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Abstract

Metamorphic testing is a technique that makes use of some necessary properties of the software under test,
termed as metamorphic relations, to construct new test cases, namely follow-up test cases, based on some
existing test cases, namely source test cases. Due to the ability of verifying testing results without the need
of test oracles, it has been widely used in many application domains and detected lots of real-life faults.
Numerous investigations have been conducted to further improve the effectiveness of metamorphic testing,
most of which were focused on the identification and selection of “good” metamorphic relations. Recently,
a few studies emerged on the research direction of how to generate and select source test cases that are
effective in fault detection. In this paper, we propose a novel approach to generating source test cases based
on their associated path constraints, which are obtained through symbolic execution. The path distance
among test cases is leveraged to guide the prioritization of source test cases, which further improve the
efficiency. A tool has been developed to automate the proposed approach as much as possible. Empirical
studies have also been conducted to evaluate the fault-detection effectiveness of the approach. The results
show that this approach enhances both the performance and automation of metamorphic testing. It also
highlights interesting research directions for further improving metamorphic testing.

Keywords: Metamorphic testing, source test case, symbolic execution, path constraint

1. Introduction 15 damental problems of software testing, namely the
reliable test set problem and the oracle problem [2],
respectively. The former problem basically refers

quality assurance, is mainly targeted at demon- to the infeasibility of exhaustive testing — It is al-
strating “the presence of bugs” [1, p.16]. A main-

stream way to implement testing is to dynamically
execute the software under test (SUT): Test cases

Software testing, a major approach to software

most impossible to exhaustively execute all possible
2 test cases even for a simple program, so a subset of
test cases should be deliberately selected to pro-

are first generated according to some objectives, vide a reliable coverage of as many functionalities
such as achieving some degree of code coverage and of SUT as possible. A large number of techniques
detecting certain types of fault. After the execu- have been developed to generate test cases from dif-
tion of a test case, the actual result will be verified . forent perspectives [3, 4, 5]. However, most of them
against the expected output, normally through a have assumed, at least implicitly, the presence of

systematic.mechanism, termed as test or acl.e. a test oracle. Their fault-detection capabilities will
The basic processes of test case generation and be influenced by the oracle problem; in other words,
test result verification are concerned with two fun- when either there is no test oracle or the oracle is
s too expensive to apply for verifying the correctness
of test results, the applicabilities of many test case
generation techniques are significantly limited.

Among all testing techniques, metamorphic test-
ing (MT) [6, 7] is a unique one that can not only
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address the oracle problem but also provide a new
way for generating test cases. The core element
of MT is a set of so-called metamorphic relations
(MRs), which are the necessary properties of SUT
presented in the form of relationships among multi-
ple program inputs and their expected outputs. In
the aspect of test case generation, MRs can be used
to transform some existing test cases (termed as
source test cases in MT) into new test cases (termed
as follow-up test cases). For the test result verifica-
tion, instead of using an oracle for each individual
test case, the test results from multiple test cases
are checked against the corresponding MRs.

Despite the simplicity in concept, MT has been
very successful in revealing many real-life bugs in
a wide variety of application domains. For exam-
ple, simple equality MRs have led to the detec-
tion of thousands of erroneous behaviors in some
top-ranked autonomous driving models — Fatally
wrong decisions could be made given a minor
change in the weather or road conditions [8, 9].
Xie et al. [10] also used MT to validate traditional
machine learning classifiers and found that some
of their behaviours were not consistent with users’
expectations. In addition, MT have revealed hun-
dreds of faults in some widely used compilers [11].
The high fault-detection capability of MT is not
only due to its ability to address the oracle prob-
lem, but also because it can generate test cases that
are complimentary to those created by traditional
testing techniques [6].

In recent years, the identification of MRs, the
core element of MT, has received considerable at-
tention in the community of MT [12, 13, 14, 15,
16, 17, 18, 19]. Some researchers investigated the
attributes of “good” MRs, that is, what MRs have
high potentials in detecting software faults. Liu et
al. [18], for example, justified that a small num-
ber of “diverse” MRs are sufficient by themselves
to detect the most faults that can be revealed using
a test oracle. Other studies were aimed at the sys-
tematic ways for identifying MRs. For instance, the
METRIC approach [12] was proposed to construct
MRs based on the concepts of category and choice
in the category-partition method [20]. Recently,
it was extended to the METRIC+ approach [13]
through the inclusion of output-related categories
and choices and the introduction of more system-
atic mechanism for deciding appropriate relations.

As another critical component, source test cases
also play an important role in MT. Since the follow-
up test cases (that is, the new test cases created
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by MT) are constructed based on source test cases
and MRs, the quality of source test cases is also
a driving factor for the performance of MT. In
the majority of previous studies of MT, source test
cases were normally generated using random test-
ing, which could provide a good benchmark as the
performance’s lower bound in empirical studies. By
nature, some more systematic techniques could be
applied in the source test case generation and se-
lection to improve MT’s performance. Barus et
al. [21], for example, utilized the so-called adap-
tive random testing (ART) [3] to improve the di-
versity of source test cases in MT, which, in turn,
enhanced the fault-detection effectiveness of MT. In
addition, Alatawi et al. [22] generated source test
cases based on the dynamic symbolic execution [4]
and showed promising performance improvement.
Some researchers used the test cases of MT in an
iterative way [23, 24]: Some follow-up test cases
could be re-used the source test cases for the next
round of testing. Dong et al. [25] proposed a tech-
nique to generate source test cases based on genetic
algorithm and program path analysis.

In line with the research of source test case gen-
eration, this paper attempts to investigate how to
maximize the diversity of source test cases based on
their path constraints, which are obtained through
the symbolic execution [26]. New techniques are
proposed for improving the overall performance of
MT. A comprehensive framework is developed to fa-
cilitate the automatic implementation of MT. The
paper makes the following four major contributions:

e The symbolic execution is applied to construct
path constraints, which, in turn, guide the gen-
eration of source test cases of MT to guarantee
(7) that different program paths are thoroughly
covered, and (77) that test cases are diversified
in terms of the execution behaviors triggered
by them.

e A path distance is defined to guide the pri-
oritization of source test cases for an efficient
execution of MT.

e A prototype tool is developed to integrate all
new techniques into existing MT approach and
thus to enable automated testing.

e Empirical studies are conducted based on real-
world programs and demonstrate the perfor-
mance improvement brought by the new tech-
niques over traditional MT.
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The rest of the paper is organized as follows. Sec-
tion 2 introduces the background information for
this study. The new techniques and the prototype
tool are described in Section 3. Section 4 presents
the design and settings of our experiments, the re-
sults of which are given in Section 5. The studies
related to our work are discussed in Section 6. Fi-
nally, Section 7 summarizes the paper with pointing
out future work.

2. Background

2.1. Metamorphic Testing

As discussed above, MT supports test case gener-
ation process and provides a test result verification
mechanism, both on the basis of MRs. The basic
procedure of MT is as follows:

1. Select one MR, which represents a necessary
property of SUT in the form of the relation-
ship among multiple inputs and their expected
outputs.

2. Generate source test case(s) using some exist-
ing testing techniques.

3. Construct follow-up test case(s) by applying
the MR to transform source test case(s).

4. Execute source and follow-up test cases, which
collectively are termed as metamorphic test
group.

5. Verify the execution results of the metamor-
phic test group against the MR. If the MR is
violated, the SUT is considered faulty; other-
wise, the SUT passes the testing of the corre-
sponding metamorphic test group.

