
Swinburne University of Technology

Doctoral Thesis

Spatial Partitioning of Road Traffic
Networks and their Temporal Evolution

Author:

Tarique Anwar

Supervisors:

Prof. Chengfei Liu

Prof. Hai L. Vu

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Centre for Computing and Engineering Software Systems

Faculty of Science, Engineering and Technology

May 2017

Abstract

Urban areas generally attract people from all interior areas. According to the current global

trend, people are rapidly migrating from rural towards urban areas for several reasons that

include availing better livelihood services and seeking better employment opportunities.

Consequently, the population of cities all over the world is increasing significantly, and

thereby raising the mobility demands manyfold. This strongly motivates the research ar-

eas of urban planning and urban computing to develop innovative technologies and move

towards smart and more sustainable cities. As most of the urban population travel daily

or frequently for their work or studies, traffic congestion has become a very important

practical problem. It is affecting the urban population directly by incurring extra cost

on the fuel and extra time spent, and indirectly in many ways. An important concern in

smart urbanization of our societies is the avoidance of such congestions and maintenance

of a smooth transportation. While the infrastructure development is one direction to deal

with this problem, the analysis of spatial traffic data to discover the congestion formation

and propagation patterns, and apply them to optimize the traffic flow is another direc-

tion. The research on road traffic networks data analysis is growing with the problems like

fastest route computation, traffic clustering, traffic prediction, emerging event detection,

anomaly detection and bottleneck identification. To discover the congestion patterns, the

continuous tracking of the spatiotemporal evolution of the traffic load leading to conges-

tions is an important problem. The research on development of methods to identify the

congested partitions effectively and track their evolution efficiently has been very limited

so far. In this thesis, we aim to capture the spatiotemporal evolution of urban road traffic

networks. To this end, we propose technical methods to effectively partition road traffic

networks in order to obtain the differently congested partitions at a point of time, and in-

crementally update those partitions in an efficient manner in order to track their evolution

in real time.

We firstly present a scalable method for traffic-based spatial partitioning of urban road

traffic networks. It is based on a spectral theory based novel graph cut (referred as α-Cut)

iv

to partition the supergraph (or any graph) constructed in our method. Using density

based clustering concepts we propose density peak graphs, and use them along with α-Cut

to develop a robust framework for partitioning large road traffic networks. It provides an

option to select a suitable trade-off between efficiency and accuracy. We show that for large

networks where efficiency is an important concern, we can opt for the settings to fasten its

execution. This comes at the cost of compromising accuracy up to some extent. Then we

present a comprehensive framework to track and capture the spatiotemporal evolution of

road network partitions. This is done by incrementally updating the differently congested

partitions available from the previous time point in an efficient manner. It consists of

a physical layer that performs all the low-level computations to incrementally update a

large number of small-sized road network building blocks, and a logical layer that performs

high-level computations in order to serve as an interface to query the physical layer about

the congested partitions. We also present an in-memory index to capture the historical

information and keep them compactly saved. At last two important applications are shown

to study the traffic congestion propagation patterns, which are the temporal tracking of

congested partitions, and the traffic diffusion and influence estimation of road segments.

These applications demonstrate the usefulness of our research in the real environments.

We investigate real traffic data, present our application-specific experimental study, and

show some interesting insights found in the study.

by Tarique Anwar

Acknowledgements

This thesis would not have been possible without the help, support and guidance of some

very important people in my life. Firstly, I would like to thank my parents for their

unconditional love, support and encouragement, and for being with me on each and every

step. They are also my first teacher and a great source of energy in my life. Whatever I

am today is only because of them.

I would like to express my deepest gratitude to my supervisors Prof. Chengfei Liu, Prof.

Hai L. Vu, and Prof. Christopher Leckie for their visionary guidance, insightful comments

and continuous support towards the completion of my PhD thesis. They were a great

source of inspiration during the entire period of my candidature. Their guidance extremely

helped me for becoming an independent researcher in my field. I have learned many things

from them which were not only confined to my research work, but also included many other

perspectives of life for becoming a strong person.

I would like to acknowledge Swinburne University of Technology for providing various

facilities and support for conferences and trainings, to finish my PhD research successfully.

I would also like to acknowledge Data61 (formerly NICTA) for funding my entire PhD and

providing financial support for attending conferences.

I should take this opportunity to remember my previous university Jamia Millia Islamia

(India), where I built my foundations in computer science. I am very thankful to my mas-

ter’s thesis supervisors Prof. Muhammad Abulaish and Dr. Jahiruddin, who encouraged

me for research from a very early stage. I thank all of my teachers at Jamia Millia Islamia

particularly Prof. Khurram Mustafa, Dr. Mansaf Alam, Dr. Syed Zeeshan Hussain, Dr.

Syed Kazim Naqvi, and Dr. Rafat Parveen, for their moral support and encouragement.

I am also indebted to all of my teachers from my primary and secondary schools. I am

very thankful to my colleagues at King Saud University (Saudi Arabia) particularly Faraz

Ahmed, M. Zubair Rafique, Arif Ali Mondal, Wazdy Essam, and Waleed Halboob.

I would like to thank and appreciate all members of our research group at Swinburne es-

pecially Dr. Saiful Islam, Dr. Jianxin Li, Mushfique Anwar, Lu Chen, Mehdi Naseriparsa,

v

vi

Ahmed Abbas AL-Shammari, and Amin Rigi, for their support and encouragement. I

am also sincerely indebted to my friends in Melbourne particularly Siamak Nezami Doost

Alamdari, MD Aquib, MD Shoeab Hassan, Humza Khan, Azimullah, Shimul Nath, ASM

Kayes, Shibli Saleheen and Arup Sarker for always being there for all kinds of help. I feel

blessed to have had such extremely talented and friendly people around me.

Lastly my love and appreciation go to my sisters for their endless love and prayers.

