

15

20

25

30

35

40

Fa
ul

tD
et

ec
tio

n
R

at
e

(%
)

Top k% Test Cases (k= 10, 20, ..., 100)

RT
ART
DSE
PaDMT

(b) PHONE

20 40 60 80 100
Top k% Test Cases (k= 10, 20, ..., 100)

RT
ART
DSE
PaDMT

(c) PARKING

0 20 40 60 80 100

10

20

30

40

50

60

70

80
Fa

ul
tD

et
ec

tio
n

R
at

e
(%

)

Top k% Test Cases (k= 10, 20, ..., 100)

RT
ART
DSE
PaDMT

(d) CHARGE

20 40 60 80 100
Top k% Test Cases (k= 10, 20, ..., 100)

RT
ART
DSE
PaDMT

(e) NUMBER

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100

Fa
ul

tD
et

ec
tio

n
R

at
e(

%
)

Top k% Test Case (k=10, 20, ..., 100)

RT
ART
DSE
PaDMT

(f) TAX

e 4: Average fault detection rate of top k% test cases in the sequence of prioritized test cases (k = 10, 20, . . . , 100)

14

T
a
b
le

6
:

T
h
e

P
v
a
lu

es
o
f
t-
te
st

o
n

th
e

fa
u
lt

d
et

ec
ti

o
n

ra
te

s
o
f

to
p
k
%

te
st

ca
se

s
o
f

p
a
ir

w
is

e
te

ch
n
iq

u
es

O
b

je
ct

P
a
ir

w
is

e
1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

P
ro

g
ra

m
T

ec
h
n
iq

u
es

B
A

G
G

A
G

E

R
T

v
s.

P
a
D

M
T

4
.0

9
6

8
.8

0
9

5
.8

3
5

1
.0

1
0

1
.2

4
0

1
.1

9
2

3
.1

2
4

2
.3

8
4

1
.0

9
1

6
.9

0
8

×
1
0
−
3
9
×

1
0
−
1
4

×
1
0
−
1
4
×

1
0
−
1
3
×

1
0
−
1
5
×

1
0
−
2
0
×

1
0
−
2
9
×

1
0
−
1
9
×

1
0
−
1
7
×

1
0
−
1
5

A
R

T
v
s.

P
a
D

M
T

2
.4

6
1

1
.4

6
9

1
.4

0
1

1
.1

3
5

1
.8

3
8

2
.9

4
8

1
.2

9
7

8
.4

2
3

3
.7

2
6

3
.3

8
5

×
1
0
−
1
3
×

1
0
−
1
2

×
1
0
−
7

×
1
0
−
8

×
1
0
−
1
0
×

1
0
−
1
7
×

1
0
−
1
5
×

1
0
−
1
6
×

1
0
−
1
5
×

1
0
−
1
5

D
S
E

v
s.

P
a
D

M
T

3
.0

8
9

6
.3

6
0

7
.4

6
9

3
.1

3
0

8
.4

1
5

2
.6

1
4

1
.4

2
0

1
.4

2
0

4
.3

4
0

1
.0

0
0

×
1
0
−
1

×
1
0
−
1

×
1
0
−
1

×
1
0
−
2

×
1
0
−
3

×
1
0
−
2

×
1
0
−
2

×
1
0
−
2

×
1
0
−
2

P
H

O
N

E

R
T

v
s.

P
a
D

M
T

3
.2

2
2

3
.3

8
1

1
.3

7
3

2
.1

9
9

9
.1

2
6

1
.5

7
5

6
.3

7
2

9
.8

3
6

4
.7

3
7

5
.2

9
8

×
1
0
−
6

×
1
0
−
8

×
1
0
−
8

×
1
0
−
1
2
×

1
0
−
1
4
×

1
0
−
2
1
×

1
0
−
3
3
×

1
0
−
3
6
×

1
0
−
2
2
×

1
0
−
2
5

A
R

T
v
s.

P
a
D

M
T

1
.8

0
8

4
.2

4
7

4
.0

5
6

2
.2

8
4

1
.9

3
5

2
.3

6
0

3
.6

2
6

7
.6

4
4

3
.3

1
3

3
.3

1
3

×
1
0
−
1

×
1
0
−
5

×
1
0
−
6

×
1
0
−
2

×
1
0
−
2

×
1
0
−
5

×
1
0
−
8

×
1
0
−
8

×
1
0
−
9

×
1
0
−
9

D
S
E

v
s.

P
a
D

M
T

1
.2

0
5

6
.4

1
1

4
.8

0
3

1
.4

7
9

7
.1

3
0

1
.1

6
2

1
.5

6
6

1
.0

4
1

3
.1

0
9

1
.0

0
0

×
1
0
−
2

×
1
0
−
2

×
1
0
−
2

×
1
0
−
1

×
1
0
−
5

×
1
0
−
1
1
×

1
0
−
9

×
1
0
−
6

×
1
0
−
6

P
A

R
K

IN
G

R
T

v
s.

P
a
D

M
T

2
.7

1
0

5
.3

9
6

5
.0

0
2

5
.1

9
7

6
.2

4
4

6
.3

5
4

2
.3

9
5

6
.5

2
9

2
.2

4
8

3
.0

2
9

×
1
0
−
6

×
1
0
−
1
1

×
1
0
−
1
4
×

1
0
−
1
2
×

1
0
−
1
1
×

1
0
−
1
1
×

1
0
−
1
0
×

1
0
−
1
1
×

1
0
−
1
0
×

1
0
−
9

A
R

T
v
s.

