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Rate Adaptive Fog Service Platform for
Heterogeneous IoT Applications

Tiehua Zhang, Jiong Jin, Member, IEEE, Xi Zheng, Member, IEEE, and Yun Yang, Senior Member, IEEE

Abstract—With the advancement of the Internet of Things
(IoT) technologies, the number of heterogeneous IoT applications
requiring a variety of resources and services is increasing dramat-
ically. Recently, the introduction of fog computing has further un-
locked the potential of real-time services within the IoT context.
On the basis of fog architecture, we herein propose a novel rate
adaptive fog service platform 1 aiming at heterogeneous services
provisioning and optimized service rate allocation. By forming
several service groups in the fog network in which each service
could be adequately provisioned, service consumers would always
benefit from the fact that the majority of services produced by
IoT applications are in their proximity and thus are delivered
to the destination promptly. Taking advantage of the well-known
network utility maximization (NUM) approach, a service rate
adaptive algorithm is developed to empower fog nodes working
together to adjust service delivery rate dynamically. Throughout
this process, the algorithm takes the current network condition
and constraint into account to ensure the rate is calibrated in
favor of providing satisfactory Quality of Service (QoS) to each
service receiver at the same time. Compared to other resource
allocation strategies that mainly focus on allocating resources for
a single network service, our proposed platform is capable of
not only dealing with both elastic and inelastic services but also
handling the abrupt network changes and converging back to
the global optimum rapidly.

Index Terms—Fog Computing; Internet of Things (IoT);
Service-Oriented Networking; Network Utility Maximization
(NUM); Quality of Service (QoS).

I. INTRODUCTION

INTERNET of Things (IoT) is a growing topic of interest
and has already attracted widespread attention from both

academia and industries. The consensus on the definition of
IoT is a network composed of heterogeneous devices (or
things) that are equipped with computation and communi-
cation capabilities, some of which are able to interact with
the cloud to complete tasks collaboratively. Because of the
communicating abilities with the cloud, these things become
“much smarter” since the data collected from physical sur-
roundings could be further analyzed [2].

The proliferation of IoT technology in service-oriented
computing has unleashed the great potential in many areas,
especially for the service provisioning companies in the soft-
ware industry seeking to leverage the advancement of IoT and
provide a wide range of real-time services so as to cater for
the growing needs from users [3]. According to the Internet of

Tiehua Zhang, Jiong Jin and Yun Yang are with the School of Software
and Electrical Engineering, Swinburne University of Technology, Melbourne,
Australia (e-mail: tiehuazhang, jiongjin, yyang@swin.edu.au).

Xi Zheng is with the Department of Computing, Macquarie University,
Sydney, Australia (e-mail: james.zheng@mq.edu.au).

1Preliminary version of this paper appeared in a conferences [1].

Services (IoS) vision, these prevalent IoT applications rely on
the process of collecting and analyzing users’ data in order to
offer highly personalized, context-aware services [4]. During
this process, the interaction, communication and collaboration
between things and the cloud are inevitable [5], [6].

Undoubtedly, the use of well-known cloud computing
paradigm demonstrates the benefits in many aspects, e.g., the
provision of enterprise-level computing, storage and network-
ing capabilities in a “Pay-As-You-Go” fashion to reduce the
cost of individuals and organizations [7]. Apart from that,
these coarse-grained, discoverable application entities could
be centralized at the cloud to take advantage of convenient,
low-cost manageability and strong reliability [8].

Emerging IoT applications, nevertheless, have more strin-
gent latency requirements and mostly expect a timely response.
Therefore, waiting for services to be transferred from the
cloud is no longer efficient and effective due to issues like
communication overhead and service delivery latency. Besides,
the privacy and security of user data is another big chal-
lenge [9]. IoT applications in cloud platform usually trade-
off data privacy for service quality by storing and retrieving
sensitive data in the cloud. Even though some mechanisms
have been developed for confidentiality purpose, it could still
cause problems like colossal bandwidth waste and energy
consumption [10]. These issues essentially suggest that the
reliance on traditional IoT-Cloud schema is no longer an
efficient approach, and it is imperative to come up with an
alternative computing paradigm that could seal the gap.

To address these issues mentioned above and cope with the
inadequacy of the cloud, fog computing has been introduced.
Initially proposed by Cisco, fog computing is introduced to
empower the computing directly at the edge of the network
to host different IoT applications and provide services in this
regard [5]. In this ecosystem, facilities located at the edge of
the network and capable of providing resources for services
are called fog nodes, which are considered as an extension
of the cloud at the edge with the overarching goal of “off-
loading” from the cloud. Fog nodes, like the proxy of the
cloud, could be equipped with not only computation power,
but also storage and networking resources required by a variety
of IoT applications so that the deployment no longer needs to
happen on either resource-constrained IoT devices or remote
cloud. In this sense, fog and cloud complement each other
to form a service continuum from which end users could
seamlessly receive the particular service [6].

Along with the rapid growth of IoT applications, hetero-
geneous services are tailored to meet the needs of service
consumers with certain QoS guarantee. In reality, stable
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service delivery rate is a crucial component to achieve the
desirable QoS, and it could act as a significant part in service
consumers perception with regard to the overall performance
of the service invocation [11], [12]. In our work, the utility
function is used to measure user’s satisfaction and to model the
QoS performance, which increases as the increase of service
delivery rate. Thus, the use of network utility maximization
(NUM) sheds light on maximizing the allocation of service
delivery rate based on residual bandwidth under current IoT
network and therefore benefits QoS simultaneously. From the
utility point of view, services provisioned by different IoT
applications can be categorized into two main groups, i.e.,
traditional elastic services and real-time inelastic services [13].
The former usually refers to the ones like file transfer, data
analysis and web browsing services, etc., where each service
attains a strictly increasing and concave utility function to
reflect its QoS performance. In comparison, real-time inelastic
services are generally provided by real-time applications such
as audio, video and multimedia delivery applications. Such
services have an intrinsic bandwidth threshold in nature and
adopt the sigmoid-like functions to describe the particular
QoS [14].

In our work, we seek to leverage the advancement of fog
computing by accommodating fog nodes as the service holders
for heterogenous IoT applications. The proposed fog service
provision platform enables fog nodes to collaborate vertically
to adjust service transmission rates in real time under the
resources-constrained IoT network.