Declaration of Authorship

I, Tarique Anwar, declare that this thesis titled, ‘Spatial Partitioning of Road Traffic

Networks and their Temporal Evolution’ and the work presented in it are my own. I

confirm that:

� This work was done wholly or mainly while in candidature for a research degree at

this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

vii

Contents

Abstract iii

Acknowledgements v

Declaration of Authorship vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Problem Statement . 3

1.2 Challenges . 4

1.3 Application Scenarios . 6

1.4 Contributions of This Thesis . 7

1.5 Structure of This Thesis . 10

2 Literature Review 13

2.1 Clustering . 13

2.1.1 Foundations of Clustering . 14

2.1.2 Graph Partitioning . 16

2.1.3 Spectral Clustering . 17

2.1.4 Modularity . 21

2.2 Spatial Data . 22

2.2.1 Basic Index Structures . 22

2.2.2 Query Processing . 25

2.2.3 Knowledge Discovery . 26

2.3 Clustering on Spatial Data . 30

2.3.1 Spatial Clustering . 31

2.3.2 Spatial Network Partitioning . 32

2.4 Dynamic and Evolving Networks . 33

2.4.1 Evolution of Clusters in Dynamic Networks 33

ix

Contents x

2.4.2 Influence Propagation . 35

2.4.3 Traffic Congestion in Transportation Networks 36

2.5 Our Work vs. Existing Work . 37

2.5.1 Spatial Partitioning of Urban Road Networks 37

2.5.2 Tracking and Capturing the Spatio-temporal Evolution of Congestion 39

2.5.3 Applications using Real Traffic Data 40

3 Spatial Partitioning of Road Traffic Networks 43

3.1 Introduction . 44

3.2 Preliminaries . 46

3.2.1 Road Networks and their Mathematical Representation 46

3.2.2 Problem Definition . 50

3.3 Framework . 51

3.4 Road Supergraph Mining . 53

3.4.1 Feature Value Clustering . 54

3.4.2 Optimality Measure . 56

3.4.3 Supergraph Construction . 57

3.4.3.1 Supernode creation . 58

3.4.3.2 An extension for supernode stability check 59

3.4.3.3 Superlink establishment . 61

3.5 Road Supergraph Partitioning . 62

3.5.1 Spectral Clustering for Partitioning 62

3.5.2 The k-way α-Cut . 63

3.5.3 Determining α in α-Cut . 65

3.5.4 Spectral Clustering Approach to α-Cut 66

3.6 Experimental Evaluation . 71

3.6.1 Datasets . 71

3.6.2 Evaluation Metrics . 72

3.6.3 Experimental Results on Small Networks 73

3.6.4 Experimental Results on Large Networks 76

3.7 Summary . 80

4 Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 81

4.1 Introduction . 82

4.2 Problem Definition and Framework Overview 84

4.2.1 Problem Definition . 85

4.2.2 Framework Overview . 86

4.3 FaDPa: Fast Density-based Partitioning . 88

4.3.1 Concepts and Terminology . 90

4.3.2 Algorithm . 94

4.3.3 Determining Distance Threshold . 96

4.3.4 FaDPa+: Reducing the Number of Partitions Further 96

4.4 FaDSPa: Fast Density and Spectral based Partitioning 98

4.4.1 Mining DPG . 99

4.4.2 The Spectral based α-Cut . 100

Contents xi

4.4.3 Computational Complexity . 102

4.4.4 Relation with Modularity . 103

4.5 Experimental Evaluation . 103

4.5.1 Datasets . 104

4.5.2 Evaluation Metrics . 106

4.5.3 Experimental Results on Small Networks 107

4.5.4 Experimental Results on Real Data 110

4.5.5 Experimental Results on Large Networks 117

4.6 Summary . 124

5 Tracking and Capturing the Spatio-temporal Evolution of Congestion 125

5.1 Introduction . 126

5.2 Preliminaries . 130

5.2.1 Road Networks . 130

5.2.2 Problem Definition . 131

5.3 Proposed Method . 131

5.3.1 Logical Layer . 132

5.3.2 Physical Layer . 133

5.4 Road Network Dynamics . 133

5.4.1 Congestion Evolution . 134

5.4.2 Stability . 135

5.4.3 Road Network Motifs . 136

5.5 Tracking and Capturing the Evolution . 139

5.5.1 Index Structure . 139

5.5.1.1 Building Block Index (Bin) 139

5.5.1.2 Stability Tree . 141

5.5.1.3 Short cycle Index . 141

5.5.2 Incremental Update . 142

5.5.3 Computing the most suitable block 143

5.5.4 Updating Index . 148

5.6 Experiments . 150

5.6.1 Datasets . 150

5.6.2 Evaluation Metrics . 151

5.6.3 Quality of Incremental Results . 151

5.6.4 Efficiency of Incremental Computations 153

5.6.5 Memory Consumption in Bin . 153

5.6.6 Effects of external parameters on blocks 155

5.6.7 Visualization comparison with Google Traffic 156

5.7 Summary . 158

6 Applications using Real Traffic Data 161

6.1 Introduction . 162

6.2 Temporal Tracking of Congested Partitions in Dynamic Urban Road Networks166

6.2.1 Proposed Congestion Monitoring Method 167

6.2.1.1 Partitioning Road Network in the Beginning 169

Contents xii

6.2.1.2 Incremental Update of Partitions with Time 170

6.2.1.3 Identification of Congested Partitions and their Tracking . 172

6.2.2 Experimental Results . 174

6.2.2.1 Simple Heatmap Visualization 174

6.2.2.2 Visualization Comparison with Google Traffic 174

6.2.2.3 Congested Partition Identification 177

6.3 Traffic Diffusion and Influence Estimation 181

6.3.1 Problem definition . 182

6.3.2 RoadRank Algorithm . 183

6.3.2.1 Road Influence Graph Construction 183

6.3.2.2 Traffic Diffusion Computation 185

6.3.2.3 Ranking . 186

6.3.3 Experimental Results . 189

6.4 Summary . 190

7 Conclusion and Future Work 193

7.1 Summary of this Thesis . 193

7.2 Future Work . 195

7.2.1 Extension of the Thesis . 196

7.2.2 Other Unexplored Areas . 197

Bibliography 201

Author’s Publications 219

List of Figures

1.1 Collection of spatial traffic data . 2

2.1 MBR . 22

2.2 Quadtree . 23

2.3 R-tree . 24

3.1 Star topology to bipartite formation . 47

3.2 Mathematical representation of road networks 49

3.3 Proposed spatial partitioning framework . 52

3.4 Supernode stability check . 59

3.5 Road graph and supergraph partitioning results in small networks 74

3.6 MCG measure and number of supernodes in large networks 77

3.7 Stability measure of supernodes . 77

3.8 Road supergraph partitioning results in large networks 79

4.1 Architecture of the proposed framework . 87

4.2 Illustration of DPG construction from a graph 89

4.3 Road graph and DPG partitioning results in small networks 108

4.4 Overall comparison of partitioning results in small networks 110

4.5 Comparison of proposed FaDSPa and normalized cut based FaDSPa on real
data . 112

4.6 Partitioning results of FaDSPa on real data 114