P
a
D

M
T

2
.5

6
1

8
.3

8
1

1
.0

6
4

9
.1

1
3

1
.1

5
1

5
.0

7
8

3
.7

2
2

2
.8

1
5

2
.3

1
4

2
.3

1
4

×
1
0
−
4

×
1
0
−
5

×
1
0
−
3

×
1
0
−
5

×
1
0
−
5

×
1
0
−
6

×
1
0
−
6

×
1
0
−
6

×
1
0
−
6

×
1
0
−
6

D
S
E

v
s.

P
a
D

M
T

4
.2

2
4

1
.0

9
1

7
.6

4
2

2
.6

4
7

3
.3

3
3

4
.5

0
1

6
.5

6
9

2
.0

4
1

5
.6

5
6

1
.0

0
0

×
1
0
−
9

×
1
0
−
8

×
1
0
−
8

×
1
0
−
1
2
×

1
0
−
6

×
1
0
−
7

×
1
0
−
6

×
1
0
−
9

×
1
0
−
1
5

C
H

A
R

G
E

R
T

v
s.

P
a
D

M
T

2
.4

1
9

2
.6

7
7

5
.4

2
9

1
.4

4
5

4
.3

0
7

9
.3

9
6

1
.0

4
5

2
.1

5
0

1
.0

8
7

1
.4

8
9

×
1
0
−
1
6
×

1
0
−
1
3

×
1
0
−
1
4
×

1
0
−
7

×
1
0
−
1
5
×

1
0
−
2
1
×

1
0
−
2
2
×

1
0
−
2
0
×

1
0
−
1
8
×

1
0
−
1
9

A
R

T
v
s.

P
a
D

M
T

6
.4

1
3

8
.7

3
7

1
.5

6
4

4
.5

7
8

1
.8

2
4

1
.0

8
8

9
.6

1
5

9
.3

4
6

2
.7

7
3

3
.1

8
7

×
1
0
−
1
2

7
×

1
0
−
1
2
×

1
0
−
5

×
1
0
−
2

×
1
0
−
1
0
×

1
0
−
2
0
×

1
0
−
2
4
×

1
0
−
2
1
×

1
0
−
1
8
×

1
0
−
1
7

D
S
E

v
s.

P
a
D

M
T

9
.5

8
9

6
.7

5
8

6
.1

3
0

6
.0

0
6

7
.0

6
8

3
.0

5
4

5
.6

6
1

1
.5

2
0

5
.9

4
8

1
.0

0
0

×
1
0
−
1
5
×

1
0
−
8

×
1
0
−
5

×
1
0
−
1

×
1
0
−
5

×
1
0
−
6

×
1
0
−
1
1
×

1
0
−
7

×
1
0
−
7

N
U

M
B

E
R

R
T

v
s.

P
a
D

M
T

1
.0

4
4

7
.6

6
9

3
.8

4
2

1
.5

0
3

2
.5

0
9

1
.0

3
3

1
.0

3
3

8
.6

9
9

1
.3

7
0

2
.2

8
6

×
1
0
−
6

×
1
0
−
7

×
1
0
−
8

×
1
0
−
5

×
1
0
−
6

×
1
0
−
6

×
1
0
−
6

×
1
0
−
6

×
1
0
−
6

×
1
0
−
5

A
R

T
v
s.

P
a
D

M
T

4
.0

7
7

1
.5

0
8

1
.7

6
9

1
.1

5
2

2
.2

8
6

5
.9

1
3

1
.1

6
5

2
.2

6
1

8
.3

0
7

8
.3

0
7

×
1
0
−
3

×
1
0
−
5

×
1
0
−
7

×
1
0
−
5

×
1
0
−
5

×
1
0
−
3

×
1
0
−
2

×
1
0
−
2

×
1
0
−
2

×
1
0
−
2

D
S
E

v
s.

P
a
D

M
T

2
.8

8
6

5
.1

0
1

5
.9

1
2

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

×
1
0
−
5

×
1
0
−
2

×
1
0
−
3

T
A

X

R
T

v
s.

P
a
D

M
T

9
.3

3
3

4
.7

9
8

1
.4

0
0

7
.7

7
5

3
.7

4
9

2
.6

8
4

2
.2

1
2

1
.6

7
9

1
.4

7
8

1
.4

7
8

×
1
0
−
1
1
×

1
0
−
1
7

×
1
0
−
2
4
×

1
0
−
2
2
×

1
0
−
2
2
×

1
0
−
2
3
×

1
0
−
2
0
×

1
0
−
2
0
×

1
0
−
2
0
×

1
0
−
2
0

A
R

T
v
s.

P
a
D

M
T

2
.4

9
4

5
.5

8
6

6
.7

4
4

1
.9

2
5

2
.3

6
9

1
.0

0
5

4
.0

6
4

1
.5

5
4

1
.1

7
3

1
.1

7
3

×
1
0
−
7

×
1
0
−
1
3

×
1
0
−
1
8
×

1
0
−
2
0
×

1
0
−
2
1
×

1
0
−
2
1
×

1
0
−
2
0
×

1
0
−
2
1
×

1
0
−
2
4
×

1
0
−
2
4

D
S
E

v
s.