The main contributions of this paper are as follows:
1) To better serve for services through IoT network, fog

architecture has been applied under the service-oriented
computing context. Based on the fog architecture, a fog
service platform is developed to support both elastic and
inelastic IoT services. Also, fog nodes, which can be
easily deployed in the proximity of end users/devices,
complement the cloud as the role of the service provider
in the delay-sensitive service spectrum.

2) An analytical framework, including a mathematical-
proven theorem, is generalized and ready to use. This
framework is guaranteed to support both elastic and in-
elastic services and capable of allocating the underlying
IoT resources to each service type both fairly and opti-
mally. In other words, the unstable oscillation problem
happened when simultaneously allocating resource to
different service types no longer exists.

3) With the help of the analytical framework, a service
rate adaptive algorithm is devised from an engineering
point of view, and distributedly runs on each fog node in
the platform. The algorithm enables the fog nodes to 1)
recursively collaborate with its parent node to calibrate
the service transmission rate to each requester based
on current network conditions and constraint; 2) handle
the abrupt changes of the IoT network and stabilize the
affected service rate rapidly; and 3) ensure the fairness
and global optimum with regards to the rate adaptation.

4) The platform is adopted in a shopping use case and
modelled using a fog deployment simulator to mimic
the real-world deployment closely. Both service delivery

latency and energy consumption are then studied to
verify its effectiveness.

The rest of paper is organized as follows. We review the
related work on both service delivery architecture and NUM-
based service rate allocation in Section II. In Section III, we
introduce the architecture of the proposed platform in detail
and formulate the optimisation problem in Section IV. We
then develop the service rate adaptive algorithm in Section
V, followed by a shopping mall case study along with the
experiments to illustrate the practicality and effectiveness of
the platform in Section VI. We draw the conclusion and point
out the future work in Section VII.

II. RELATED WORK

There are several previous efforts made towards developing
service delivery architecture to connect service consumers
and providers in IoT environment. In [3], the service-oriented
architecture (SOA) is embedded onto IoT devices to provide
on-demand web services to facilitate the service querying
and discovery process. However, some critical issues, e.g.,
limited computing capabilities of IoT devices and complex IoT
network conditions, are not discussed in this paper. Apart from
that, the authors of [15] propose a vehicular data cloud plat-
form to provide real-time information such as traffic control
and management, car location tracking and monitoring, and
road condition to different receivers in IoT environment, but
service transmission latency and underlying transportation cost
are not considered in their model. In addition, authors in [16]
offer several schemes to reduce power consumption by hard
real-time services and power-aware profitable provisioning of
soft real-time services. The traditional cloud data centre is
selected as the service provider in which a real-time virtual
machine model is devised to handle the real-time service
requests, and power-aware provisioning of virtual machines for
real-time services is mainly studied. Similarly, the work in [17]
develop a real-time cloud services framework to Vehicular
Clients (VCs) aiming to cope with delay and delay-jitter
issues.

A group of efforts has been spent on the research of
leveraging the fog computing paradigm in different aspects.
In [18], authors propose an adaptive fog configuration strate-
gies to dynamically configure fog nodes to host services
for sensors deployed in an industrial environment. The work
in [19] focuses on solving the load balancing issue so as to
achieve resource efficiency and avoid bottlenecks. Likewise,
the bandwidth resource allocation problem is studied in [20]
concerning the scale of IoT devices that are connected into the
fog network, which is then solved using the analytic hierarchy
process (AHP). However, there is no guarantee for the global
optimum allocation, and the service types from different IoT
devices are not taken into account.

By comprehending the service delivery delay caused by
relying solely on the cloud data centre, authors in [21] present
a service provision framework incorporating both cloud and
mobile edge computing. In this work, the cloud plane is
used to process large-scale, long-term, global data, which
can be used to obtain decision making information such
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as feature, law, or rule sets. In contrast, the edge plane is
used to process small-scale, short-term, local data, which is
used to present a real-time situation. The adoption of this
framework essentially gives the alternative that offloads the
computational workload from the cloud by assigning certain
processing tasks to the mobile edge devices. However, it is
very likely that this framework could malfunction as most
of the real-time applications are resource/energy consuming.
In other words, various resources other than computational
power should be made available and put in the edge so that
heterogeneous services could be provisioned both robustly and
promptly. Similarly, the work in [22] focuses on allocating
resources for microservices in the edge cloud environment,
and an online auction-based mechanism is proposed so that
the edge cloud platform can reclaim the allocated resources
and reallocate them to other microservices waiting in the line.
Also, authors in [23] study on minimizing the end-to-end
service latency and service completion time through a latency-
oblivious distributed task scheduling scheme to improve the
QoS.

To better utilize underlying IT resources and achieve good
QoS, an autonomic service platform is proposed in [11]. The
core component of this platform is a service routing protocol
that makes use of NUM, allowing service intermediaries to
route the service request from consumers to providers dy-
namically. Unfortunately, this platform is not devised for IoT
networking environment and does not take network changes
into consideration either. To enhance the quality of experience
across all users, authors in [24] devote to designing the utility-
based framework within a total network transit cost budget,
and with the same philosophy of our work, maximizing the
utility would lead to a better user QoS experience.

The work in [25] focuses on achieving good QoS by adjust-
ing service transmission rate that maximizes the total receiver
utilities in a multicast multirate network setting. However, one
serious limitation of their approach is that it can only handle
elastic network services, meaning the utility function selected
must be strictly concave and thus are not suitable for real-
time IoT services. Authors in [26] raise concerns on QoS as
well, thus a joint optimisation problem regarding minimization
of the service latency, optimal revenue maximization while
keeping an acceptable QoS is solved through the proposed
adaptive service offloading scheme.

III. THE ARCHITECTURE OF FOG SERVICE PLATFORM

In this section, we introduce the architecture of this fog
platform as well as the components inside. The platform is
composed of end devices/users (things), fog nodes and the
cloud. From the service-oriented computing perspective [8],
things generally constitute service requesters/receivers. Fog
nodes equipped with computation, storage and networking
power could serve as either service providers or service inter-
mediaries/forwarders, in which service intermediaries help col-
lect service requests from bottom-level things, track network
conditions, cooperate with providers to adapt service transmis-
sion rate, and forward services back to requesters. Since the
cloud treats fog as the proxy at the edge of the network, it is

Fig. 1: The architecture of fog service platform, and different
services provided by cloud and fog nodes

noticeable that the use of cloud is no longer mandatory in this
platform, but one could choose to continue using the cloud as
a service provider for some energy consuming, delay tolerant
services, e.g., large scale data backup service.