Note that the basic concept of MR, requires that
each metamorphic test group contains at least one
source test case and at least one follow-up test case
(as shown in the above Steps 2 and 3). As an
example to illustrate, suppose a program P cal-
culates the sine value for an angle as the input.
One possible MR for P is: Given a = b+ ¢, we
should have the relation sin(a) = sin(b + ¢) =
sin(b) cos(c) + cos(b) sin(c) = sin(b) sin(90° — ¢) +
sin(90° — b) sin(¢). When implementing MT on P
based on this MR, we generate a source test case
xz, and then construct two follow-up test cases y
and z, where £ = y 4+ z. There will be five execu-
tions of SUT, P(x), P(y), P(z), P(90° — y), and
P(90° — z), and we need to check whether the re-
lation P(z) = P(y)P(90° — z) + P(90° — y)P(z)
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holds. Any violation of the relation will imply the
detection of a fault.

For the “existing testing techniques” in Step 2,
the majority of previous studies have randomly gen-
erated source test cases [7]. Chen et al. [27] inves-
tigated the usage of special values as the source
test cases for MT. Some studies [28] used the ex-
isting “classical” real-world inputs as the source
test cases. Recently, more advanced techniques
have been applied to generate “good” source test
cases [21, 22, 25]. The present work is focused on
the source test case generation based on the tech-
nique of symbolic execution, which is introduced in
the next section.

2.2. Symbolic Execution

The core notion of symbolic execution [26] is
to use the symbolic values to represent the pro-
gram input parameters, and correspondingly to
utilize symbolic expressions to denote the vari-
ables in program execution and the output results.
The program analysis and validation will be imple-
mented through the simulation of program execu-
tions. There are three main components in each
step of the symbolic execution:

1. Path condition: Also termed as path con-
straint, a path condition is represented by a
series of branch conditions. It denotes a certain
path for program execution, which, in turn,
can refer to all inputs that satisfy the corre-
sponding branch conditions.

2. Program counter: It defines the statement to
be executed next.

3. Symbolic values for program variables: Any
variable in the program will be represented by
a symbolic expression.

After combining the state of each execution step,
we can obtain a symbolic execution tree, which
gives all the execution paths. In the execution tree,
each node refers to a program state, and the state
transition is denoted by the edge. Figure 1 gives a
simple example of a program and its corresponding
execution tree. At the beginning, the path con-
dition is “True”. During the program execution,
the variables x and y are replaced by the symbolic
values X and Y, respectively. When the execution
reaches the conditional statement (line 3), there will
be two paths, representing the scenarios of “condi-
tion is satisfied” and “condition is not satisfied”,
respectively. Correspondingly, path conditions will
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become X <Y and X > Y, which, in turn, lead to
two different symbolic outputs z = X and z =Y,
respectively. In summary, we obtain two execution s
paths and their conditions.

1.int func(int x, int y){ [PC: true] x =X, y=Y

int z=0;

if (x<y) [ [PC:truelx=X,y=Y,z=0 |

zZ = X; X<y xzy

[PC: X>Y]

280
x:X,y:Y,Z:Y‘

[PC: X<Y]
x=X,y=Y,z=X

zZ =y

return z;

2

3

4

5. else
6

7

8.

} [ return X ] [ return Y }

Figure 1: A simple program and its symbolic execution tree
285

Since the invention of symbolic execution, differ-
ent techniques have been proposed to implement it
under various scenarios. One main methodology is
the so-called concolic execution [22, 29], the mixture
of symbolic and concrete execution. For example,
Godefroid et al. [4] developed a method, namely di-
rected automated random testing (DART), which,
starting from an input with randomly generated
concrete value, executes the SUT both symbolically "
and concretely. The concrete execution will direct
the symbolic execution on the same path; at the
same time, path constraints will be extracted once
a branch is reached. Different paths can be explored
by negating certain path constraints. DART, also
termed as dynamic symbolic execution (DSE), has ’
been widely used in a variety of application do-
mains, including the generation of source test cases
in MT [22].

Tools have also been developed for implementing
symbolic execution in different paradigms. Sym-
bolic PathFinder (SPF) [30, 31], for example, com-
bines the symbolic execution with Java PathFinder
(JPF) [32], a model checker for Java programs.
Working on the virtual machine supplied by JPF,
SPF can systematically search different symbolic
execution paths. SPF also makes use of some 310
strategies provided in JPF, such as depth-first and
breadth-first, to conduct the search. For the path
constraints extracted during symbolic execution,
their conditions are obtained through the constraint
solver. Test cases can be created to satisfy these
path conditions and thus represent different exe-
cution paths. SPF has the following advantages:
(1) It does not require seeded inputs to drive sym-
bolic execution [4, 31]; (2) It does not involve code
instrumentation, thus ensuring high efficiency and
applicability [4, 31]; (3) It is powerful in handling
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complex path constraints, supporting iterative con-
straint solving for hard-to-solve expressions. In-
spired by the above advantages, we will use SPF to
implement symbolic execution for source test case
generation [31, 33].

2.8. Test Case Prioritization

Test case prioritization is a major activity in re-
gression testing [34]. Basically speaking, regression
testing re-runs some existing test cases, namely re-
gression test cases, after changes are made to SUT.
Its main aim is to verify whether the existing func-
tionalities are affected by the changes — The func-
tions that have passed the regression test cases
should pass again after the changes are made. Var-
ious test cases may have different effectiveness in
the regression testing, so it is advisable to schedule
their execution order (in other words, prioritizing
them) for maximizing the testing efficiency.

One mainstream approach to test case prioriti-
zation is based on the code coverage [35]. Some
prioritization techniques order test cases based on
their “total” coverage of certain code elements, such
as the absolute number of statements or branches
covered by them. Other techniques make use of
the “additional” coverage, that is, how many state-
ments/branches that can be covered by new test
cases but not by the already selected ones.

Although originally proposed in the context of re-
gression testing, the prioritization of test cases can
be applied into other testing activities — It is al-
ways preferable to run the “good” test cases early
to achieve some goals as quickly as possible, such
as detecting faults and realizing certain coverage.
In this study, we propose prioritizing the execution
order of source test cases and thus the whole meta-
morphic test group for further improving the per-
formance of MT.

3. Approach and Tool

In this section, we first discuss the motivation of
our work. Then, the approach is described, includ-
ing both techniques for source test case generation
and prioritization, which are illustrated by an ex-
ample. Finally, we present the tool we have devel-
oped to implement the approach.

3.1. Motivation

Intuitively speaking, to guarantee a high poten-
tial of detecting a wide variety of faults, test cases
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should enable a testing method, like MT, to trig-
ger as different execution behaviors as possible, in-
cluding those “hard-to-reach” execution paths/s-
tatements, which sometimes even deserve substan-
tial efforts. The symbolic execution technique [26]
provides a direct and effective solution to this is-
sue. It has attracted increasing attentions due to
its capability of analyzing program behaviors. The
technique represents the program inputs using sym-
bolic values (rather than concrete values) to ex-
plore possible program execution paths and col-
lect constraints of program branches covered by a
path. Apparently, symbolic execution can be used
to analyze the constraints of hard-to-reach state-
ments. By solving the constraints, test cases that
execute these program paths are generated. Moti-
vated by its capability of thoroughly covering ex-
ecution paths, we propose the application of sym-
bolic execution into the generation of source test
cases for MT.