P
a
D

M
T

1
.9

1
0

4
.9

1
6

3
.2

3
6

2
.1

1
5

2
.9

3
9

3
.7

6
8

4
.7

3
2

6
.9

5
3

4
.4

0
7

1
.0

0
0

×
1
0
−
8

×
1
0
−
1
7

×
1
0
−
2
2
×

1
0
−
2
2
×

1
0
−
1
6
×

1
0
−
1
8
×

1
0
−
1
4
×

1
0
−
8

×
1
0
−
2

M
A

T
H

R
T

v
s.

P
a
D

M
T

1
.6

6
5

1
.8

4
1

3
.5

8
6

1
.1

8
6

1
.1

0
4

1
.2

9
3

1
.8

5
9

1
.1

6
0

1
.7

2
3

2
.3

0
4

×
1
0
−
2

×
1
0
−
5

×
1
0
−
9

×
1
0
−
1
0
×

1
0
−
1
0
×

1
0
−
9

×
1
0
−
6

×
1
0
−
5

×
1
0
−
5

×
1
0
−
4

A
R

T
v
s.

P
a
D

M
T

3
.9

3
8

1
.4

1
8

1
.5

0
2

6
.5

1
6

4
.6

6
9

1
.2

6
8

2
.8

0
2

2
.1

1
7

5
.7

5
4

1
.1

6
3

×
1
0
−
2

×
1
0
−
6

×
1
0
−
1
3
×

1
0
−
8

×
1
0
−
9

×
1
0
−
7

×
1
0
−
5

×
1
0
−
6

×
1
0
−
5

×
1
0
−
4

D
S
E

v
s.

P
a
D

M
T

6
.3

3
6

3
.0

8
7

1
.9

5
4

3
.9

7
4

3
.6

2
7

7
.7

5
6

2
.2

5
8

1
.3

9
6

9
.6

1
1

1
.0

0
0

×
1
0
−
3

×
1
0
−
7

×
1
0
−
8

×
1
0
−
7

×
1
0
−
7

×
1
0
−
8

×
1
0
−
8

×
1
0
−
7

×
1
0
−
4

15

oooo
9
.3

3
3

4
.7

9
8

1
.4

0
0

7
.7

7
5

3
.7

4
9

2
.6

8
4

2
.2

1
2

1
.6

7
9

1
.4

7
8

1
.4

7
8

oo
9
.3

3
3

4
.7

9
8

1
.4

0
0

7
.7

7
5

3
.7

4
9

2
.6

8
4

2
.2

1
2

1
.6

7
9

1
.4

7
8

1
.4

7
8

× oo×
1
0 oo1
0
− oo−
2
0 oo2
0 oo

2
.4

9
4

5
.5

8
6

6
.7

4
4

1
.9

2
5

2
.3

6
9

1
.0

0
5

4
.0

6
4

1
.5

5
4

1
.1

7
3

1
.1

7
3

oo
2
.4

9
4

5
.5

8
6

6
.7

4
4

1
.9

2
5

2
.3

6
9

1
.0

0
5

4
.0

6
4

1
.5

5
4

1
.1

7
3

1
.1

7
3

×oo×
1
0oo1
0
−oo−
2
1oo2
1
×

oo
×

1
0

oo
1
0
−

oo
−
2
4

oo
2
4

oo
1
.9

1
0

4
.9

1
6

3
.2

3
6

2
.1

1
5

2
.9

3
9

3
.7

6
8

4
.7

3
2

6
.9

5
3

4
.4

0
7

oo
1
.9

1
0

4
.9

1
6

3
.2

3
6

2
.1

1
5

2
.9

3
9

3
.7

6
8

4
.7

3
2

6
.9

5
3

4
.4

0
7

−oo−8oo8
×

oo
×

1
0

oo
1
0
−

oo
−
2

oo
2

oo
1
.6

6
5

1
.8

4
1

3
.5

8
6

1
.1

8
6

1
.1

0
4

1
.2

9
3

1
.8

5
9

1
.1

6
0

1
.7

2
3

2
.3

0
4

oo
1
.6

6
5

1
.8

4
1

3
.5

8
6

1
.1

8
6

1
.1

0
4

1
.2

9
3

1
.8

5
9

1
.1

6
0

1
.7

2
3

2
.3

0
4

1
0

oo
1
0
−

oo
−

0

40

50

60

70

80

90

100

Fa
ul

tD
et

ec
tio

n
R

at
e

(%
)

Figure 4
in the se

Tab

Ob

Pro

BAG
PH

PAR
CHA

T
MA

NUM

DSE. T
Table 7

It ca
highest
lowed975

cases, D
worst f
indicat
faster t

We f980

tical si
tween
on the
hypoth
line ha985

techniq
was th
cant.
It can
level α990

o-
e-
as

ct
of
ue
as
if-
ss
r-

T.
T

nd
-

h-

on

e
es
4,
E,
X,
n

ri-
n-
r-
ce
n-
an
ce
as
ly
n-
v-
e

by
T
of

ed

ur
n-
ur
a

20 40 60 80 100
Top k% Test Cases (k= 10, 20, ..., 100)