In order to mitigate service delivery latency and obtain a
good service quality, IoT applications could deploy on fog
nodes in the vicinity of things [27]. When it comes to the
user data privacy, fog node that has more storage capacity
could serve as the user data repository, essentially giving an
alternative to the network manager who concerns about data
privacy issues in the cloud [10].

An example of the fog service provisioning platform is
presented in Fig. 1. It shows that a variety of end devices/users
plays the role of service requesters at the bottom layer. Fog
nodes, as the placeholder for different IoT applications in
middle layers, put efforts together to establish several fog
service groups to facilitate the fog service generation and
distribution, where each group distributes a particular type of
service. Similar to the traditional IoT network, the cloud stays
at the top layer. Regrading the service groups, it is worth
noting that each service provider could reside in multiple
groups, i.e., a fog node could essentially provision multiple
services if condition allowed. For instance, one fog node
provides real-time data analytics service and robotic control
service at the same time in Fig. 1. Fog service provider in each
group takes up the responsibility to gather feedback regarding
downstream network conditions reported by service interme-
diaries, or even collaborate with each other in the process of
generating services. Needless to say, fog node as a service
provider could empower real-time IoT applications to give the
timely response to receivers (following the decreasing service
transmission latency trend pointed out in the figure). When
it comes to the service intermediaries, the platform allows
these fog nodes to be converted to the providers if equipped
with enough resources, which increases the scalability and
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flexibility of the platform substantially.
To build this platform, the following assumptions are rea-

sonably made: 1) the bottom level things are connected into
the network through nearby fog nodes; 2) fog nodes are
interconnected vertically and aware of both downstream and
upstream links.

IV. THE ANALYTICAL FRAMEWORK AND OPTIMISATION
PROBLEM

The service transmission rate allocation problem in the fog-
based IoT environment is formulated in this section to make
it support both elastic and real-time inelastic services along
with the generalization for different fog architecture designs.
Additionally, we characterize the utility in terms of allocated
service transmission rate deriving from the underlying band-
width of fog network.

Consider a fog service delivery network consisting of a
set of links L = {1, 2, ...., l}, each of which has capacity
cl. There is a set of S = {1, 2, ...., s} service groups, and
each service group is devoted to providing one particular
service. For each service group s, there is only one unique
service provider, which is either a fog node or the cloud.
A set of receivers that is in service group s could be noted
as Rs = {rs,1, rs,2, ...., rs,n}, and along with a set of links
Ls ⊂ L, they together form the corresponding service delivery
tree of that service group, where the provider stays at the root
of the tree, and each receiver in Rs is connected to the IoT
network through the leaf fog node.

For each service receiver Rs,i ∈ Rs in a service group,
Ls,i ⊂ Ls describes the service delivery path from the provider
of service group s to relevant receiver i. Say xs,i represents
the service delivery rate to receiver i in service group s. Then
the set of service rates for respective receivers is defined as:

x = [x1,1, ...., x1,n1
, ...., x2,n2

, ...., xs,1, ...., xs,ns
]

As stated earlier, utility function Us(xs,i) has been modelled
on per-service basis to describe its QoS requirement. The orig-
inal utility function Us(xs,i) is non-negative, continuous and
strictly increasing over the range xs,i ∈ [ms,Ms], where ms

and Ms represent the minimum and maximum service delivery
rate, respectively. As it fails to guarantee the concavity in the
inelastic scenario, a “pseudo utility”, denoted as Us(xs,i), is
defined to generalize both elastic and inelastic services [14],
where Us(xs,i) needs not be concave in the “pseudo utility”
context.

Considering the characteristics of utility functions for both
elastic and inelastic services, Us(xs,i) should be modified to
be increasing and strictly concave under any service types.
The rationale is that we expect to form a convex optimisation
problem so that a global optimal value could be obtained.
Therefore, it is crafted to relate to original utility function
as [28]:

Us(xs,i) =
∫ xs,i

ms

1

Us(y)
dy, ms ≤ xs,i ≤Ms (1)

Since we focus on making our platform support both elastic
and inelastic services, the “pseudo utility” function is used, and

it leads to the optimisation problem P1:

P1 : max
x≥0
Us(xs,i) =

∑
s∈S

ns∑
i=1

Us(xs,i) (2)

subject to
∑
s∈S

xls ≤ cl, ∀l ∈ L (3)

xls = max
{i|l∈Ls,i}

xs,i (4)

In equation (4), {i|l ∈ Ls,i} is a set of receivers that uses
link l to receive the corresponding service in service group s.
This equation states that in service group s, the service rate on
link l is the same as the rate of the fastest downstream receiver
in this group. In addition, constraint (3) in this optimisation
problem suggests that the aggregate service rate on link l
across all service groups should not exceed the link capacity
(network condition). Since equation (4) contains the maximum
discrete function that is not continuous and differentiable, it
is difficult to solve the problem by traditional optimisation
methods. We thus make an approximate solution as follows:

xls = max
{i|l∈Ls,i}

xs,i = lim
N→∞

( ∑
{i|l∈Ls,i}

xNs,i

) 1
N

(5)

Therefore, the maximum function in equation (4) could be
approximated by:

xls =

( ∑
{i|l∈Ls,i}

xNs,i

) 1
N

(6)

where N is a sufficiently large integer. After the transforma-
tion, the original problem P1 could be re-formulated by the
following optimistion problem:

P2 : max
x≥0
Us(xs,i) =

∑
s∈S

ns∑
i=1

Us(xs,i) (7)

subject to
∑
s∈S

( ∑
{i|l∈Ls,i}

xNs,i

) 1
N

≤ cl, ∀l ∈ L (8)

Clearly when N goes to ∞, P2 is equivalent to the original
problem P1.