4.7 Partitioning results summary on SCATS data 115

4.8 Impact of the distance threshold εd . 116

4.9 Partitions obtained from the Melbourne network at 08:00 AM on 03-12-2012
(Monday) . 117

4.10 Partitioning results in large networks . 119

4.11 Running time in large networks . 121

4.12 Compression of the DPG at different rounds 123

5.1 Google Traffic visualization at 11:00 AM (typical, Monday) 128

5.2 Congestion evolution graph . 134

5.3 Graph motif examples with 3 and 4 nodes 137

5.4 Example of γ-bounded-l-roadcycles . 138

5.5 Bin . 140

5.6 Index for boundary nodes and their short cycles (’<’ denotes less stable than)142

xiii

List of Figures xiv

5.7 Partitioning quality . 152

5.8 Memory consumption in Bin . 155

5.9 Effects of external parameters . 157

5.10 Partitions in the Logical layer at 07:09 AM 158

5.11 Building blocks in the Physical layer at 07:09 AM 159

6.1 Melbourne Road Network . 163

6.2 Proposed congestion monitoring method based on real-time traffic data from
SCATS . 168

6.3 Visualization of traffic data . 175

6.4 Visualization of traffic data . 176

6.5 Congested partitions obtained by the proposed method 178

6.6 Congestion statistics . 179

6.7 Proposed method for ranking influential road segments 182

6.8 An example of a road network . 183

6.9 Road Influence graph . 184

List of Tables

3.1 Dataset statistics . 72

3.2 Overall quality of partitioning . 75

3.3 Running Time (in seconds) . 80

4.1 Distance measures in the sample road graph 91

4.2 Dataset statistics . 105

4.3 Overall quality of partitioning . 110

4.4 FaDPa+: quality of partitioning . 118

4.5 Running Time (in seconds) . 122

5.1 Dataset statistics . 151

5.2 Running time (in seconds) . 154

6.1 Top-5 influential road segments . 189

xv

To my parents and sisters

xvii

Chapter 1

Introduction

These days there is a rapid global migration of people towards urban areas, and this

is leading to a rapid increase in the traffic load on urban road networks. According to

UN estimates, 70 per cent of the world’s population will live in cities by 2050, and the

trend in Australia is well advanced with almost 90 per cent of the population currently

residing in urban areas [1]. This huge population load on urban areas is a major reason

for frequent traffic congestions, specially in the peak office hours and around city centre

areas. It imposes a direct loss of money spent on the extra fuel consumption and time

spent while waiting in jams, and many times it may also adversely affect personal health,

which are borne by the travellers. Variability of travel time due to varying congestion

on the same route at different times and environmental pollution induced by the extra

burnt fuel are some other affects of traffic congestion. According to the BTRE (Bureau of

Transport and Regional Economics) Australia report on the urban traffic and congestion

trends in Australian cities [2], Sydney, Melbourne, and Brisbane, are the most congested

cities in terms of road traffic. The avoidable cost1 of congestion for Australia is projected

in the report as high as $20.4 billion by 2020. This huge cost caused by the overloaded

urban road networks severely urges for technologically improved infrastructure to meet

the rapidly growing traffic volume and traffic congestion.

1Where the benefits to road users of some travel in congested conditions are less than the costs imposed
on other road users and the wider community

1

Chapter 1. Introduction 2

V
id

eo
se

ns
or

s

Loop detectors
G

P
S

tra
je

ct
or

ie
s

Location-based
social networksSpatial

Traffic
Data

Figure 1.1: Collection of spatial traffic data

There are two possible ways to meet the growing demand of road traffic networks. The first

obvious way is by improving the physical infrastructure by increasing the area of public

spaces, widening of existing roads and building new roads, so that sufficient space is always

available for congestion free movements of the urban population. However, many times

there is a very limited scope for the government to go with this option. This is because

the main city centre areas, where congestions are most likely to occur for most of the time,

are generally occupied with buildings and settlements. So this way of treatment is not

always an available option. The other way to deal with this problem is to intelligently

optimize the traffic flow in the existing physical infrastructure. In a practical sense, what

commonly happens is that the traffic does not get congested at all the places at the same

time. Rather, congestion occurs when the traffic gets confined to a particular location,

and the remaining locations become sparse. Thus the problem of congestion often arises

due to the uneven distribution of traffic in the road network. This can be controlled up to

some extent by evenly distributing the traffic throughout the network and thus optimizing

the flow with the help of intelligent traffic control systems. This is possible only with

the help of real-time traffic data. These days we continuously accumulate huge amounts

of multidimensional geospatial traffic data or travel footprints from different sources, as

Chapter 1. Introduction 3

shown in Figure 1.1. Almost all developed major cities today have loop detectors and

video sensors installed at road intersection points, which log the traffic data automatically

by detecting vehicles in real-time. The widely used smart phones and GPS-equipped

vehicles capture the real-world movement trajectories. It is not just limited to these

data. The most recent development in traffic data generation is the location based social

media applications like Twitter2, Facebook3 and Foursquare4, which log geospatial digital

footprints of the social media users. Each source produces data with a different kind of

traffic information and may or may not be directly related to others. As the data sources

are available these days, it requires the development of data analysis techniques that are

effective enough to understand, discover and control the evolving nature of congestion,

and efficient enough to deal with the data of large urban road networks in real time.