RT
ART
DSE
PaDMT

(g) MATH

: Average fault detection rate of top k% test cases
quence of prioritized test cases (k = 10, 20, . . . , 100)

le 7: Average APFD of prioritization techniques

ject Average APFD

gram
Random prioritization

PaDMT
RT ART DSE

GAGE 34.89% 42.32% 58.43% 61.35%
ONE 21.55% 28.26% 27.84% 31.75%
KING 26.88% 28.55% 30.15% 31.01%
RGE 36.20% 42.67% 46.03% 53.48%

AX 61.73% 63.41% 69.76% 82.21%
TH 68.09% 69.14% 75.85% 83.64%
BER 26.88% 30.33% 33.00% 34.12%

he average APFD results are summarized in
.

n be observed that PaDMT achieved the
APFD across all seven object programs, fol-

by DSE, ART, and RT. In six out of seven
SE is better than ART. RT performed the

or all the object programs. This observation
es that our approach is able to reveal faults
han the baseline techniques.

urther conducted t-test to verify the statis-
gnificance of the performance difference be-
our technique and the other three baselines
mean of APFD. For each baseline, the null
esis (H0) was that the performance of base-
d no significant difference with that of our
ue, while the alternative hypothesis (H1)
at the performance difference was signifi-
The results of t-test are shown in Table 8.
be observed that for the given confidence
= 0.05, the null hypothesis was rejected

across all pairs of techniques and all object pr
grams. Therefore, the average APFD difference b
tween our technique and each of the baselines w
always statistically significant.

In addition to t-test, we also calculated the effe995

size using Cohen’s d to measure the magnitude
the performance difference between our techniq
and each of the baselines on the mean of APFD,
shown in Table 8. It can be observed that the d
ference between PaDMT and RT was large acro1000

all object programs (effect size > 0.8). Large diffe
ence was also observed between ART and PaDM
Finally, the difference between DSE and PaDM
was large for six out of seven object programs, a
medium for BAGGAGE (effect size > 0.5). In sum1005

mary, the performance difference between our tec
nique and the baselines was large in most cases.

5.4. Overhead of Source Test Case Generati
(RQ4)

To answer RQ4, we compared the average tim1010

spent on generating a fixed number of test cas
using PaDMT, RT, ART, and DSE (i.e., 34, 32, 14
25, 52, 18, and 68 source test cases for BAGGAG
PHONE, PARKING, CHARGE, NUMBER, TA
and MATH, respectively). The results are show1015

in Table 9.
Across all object programs, the overhead of p

oritization varies from 0.023% to 0.818%, which i
dicates that the time cost of source test case prio
itization is negligible compared with that of sour1020

test case generation. Therefore, the overhead i
curred by PaDMT was only marginally higher th
that of DSE. Another observation is that the sour
test case generation time of PaDMT/DSE w
much longer than that of RT/ART. It is intuitive1025

reasonable since the symbolic execution and co
straint solving can introduce heavy overhead. Ne
ertheless, such overhead can be negligible if w
consider the long test execution time incurred
the large number of random test cases in RT/AR1030

and the much higher fault-detection effectiveness
PaDMT.

5.5. Threats to Validity

The threats of validity of our study are discuss
as follows.1035

Correctness of the implementation of o
approach: We integrated several pieces of ope
source software to support the main steps of o
approach, including (1) the symbolic execution,

16

O

P

BA
P

PA
CH
NU

M

main c1040

SPF; a
Choco-
extensi
dition,
thorou1045

are con
our req

Rep
their f
imenta1050

comple
lection
availab
ments.
differen1055

of this
gard to
leverag
ject fau
of real1060

small,
open-so
perime
those w
sible to1065

subject
lowing
world

d-
ng
p-
r-
re
on
ch

-
ee
ld.
es,
on
es
th
e-

ng
n-

s:
ts
u-
he
es.
he
es.
x-
Table 8: Statistical significance and effect size for the average APFD difference

bject RT versus PaDMT ART versus PaDMT DSE versus PaDMT

rogram
t-test Effect t-test Effect t-test Effect

t p size t p size t p size

GGAGE 23.065 1.377×10−20 4.211 20.856 4.891×10−19 3.808 3.029 5.116×10−3 0.553
HONE 22.032 1.174×10−19 2.667 4.022 8.320×10−6 0.986 6.157 1.037×10−6 1.124
RKING 33.637 8.378×10−26 6.141 8.609 1.758×10−9 1.572 14.332 1.082×10−14 2.617
ARGE 30.275 1.700×10−23 5.527 15.861 7.892×10−16 2.896 6.522 3.846×10−7 1.191
MBER 18.476 1.391×10−17 3.373 6.352 6.092×10−7 1.160 5.915 2.013×10−6 1.080

TAX 32.470 2.553×10−18 5.928 28.215 4.431×10−17 5.151 18.957 1.635×10−14 3.461
ATH 19.676 2.363×10−24 3.592 17.692 1.229×10−22 3.230 14.101 6.977×10−18 2.574

Table 9: Overhead of source test case generation

Object Overhead (ms)
PO(%)

Program RT ART DSE PaDMT

BAGGAGE 0.161 2.115 590.266 591.756 0.252
PHONE 0.104 1.128 705.720 707.026 0.185

PARKING 0.137 1.223 2 040.505 2 043.094 0.127
CHARGE 1.421 3.165 661.279 662.565 0.194
NUMBER 0.296 0.825 691.926 697.632 0.818