In order to solve P2, the Lagrangian problem is then derived
as:

L(x, p) =
∑
s∈S

ns∑
i=1

Us(xs,i)

−
∑
l∈L

pl

[∑
s∈S

( ∑
{i|l∈Ls,i}

xNs,i

) 1
N

− cl

]
(9)

Theorem 1. For service receiver requesting heterogeneous
IoT services, the optimal service transmission rate is under
condition that each Lagrangian multiplier pi = [p1, p2...pl] ≥
0, and each service receiver should equip with a price weight-
ing coefficient wl

s,i in relation with link l, such that:

xs,i = U−1s

([
1

ps,i

]Us(Ms)

Us(ms)

)
(10)
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pl =

[
pl + λ(

∑
s∈S

xls − cl)

]+
(11)

wl
s,i =

xNs,i∑
{j|l∈Ls,j}

xNs,j
(12)

ps,i =
∑

l∈Ls,i

wl
s,ip

l

(13)

Proof. The proof and derivation of Theorem 1 can be found
in the Appendix.

This theorem reveals that, in the steady state, the asso-
ciated utility Us is simply equal to 1

ps,i
, in which ps,i ∈

[ 1
Us(Ms)

, 1
Us(ms)

].
As stated above, N should always be a sufficiently large

integer; however, it is worth noticing that in equation (12),
if xs,i has a relatively large value, then the corresponding
wl

s,i will encounter a sudden change that further results in
an unstable condition for equation (13), and ultimately affect
rate adapting process, hence the following modifications have
been made to improve the robustness:

Initiate : wl
s,i =

1

| {j|l ∈ Ls,j} |
(14)

wl
s,i = [wl

s,i + λ(xs,i − xls)]+ (15)

wl
s,i = 1−

∑
{j|j 6=i,l∈Ls,i}

wl
s,j (16)

Equation (14) implies that w has a value within a range of
wl

s,i ∈ [0, 1]. Equations (15) and (16) indicate that wl
s,i will

continue to increase to its boundary for the fastest receiver in
service group s, while decreasing among other slow receivers
in the same service group. Finally, the receiver with the largest
service rate will have wl

s,i = 1 on link l.
Since equations (11) and (15) have been updated with a

step size λ, it is important to select the value of parameter λ,
which has a critical impact on the convergence speed. Similar
to other gradient projection algorithms, when λ is selected
appropriately and not larger than some positive λ∗, the service
delivery rate will converge smoothly to the optimal value [14].

From the flow control aspect, our analytical framework
emphasizes the relationship between bandwidth allocation and
QoS performance of applications. It is implicitly assumed that
the service will be served timely and reliably if sufficient band-
width is allocated and service providers are only a few hops
away from the receiver. Given the link capacity constraint, the
only way to ensure that no receiver has been left behind is to
allocate the underlying resources both fairly and optimally. By
doing so, one can at least ensure that the delay is decreased
owing to the abundant bandwidth support for that particular
service. In an extreme case where the bandwidth supply is
much less than needed due to the communication overhead
caused by colossal receivers, the admission control over the
number of users being allowed to connect in can be the most
effective solution for sufficient allocation and less latency.

However, especially for real-time applications, it will be
more challenging to explicitly consider the packet delay effects

and solve it as the convex optimisation problem regarding
the increase of the number of users and change of network
situation. One possible extension in this direction is to follow
the work suggested by [29] in which a new utility function
for receivers could be defined to incorporate the delay into
the analytical framework as:

Unew
s (xs,i) = Us(xs,i)− βs

∑
{i|l∈Ls,i}

ds
(
xls,i
)

(17)

where ds
(
xls,i
)

represents the average delay happened by
a packet of service s to receiver i on link l. Therefore,
the summation

∑
{i|l∈Ls,i} ds

(
xls,i
)

calculates the end-to-end
delay of a particular service for that receiver. The tuning
parameter βs > 0 reflects the relative importance of the service
versus delay.

To summarize, the derived analytical framework takes ad-
vantages of both link price pl and price weighting coefficient
wl

s,i to adjust the service transmission rate for receivers on that
specific link. Whenever a link exceeds its capacity constraint,
these two parameters (equations 11 and 15) get adapted
accordingly, which ultimately lead to the adaptation of service
rate, as indicated in equation (10). The analytical framework
is integrated into the fog platform through the implementation
of the algorithm detailed in the next section.

V. SERVICE RATE ADAPTIVE ALGORITHM AND
IMPLEMENTATION

We now present the service rate adaptive algorithm adopted
by the platform in this section, and more importantly, demon-
strate how to deploy it in the fog architecture.

A. Motivation

As discussed previously, the overarching goal of the pro-
posed platform is to allow fog nodes to work together and
reach a consensus. To achieve that, fog nodes playing in
different roles should comprehend the responsibility it should
carry out and respond properly. For instance, service providers
should calculate the corresponding service delivery rate based
on the received feedback concerning the downstream link
conditions, whereas service forwarder merely calculates its
link condition and report it upwards. Herein, the algorithm
is developed from an engineering perspective to instruct all
fog nodes to work towards that goal, where every service
provider in the platform could distribute respective service at
the optimal rate eventually based on the feedback of network
condition recursively passed by the downstream fog nodes (the
bottom-up approach). It substantially benefits from the results
derived in the analytical framework in Section IV to guarantee
the global optimum of resource allocation.

B. Overview of the Algorithm

Algorithm 1 displays a summary of the algorithm, which
consists of two phases. The bottom-level fog nodes would
firstly gather relevant information such as the types of service
requested, downstream links information, then forward these
to either the topmost fog node or the cloud to form the service
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tree (lines 2 - 4). Afterwards, several service groups have
been established, and whenever a service requester joins or
leaves a service group (network changes), the bottom-level
fog node is able to sense the change and report it upwards,
which consequently starts another round of Phase 1.

In Phase 2, fog nodes would firstly iterate through each
downstream link and calculate the current link status. More
specifically, lines 5 - 10 deal with the link price updating
process, followed by the calculation of price weighting co-
efficient in lines 11 - 16, which implies that this coefficient
would continue to increase for the receiver with the largest
service rate while decreasing among other receivers. Lines 17
- 27 handle the service rate adapting process, if and only if
the current node f is a service provider. Lines 29 - 31 indicate
the bottom-up approach of this algorithm, in which all service
providers would be reached and informed at the end with the
latest network condition.