1.1 Problem Statement

In this section, we present the research problem targeted by us in this thesis. As the

urban areas are growing rapidly, urban planning and urban computing are emerging as

important areas for multi-disciplinary research. Development of smart cities with smart

transportation services and smart health care are some of the main concerns.

This thesis aims at contributing to an intelligent traffic (and/or congestion) management

by developing traffic data analysis methods to aid the smart transportation services. Our

problem at a high level is to develop mechanisms that capture the traffic congestion sce-

nario in urban road networks and track the spatio-temporal evolution. There could be

a range of possible statuses. Some parts of the network may be highly congested, while

others with no congestion at all. At some points of time (for example, in the mid-night),

the entire urban road network may be free of congestion, while at other points of time

(for example, in the morning office-opening hours or evening office-closing hours), the en-

tire urban road network may get congested. Thus the traffic congestion is marked by the

characteristics of being spatially diverse and temporally dynamic.

2https://twitter.com/
3https://facebook.com/
4https://foursquare.com/

Chapter 1. Introduction 4

The problem considered in this thesis is to partition urban road traffic networks in order

to obtain the differently congested partitions. These obtained partitions are considered as

a good representative for the traffic congestion scenario at a point of time. The problem

further extends to the tracking of the temporal evolution of the partitions over a period

of time. This altogether captures the spatio-temporal evolution of the traffic congestion

in urban road traffic networks.

1.2 Challenges

The road networks experience the traffic load on their road segments. The traffic of indi-

vidual vehicles randomly originates at different locations in the network, and flows via the

connected road segments. While the congestion on individual road segments is a naive ap-

proach of looking into the congestion scenario, the identification of the differently congested

partitions gives a high level meaningful information from an urban-scale perspective. The

main challenges in their identification and capturing their evolution are given below.

• Structure of Urban Road Networks

The urban road networks are known to be unique in terms of their structure. Unlike

social networks or other information networks, these are physical networks and as-

sociated with spatial properties. The dynamic traffic on them is another dimension

to add more complexities. Some roads have the traffic flowing in both the oppositely

directed road segments (called two-way roads), and others have the traffic flow in

only one direction (one-way roads). Though the two directions of a two-way road

are part of the same road but their traffic load may be completely different. For ex-

ample, in the morning when the offices start opening, the traffic flows from the city

outskirts towards the city centre areas. The city-inward traffic is much higher than

the city-outward traffic at this time. This situation reverses itself in the evening,

when offices in the city start closing and people start moving outwards back towards

their home. This time the traffic load is more on the city-outward road segments.

There are many other factors also on which the different direction of traffic flow is

dependent. The urban road traffic networks need to be treated in such a way that

Chapter 1. Introduction 5

the two different directions of traffic flow are considered differently. Thus one of the

main challenges to work with these networks is to give a mathematical representation

of the actual physical road network, which takes the mentioned issues into account

and handles them wisely.

• Identification of Traffic Congestion

One way to understand the traffic congestion is by looking into the traffic density

of individual road segments at the micro level. This is an easy way that can be

done by just going through the raw traffic data. But the question that still remains

open is– ”Does it give the complete information about the spread of congestion?”.

Practically a congestion occurs on the road networks as a block affecting multiple

connected road segments. It originates from one or few specific road segments,

grows through the roads connected to them, and thus spreads into other parts of

the network. Similarly, when the traffic load starts reducing, the congestion starts

shrinking by firstly freeing those affected roads that lie on the boundary. One after

another the outer roads are freed and thus the congestion block keeps shrinking until

it vanishes off. By considering only the micro level traffic density on each individual

road segment, we miss the notion that a single congestion is actually formed by a set

of multiple affected road segments. The second challenge in our research problem

is the develop effective methods to identify the congestion spread or the differently

congested partitions in such a way that captures all the associated properties from

an urban-scale perspective.

• Capturing the Evolution

In addition to the high complexity of urban road networks, they are also getting

bigger in size rapidly. On the other hand, the dynamic traffic load on them, keeps

changing continuously in every moment. Thus the spatial expanse and the temporal

frequency of traffic update are the two factors that demand the treatment of the road

traffic networks to be efficient. In the traffic control systems like SCATS, the traffic

signals rotate for around one to three minutes to form a cycle, and the traffic data are

logged in each signal cycle by the installed sensors. To process this data in real time,

the computations for each cycle have to be completed before the beginning of the next

cycle. In addition to this, in each cycle or time point the developed techniques would

Chapter 1. Introduction 6

generate lots of information about the traffic congestion scenario. To analyze the

temporal evolution, we need to store the required historical information generated

by the method, in the memory, so that they can be referenced later whenever needed.

This storage has to provide an efficient retrieval of the stored data and at the same

time consume a minimum space in the memory. Thus, the challenges in capturing

the evolution are two folds. First is that the developed methods need to be efficient

enough to take into account the frequently changing traffic in real time, and the

second is that the required historical information have to be compactly stored for

their efficient retrieval.