Any software development activity is constrained
by resources. For software testing, its main goal is
to detect as many faults as possible with limited
budget and time. In other words, testing must be
implemented in a cost-effective way. Normally, test
cases are executed in a certain order. In all previous
studies of MT, unfortunately, the execution order
of test cases was either random or arbitrary; that
is, no systematic prioritization has been applied for
MT’s test cases. In this study, we propose a prioriti-
zation technique that schedules the execution order
of source test cases such that those with higher po-
tentials of revealing faults are ranked with higher
priorities and hence executed earlier. More specif-
ically, the technique determines the priorities of
source test cases based on their contributions to the
coverage of program paths/statements. Source test
cases that help achieve the highest statement cov-
erage are executed first. We particularly adopted
the path-directed prioritization for source test cases
due to the following two reasons: (1) Basically, the
execution paths of test cases reflect certain func-
tionalities of SUT, so the more different paths are
exercised by test cases, the more functionalities will
be covered by them and thus higher likelihood they
have in revealing potential faults; (2) Since it is
relatively complicated to control the paths to be
covered by follow-up test cases (the construction of
which relies on both source test cases and MRs), we
design simple prioritization techniques for source
test cases in this study.

The proposed source test case generation and
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Figure 2: Approach overview

prioritization techniques compose our approach, as
elaborated in the following section.

3.2. Our Approach

Figure 2 outlines the overview of our approach,
which consists of the following steps:

(1) Symbolic Ezecution: SUT is symbolically
executed to explore its possible execution
paths and acquire the corresponding path con-
straints.

Path Constraint Solving: Constraint solver is
employed to generate source test cases that sat-
isfy the constraints of each possible execution
path.

Ezecution Path Analysis: For each generated
source test case, the sequence of executed
statements is analyzed to form the execution
path.

Source Test Case Prioritization: Source test
cases are prioritized based on the path distance
(to be defined in Section 3.2.2 below) among
test cases.
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The first and second steps constitute the source
test case generation phase (explained in Sec-
tion 3.2.1), and the third and fourth steps consti-
tute the source test case prioritization phase (Sec-
tion 3.2.2).

3.2.1. Path-directed source test case generation

To perform symbolic execution on SUT, we se-
lect Symbolic PathFinder (SPF) [30, 36] as our
symbolic execution engine. SPF is an extension of
Java PathFinder [37], which is a well-known model
checker for Java Programs. SPF provides symbolic
execution for bytecode of Java programs. In addi-
tion, SPF supports the symbolization of multiple
types of input parameters, which makes it applica-
ble to most Java programs. SPF takes the byte-
code of SUT and a configuration file as input, and
outputs the constraints of possible execution paths.
The configuration file specifies which method to ex-
ecute symbolically and which method arguments
are symbolized. The tool constructs and explores
the symbolic execution tree of SUT, in which each
path from the root to a leaf represents a possible ex-
ecution path of SUT. Note that symbolic execution
suffers from some problems, such as the path explo-
sion problem, which can happen particularly when
loops involve symbolic values. In this study, we fol-
low the traditional solution of limiting the number
of iterations (up to 30) to address the problem.

Choco-solver [38, 39] is used as our constraint
solving tool. Choco-solver is an open-source Java li-
brary for solving the constraint satisfaction problem
(CSP). The tool allows the user to model a CSP by
stating a set of variables with their constraints that
must be satisfied. Then the tool leverages search-
based algorithms to find values of variables that sat-
isfy the stated constraints. In this study, the path
constraints obtained from SPF serve as inputs of
Choco-solver. Accordingly, the solver outputs suit-
able values of variables that make the constraints
true. These values together constitute the source
test case that executes a certain program path.

To illustrate the proposed source test case gener-
ation technique, let us look at an example method
MyMethod, as below.

1 public int myMethod(int x, int y){
2 intz=x+1y;

3 if (z == 0){

4 if (y > 0){

5 Z=y — X;

6 }else{

7 Z=X—Y;

8 }
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9 }else{
10 if (x > 0){
11 7z =17 — X,
12 telse{
13 z =17+ X;
14 }
15 }
16 return z;
17}

In Step 1 of our approach (Figure 2), MyMethod
is symbolically executed using SPF. The result of
symbolic execution is represented as the symbolic
execution tree shown in Figure 3. The path con-
straint of each state in the tree specifies the condi-
tions that input parameters must satisfy to trigger
the execution of that state. Accordingly, the path
constraint of a leaf node in the tree specifies the
conditions for executing a program path. The path
constraints' of leaf nodes are summarized in the
“Path Constraint” column of Table 1.

In Step 2 of Figure 2, the path constraints are
solved by Choco-solver to generate values for input
parameters that makes the constraints true. The
generated test cases are shown in the “Generated
Source TC” column of Table 1.

It should be noted that for the first two paths
in Table 1, it is hard to generate source test cases
that execute these paths by selecting random val-
ues or special values for x and y, respectively. The
reason is that these paths have strict constraints
(i.e., (y.O.SYMINT+x_0_.SYMINT)==CONST_0).
Apparently, under circumstance where such con-
straint is unknown, it is not easy to select random
values or special values for x and y that satisfy this
constraint, and thereby exercising statements con-
trolled by this constraint could be difficult. Our
approach can obtain such constraint and generate
source test cases that satisfy the constraint, which
makes it possible to effectively cover the hard-to-
reach program statements when conducting MT.

Note that some inherent limitations of constraint
solving may hinder the effectiveness of symbolic ex-
ecution [26], and thus affect the performance of our
source test case generation approach. For example,
the constraint solver may fail to return a viable so-
lution when path constraints are too complicated;
and those constraints that involve non-linear arith-
metic are normally undecidable [40]. Having said

!Note that “y_ 0_SYMINT” represents a symbolized in-
teger variable yo, “x-0_SYMINT” represents a symbolized
integer variable zg, and “CONST_0" represents a constant
whose value is 0.
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PC: true

SS: x= Xy, Y=o

NS: Line

2. int z=x+y

'

PC: true
Xo+y0=0 Xotyo70
SS:x=xg, y=yo, z=X01 Yy
NS:Line3. if (z == 0){
y
PC: xp+y,=0
>0 <0 >
yo SS: x=xg, y=yo, 2=X9+¥y m =
NS:Line4. if (y>0){ NS: Line 10.

PC: xpty0#0

SS: x= Xy, y=yo, z=xpt¥p

X<0

(y>0) {

PC: xg+y0=0 A yo>0

PC: xp+y=0 A yy<0

PC: xoty070 A x>0

SS: x= X0, y=yo, z=X0ty0

SS:x= x4, y=yo, 2=X0t Y0

SS: x= Xy, y=yo, z=X9+Y0

NS:Line 5. z = y-x;

NS:Line 7. z = x-y;

NS: Line I1. z = z-x;

'

I

'

PC: xg+0=0 A yy>0

PC: xpty=0 A yy<0

PC: xoty070 A x>0

SS: X= X0, y=yo, 2=Voxo

SS: X= X0, y=yo, 2=X00

SS: x= X9, Y=o, 2=ys

NS: Line 16. return z;

NS: Line 16. return z;

NS: Line 16. return z;

Xot1=0 A >0

Xot1=0 A <0

PC: xgt1070 A xo=<0

SS: x= X9, y=yo, z=xoty0

NS:Line 13. z = z+x;

I

PC: xpt1070 A xo<0

SS: x= Xy, y=yo, z=yp+2%xy

NS: Line 16. return z;

X0ty 0 A xo<0

Figure 3: Symbolic execution tree of MyMethod

Table 1: A summary of path constraints of MyMethod and generated source test cases.