C. Computational Complexity Analysis

This part discusses the computational complexity of the
adaptive service delivery rate algorithm. Since the most
time-consuming operations reside in Phase 2, we thus mainly
focus on the analysis of this part. We define some notations
here for convenience. Say L represents the whole set of links
and F representing all fog nodes in the platform, and the
downstream links that a fog node f possesses are defined as
{lf | f ∈ F, lf ∈ L}. As noted in the service rate adaptation
process, each link under the control of a fog node will iterate
through every service being delivered on it, and services on
that link could be approximated by {sl | l ∈ lf}. For each
service s on link l, there is a constant number of operations
(n) on calculating the link price p along with its coefficient
w, as well as adjusting the respective service transmission
rate x. Therefore, the total number of operations could be
calculated as follows:

total number of operations =
∑
f∈F

∑
l∈lf

n ∗ sl

Since the value of n is a constant and thus can be ignored,
the computational complexity of this algorithm isO(F ∗lf∗sl).

VI. PERFORMANCE EVALUATION ON A CASE STUDY

In this section, we evaluate the performance through a
numerical experiment for the proposed fog service platform.
The experiment not only validates the feasibility of the al-
gorithm designated for the platform but also demonstrates its
flexibility to adapt the service delivery rates for both elastic
and inelastic IoT services. Most importantly, the scalability of
the fog platform is reflected in the simulation as well in which
service requester may intermittently join or leave the network.

A. Shopping Mall Use Case

In order to compete with online shopping and e-commerce,
shopping malls nowadays employ a wide range of approaches
to stimulate customer’s shopping desires. One method emerged
recently is to harness IoT technologies to excel in providing

Algorithm 1 Service Rate Adaptive Algorithm

Phase 1: Initialization

1: Fog or cloud will collect network condition data reported
from child nodes, update relevant W and P , then com-
municate back.

2: Service group S = [s1, s2....sn]
3: Link capacity C = [c1, c2....cl]
4: W,P ← RS ×L matrix,where wl

s,i =
1

{j|l∈Ls,j} , p
l
s,i = 0

at initial stage

Phase 2: Service Rate Adaptation

1: Bottom-level fog nodes trigger the algorithm at every
interval t, each node is aware of the services that traverse
through it, as well as the current service transmission rate

2: repeat
3: f ← current node
4: for each downstream link l of f do
5: 1. select largest service delivery rate of each ser-

vice on that link
6: xls = max

{i|l∈Ls,i}
xs,i

7: 2. aggregate delivery rate of each service on link l
8: xl =

∑
s∈S

xls

9: 3. calculate the current link price of l
10: pl = [pl + λ(xl − cl)]+
11: 4. calculate the price weighting coefficients for

each downstream receiver i,
12: whose service transverse link l
13: wl

s,i = [wl
s,i + λ(xs,i − xls)]+

14: if receiver i receives service s at rate xls then
15: wl

s,i = 1−
∑

{j|j 6=i,l∈Ls,i}
wl

s,j

16: end if
17: 5. calculate link price pls,i for each downstream

receiver i on link l
18: pls,i = wl

s,ip
l

19: 6. update corresponding wl
s,i in W and pls,i in P ,

respectively
20: if f is a provider of service s then
21: for each receiver i that receives service s do
22: 7. calculate relevant path price
23: ps,i =

∑
l∈Ls,i

pls,i

24: 8. adjust service rate

25: xs,i = U−1s

([
1

ps,i

]Us(Ms)

Us(ms)

)
26: end for
27: end if
28: end for
29: if there is any upstream service coming to f then
30: 9. propagate network condition upward, and repeat

phase 2
31: end if
32: until (all providers have been reached)
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Fig. 2: Fog platform architecture in the shopping mall use
case

highly related and attractive services to accommodate dif-
ferent shoppers. Apart from that, it catches some attention
that increasing the usage of assistant objects such as digital
signage deployed inside the mall to maximize the fine-grained
branding and advertising opportunities could be beneficial
to improve the overall shopping experience [30]. As stated
previously, the challenge stands when it comes to providing the
service both stably and promptly to shoppers. Herein, we apply
the shopping mall use case as the “experimental field” for the
proposed fog platform, where digital displays and shoppers
get connected in the IoT network as service requesters that are
under control of the platform. More specifically, these digital
displays are in different shapes and sizes for varying purposes,
referred as the conventional digital displays and the advanced
pervasive displays, respectively.

The versatility of pervasive displays makes it an excellent
candidate to support IoT applications in shopping mall sce-
nario. These displays are capable of interacting with shoppers
and pushing the relevant information of shopper’s interest [30],
[31]. Based on these attributes, these displays could be de-
ployed at different shopping districts so that highly personal-
ized store information such as personal preference or discount
will be exhibited on the screen when a shopper approaches
nearby. These displays mostly have relatively smaller screen
size and could comfortably achieve better QoS with limited
service delivery rate.

In contrast to pervasive displays, conventional displays have
characteristics of big screen size, less interactive requirement
and primarily with commercial-driven purpose. They could be
placed at the noticeable spots such as the main foyer, central
areas of each floor or food courts, and the contents pushed to
this kind are related to the generic information of this shopping

mall as well as video data with recreational and commercial
purposes. The related QoS requirement for this type would be
stringent as more video data along with the stable delivery
rate is needed for better pixel quality. One similar feature
shared between these two types of displays is that the service
required is characterized as real-time, inelastic video streaming
service. Therefore, the sigmoidal function should be chosen
accordingly to describe the QoS.

However, it is unrealistic to consider inelastic services only
in the shopping mall use case. Nowadays, people tend to
spend more time on their phone to keep updated on the
latest news while taking a break from shopping or tracking
the discount information as interested. These service requests
generally involve the elastic services like web browsing or
mobile coupon searching from IoT applications. Thus, the
logarithmic utility function is adopted to approximate these
elastic IoT services.

Fig. 2 illustrates the topology of the IoT network empow-
ered by the fog platform in the shopping mall. In this topology,
all fog nodes are placed inside the shopping mall, in which an
autonomous network has been formed so that administrators
could easily monitor the network status. Various displays, as
well as shoppers requesting for heterogeneous services, act
as things in this network, and fog nodes are equipped with
the different level of computational, storage and networking
capabilities. In particular, the topmost fog node is the most
powerful among all and operates as the main gateway of this
autonomous network. Apart from that, the gateway fog node
also controls the communications with the Internet outside
and only uploads filtered data to the remote cloud for backup
purpose.