TAX 0.119 0.411 1 182.843 1 185.163 0.196
MATH 0.049 0.143 11 360.578 11 363.135 0.023

omponent of our approach, supported by
nd (2) the constraint solving supported by
solver. The open-source software has been
vely used and continuously updated. In ad-
other parts of the implementation have been
ghly checked by different individuals and we
fident that their functions are in line with
uirements.

resentativeness of object programs and
aulty versions: The validity of our exper-
l results would be further improved if more
x object programs were included. The se-
of object program was mainly due to their
ility and the amount of MRs for experi-

We have collected object programs from
t application domains to reduce the effect
threat to the experimental results. With re-

the mutants of object programs, we have
ed all applicable mutation operators to in-
lts into the object programs. The number
faults used in our experiments is relatively
but the total amount of real faults in the
urce project is also small. Although our ex-

nt does not involve large-size programs (e.g.
ith millions of LOC), we note that it is fea-
generalize our approach to larger real-world
s with millions of LOC with the help of fol-
treatments: We first divide the larger real-

programs into multiple small-scale modules

that can be independently tested; for each mo
ule, we analyze the corresponding MRs accordi1070

to its functionality, and perform the proposed a
proach to derive the executable paths and their co
responding constraints; finally, source test cases a
generated for each module, and the prioritizati
method is applied to the source test cases of ea1075

module.

Selection of baseline techniques: The com
parison of source test case generation involved thr
baseline techniques that have used in MT fie
With regard to prioritization of source test cas1080

we have not yet found any existing prioritizati
technique specifically designed for source test cas
in MT. As a result, we compared our approach wi
random prioritization. It is still a promising r
search direction to extend this study by applyi1085

existing prioritization techniques in the general co
text of software testing into MT.

Representativeness of evaluation metric
The evaluation metrics involved in our experimen
have been extensively used in previous studies. M1090

tation score is a well-known metric to evaluate t
fault detection effectiveness of testing techniqu
APFD has been commonly used to evaluate t
effectiveness of test case prioritization techniqu
Thus, the threat of evaluation metrics to our e1095

periments was minimized.

17

6. Re

Com
MRs,
source1100

compa
cases a
the tes
tary to
by a la1105

metam
source
initial
atively
follow-1110

source
et al.
called F
resourc
exhibit1115

of MT,
for sou
et al.
ing, aim
lem. I1120

nique,
algorit
proach
that th
all obj1125

or bran
adaptiv
dom t
Adapti
the div1130

them a
that su
detecti
propos
diversi1135

perspe
Alat

genera
executi
symbol1140

instead
rary sy
SPF) t
in MT
techniq1145

order o
a comp

to

T
eir
le-

-
ed
on
ee
at
st,
gh
n.
t-
of

c-
le
es
i-
a-
ce
ts.
te
r-

el-
st
-

o-
he
ve
e-
d-
to
nd
el-
te
r-
o-
he

ns
ce
on
re.
re
he
r-
es
lated Work

pared with the extensive investigations on
a few studies have been conducted on the
test case generation for MT. Chen et al. [27]
red the performance of random source test
nd special values in MT, and observed that
t cases generated by MT are complemen-
special values. Such a result was confirmed
ter study [47]. Wu [23] proposed iterative
orphic testing (IMT) to save the efforts for
test case generation. Given a small set of
source test cases, the existing MRs are iter-
used to generate follow-up test cases. The

up test cases of previous round are used as
test cases of the next round of iteration. Sun
[24] proposed a fixed-sized IMT technique,

xIMT, for testing Web services with limited
es. Evaluation results showed that FxIMT
ed a comparable fault detection effectiveness
while using significantly fewer testing efforts

rce test case generation and execution. Dong
[25] integrated MT with evolutionary test-

ing at addressing the latter’s oracle prob-
n their improved evolutionary testing tech-
source test cases were generated by genetic
hms with a so-called “distance-oriented” ap-
— The fitness function was designed such
e generated test cases could quickly achieve
ectives such as the execution of conditions
ches. Barus et al. [21] suggested the use of
e random testing, an enhancement of ran-

esting, in the source test case generation.
ve random testing [3] attempts to increase
ersity among test cases by evenly spreading
cross the whole input domain. It was shown
ch a diversity did help improve the fault-

on effectiveness of MT. The new techniques
ed in this paper also aim at improving the
ty among source test cases, from a different
ctive, that is, the path distance.
awi et al. [22] proposed a source test case
tion strategy based on the dynamic symbolic
on (DSE), which is basically the mixture of
ic and concrete executions. In this study,

of DSE, we make use of the contempo-
mbolic execution technique and tool (that is,
o support the generation of source test cases
. In addition, a path-directed prioritization
ue is developed to schedule the execution
f the generated test cases. Also provided are
lete framework and an automated tool that

systemically integrate all proposed techniques in
MT.

The integration of symbolic execution and M1150

was first proposed by Chen et al. [48]. In th
“semi-proving” approach, MT was applied to al
viate the oracle problem in program proving. Sym
bolic inputs, instead of concrete values, were us
as the test cases for MT. In this way, a satisfacti1155

of an MR on symbolic test cases would guarant
the correctness of SUT on certain properties, th
is, the program could be semi-proven. By contra
our study still uses concrete test cases, althou
their generation is guided by symbolic executio1160

This is due to the different context we are targe
ing at — Our goal is to improve the performance
MT.