Path ID  Path Constraint Generated Source TC

) y-0_SYMINT>CONST.0 && = s s
(y-0_SYMINT+x_0_SYMINT)==CONST0 ' %0 140

5 y_0_SYMINT<CONST 0 && i —o e — o
(y-0_.SYMINT+x_0_SYMINT)==CONST_0 2 %0~ %¥0

5 x_0_SYMINT>CONST0 && o —3a o
(y-0_.SYMINT+x_0_SYMINT)! =CONST.0 '3 %0 = >¥0
x_0_ SYMINT<CONST 0 &&

4 ta:xog=—4,y0 = —1

(y_0_.SYMINT+x_0_SYMINT)! =CONST_0

that, Choco-solver used in our study had worked
very well in the sense of ensuring a good perfor-
mance of our technique.

3.2.2. Path-directed source test case prioritization

Before the introduction of our test case prioritiza-
tion technique, we first give the following definitions
as the theoretical foundation.

Definition 1 (path). A path is defined as a se-
quence of statements that a given source test case
sequentially (or continuously) executes during a
program. run.

Given a program P which consists of a set of
statements P = {s1, s2,...,5,}. Consider a source
test case t that executes the following statements

510

515

520

one by one until the program exits: si, s3, S5, S3, S7-
The path of ¢ is the sequence composed of the afore-
mentioned statements, denoted as path(P,t) =<
S1,83,S85,S83,S87 >.

Definition 2 (statement set). A statement set is
defined as a set composed of elements in the state-
ment sequence of a path.

Recall ¢t with its path(P,t) =< s1, S3, S5, S3, S7 >.
The corresponding statement set is denoted as
set(Pt) = {si1,s3,85,87}. Apparently, a state-
ment set includes the statements covered by a
given source test case. Similarly, a statement set
of a given set of test cases TS = {t1,t2,...,tn}
is denoted as set(P, T'S), which includes all the
statements covered by test cases in TS, that is,
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set(P,t1) U set(P,ta) U--- U set(P,t,).

Definition 3 (path length). The length of a path is
defined as the size of statement set of a path.

Recall ¢t with its path(P,t) and set(P,t). The
length of path(P,t) is |set(P,t)| = 4.

On the basis of the aforementioned definitions,
we define the path distance between a set of test
cases and a single test case as follows.

Definition 4 (path distance). The path distance
between a set of test cases T'S and a single test case
t is defined as the number of statements covered by
t but not covered by TS.

Recall ¢t with its statement set {si,ss,ss,s7}.

Given a test case set TS with statement
set set(P, TS) {s1, $2, S¢, S7, S8 }- The
path distance between ¢t and TS is -calcu-

lated as dist(t, TS) = |set(P,t)\ set(P, TS)| =
{s|s € set(P,t) \s ¢ set(P, TS)} = 2.

Based on the aforementioned definitions, we pro-
pose an algorithm to prioritize source test cases.
The input of our algorithm is a collection of
key-value pairs KV = {< t1,set(P,t1) >,...,<
tn, set(P,t,) >}. For each of the key-value pair in
KV, the key represents a source test case and the
value represents the corresponding statement set.
The output of our algorithm is a list of prioritized
source test cases Ly,; where the higher the ranking
in the list, the higher the execution priority.

Algorithm 1: Source test case prioritiza-
tion based on path distance
Input: KV = {< t1,set(P,t1) >, < ta, set(P,t2) >
yeeey < tn,set(Ptn) >}
Output: Lyy;
1 Initialize Ly,;  EmptyList(), Spr < 0;
2 while KV # () do

3 Initialize d = 0, maz = 0, tmax NULL;
a for each key-value pair < t;, set(P,t;) > in KV
do
5 d = dist(ti, Spri) =| set(P,t;) \ set(P, Spri) |;
6 if d > maz then
7 max = d;
8 tmazx ti;
9 end
10 end
11 Spri Spri ) {tma:t};
12 Lpri  Append(tmaz);

13 KV KV \{< tmaz, set(P, tmaz) >};
14 end
15 return Ly,;

In Algorithm 1, the ranking list (L,.;) and the
set of prioritized source test cases (Sp;) are first
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initialized as empty (Line 1). For each key-value
pair in KV, the algorithm searches for the test
case that has the longest path distance from S,;;
(Lines 3-10). Then, the source test case (tmaz)
in the resulting key-value pair is added to Sp.;
and appended to Ly,; (Lines 11-12). In addition,
< tmaz, S€t(P, tmaz) > is removed from KV before
the next iteration starts. The steps in lines 3-13
are repeated until KV is empty. Apparently, the
list of prioritized source test cases is incrementally
updated with the test case that is farthest from the
already prioritized ones.

Intuitively speaking, the basic principle of our
prioritization technique is to rank the source test
cases based on the extent to which they can in-
crease the coverage of statements/paths. Theoreti-
cally speaking, since each generated source test case
corresponds to a path in the symbolic execution tree
of SUT, the execution path of a given source test
case can be obtained based on the mapping rela-
tionship between the symbolic execution tree and
the source code. In practice, we obtain the execu-
tion path of a source test case by monitoring the
output of special statements that are instrumented
in the beginning each of the branches and loops of
the SUT.

Let us revisit the example given in Section 3.2.1
to illustrate the prioritization technique. After Step
3 in our approach (Figure 2), we get the execution
paths of generated source test case, as shown in Ta-
ble 2. Then, in Step 4, the source test cases are pri-
oritized based on their execution paths. The source
test cases selected in each iteration of our algorithm
are shown in Table 3. The final outcome of the
source test case prioritization is < t4,%9,t1,t3 >.

3.8. Supporting Tool

A tool has been developed to automate our ap-
proach as much as possible. The tool was also inte-
grated with an existing tool, namely MT4WS [41],
which supports MT for Web services. We particu-
larly extended the “Test Case Generator” compo-
nent of MT4WS to support our approach from two
perspectives: (1) the integration of the SPF engine
and Choco-solver into the component to support
generation of source test cases, and (2) the imple-
mentation of Algorithm 1 in the component to sup-
port the prioritization of source test cases. More
specifically, the supporting tool aids the following
tasks.