Although the cloud is drawn in Fig. 2, it is worth mentioning
that the cloud is not mandatory to become the service provider
because of concerns such as high service transmission latency,
communication overhead or data security issues. However, it
could still provision time-tolerant service for backup purpose.
One may notice that the fog deployment in the shopping
mall use case appears to resemble the tree-topology, and it is
notable that, since the service providers undertake more com-
puting tasks than intermediaries and normally control more
than one service intermediary for the ease of management in
an autonomous network, the structure merely coincides with
the appearance of tree-based topology. Apart from that, as the
most prevalent and dominant topology in fog architecture, the
tree-resembled topology in fog computing benefits many fields
of research, including privacy preserving [32], autonomous
vehicles [33] or many other use cases [34]. Our optimal service
rate adaptation problem could thus contribute substantially to
this active research area.

A number of IoT applications are deployed in the fog
network to cater for different service requirements. We refer
the service required by generic, commercial-driven displays as
Service 1 and pervasive screen as Service 2. These two ser-
vices are considered to be real-time, inelastic video services,
whereas services related to web browsing and coupon search
requested by shoppers are categorised as elastic Service 3. It
is worth pointing out that considering Service 3 as elastic
service here is merely to test the fairness and robustness
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Fig. 3: Utility functions employed for service groups 1, 2
and 3

of allocating network resources for different service types
(both elastic and inelastic), and Service 3 could easily be
realised as inelastic service if needed owing to the support
of the analytical framework in Section III and the proof in the
Appendix. The convergent nature and speed of the algorithm
are not affected in this matter.

Considering the resource capacity for each fog node in
this fog platform, the gateway fog node is the most powerful
among all and thus capable of deploying the computation-
ally expensive IoT applications. In other words, Service 1
equips the purpose of expressing more general information
of the mall, and the process of generating a large amount
of video data is considered to be expensive, it is therefore
more reasonable to be deployed on the gateway fog node. In
contrast, Service 2 relates to the interactive video streaming
service, and end displays that request this service are located
at different shopping districts to provide customers with the
highly-personalized shopping information. Furthermore, these
pervasive displays need not have as much video data transmit-
ted as generic displays. Hence Service 2 is derived from the
connected child node of the gateway fog node. Apart from that,
we tend to make the same fog node as the Service 3 provider
so that the service generated could arrive in requested shoppers
with fewer hops. The design of this fog architecture meets
the real-world scenario, and the selection of these service
providers makes good use of the flexibility of the fog service
platform.

Given the analysis of these three different types of IoT
services, it is of importance to cast appropriate utility function
to approximate the QoS. Explicitly, utility functions should
be modelled on a per-service basis to better: 1) describe the
corresponding QoS requirements, i.e., with the same service
delivery rate, small displays tend to get “satisfied” much easier
than large screens as its utility gets closer to 1; 2) reflect the
nature of real-time inelastic service and other elastic services,
respectively. We then select these utility functions as follows:

U1(xs=1,i) =
1

1 + e−2(x−6)
(18)

U2(xs=2,i) =
1

1 + e−2(x−4)
(19)

TABLE I: MATLAB simulation setup

Link capacity (Mbps)
l1 l2 l3 l4 l5 l6 to l12
16 12 12 11 10 10

Service delivery rate range (Mbps)
0 (ms) to 10 (Ms)

Gradient-based step size λ (observed to converge both rapidly and smoothly)
0.01

U3(xs=3,i) =
lg(x+ 1)

lg11
(20)

Fig. 3 is the visual representation of these three utility func-
tions.

B. Experimental Setup

As illustrated in Fig. 2, the topology of this fog network
originally contains 12 links labeled as l1, l2, ....., l12. Since
the network traffic that happens in this IoT network naturally
is in the bottom-up convergent manner, and the connection
between the gateway fog node and its child node is most likely
to result in the communication overhead. Thus, it is rational
to assign this link with the highest link capacity (16Mbps).
The link capacities of other connections are generally in the
decreasing manner through this top-down tree structure. By
following this experiment design, we can divide the links
into several levels based on their capacities, where l2 ranks
the second (12Mbps), and l3 to l5 are set to be degrading
gradually to increase the randomness (12Mbps, 11Mbps and
10Mbps, respectively) whereas things/users connected to IoT
network through l6 to l12 have the same values (10Mbps). It
is noticeable that the status of the bottom-level link depends
on things/users. In other words, links could be broken from or
re-connected to the network if the user mobilizes from one fog
controlled area to another. The detailed setup could be found
in Table I

Furthermore, these links have been shared among service
requesters residing in three service groups s1, s2 and s3 with
generic displays in service group 1, pervasive displays as the
members of service group 2, and shoppers (both stationary
and mobilizing) requesting service 3, where each receiver has
0 and 10Mbps as the minimum and maximum service rate
(corresponding to ms and Ms in Algorithm 1).

It could be clearly observed in Fig. 2 that there are eight
service receivers. Since each fog node covers the limited
area (each department) to alleviate the overall communication
overhead, and despite the fixed-position displays, one could
move around the mall to different shopping departments in
reality, yet good QoS is expected to retain regardless. Hence, a
designated moving trajectory of a customer is also considered
in the experiment, i.e., shopper stays at the woman’s depart-
ment at first, starts walking and taking a rest at the food court,
and finally arrives at the children’s department.

To be more specific, the customer labelled as r3,3 gets
connected to the network through the bottom-left fog node
at the beginning, requesting the web browsing service from
the service provider 3 up to a timestamp. Then she starts
moving to other different areas as time elapsed. The detailed
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Fig. 4: Simulation results from the original, unmodified algorithm

moving trajectory can be found in Fig.2 (arrowed line). The
rationale behind this setting is to verify the stability and
adaptability of the proposed platform under this commonly
happened situation in the real-world shopping mall.

C. Experimental Results

The performance of the rate adaptive fog service platform is
evaluated through MATLAB simulations. The results focus on
demonstrating the adaptability, expandability, and robustness
of the fog platform. Herein, the negative and positive exper-
iment groups are considered separately for the comparison
purpose.