1.3 Application Scenarios

Everyday almost all of the urban population make at least one journey. The most impor-

tant thing that we are concerned about is how congested is our route to destination. The

traffic management authorities and the adaptive traffic control systems try their best to

disperse the congestion and maintain a smooth traffic flow. Capturing and analyzing the

evolution of traffic congestion with the help of road network partitions can improve our

understanding about the congestion scenario. There are two main application scenarios

presented below. The first one is from the perspective of traffic management, whereas

the second one is from the perspective of commuters, both of which are important for a

pleasant journey.

• Traffic Management

These days the developed urban areas are well equipped with urban traffic control

systems (UTCS) like Sydney coordinated adaptive traffic system (SCATS) and split

cycle offset optimisation technique (SCOOT). These traffic control (or management)

systems log the aggregated traffic movement data on each of the road segments in

real-time, and based on them the signal cycle is adaptively controlled. One major

application area is to use the evolving road network partitions in the traffic control

systems from a centralized database to adaptively control the signal cycle durations,

and intelligently disperse the congestion wherever it is formed in the network.

Chapter 1. Introduction 7

• Journey Planning

The commuters always want to plan their journey in advance, so that they can

make it a pleasant and fastest one. We try to avoid the routes or destinations

where there are chances to get stuck in a traffic jam. There are several websites

and mobile applications that guide us in order to have a pleasant and fast journey.

Google Traffic, a service of Google Maps, anonymously collects the traffic data

from different sources (mostly smart mobile phones), and visualizes them on a map

in real time. People can look into the traffic level on the road segments they are going

to follow and plan their route and time of journey accordingly. Our research on the

road network partitions and their evolution give a rich and meaningful information

about the traffic congestion from an urban-scale perspective. Effectively visualizing

the congestion scenario using the differently congested partitions in real time can

aid the commuters to understand the spread of traffic congestion in a better way. In

this way it can be applied to develop a smart journey planner.

1.4 Contributions of This Thesis

This thesis contributes towards the development of technical methods for capturing and

analyzing the evolution of traffic congestion in real time. Our main contributions specifi-

cally are as follows.

• Spatial Partitioning of Urban Road Traffic Networks

As mentioned earlier, road traffic networks are unique in their kind. To identify

the different congestions (in the form of blocks or partitions) occurring in the road

network at a time point, spatial partitioning of the network needs to be applied.

Till date, there has been very little work on this problem. Our first contribution

is the development of effective and scalable methods for partitioning urban road

networks in such a way that the different resulting partitions have homogeneous level

of traffic congestion inside, and are heterogeneous to the other partitions outside.

We developed two methods, both of which start with transforming the real road

network into a graph representation called road graph

Chapter 1. Introduction 8

i) The first method is a two-stage procedure that firstly condenses the large road

graph into a well-structured supergraph via clustering and link aggregation based on

traffic density and adjacency connectivity, respectively. Based on spectral theory, we

developed a novel partitioning algorithm called α-Cut, to partition the supergraph.

Our experimental results show that this method outperforms the existing normalized

cut based partitioning algorithm. This research is presented in detail in Chapter 3. It

has been published as a paper in the proceedings of the 17th International Conference

on Extending Database Technology (EDBT) held in Athens (Greece) in 2014 [3].

ii) The second method is actually a robust framework that is based on both density

based and spectral based clustering. This framework has a two-stage algorithm

(referred as FaDSPa) that first transforms the large road graph into a well-structured

and condensed density peak graph (DPG) via density based clustering. Thereafter

our spectral theory based α-Cut (developed in the previous method) is applied on

the DPG to partition and obtain the different sub-networks. This framework allows

to select the trade-off between efficiency and accuracy. This research is presented in

detail in Chapter 4. It has been published as a paper in the journal Information

Systems in 2017 [4].

• Efficient Incremental Update of Partitions

In the temporal dimension, the dynamic traffic keeps changing the load continuously.

Partitioning the road network at each time point incurs heavy computation cost and

takes a long time in execution. Generally this change occurs gradually, and the

difference of the traffic level in two successive time-points is small. In such case,

a logical and more efficient solution is to incremental update the already available

partitions from the previous time point with respect to the change in traffic. Our

second contribution is the development of a comprehensive framework to capture the

spatiotemporal evolution of road network partitions. It consists of a method that

incrementally updates the partitions in an efficient manner, and an in-memory index

that compactly stores the historical information, detailed below.

i) The method to incrementally update the available road network partitions at each

new time point is based on a two-layer approach. The physical layer maintains a

large number of small-sized road network building blocks, and performs low-level

Chapter 1. Introduction 9

computations to incrementally update them. The logical layer interacts with the

physical layer, and performs high-level computations in order to serve as an interface

to query the physical layer about the congested partitions. This research has been

published as a paper in the proceedings of the 25th International Conference on

Information and Knowledge Management (CIKM) held in Indianapolis (USA) in

2016 [5].

ii) We also develop an in-memory index called Bin that compactly stores the his-

torical sets of building blocks with no information loss and facilitates their efficient

retrieval. Experimental results are presented to demonstrate the effectiveness and

efficiency of the framework.

This research is presented in detail in Chapter 5. We are in the process to submit this

complete framework as a paper in the journal IEEE Transactions on Knowledge

and Data Engineering for publication.

• Application-specific Experimental Study using Real Data

The continuous evolution of the real road traffic networks undergo different kinds

of situations that are generally not reflected in the synthetically generated datasets.

Therefore it is very important to study the applications of the technical methods

using real data. Our third contribution is an experimental study using real data

on two specific evolutionary applications. It also demonstrates the usefulness of our

previous contributions for real environments.

i) In the first application, using our α-Cut partitioning algorithm we develop a

simple and efficient framework for identifying the spatial congested partitions, and

dynamically tracking the temporal change in their location and structure. We iden-

tify the congested partitions based on real traffic measures (volume and green time

utilization) available from the traffic signal control system. We conducted extensive

experiments on Melbourne (Australia) road networks, and came up with some in-

teresting insights about the way congestion forms and propagates in the network.