1) Configuration of Symbolic Execution: This



605

610

615

620

625
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Table 2: The execution paths of generated source test cases

Path ID  Source Test Case Execution Path
1 w0 = —5,90 = 5 Linel%L%neZ—)Line3—>Line4—>
’ Line 5 — Line 16

9 to 30 = 2,40 = —2 L%nel—)L%neZ—)L%ne?)—)Linell—)
? Line 6 — Line 7 — Line 16

3 ts im0 = 3,90 = 2 L%nel%LiI}eQ%LingSﬁLineQ%
’ Line 10 — Line 11 — Line 16

Line 1 — Line 2 — Line 3 — Line 9 —
4 tgix0 =—4,y0 = —1

Line 10 — Line 12 — Line 13 — Line 16

Table 3: Details of each round of iteration of prioritization algorithm

Round of Remaining Elements dist(t;, Spri) ¢ Lpr; after
iteration  Source TCs in Spri v pre maz iteration
t1 6
to 7
1
ts 0 7 ta <tg>
tq 8
t1 2
2 to ty 3 to < tg,t2 >
t3 1
t 1
3 t; ta,ta 1 t1 < t4,t2,t1 >
4 t3 ta,ta,t1 1 t3 < ta,ta,t1,t3 >

task allows the user to specify key settings of
symbolic execution and outputs a configura-
tion file for SPF. The key settings include the
name of SUT, the method of interest to per-
form symbolic execution, and the method pa-
rameters that need to be symbolized. In ad-
dition, the user can specify the decision proce-
dure of symbolic execution, the listener to print
information about symbolic run, the search
strategy and search depth of symbolic execu-
tion tree.

Generation of Path Constraints: SPF is em-
ployed to perform symbolic execution on the

target method and outputs path constraints of
SUT.

Generation of Source Test Cases: Choco-
solver is used to solve the path constraints and
generate values of variables that satisfy the
path constraints. Then, source test cases are
constructed using the generated values.

Prioritization of Source Test Cases: The pri-
ority of source test cases is ranked using our
Algorithm 1. The outcome of this task is a list
of source test cases in which higher ranking
priority represents earlier execution.

4. Experimental Studies

Empirical studies were conducted to evaluate the
performance of our approach, including both source

630

test case generation and prioritization. This section

presents the settings of experimental studies.

J.1.

Research Questions

The experiments attempt to answer the following
research questions:

6 RQI

RQ2

a0 RQ3

RQ4

645

4.2.

How effective is MT in fault detection using the
source test cases generated by our approach?

To what extent does our approach outper-
form existing source test case generation tech-
niques?

Can the proposed technique reveal program
faults faster than baseline techniques with ran-
dom execution order?

What is the overhead of our approach for gen-
erating source test cases?

Object Programs

We selected seven objects programs representing
different application domains from various sources.
They are:
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e Airlines

Baggage Billing Service (BAG-
GAGE) [42] enables passengers to calculate
their own baggage fees using the baggage
charge scheme of Air China. BAGGAGE
performs the calculation based on several
factors, including the relevant flight, aircraft
cabin, flight region, baggage weight, airfare,
and eligibility for student discount.

Phone Bill Calculation (PHONE) [42] is a mo-
bile phone charge calculation system used by
China Unicom. It computes a user’s monthly
phone charge based on the communication
time, data usage, and mobile phone tariffs.

Parking Fee Calculation (PARKING) [12] pro-
vides the calculation service of a vehicle’s park-
ing fee for a driver. It accepts the parking
details including the vehicle type, day of the
week, discount coupon, and hours of parking,
and then calculates the parking fee according
to the predefined hourly rates.

Money Transfer Charging (CHAGRE)? simu-
lates Alipay’s money transfer operation from
one account to another, and calculates the fee
for money transfer. The program accepts the
following information to make a transaction
and charge for transfer fee: (1) the ID, balance,
remaining amount of fee-free transfer of the ac-
count sending the money, (2) the ID and holder
name of the account receiving the money, (3)
amount of transfer, and (4) way of settlement.

NumberUtil (NUMBER) [43] is a data type
conversion program in the Apache Common
Lang library for Java programming language.
The program converts a number of String
type into a number of Number type based
on a series of type conversion rules. The
createNumber method provides the primary
conversion function of the program, which ac-
cepts a number of string form and outputs that
number of Number type.

Get Tax (TAX)? enables a customer to cal-
culate the total amount of sale taxes paid for
the purchased goods. TAX accepts the list of
goods with amount, price, and rate of tax, and
outputs the total amount of taxes.

2https://github.com/PaDMT-USTB
3https://github.com /elainechan /sales-tax-calculator
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e MathUtil (MATH) [43] is a utility class in the
Apache Common Math library for Java pro-
gramming language. It provides miscellaneous
utility functions that address common math-
ematical problems such as the calculation of
the greatest common divisor of two numbers,
the normalization of an angle, and the distance
calculation between two points.

All object programs are written in Java. The size
of each object, measured by lines of code (LOC), is
given in the second column of Table 4.

4.8. MR Identification

For programs BAGGAGE and PHONE, we re-
used existing MRs that were identified based on
the uMT approach [42]. We examined the valid-
ity of the original MRs, and found that some MRs
actually represent the same necessary properties of
SUT, only with different forms. After merging these
MRs, we finally obtained 18 MRs for each of the
BAGGAGE and PHONE programs, as given in the
third column of Table 4.

We also followed the uMT approach [42] to
identify MRs for programs PARKING, CHARGE,
NUMBER, TAX, and MATH. We defined their
data mutation operators (DMOs) and mapping
rules for output relations based on their specifica-
tions. By manually composing the DOMs and map-
ping rules, we finally derived 5, 20, 13, 24, and 3
MRs for PARKING, CHARGE, NUMBER, TAX,
and MATH, respectively. Note that we also manu-
ally checked their validity to ensure that they cor-
rectly expressed the necessary properties of SUT.

Details of the identified MRs are available at
https://github.com/PaDMT-USTB.

4.4. Faulty Versions of Object Programs

Our experiments used both artificially seeded
faults (or mutants) and real-life faults.  For
programs BAGGAGE, PHONE, PARKING,
CHARGE, TAX, and MATH, we applied mutation
analysis [44] to generate mutants based on the
MuJava tool [45]. Each mutant was generated
by applying a singe syntactic change, namely the
mutation operator, to a certain statement in the
object program. It is well known that there exist
some “equivalent mutants”, which always have the
same execution behaviors as the base program. To
identify these equivalent mutants, we investigated
the mutants that were not killed by all the test
cases generated in this study, and manually checked



745

750

755

760

765

770

Table 4: Basic information of object programs

Object program LOC # MRs  # Faulty versions Source of faulty versions
MuJava with mutation operators
BAGGAGE 101 18 56 AOIS, AORB, COI, LOI, ROR, AOIU
MuJava with mutation operators
PHONE 113 18 112 AOIS, AOTU, AORB, COI, LOI, ROR
MuJava with mutation operators
PARKING 266 5 754 AODU, AOIS, AORB, COD, COI, COR, LOIL ROR
MuJava with mutation operators
CHARGE 1008 20 541 AODU, AOIS, AORB, AOIU, CDL, COD, COI,
COR, LOI, ODL, ROR, SDL, VDL
Real Bugs from Apache Common Lang in Defects4J
NUMBER 1438 13 8 Bug IDs: 1, 3, 5, 16, 27, 36, 44, 58
MuJava with mutation operators
TAX 2150 24 1565 AODU, AOIS, AORB, AOIU, CDL,
COR, COI, LOI, ODL, ROR
MuJava with mutation operators
MATH 2002 3 435 AQIS, AORB, AOIU, CDL, COI,

LOI, ODL, ROR, SDL, VDL

whether they are semantically equivalent to the
base program. Since the number of candidate
mutants was relatively small, it is feasible to do the
manual checking. Finally, we generated 56, 112,
754, 541, 1565, and 435 non-equivalent mutants
for BAGGAGE, PHONE, PARKING, CHARGE,
TAX, and MATH, respectively.