7. Conclusion

Metamorphic testing (MT) is a simple yet effe1165

tive technique that not only alleviates the orac
problem effectively, but also constructs test cas
that are complementary to those created by trad
tional testing methods. In addition to the met
morphic relations (MRs), the generation of sour1170

test cases attracted increasing research interes
Some techniques have been proposed to genera
“good” source test cases that help improve the ove
all performance of MT. In this paper, we dev
oped a new path-directed method for the source te1175

case generation. It utilizes the techniques of sym
bolic execution and constraint solver to obtain pr
gram path constraints, which, in turn, provide t
basis for generating source test cases that achie
a good coverage of execution paths and thus d1180

liver a higher fault detection effectiveness. An a
ditional prioritization technique was proposed
further improve the diversity among test cases a
hence boost the testing efficiency. A tool was dev
oped to automate the new techniques and integra1185

them with the existing MT4WS tool. The expe
imental studies based on seven representative pr
grams demonstrated the high performance of t
proposed techniques.

The study reveals quite a few research directio1190

for future work. We plan to study the performan
of our approach and tool through the applicati
into industrial large-size programs in the futu
For example, more large-scale empirical studies a
necessary to further evaluate the performance of t1195

proposed path-directed techniques. It is also inte
esting to investigate how to integrate other typ

18

of sym
executi
our too1200

constra
eration
how th
of follo
to con1205

and co
ing the
improv
dition,
worthw1210

tection
strateg
differen
ally ide
test or1215

tical be

Ackno

This
ural S
Nos. 61220

search
No. F
ence F
nautica
2016ZD1225

Discov

Refere

[1] J.
sor
Sci1230

[2] T.
wit
Tec

[3] A.
G.1235

for
tion

[4] P.
aut
SIG1240

De
213

[5] C.-
tive
681245

[6] T.
T.
cha
51

A
on

ed
rs,
on

ess
67.
u,

ing
ms

iv-
es,

or-
ice
6)

T-
ue
ac-

ta-
in:
on
he
ng

to,
u-
he
in-
45.
ta-
ns-
3–

ion
nd
of
re

ef-
cle
ng

se-
gs
re

06,

ion
ts,
.
W.
he
of

st-
nal
16,

ing
bolic execution, such as dynamic symbolic
on and symbolic backward execution, into
l. The present study only made use of path
ints in the process of source test case gen-
. It is worthwhile to study whether and
e concept can be used in the construction
w-up test cases. A promising direction is
sider more sophisticated distance measures
verage criteria discussed in [49] for prioritiz-

source test cases, with an aim to further
e the fault detection efficiency of MT. In ad-
compared with random prioritization, it is
hile to study the improvement of fault de-
efficiency achieved by different prioritization
ies. Finally, it is of importance to study the
ce between the cost-effectiveness of manu-
ntifying MRs with that of manually defining
acles, which helps to demonstrate the prac-
nefits of MT.

wledgements

research is supported by the National Nat-
cience Foundation of China under Grant
1872039 and 61370061, the Fundamental Re-
Funds for the Central Universities (Grant
RF-GF-19-B19), the Beijing Natural Sci-

oundation (Grant No. 4162040), the Aero-
l Science Foundation of China (Grant No.
74004), and the Australia Research Council

ery Project (Grant No. DP210102447).

nces

Buxton, B. Randell, Report on a conference spon-
ed by the nato science committee, Tech. rep., NATO
ence Committee (1970).
Y. Chen, T. H. Tse, Z. Q. Zhou, Fault-based testing
hout the need of oracles, Information and Software
hnology 45 (1) (2003) 1–9.
C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, R. Merkel,
Rothermel, A cost-effective random testing method
programs with non-numeric inputs, IEEE Transac-
s on Computers 65 (12) (2016) 3509–3523.

Godefroid, N. Klarlund, K. Sen, DART: Directed
omated random testing, in: Proceedings of the ACM
PLAN 2005 Conference on Programming Language

sign and Implementation (PLDI’05), ACM, 2005, pp.
–223.
A. Sun, H. Dai, H. Liu, T. Y. Chen, K.-Y. Cai, Adap-
partition testing, IEEE Transactions on Computers

(2) (2019) 157–169.
Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey,
Tse, Z. Q. Zhou, Metamorphic testing: A review of
llenges and opportunities, ACM Computing Surveys
(1) (2018) 4:1–4:27.

[7] S. Segura, G. Fraser, A. B. Sanchez, A. Ruiz-Cortés,1250

survey on metamorphic testing, IEEE Transactions
Software Engineering 42 (9) (2016) 805–824.

[8] Y. Tian, K. Pei, S. Jana, B. Ray, DeepTest: Automat
testing of deep-neural-network-driven autonomous ca
in: Proceedings of the 40th International Conference1255

Software Engineering (ICSE’18), 2018, pp. 303–314.
[9] Z. Q. Zhou, L. Sun, Metamorphic testing of driverl

cars, Communications of the ACM 62 (3) (2019) 61–
[10] X. Xie, J. W. K. Ho, C. Murphy, G. E. Kaiser, B. X

T. Y. Chen, Testing and validating machine learn1260

classifiers by metamorphic testing, Journal of Syste
Software 84 (4) (2011) 544–558.