This research has been published in the proceedings of the Transport Research Board

95th Annual Meeting (TRB) held in Washington D.C. (USA) in 2016 [6], and in the

journal Transportation Research Record: Journal of the Transportation

Chapter 1. Introduction 10

Research Board in 2016 [7]. It was also nominated for the Kikuchi-Karlaftis best

paper award.

ii) In the second application, we study the diffusion of traffic from one road seg-

ment to other connected road segments. This traffic diffusion phenomenon makes

some roads more influential than others in terms of congestion propagation. We

develop an algorithm called RoadRank that computes the influence scores of each

road segment in an urban road network, and rank them based on their overall in-

fluence. It also updates the influence scores incrementally with time based on the

latest traffic measures. In our experimental study, we found some interesting results

from the Melbourne (Australia) road networks. This research has been published as

a paper in the proceedings of the 24th International Conference on Information and

Knowledge Management (CIKM) held in Melbourne (Australia) in 2015 [8].

Our experimental study on both the applications mentioned above, is performed

using the real SCATS data of Melbourne road network provided by VicRoads5. This

research is presented in detail in Chapter 6.

1.5 Structure of This Thesis

The rest of this thesis is organized as follows:

• Chapter 2 - Literature Review presents a review of the literature related to this

thesis. We cover different aspects of the research on spatiotemporal evolution of

traffic on road networks. The chapter starts with the basics of clustering and graph

partitioning, and goes on to the research advancements on spatial data, clustering on

spatial data, spatial network partitioning. Then moving on to dynamic and evolving

networks, it presents the related works on the evolution of events in the form of

clusters and influence propagation.

• Chapter 3 - Spatial Partitioning of Urban Road Traffic Networks presents

a scalable method for traffic-based spatial partitioning of large urban road networks.

5http://www.vicroads.vic.gov.au/

Chapter 1. Introduction 11

It is a two-stage procedure that first transforms the large road graph into a well-

structured and condensed supergraph via clustering and link aggregation based on

traffic density and adjacency connectivity, respectively. We devise a spectral theory

based novel graph cut (referred as α-Cut) to partition the supergraph and compare

its performance with that of an existing method for partitioning urban networks.

Our results show that the proposed method outperforms the normalized cut based

existing method in all the performance evaluation metrics for small road networks

and provides good results for much larger networks where other methods may face

serious problems of time and space complexities.

• Chapter 4 - Fast Partitioning of Road Traffic Networks Using Density

Peak Graphs presents a robust framework for spatial partitioning of large urban

road traffic networks using density peak graphs. A two-stage algorithm (referred

as FaDSPa) embedded in the framework, first transforms the large road graph into

a well-structured and condensed density peak graph (DPG) via density based clus-

tering and link aggregation using traffic density and adjacency connectivity, respec-

tively. Thereafter we apply our spectral theory based α-Cut to partition the DPG

and obtain the different sub-networks. Experimental results are presented to demon-

strate the effectiveness and efficiency of the framework.

• Chapter 5 - Tracking and Capturing the Spatio-temporal Evolution of

Congestion presents a comprehensive framework to track and capture the spa-

tiotemporal evolution of road network partitions by incrementally updating them in

an efficient manner. It is based on a two-layer approach. The physical layer maintains

a set of small-sized road network building blocks, and performs low-level computa-

tions to incrementally update them, whereas the logical layer performs high-level

computations in order to serve as an interface to query the physical layer about the

congested partitions. We also present an in-memory index called Bin that compactly

stores the historical sets of building blocks with no information loss and facilitates

their efficient retrieval. Experimental results are presented to demonstrate the effec-

tiveness and efficiency of the framework.

Chapter 1. Introduction 12

• Chapter 6 - Applications using Real Traffic Data investigates real traffic data

and presents some application-specific experimental study. To discover the conges-

tion propagation patterns, we study two applications: i) temporal tracking of con-

gested partitions, and ii) traffic diffusion and influence estimation. We present some

interesting insights using real SCATS data. Through this study, we demonstrate the

importance of our research contributions in practical aspects.

• Chapter 7 - Conclusion and Future Work provides the concluding summary

of this thesis, the possible extension of the works presented in this thesis and other

unexplored areas as future research direction.

Chapter 2

Literature Review

The area of network partitioning and network evolution has received wide attention from

different research communities. In the context of road traffic networks, the attention

has been very recent and limited. It involves multiple research areas including clustering

and graph partitioning as a core concept, treatment of spatial data and spatial networks,

and evolution of partitions and influence propagation in the dynamic networks. In this

chapter, we present a detailed survey related to our research. We firstly start with a

review of the area of clustering in Section 2.1, including the foundational algorithms and

the latest developments. It is followed by the works dealing with spatial data in Section

2.2, including basic index structures and the common problems that people have worked

on these data. Then in Section 2.3, we present the advancements in the area of clustering

on spatial data and spatial networks. Section 2.4 presents a review of the research on

dynamic and evolving networks, focusing on the specific areas of evolution of clusters,

influence propagation, and traffic congestion. Finally we compare our work with the

existing works in Section 2.5.

2.1 Clustering

Clustering is one of the most important and ever growing research area in data mining.

It refers to the task of grouping objects with similar properties together, while separating

13

Chapter 2. Literature Review 14

from those with dissimilar properties. It has some important applications in spatial data

mining.

2.1.1 Foundations of Clustering

Clustering and graph partitioning apply to a wide variety of research problems, and many

solutions have been proposed in the past. Some of the basic and foundational clustering al-

gorithms including k-means, DBSCAN, and SCAN are briefly explained below. Nowadays

these basic algorithms are being used to develop further advanced and hybrid clustering

techniques.

• K-means: The k-means clustering algorithm [9] is one of the simplest and most

widely used unsupervised method to identify the grouping patterns in a data set.