For program NUMBER, a collection of real-
world faults have been provided in an open-source
project [43]. All these faults are located in the
NumberUtil class. As a result, 8 faults (whose bug
IDs are 1, 3, 5, 16, 27, 36, 44, and 58) were included
in our experiments.

The fourth and fifth columns of Table 4 summa-
rize the basic information of these faulty versions.

4.5. Generation of Test Cases

In our experiments, we first employed our ap-
proach to generate source test cases for all seven
object programs. For each object program, we ex-
hausted all possible execution paths obtained by
SPF and attempted to solve their corresponding
path constraints. After excluding the unsolvable
path constraints, we generated 34, 32, 144, 25,
52, 18, and 68 source test cases for BAGGAGE,
PHONE, PARKING, CHARGE, NUMBER, TAX,
and MATH, respectively.

Note that some MRs may not be applicable to
all source test cases. Therefore, before generating
following-up test cases, we first determined a subset
of applicable MRs for a certain source test case.
Then, the follow-up test cases can be constructed
based on the selected MRs.

775

780

785

790

795

800

805

11

4.6. Variables and Measurements

4.6.1. Independent variable

The independent variable in our experiments is
related to the techniques under study. A natu-
ral choice is our approach based on Path-Directed
source test case generation and prioritization for
MT (abbreviated as PaDMT hereafter).

Three baseline techniques were selected for com-
parison in RQ2 and RQ3. They are:

e RT (random testing based method): For each
input parameter of an object program, we ran-
domly generated a value within the valid value
range of parameter. The generated values for
input parameters together constituted a test
case of an object program.

e ART (Adaptive random testing based
method): We followed the previous study [21]
to use ART to generate test cases — In addition
to the random generation, test cases were
further evenly spread across the whole input
domain.

e DSE (Dynamic symbolic execution based
method): The original work [22] applied DSE
into C# programs. In this study, we adapted
the method to Java programs with the sup-
port of SPF. DSE requires some initial test
cases that drive the symbolic execution engine
to exercise certain program paths and obtain
the corresponding path constraints. A com-
mon way is to use random test cases as the ini-
tial ones [4]. Since both DSE and SPF share
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the similar principle in test case generation, we
implemented DSE using SPF in order to save
experimental efforts. Unless otherwise speci-
fied, DSE baseline technique hereafter refers
to the implementation of SPF.

For fair comparisons, each of these baseline tech-
niques generated the same number of test cases for
every object program as that of PaDMT. In ad-
dition, all baselines used random prioritization for
the study of RQ3. Since our experiments involved
some randomness, especially for RT and ART, each
technique was repeatedly run for 30 times on every
object program to guarantee the statistical reliabil-
ity of our experimental results.

4.6.2. Dependent variable
The dependent variable mainly concerns about
the metrics for evaluation. For RQ1, we used mu-
tation score (MS) to examine the fault detection
effectiveness of PaDMT. MS is defined as the ratio
of the number of killed mutants (or revealed faults)
against the total number of non-equivalent mutants
(or all faults). It is formally defined as:
Ny
Nm - Ne’
where P is the SUT, TS is a test suite, Ny is the
number of mutants killed by TS, IV, is the total
number of mutants, N, is the number of equivalent
mutants. In the context of MT, a mutant is said to
be killed whenever an MR is violated in testing (i.e.,
an MR does not hold among the outputs of its cor-
responding metamorphic test group). Apparently,
the higher value MS has, the more effective a test-
ing technique is.

The fault detection rate, a metric similar to MS,
was used for RQ2 to show the trend of fault detec-
tion as the number of test cases increases. Within
a whole test suite T'S for each technique on ev-
ery object program, we selected the first k% test
cases and measured the percentage of the number
of faults detected by these test cases over the total
number of faults. A higher fault detection rate intu-
itively implies a better effectiveness of the first k%
test cases. In our study, k = 10,20, ..., 100, where
the fault detection rate when k = 100 is identical
to MS.

For RQ3, we used the average percentage of faults
detected (APFD) to evaluate the fault detection ef-
ficiency. APFD is formally defined as:
Zyil T'F; 1

nm +%7

MS(P, TS) = (4.1)

APFD=1— (4.2)
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Table 5: Mutation scores of source test suites for object
programs

Type of Fault  Object Program  Mutation Score

BAGGAGE 73.21%

Seeded PHONE 38.39%
Faults PARKING 33.55%
CHARGE 71.16%

TAX 97.96%

MATH 94.71%

Average 68.16%

Real Faults NUMBER 37.50%

where n refers to the number of test cases in the
test suite, m represents the total number of faults,
and TF; denotes the number of test cases required
for detecting the i¢th fault. The value of APFD is
between 0 and 1, and a larger APFD of a set of
prioritized test cases indicates that the prioritized
test cases can detect more faults with fewer test
cases, and thereby the corresponding technique has
a better fault detection efficiency.

For RQ4, we used the average time spent on gen-
erating a fixed number of test cases to evaluate the
overhead of source test case generation. In addi-
tion, the overhead of prioritization is calculated as:

Tpa - T
po — LprapMT DSE (4.3)
TpapmT

where TpopymT and Tpsg denote the time cost of
PaDMT and DSE, respectively. Apparently, the
smaller PO, the lower the overhead.

5. Experimental results

This section reports and analyzes the results of
our experiments.

5.1. Fault Detection Effectiveness of Our Approach
(RQ1)

To answer RQ1, we leveraged MS to quantita-
tively measure the fault detection effectiveness of
test cases generated by our approach (PaDMT),
as summarized in Table 5. Across the six object
programs with seeded faults (that is, mutants), the
average MS ranged from 33.55% to 97.96%, with
a mean value of 68.16%. In a word, on average,
our approach could detect nearly 70% of the faults
seeded by mutation analysis.

With regard to the real faults in object program
NUMBER, over one third of the real faults (3 out
of 8) were detected. This observation indicates that
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MT might be less effective for real faults compared
with that for seeded faults. One plausible reason,
as discussed in a previous study [46], is that mu-
tation is just a simulation of real faults, and test
cases that kill mutants are not guaranteed to reveal
real faults. In addition, the automatically gener-
ated mutants often include a large number of “easy-
to-kill” faults, whereas the real-life faults collected
from the open-source projects are normally non-
trivial ones as some easy-to-detect faults might al-
ready be removed before the release of a version.

More importantly, MT made use of MRs, in-
stead of a test oracle, to verify test results. It is
not surprising at all if some faults could not by re-
flected by MR violations. Previous studies [18] have
justified that a small number of diverse MRs may
be sufficient by themselves to detect most faults
that are revealed by an oracle. Our evaluation re-
sults indicate that much work is yet to be done
for the identification of adequate and diverse MRs
to cover most functionalities/execution behaviors of
SUT and thus a wide variety of faults.

5.2. Fault Detection Effectiveness: Our Approach
Vs. Baselines (RQ2)

To answer RQ2, we compared the average fault
detection rate of the top k% test cases (k =
10,20, ...,100) generated by PaDMT against those
of RT, ART and DSE. Figure 4 shows the trend of
fault detection rate on each object program.

Among all four techniques, PaDMT generally
performed the best, followed by DSE, ART, and
finally RT. The curve of PaDMT is always the first
one that approaches and then reaches the upper
boundary of fault detection rate. This observation
indicates that our approach can enable MT to re-
veal as many faults as early as possible.