1) Case 1: We start off pointing out the ineffectiveness of
applying state-of-the-art resource allocation strategy in [25]
through our proposed fog platform for heterogeneous IoT
applications.

Three service receivers, randomly picked from different
service groups, are taken out to show the corresponding service
delivery rates as well as QoS. For simplicity, the mobilizing
shopper scenario is not considered in this comparison group.
As seen from Fig. 4, three receivers, r1,1, r2,1 and r3,1,
are connected to the network since the beginning of the
simulation, yet are not able to receive the expected service with
sable transmission rate (corresponding to x1,1, x2,1 and x3,1,
respectively) and satisfied QoS until the end of the simulation
(at 60s in this case). There is a clear oscillation observed
throughout the whole period of Case 1 simulation, indicating
that the conventional algorithm in the literature is unable to
support both general elastic services and inelastic real-time
services at the same time, even though it works for sole elastic
services.

2) Case 2: The Case 2 simulation is considered as the
positive example demonstrating the effectiveness of our fog
platform in the shopping mall use case.

The simulations start at time t = 0, and each service group
contains several receivers at the beginning. More specifically,
groups one and two are to deliver inelastic real-time video
services containing generic digital displays r1,1, r1,2 and
pervasive displays r2,1, r2,2, and r2,3, respectively. In contrast,
group three serves the purpose of provisioning elastic services,
thus covers the situation of both stationary shoppers (r3,1, r3,2)
and a moving shopper (r3,3). In the beginning, the service

delivery rates to each receiver are randomly set to be a value
in the range between 0 and 10Mbps but is expected to be
adapted by providers rapidly based on feedback of the network
condition. The platform triggers the algorithm at the bottom-
level fog node so that the network status could be collected and
properly initialized. Since then, all fog node would constantly
monitor the network in a collaborative manner, and important
factors such as service transmission rates and utility are ex-
pected to reach a stable state promptly. It is also noticeable that
as receiver r3,3 leaves area 1 and enters area 2 at t = 60s, the
network encounters the link breaking and recovery situation
(dashed-line link in Fig. 2), which is the same when she keeps
moving to the last area, i.e. area three (at t = 120s). The
abrupt changes of topology are not uncommon in the real
world, which is hereby used to validate the expandability and
robustness of the platform.

The simulation results of service delivery rates (xs,i) in
these three service groups are shown in Fig. 5. We can
discover that all service rates converge to the global op-
timum under the complex IoT network conditions, which
indicates that the globally optimal allocation of service rates
is well accomplished. Moreover, even with the abrupt network
changes (with the shopper r3,3 moving to different areas),
the platform is capable of eliminating the instability, and
relevant fog service providers will swiftly adapt service rate for
each receiver to maintain relatively good QoS. The minimum
service delivery rate achieved in this scenario is around 4Mbps,
which substantially suffices the majority of service needs in
the shopping mall use case [35]. Apart from that, the generic
digital display r1,1 is designed to be isolated with which no
resource competition happens. It represents one variation of
experimental setting under the platform and attains the highest
service transmission rate throughout the whole period.

The utility results in Fig. 6 are used as an indicator of the
overall user’s satisfaction and QoS achieved by the platform
in which all utilities are more than or around 0.4 even with
the fierce resource competition among bottleneck links. In
particular, the underlying network resources, bandwidth in
this case, have been optimally allocated to each receiver to
accomplish the stability of QoS promptly. Among all, u1,1
enjoys the highest satisfaction owing to no resource com-
petition happened in its connected link. Another interesting
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Fig. 5: Simulation results of service rates: Rate changes for receivers in group 1 (left), group 2 (middle) and group 3 (right). x3,3 is the
rate of the mobilizing shopper, and it affects the rates of other receivers when it joins/leaves the network from that area.

Fig. 6: Simulation results of utilities (QoS): The impact on QoS for each service receiver when there is a new joiner/leaver in that area.
The QoS is maintained to a large extent owing to the resource allocated both fairly and optimally.

result shown in Fig. 6 regards the fairness which ensures that
most service competitors at least will achieve the same level
of utility values (QoS). As pointed out in [14], the utility
maximization derived OFC approach used in work like [25]
can lead to a seriously unfair situation for network resource
allocations (oscillations of utility as observed in Fig. 4),
yet our work allows a fair traffic distribution to receivers
who are even under the most tense resource competitions, in
which at least the same QoS could be accomplished. Apart
from that, the QoS of each receiver will achieve a higher
value as of the increase of link capacity or decrease of the
total number of receivers, which means that by enhancing
the throughput from link l1 to l12, e.g., using fibre optical
communication links in fog-to-fog connection instead, one
can easily observe the increase of QoS to a large extent.
Equivalently, the preliminary work in [1] shows the decreasing
number of connected receivers could lead to the same goal (at
least 0.5 of QoS in that work).

To conclude, the simulation results re-confirm that our
proposed platform is both practical and robust in a real-world
scenario. This platform can be naturally integrated into the
IoT environment, and our algorithm clearly demonstrates its
performance in dealing with heterogeneous IoT applications.
Furthermore, the convergence of service delivery rates and
corresponding utilities prove that, under complex network
conditions, the platform could help distribute the service, adapt

TABLE II: iFogSim simulation setup

Configuration of the running PC
OS CPU RAM

mac OS 2.6 GHz Intel Core i5 8 GB

Configuration of each fog node
Device Type CPU RAM POWER

Service 1 provider 3.0 GHz 8 GB 214.678(M) 106.82(I) W
Service 2&3 provider 2.0 GHz 4 GB 107.339(M) 83.433(I) W

Other service forwarders 1.6 GHz 4 GB 107.339(M) 83.433(I) W

the service rate, and be able to expand smoothly.

D. The Study on Real-world Deployment

To explore further on the aspects of service transmission
latency and energy consumption, verify the effectiveness of
supporting delay-sensitive applications as well as the plau-
sibility of real-world deployment of our platform, we adopt
the fog simulator, namely iFogSim [36], to model the IoT
and fog environment that our platform is built upon. We also
incorporate the algorithm to observe the impact on the IoT
network.