[11] V. Le, M. Afshari, Z. Su, Compiler validation via equ
alence modulo inputs, in: ACM SIGPLAN Notic
Vol. 49, 2014, pp. 216–226.1265

[12] T. Y. Chen, P.-L. Poon, X. Xie, METRIC: Metam
phic relation identification based on the category-cho
framework, Journal of Systems and Software 116 (201
177–190.

[13] C.-A. Sun, A. Fu, P.-L. Poon, X. Xie, T. Y. Chen, ME1270

RIC+: A metamorphic relation identification techniq
based on input plus output domains, IEEE Trans
tions on Software Engineering (2019).
URL https://doi.org/10.1109/TSE.2019.2934848

[14] S. Segura, A. Durán, J. Troya, A. Ruiz-Cortés, Me1275

morphic relation patterns for query-based systems,
Proceedings of the 4th International Workshop
Metamorphic Testing (MET’19), Co-located with t
41th International Conference on Software Engineeri
(ICSE’19), 2019, pp. 24–31.1280

[15] B. Zhang, H. Zhang, J. Chen, D. Hao, P. Mosca
AutoMR: Automatic discovery and cleansing of n
merical metamorphic relations, in: Proceedings of t
2019 IEEE International Conference on Software Ma
tenance and Evolution (ICSME’19), 2019, pp. 235–21285

[16] S. Segura, J. A. Parejo, J. Troya, A. Ruiz-Cortés, Me
morphic testing of RESTful web APIs, IEEE Tra
actions on Software Engineering 44 (11) (2018) 108
1099.

[17] Y. Cao, Z. Q. Zhou, T. Y. Chen, On the correlat1290

between the effectiveness of metamorphic relations a
dissimilarities of test case executions, in: Proceedings
the 13th International Conference on Quality Softwa
(QSIC’13), 2013, pp. 153–162.

[18] H. Liu, F.-C. Kuo, D. Towey, T. Y. Chen, How1295

fectively does metamorphic testing alleviate the ora
problem?, IEEE Transactions on Software Engineeri
40 (1) (2014) 4–22.

[19] J. Mayer, R. Guderlei, An empirical study on the
lection of good metamorphic relations, in: Proceedin1300

of the 30th Annual International Computer Softwa
and Applications Conference (COMPSAC’06), 20
pp. 475–484.

[20] T. J. Ostrand, M. J. Balcer, The category-partit
method for specifying and generating fuctional tes1305

Communications of the ACM 31 (6) (1988) 676–686
[21] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, H.

Schmidt, The impact of source test case selection on t
effectiveness of metamorphic testing, in: Proceedings
the 1st International Workshop on Metamorphic Te1310

ing (MET’16), Co-located with the 38th Internatio
Conference on Software Engineering (ICSE’16), 20
pp. 5–11.

[22] E. Alatawi, T. Miller, H. Søndergaard, Generat

19

sou1315

sym
tion
Co
Sof

[23] P.1320

of
and
pp.

[24] C.-
Ite1325

niq
and

[25] G.
ass
rith1330

nat
Ag
401

[26] R.
I. F1335

AC
[27] T.

phi
cee
Sof1340

ing
200

[28] T.
pro
mo1345

32.
[29] K.

Tes
Pro
Co1350

423
[30] C.

Sym
of
ma1355

179
[31] C.

P.
ing
byt1360

(20
[32] W.

gen
the
Sof1365

97–
[33] C.

tion
ing
Tes1370

[34] S.
sele
Ver

[35] G.
orit1375

tion
[36] Sym

202
UR

ro-
on
6–

en
in:
for
8),

r/

es,

en,
em
or-
4–

A
isi-
er-
6),
on

se
ies
er-
sis

n,
sis

2/

ta-
In-
SE

cal
n,
0)

en,
se

An
nd
ng

of
hic
rk-
ed
n-
rce inputs for metamorphic testing using dynamic
bolic execution, in: Proceedings of the 1st Interna-
al Workshop on Metamorphic Testing (MET’16),

-located with the 38th International Conference on
tware Engineering (ICSE’16), 2016, pp. 19–25.
Wu, Iterative metamorphic testing, in: Proceedings
the 29th Annual International Computer Software

Applications Conference (COMPSAC’05), 2005,
19–24.

A. Sun, A. Fu, Z. Wang, Q. Wen, P. Wu, T. Y. Chen,
rative metamorphic testing for web services: Tech-
ue and case studies, International Journal of Web

Grid Services 16 (4) (2020) 364–392.
Dong, S. Wu, G. Wang, T. Guo, Y. Huang, Security
urance with metamorphic testing and genetic algo-
m, in: Proceedings of the IEEE/WIC/ACM Inter-
ional Conference on Web Intelligence and Intelligent
ent Technology (WI-IAT’10), Vol. 3, 2010, pp. 397–
.
Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu,
inocchi, A survey of symbolic execution techniques,
M Computing Surveys 51 (3) (2018) 50:1–50:39.
Y. Chen, F.-C. Kuo, Y. Liu, A. Tang, Metamor-
c testing and testing with special values, in: Pro-
dings of the 5th ACIS International Conference on
tware Engineering, Artificial Intelligence, Network-
and Parallel/Distributed Computing (SNPD’04),