RT was always the worst performer in all tech-
niques. Since all three other techniques aim at gen-
erating test cases with high fault-detection effec-
tiveness, such an observation is consistent with our
expectation. ART constantly outperformed RT), re-
inforcing the observation made in previous stud-
ies [21].

It is particularly interesting to compare the per-
formance trend between PaDMT and DSE. In the
vast majority of cases, PaDMT performed better
than DSE. However, in some cases of k being small,
DSE could outperform PaDMT (e.g., when k = 30
for BAGGAGE). As k increased, the fault detec-
tion rate of DSE was gradually approaching that of
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PaDMT (e.g., when k = 100 across all object pro-
grams). The reason is that both PaDMT and DSE
exercised the maximum number of paths they could
find when all the generated source test cases were
exhausted. Accordingly, their fault detection effec-
tiveness would be very close to each other with re-
gard to the entire set of generated source test cases.

In addition, it is interesting to compare the per-
formance trend between symbolic-execution based
approaches (DSE and PaDMT) and the random
approaches (RT and ART). Overall, the symbolic-
execution based approaches outperformed the ran-
dom approaches. When k approached 100, the
fault detection rates of symbolic-execution based
approaches were always better than those of the
random approaches. The reason is that test cases
generated by RT and ART are still random ones,
for which it is very difficult to cover some “hard-
to-reach” statements/paths, which are one major
target of DSE and PaDMT. However, in some
cases of k being small, ART could outperform DSE
(e.g., when & = 10 for NUMBER and & = 90
for PHONE). In these cases, the randomness and
even spreading of test cases might help random
approaches quickly cover some “rare” scenarios,
whereas the systematic mechanism of exploring
path space limited the flexibility of symbolic execu-
tion based approaches in reaching some particular
paths quickly.

For each object program, we used SPSS to per-
form t-test on the fault detection rates of top k%
tst cases generated by each pair of techniques (our
approach vs. each benchmark technique) to test
whether there is a significant difference in their av-
erages. The results are shown in Table 6. It can
be observed that the average fault detection rate of
PaDMT was significantly higher than those of RT
and ART (p < 0.05) across all values of k and ob-
ject programs (except for the scenario of PaDMT
versus ART for the fault detection rate of top 10%
test cases of PHONE). In the vast majority of cases
where the value of k& was below 100, the average
fault detection rate values of PaDMT were signif-
icantly higher than those of DSE across all object
programs. However, when k reached 100, there was
no significant difference between PaDMT and DSE.

5.3. Fault Detection Efficiency (RQ3)

For answering RQ3, we calculated the APFD of
PaDMT, in comparison with that of random prior-
itization of test cases generated by RT, ART, and
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Figure 4: Average fault detection rate of top k% test cases
in the sequence of prioritized test cases (k = 10, 20,...,100)

Table 7: Average APFD of prioritization techniques

Object Average APFD
Random prioritization

Program RT ART DSE PaDMT
BAGGAGE 34.89% 42.32% 58.43%  61.35%
PHONE 21.55%  28.26%  27.84%  31.75%
PARKING  26.88% 28.55% 30.15%  31.01%
CHARGE 36.20% 42.67%  46.03% 53.48%
TAX 61.73% 63.41% 69.76%  82.21%
MATH 68.09% 69.14%  75.85%  83.64%
NUMBER 26.88% 30.33%  33.00%  34.12%

DSE. The average APFD results are summarized in
Table 7.

It can be observed that PaDMT achieved the
highest APFD across all seven object programs, fol-
lowed by DSE, ART, and RT. In six out of seven
cases, DSE is better than ART. RT performed the
worst for all the object programs. This observation
indicates that our approach is able to reveal faults
faster than the baseline techniques.

We further conducted t-test to verify the statis-
tical significance of the performance difference be-
tween our technique and the other three baselines
on the mean of APFD. For each baseline, the null
hypothesis (Hy) was that the performance of base-
line had no significant difference with that of our
technique, while the alternative hypothesis (H;)
was that the performance difference was signifi-
cant. The results of t-test are shown in Table 8.
It can be observed that for the given confidence
level @ = 0.05, the null hypothesis was rejected
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across all pairs of techniques and all object pro-
grams. Therefore, the average APFD difference be-
tween our technique and each of the baselines was
always statistically significant.

In addition to t-test, we also calculated the effect
size using Cohen’s d to measure the magnitude of
the performance difference between our technique
and each of the baselines on the mean of APFD, as
shown in Table 8. It can be observed that the dif-
ference between PaDMT and RT was large across
all object programs (effect size > 0.8). Large differ-
ence was also observed between ART and PaDMT.
Finally, the difference between DSE and PaDMT
was large for six out of seven object programs, and
medium for BAGGAGE (effect size > 0.5). In sum-
mary, the performance difference between our tech-
nique and the baselines was large in most cases.

5.4. Overhead of Source Test Case Generation
(RQ4)

To answer RQ4, we compared the average time
spent on generating a fixed number of test cases
using PaDMT, RT, ART, and DSE (i.e., 34, 32, 144,
25, 52, 18, and 68 source test cases for BAGGAGE,
PHONE, PARKING, CHARGE, NUMBER, TAX,
and MATH, respectively). The results are shown
in Table 9.

Across all object programs, the overhead of pri-
oritization varies from 0.023% to 0.818%, which in-
dicates that the time cost of source test case prior-
itization is negligible compared with that of source
test case generation. Therefore, the overhead in-
curred by PaDMT was only marginally higher than
that of DSE. Another observation is that the source
test case generation time of PaDMT/DSE was
much longer than that of RT/ART. It is intuitively
reasonable since the symbolic execution and con-
straint solving can introduce heavy overhead. Nev-
ertheless, such overhead can be negligible if we
consider the long test execution time incurred by
the large number of random test cases in RT/ART
and the much higher fault-detection effectiveness of
PaDMT.

5.5. Threats to Validity

The threats of validity of our study are discussed
as follows.

Correctness of the implementation of our
approach: We integrated several pieces of open-
source software to support the main steps of our
approach, including (1) the symbolic execution, a
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Table 8: Statistical significance and effect size for the average APFD difference

Object RT versus PaDMT ART versus PaDMT DSE versus PaDMT
t-test Effect t-test Effect t-test Effect
Program . . .
t D size t p size t P size
BAGGAGE 23.065 1.377x10~20  4.211 20.856 4.891x10~'  3.808  3.029  5.116x10~%  0.553
PHONE 22.032 1.174x10~19  2.667 4.022  8.320x10~%  0.986 6.157  1.037x10~%  1.124
PARKING  33.637 8.378x10726  6.141 8.609  1.758x1079  1.572 14.332 1.082x10~4 2617
CHARGE  30.275 1.700x10-23  5.527 15.861 7.892x10~'6  2.896 6.522  3.846x10~7  1.191
NUMBER 18476 1.391x10~'7  3.373  6.352  6.092x10~7 1.160 5915  2.013x10~%  1.080
TAX 32,470 2.553x10718 5928 28215 4.431x10~'7  5.151 18.957 1.635x10~1'*  3.461
MATH 19.676  2.363x10724  3.592  17.692 1.229x10722  3.230 14.101 6.977x10718 2574
Table 9: Overhead of source test case generation
Object Overhead (ms)
Program RT ART DSE PaDMT PO(%)
BAGGAGE 0.161 2.115 590.266 591.756  0.252
PHONE 0.104 1.128 705.720 707.026  0.185
PARKING  0.137 1.223  2040.505  2043.094  0.127
CHARGE  1.421 3.165 661.279 662.565  0.194
NUMBER  0.296 0.825 691.926 697.632  0.818
TAX 0.119 0.411 1182.843 1185.163  0.196
MATH 0.049 0.143 11360.578 11363.135  0.023

main component of our approach, supported by

SPF; and (2) the constraint solving supported by om0

Choco-solver. The open-source software has been
extensively used and continuously updated. In ad-
dition, other parts of the implementation have been
thoroughly checked by different individuals and we
are confident that their functions are in line with
our requirements.