It works to group the data items into k clusters based on similarity of their fea-

ture values, where the value of k needs to be pre-determined. Let us suppose, we

have a set of n data items D = {d1, d2, . . . , dn}, where each di has m feature

values forming an m-dimensional vector < f1, f2, . . . , fm >. The k-means clus-

tering algorithm aims to find out the subsets {D1,D2, . . . ,Dk} that minimizes
k∑

l=1

∑
di∈Dl

dist(di, μl), where μl is the mean value of subset Dl and dist() is the

function that computes the distance between the two vectors provided as input. Eu-

clidean distance ‖di − μl‖2 has been found to be the simplest and most suitable

for distance measurement in most of the cases. The method starts with randomly

picking k data items for the k means. After that all the data items are compared

with the means of each group and assigned to the closest one, and the mean values

are updated after all the data items have been assigned. The distance computing

of data items with the updated means and their assignment to the closest group

continues iteratively until convergence.

The k-means [9] and expectation-maximization [10] clustering algorithms work well

for finding ellipsoidal or convex shaped clusters, but fail to find non-convex clusters.

Density based clustering algorithms [11] are able to find clusters of arbitrary shapes.

Areas of higher density are considered as clusters, and the nodes in the sparse areas

separating the dense areas are considered as noise or boundary nodes.

Chapter 2. Literature Review 15

• DBSCAN: The density based spatial clustering of applications with noise (DBSCAN)[12]

algorithm is the most popular of this kind. It identifies a cluster by looking into the

neighborhood of each object within a predefined radius of ε distance. With each

minpts (predefined) objects in the ε-neighborhood, a new cluster is formed. How-

ever, this algorithm is highly sensitive to the thresholds ε and minpts, and choosing

an appropriate threshold is very important to get accurate clusters [13].

• SCAN: Extending the DBSCAN concepts, SCAN (structural clustering algorithm

for networks) [14] partitions a graph based on its structure to detect the clusters,

hubs and outliers.

• Density-based clustering using density peaks: The authors in [13] recently

proposed a fast density based clustering method by finding the density peaks locally.

They assume that the cluster centers are surrounded by neighbors with lower local

density and they are at a relatively large distance from any point of higher local

density.

• A recently proposed algorithm SCAN++ [15] uses a new data structure called di-

rectly two-hop-away reachable node set (DTAR) to efficiently partition a graph in

order to get the same results as produced by SCAN. Spectral clustering algorithms

like minimum cut and normalized cut have remained quite popular [16, 17]. In [18],

the authors proposed a spectral cut based on the min-max clustering principle for

graph partitioning in a data clustering point of view. In [17], White and Smith

proposed a spectral clustering based solution to find communities in graphs by par-

titioning. Their objective function is based on network modularity (defined later in

Section 2.1.4). The modularity of a set of graph partitions is defined as the difference

between the observed and the expected fraction of links within a partition. Larger

modularity values are correlated with better graph partitioning. The minimization

of our α-Cut (proposed in Chapter 3) approximately maximizes the modularity, and

thus it gives an indication of good performance of our α-Cut.

Chapter 2. Literature Review 16

2.1.2 Graph Partitioning

Let G = (V, E) be a graph, where V = {v1, v2, . . . , vnv} is the set of nodes, and E =

{e1, e2, . . . , ene} is the set of edges. The problem of graph partitioning is the decompose

G into multiple disjoint subgraphs or graph partitions {P1,P2, . . . ,Pk}, such that each

subgraph Pi is a connected component in itself, and satisfy the required properties. These

properties often come from numerical weights associated with the nodes and edges in the

graph. This weighted graph can be denoted by G = (V, E,WV ,WE) in complete detail,

where WV = {wv1, wv2, . . . , wvnv} is the set of weights associated with each node vi,

and WE = {we1, we2, . . . , wene} is the set of weights associated with each edge ei.

Partitioning G would generate a set of partitions {P1,P2, . . . ,Pk}, where each Pi con-

sists of a set of nodes Vi, edges Ei, and associated weights, if any. More generally, the

partitioning of G divides the set V into k disjoint sets.

{V1,V2, . . . ,Vk} ← V (2.1)

such that,

1. Nodes inside each Vi form a connected component;

2. Vi ∩ Vj = φ; and

3. {V1 ∪ V2 ∪ · · · ∪ Vk} = V

Due to the wide applications of graph partitioning [19], including distributed graph pro-

cessing and image segmentation, it has been studied in different contexts, with application-

specific properties required in the partitioned subgraphs. Traditionally, this partitioning

was mainly based on the associated weights, but there are also other emerging applications

including community detection in social networks, where the partitions are formed based

on the linkage structure in the graph [20]. This kind of partitioning lies into the category

of structural graph partitioning.

Chapter 2. Literature Review 17

Typically graph partitioning is an NP-hard problem, and the solutions are generally based

on heuristics and approximation algorithms. There are two approaches to solve this

problem- the local approach [21, 22] and the global approach [16, 23]. The local ap-

proach looks into the properties inside the graph locally to identify the possible partitions

initially from whom the final partitions are generated. It has been found that they suffer

from the problem of arbitrary initial clustering of the set of nodes [21, 22], which greatly

affect the final partitions. On the other hand, global approaches look into the whole graph

globally to identify the portions from where the graph links can be cut to generate the

final partitions. Spectral clustering [16, 24, 25], widely used in image segmentation, has

remained very popular for solutions in this category. The final partitions are derived from

spectrum of the graph adjacency matrix.

2.1.3 Spectral Clustering

Spectral clustering is a class of clustering algorithms which has its foundations in graph

theory and linear algebra, and clusters the set of data using eigenvectors and eigenvalues

of matrices derived from the data [23]. The algorithms in this class treat clustering as

a graph partitioning problem by optimizing different graph-based measures, and ignoring

assumptions based on cluster shapes. Thus their performance and success depends heavily

on how intelligently these measures, a.k.a. graph cuts, are devised. Maximizing average

association, minimizing average cut, and minimizing normalized cut are the three most

popular measures for spectral optimization [16].