4, pp. 128–134.
Y. Chen, J. W. Ho, H. Liu, X. Xie, An innovative ap-
ach for testing bioinformatics programs using meta-
rphic testing, BMC bioinformatics 10 (1) (2009) 24–

Sen, G. Agha, CUTE and jCUTE: Concolic Unit
ting and Explicit Path Model-Checking Tools, in:
ceedings of the 18th International Conference on

mputer Aided Verification (CAV’06), 2006, pp. 419–
.
S. Pǎsǎreanu, N. Rungta, Symbolic PathFinder:
bolic execution of Java bytecode, in: Proceedings

the IEEE/ACM International Conference on Auto-
ted Software Engineering (ASE’10), ACM, 2010, pp.
–180.
S. Pǎsǎreanu, W. Visser, D. Bushnell, J. Geldenhuys,
Mehlitz, N. Rungta, Symbolic PathFinder: integrat-

symbolic execution with model checking for Java
ecode analysis, Automated Software Engineering 20
13) 391–425.
Visser, C. S. Pǎsǎreanu, S. Khurshid, Test input
eration with Java PathFinder, in: Proceedings of
2004 ACM SIGSOFT International Symposium on

tware Testing and Analysis (ISSTA’04), 2004, pp.
107.
S. Pǎsǎreanu, N. Rungta, W. Visser, Symbolic execu-

with mixed concrete symbolic solving, in: Proceed-
s of the 2011 International Symposium on Software
ting and Analysis (ISSTA’11), 2011, pp. 34–43.
Yoo, M. Harman, Regression testing minimization,
ction and prioritization: A survey, Software Testing,
ification and Reliability 22 (2) (2012) 67–120.
Rothermel, R. H. Untch, C. Chu, M. J. Harrold, Pri-
izing test cases for regression testing, IEEE Transac-
s on Software Engineering 27 (10) (2001) 929–948.
bolic pathfinder, last accessed on October 11,

0.
L https://github.com/SymbolicPathFinder/

jpf-symbc1380

[37] K. Havelund, T. Pressburger, Model checking Java p
grams using Java PathFinder, International Journal
Software Tools for Technology Transfer 2 (2000) 36
381.

[38] N. Jussien, G. Rochart, X. Lorca, Choco: An op1385

source Java constraint programming library,
CPAIOR’08 Workshop on Open-Source Software
Integer and Contraint Programming (OSSICP’0
2008, pp. 1–10.
URL https://hal.archives-ouvertes.f1390

hal-00483090

[39] Choco-solver, last accessed on October 12, 2020.
URL https://choco-solver.org/

[40] D. Kroening, O. Strichman, Decision Procedur
Springer, 2016.1395

[41] C.-A. Sun, G. Wang, Q. Wen, D. Towey, T. Y. Ch
MT4WS: An automated metamorphic testing syst
for web services, International Journal of High Perf
mance Computing and Networking 9 (1-2) (2016) 10
115.1400

[42] C.-A. Sun, Y. Liu, Z. Wang, W. Chan, µMT:
data mutation directed metamorphic relation acqu
tion methodology, in: 2016 IEEE/ACM the 1st Int
national Workshop on Metamorphic Testing (MET’1
Co-located with the 38th International Conference1405

Software Engineering (ICSE’16), 2016, pp. 12–18.
[43] R. Just, D. Jalali, M. D. Ernst, Defects4J: A databa

of existing faults to enable controlled testing stud
for Java programs, in: Proceedings of the 2014 Int
national Symposium on Software Testing and Analy1410

(ISSTA’14), ACM, 2014, pp. 437–440.
[44] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Trao

M. Harman, Mutation testing advances: An analy
and survey, Advances in Computers (2017).
URL http://orbilu.uni.lu/bitstream/10993/31611415

1/survey.pdf

[45] Y.-S. Ma, J. Offutt, Y.-R. Kwon, muJava: A mu
tion system for Java, in: Proceedings of the 28th
ternational Conference on Software Engineering (IC
2006), ACM, 2006, pp. 827–830.1420

[46] D. Shin, S. Yoo, D.-H. Bae, A theoretical and empiri
study of diversity-aware mutation adequacy criterio
IEEE Transactions on Software Engineering 44 (1
(2018) 914–931.

[47] P. Wu, X.-C. Shi, J.-J. Tang, H.-M. Lin, T. Y. Ch1425

Metamorphic testing and special case testing: A ca
study, Journal of Software 16 (7) (2005) 1210–1220.

[48] T. Y. Chen, T. H. Tse, Z. Zhou, Semi-proving:
integrated method for program proving, testing, a
debugging, IEEE Transactions on Software Engineeri1430

37 (1) (2011) 109–125.
[49] P. Saha, U. Kanewala, Fault detection effectiveness

source test case generation strategies for metamorp
testing, in: Proceedings of the 3rd International Wo
shop on Metamorphic Testing (MET’18), Co-locat1435

with the 40th International Conference on Software E
gineering (ICSE’18), ACM, 2018, pp. 2–9.

20

i

s

Conflict of Interest Statement

We declare that we do not have any commercial or associative

nterest that represents a conflict of interest in connection with the work

ubmitted.

Chang-ai Sun, Baoli Liu, An Fu, Yiqiang Liu, and Huai Liu

	cover_page
	2020-sun-path_directed_source