In iFogSim, we customize the fog structure the same as
the one in shopping mall use case and deploy three IoT ap-
plications at different fog nodes to provide the corresponding
real-time services as described earlier (Services 1, 2 and 3).
To be more technically specific, each application essentially
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Fig. 7: Service delivery latency for services 1, 2 and 3

creates an Application Model, which can be instantiated and
placed inside the fog. When the simulation starts, iFogSim
will monitor the service delivery latency through AppModule
happening in the service continuum (service requester - service
forwarder - service provider then sends the service back
to the requester in the reversed path). One advantage of
adopting this simulator is that it not only calculates the service
transmission latency but also takes into account the service
execution time from each provider, so the total service delivery
latency observed through iFogSim is thus more reflective of
the real-world deployment. When it comes to the evaluation
of our proposed service rate adaptive algorithm, it allocates
the bandwidth resources both fairly and optimally, which is
also used as an indicator to analyze our algorithm’s impact on
service transmission latency. The Power Monitoring Module
in the simulator toolkit, on the other hand, continues to record
the power consumption status for each fog node involved in
operating the service continuum. It is worth mentioning that,
as pointed out in [36], the simulator utilizes a model named
PowerModelLinear to continuously cumulate the energy usage
of each fog node instance based on the configuration of each
node, including the CPU, RAM, power usage for both busy
and idle states.

To demonstrate the superiority of our platform with respect
to facilitating the real-time service delivery, we seamlessly
integrate our proposed algorithm into the simulator and com-
pare the corresponding service delivery latency with the ones
generated by the default strategy concerning the link resource
allocation in iFogSim and the traditional cloud approach
(configuration details in Table II), respectively [36]. Fig. 7
concludes the service delivery latency brought from requesting
to each service provider. It could be observed that owing to
the optimum bandwidth allocation derived from our algorithm,
the caused service delivery latency exhibits an evident decline
as opposed to the latency caused by the default resource
allocation strategy in the simulator. It shows that Service 2 and
Service 3 have relatively low service delivery latency (40.4ms
and 52.6ms, respectively), and Service 1 comes later yet at
the same scale (164.7ms). The service latency from the cloud,
on the other hand, is almost 9 to 10 times higher than that in
the fog platform, which confirms that the fog-enabled service
platform can cater for delay-sensitive applications effectively.

TABLE III: Energy consumption status

Energy consumed for service provisioning MegaJoules
Service 1 provider 0.87

Service 2&3 provider 0.98
Other service forwarders 0.64

Fog platform in total 2.49
Cloud datacenter 8.695

From the energy consumption perspective, Table III lists the
energy consumed by each service provider and other service
forwarders in our platform, the overall energy consumed by the
platform, and total consumption if all applications are simply
deployed at the cloud. It shows that our proposed platform
excels in saving energy consumption as well.

VII. CONCLUSION AND FUTURE WORK

In this paper, we develop a novel fog service platform
that highlights the capabilities of supporting heterogeneous
IoT applications and service delivery rate adaptation. Issues
in the traditional service-oriented network such as service
transmission latency, huge bandwidth waste and sole support
for elastic service have been addressed through the proposed
platform. More specifically, various IoT services now are
offered in the vicinity of end users/devices, as fog node
could serve as providers that are only a few hops away.
Additionally, fog nodes in this platform work collaboratively
to maintain the stability of the IoT network. Our case study
verifies that building on the top of fog architecture, the fog
service platform seamlessly integrates service rate adaptive
algorithm, and copes with real-world scenarios effectively even
with the abrupt change of IoT network (new joiner or leaver).
Moreover, the exploration of real-world deployment through
iFogSim re-assures the effectiveness of our platform.

We also believe that our proposed platform brings up
some exciting research opportunities in the area of service
computing under the fog architecture that we will investigate
further as our future work. One example is the service provider
migration scheme, where the platform can handle the failure
of the service provider and dynamically migrate the service
provision task to nearby fog node based on features such as
residue resources and network conditions.
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APPENDIX A
PROOF OF THEOREM 1

In this appendix, we will list out the step-by-step derivation
of our analytical framework, which will lead us to the final
results that are further used in the rate adaptive algorithm.

All the math notations remain consistent with Section
IV, and we start off looking at the Lagrangian optimisation
problem formed:

L(x, p) =
∑
s∈S

ns∑
i=1

Us(xs,i)

−
∑
l∈L

pl

[∑
s∈S

( ∑
{i|l∈Ls,i}

xNs,i

) 1
N

− cl

]
(21)

In order to solve this constrained optimisation problem, Kuhn-
Tucker theorem [37] is then applied:

∂L(x, p)

∂x
= 0 (22)

pl
∂L(x, p)

∂pl
= 0, ∀l ∈ L (23)
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By solving the partial derivatives equations (21) and (22), we
have the optimal solution of P2:

U
′

s(xs,i) =

∂

(∑
l∈L pl

(∑
s∈S

(∑
{j|l∈Ls,j} x

N
s,j

) 1
N

− cl
))

∂xs,i

=
∑

l∈Ls,i

pl

( ∑
{j|l∈Ls,j}

xNx,j

) 1−N
N

xN−1s,i

=
∑

l∈Ls,i

pl

(
xNs,i∑

{j|l∈Ls,j} x
N
s,j

)N−1
N

(24)

pl

[∑
s∈S

( ∑
{j|l∈Ls,j}

xNs,j

) 1
N

− cl

]
= 0, ∀l ∈ L (25)

Based on (23), we approximate the result as:

ps,i =
∑

l∈Ls,i

pl

(
xNs,i∑

{j|l∈Ls,j} x
N
s,j

)N−1
N

(26)

where ps,i represents the path price of receiver rs,i to source
s, leading to:

U
′

s(xs,i) = ps,i (27)

As we have used the redefined pseudo utility function so far
to ensure its concavity, the global optimal value could be
achieved, and it could be transformed in the format of original
utility function by combining (1) and (26). Therefore, (10)
could be easily derived.

As mentioned in Section IV, when N is a big enough
number and goes to ∞, problem P2 ultimately coverts to
the original problem P1. Under this condition, we define
the variable, namely price weighting coefficient, wl

s,i of the
receiver rs,i at link l as:

wl
s,i = lim

N→∞

(
xNs,i∑

{j|l∈Ls,j} x
N
s,j

)N−1
N

= lim
N→∞

xNs,i∑
{j|l∈Ls,j} x

N
s,j

(28)

from which the path price (13) could be inferred along with
(25). It then completes the proof of Theorem 1.
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