Representativeness of object programs and
their faulty versions: The validity of our exper-
imental results would be further improved if more
complex object programs were included. The se-
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lection of object program was mainly due to their
availability and the amount of MRs for experi-
ments. We have collected object programs from
different application domains to reduce the effect
of this threat to the experimental results. With re-
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gard to the mutants of object programs, we have
leveraged all applicable mutation operators to in-
ject faults into the object programs. The number
of real faults used in our experiments is relatively
small, but the total amount of real faults in the
open-source project is also small. Although our ex-
periment does not involve large-size programs (e.g.
those with millions of LOC), we note that it is fea-
sible to generalize our approach to larger real-world
subjects with millions of LOC with the help of fol-
lowing treatments: We first divide the larger real-
world programs into multiple small-scale modules
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that can be independently tested; for each mod-
ule, we analyze the corresponding MRs according
to its functionality, and perform the proposed ap-
proach to derive the executable paths and their cor-
responding constraints; finally, source test cases are
generated for each module, and the prioritization
method is applied to the source test cases of each
module.

Selection of baseline techniques: The com-
parison of source test case generation involved three
baseline techniques that have used in MT field.
With regard to prioritization of source test cases,
we have not yet found any existing prioritization
technique specifically designed for source test cases
in MT. As a result, we compared our approach with
random prioritization. It is still a promising re-
search direction to extend this study by applying
existing prioritization techniques in the general con-
text of software testing into MT.

Representativeness of evaluation metrics:
The evaluation metrics involved in our experiments
have been extensively used in previous studies. Mu-
tation score is a well-known metric to evaluate the
fault detection effectiveness of testing techniques.
APFD has been commonly used to evaluate the
effectiveness of test case prioritization techniques.
Thus, the threat of evaluation metrics to our ex-
periments was minimized.
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6. Related Work

Compared with the extensive investigations on
MRs, a few studies have been conducted on the
source test case generation for MT. Chen et al. [27]
compared the performance of random source test
cases and special values in MT, and observed that
the test cases generated by MT are complemen-
tary to special values. Such a result was confirmed
by a later study [47]. Wu [23] proposed iterative
metamorphic testing (IMT) to save the efforts for
source test case generation. Given a small set of
initial source test cases, the existing MRs are iter-
atively used to generate follow-up test cases. The
follow-up test cases of previous round are used as
source test cases of the next round of iteration. Sun
et al. [24] proposed a fixed-sized IMT technique,
called FxIMT, for testing Web services with limited
resources. Evaluation results showed that FxIMT
exhibited a comparable fault detection effectiveness
of MT, while using significantly fewer testing efforts
for source test case generation and execution. Dong
et al. [25] integrated MT with evolutionary test-
ing, aiming at addressing the latter’s oracle prob-
lem. In their improved evolutionary testing tech-
nique, source test cases were generated by genetic
algorithms with a so-called “distance-oriented” ap-
proach — The fitness function was designed such
that the generated test cases could quickly achieve
all objectives such as the execution of conditions
or branches. Barus et al. [21] suggested the use of
adaptive random testing, an enhancement of ran-
dom testing, in the source test case generation.
Adaptive random testing [3] attempts to increase
the diversity among test cases by evenly spreading
them across the whole input domain. It was shown
that such a diversity did help improve the fault-
detection effectiveness of MT. The new techniques
proposed in this paper also aim at improving the
diversity among source test cases, from a different
perspective, that is, the path distance.

Alatawi et al. [22] proposed a source test case
generation strategy based on the dynamic symbolic
execution (DSE), which is basically the mixture of
symbolic and concrete executions. In this study,
instead of DSE, we make use of the contempo-
rary symbolic execution technique and tool (that is,
SPF) to support the generation of source test cases
in MT. In addition, a path-directed prioritization
technique is developed to schedule the execution
order of the generated test cases. Also provided are
a complete framework and an automated tool that
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systemically integrate all proposed techniques into
MT.

The integration of symbolic execution and MT
was first proposed by Chen et al. [48]. In their
“semi-proving” approach, MT was applied to alle-
viate the oracle problem in program proving. Sym-
bolic inputs, instead of concrete values, were used
as the test cases for MT. In this way, a satisfaction
of an MR on symbolic test cases would guarantee
the correctness of SUT on certain properties, that
is, the program could be semi-proven. By contrast,
our study still uses concrete test cases, although
their generation is guided by symbolic execution.
This is due to the different context we are target-
ing at — Our goal is to improve the performance of
MT.

7. Conclusion

Metamorphic testing (MT) is a simple yet effec-
tive technique that not only alleviates the oracle
problem effectively, but also constructs test cases
that are complementary to those created by tradi-
tional testing methods. In addition to the meta-
morphic relations (MRs), the generation of source
test cases attracted increasing research interests.
Some techniques have been proposed to generate
“good” source test cases that help improve the over-
all performance of MT. In this paper, we devel-
oped a new path-directed method for the source test
case generation. It utilizes the techniques of sym-
bolic execution and constraint solver to obtain pro-
gram path constraints, which, in turn, provide the
basis for generating source test cases that achieve
a good coverage of execution paths and thus de-
liver a higher fault detection effectiveness. An ad-
ditional prioritization technique was proposed to
further improve the diversity among test cases and
hence boost the testing efficiency. A tool was devel-
oped to automate the new techniques and integrate
them with the existing MT4WS tool. The exper-
imental studies based on seven representative pro-
grams demonstrated the high performance of the
proposed techniques.

The study reveals quite a few research directions
for future work. We plan to study the performance
of our approach and tool through the application
into industrial large-size programs in the future.
For example, more large-scale empirical studies are
necessary to further evaluate the performance of the
proposed path-directed techniques. It is also inter-
esting to investigate how to integrate other types
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of symbolic execution, such as dynamic symbolic
execution and symbolic backward execution, into
our tool. The present study only made use of path
constraints in the process of source test case gen-
eration. It is worthwhile to study whether and
how the concept can be used in the construction
of follow-up test cases. A promising direction is
to consider more sophisticated distance measures
and coverage criteria discussed in [49] for prioritiz-
ing the source test cases, with an aim to further
improve the fault detection efficiency of MT. In ad-
dition, compared with random prioritization, it is
worthwhile to study the improvement of fault de-
tection efficiency achieved by different prioritization
strategies. Finally, it is of importance to study the
difference between the cost-effectiveness of manu-
ally identifying MRs with that of manually defining
test oracles, which helps to demonstrate the prac-
tical benefits of MT.
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