For a given a set of n data items, these algorithms construct a graph G = (V, E,W)

where the set of nodes V is the set of n data items, E is the set of links between them, and

the weights W of links are defined by the affinity measure between the pair of nodes. The

graph is represented in the form of its weighted adjacency matrix An×n. The spectral

clustering algorithms aim to find k disjoint partitions P = {P1,P2, . . . ,Pk} of G, where⋃k
l=0 Pl = V , at the same time optimizing a certain cut (cost) function.

Let A be the weighted adjacency matrix of graph G. The degree matrix of G is a diagonal

matrix, derived from A by adding up the entries in each row together as shown in Equation

2.2.

Chapter 2. Literature Review 18

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

a1j 0 · · · 0

0

n∑
j=1

a2j · · · 0

...
...

. . .
...

0 0 · · ·
n∑

j=1

anj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

The Laplacian matrix L of G is computed by subtracting the adjacency matrix from the

degree matrix as shown in Equations 2.3, 2.4, and 2.5.

L = D − A (2.3)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
j=1

a1j 0 · · · 0

0

n∑
j=1

a2j · · · 0

...
...

. . .
...

0 0 · · ·
n∑

j=1

anj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
j �=1

a1j −a12 · · · −a1n

−a21

∑
j �=2

a2j · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·
∑
j �=n

anj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.5)

A function W (Pi,Pj) is defined in Equation 2.6 as the sum of weights associated with

all the links having their nodes at one end in Pi and the nodes at the other end in Pj .

W (Pi,Pj) =
∑

er∈{links(Pi,Pj)}
wr =

∑
vp∈Pi,vq∈Pj

A(p, q)
(2.6)

Chapter 2. Literature Review 19

Minimum Cut

Definition 2.1. (Cut) For a given partition set P = {P1,P2, . . . ,Pk} the cut of a

partition Pi is defined as the summation of weights associated with all the links having

their nodes at one end in Pi and nodes at other end in any partition other than Pi, i.e.,

W (Pi,Pi). �

The cut value of a partition Pi gives a measure of connectivity strength between Pi

and the rest of the partitions, and thus quantifies the loss incurred in cutting those link

connections while partitioning the graph. The summation of the cut of all the partitions in

P gives the total cut value. A minimum cut based partitioning aims partition the graph

in such a way that the total cut is minimized. Thus it focuses on identifying partitions

that are highly heterogeneous to each other.

Association Cut

Definition 2.2. (Association) For a given partition set P = {P1,P2, . . . ,Pk} the

association of a partition Pi is defined as the summation of weights associated with all

the links having nodes at both ends in Pi, i.e. W (Pi,Pi). �

The association value of a partition Pi gives a measure of connectivity strength between

nodes inside Pi. The summation of the association of all the partitions in P gives the

total association value. An association cut based partitioning aims to partition the graph

in such a way that the total association is maximized. Thus it focuses on identifying

partitions that have high homogeneity inside.

Normalized Cut

It has been found that both minimum and association cuts behave in a biased manner,

focusing only on the heterogeneity and the homogeneity, respectively [16, 26]. For example,

minimum cut favors cutting small sets of isolated nodes in the graph and as a result

the produced partitions are highly imbalanced. A good partitioning can be obtained by

taking both the factors into account. Normalized cut (Ncut) defined in Equation 2.7 avoids

this unnatural biasness by considering both the factors simultaneously. It computes the

cut cost as a fraction of the edge connections between all the nodes in the graph. As

its name suggests, the cut value is normalized by the association. A normalized cut

Chapter 2. Literature Review 20

based partitioning aims to partition the graph in such a way that the Ncut(P) value

is minimized. Thus it focuses on identifying partitions that have both high homogeneity

inside and high heterogeneity with others outside.

NCut(P) =

k∑
i=1

cut(Pi)

association(Pi)
(2.7)

The average association, average cut, and normalized cut based k-way optimizing cut

functions are shown in equations 2.8, 2.9, and 2.10 respectively, where W (Pi,Pj) is

defined in Equation 2.6.

max
P

AvgAssoc(V) = max
P

k∑
l=0

W (Pl,Pl)

|Pl|
(2.8)

min
P

AvgCut(V) = min
P

k∑
l=0

W (Pl,Pl)

|Pl|
(2.9)

min
P

NCut(V) = min
P

k∑
l=0

W (Pl,Pl)

W (Pl,P)
(2.10)

There exist many more kinds of possible cuts with different desired properties. For very

small graphs the optimal cut or association value for partitioning can be found by trying all

the different possibilities, but for large sized graphs it is almost impossible to partition this

way with the computing environments available today. The solutions to the objectives of

all such kinds of cuts are based on the spectral theory, which produce approximate results

[16, 24, 25, 27].

Solving any of these cut functions to find the optimal partitions set P is an NP-complete

problem [16]. Therefore the spectral clustering techniques apply an approximate solution

by considering the k eigenvectors of a derived matrix as relaxed cluster indicator vectors,

which are used to form an n×k row-normalized data matrix. Nodes from the same cluster

are expected to be close together while nodes from different clusters are expected to be

well separated in the k-dimensional eigenspace. Finally the simple k-means clustering

algorithm is applied on the n × k data matrix, considering the n rows as different data

Chapter 2. Literature Review 21

items, where each data item is a vector of size k. The obtained clusters are accepted as

output of the spectral clustering algorithm.

Recently, people have adopted different heuristic, hybrid, and multilevel techniques to

develop efficient techniques for graph partitioning based on different criteria and in different

context [23, 28]. In [20], Zhou et al. aimed to obtain graph partitions in which the nodes

inside a partition are structurally close to each other and have similar feature values,

and followed a random walk based approach. Sun et al. [29] integrated the problems of

ranking and clustering in heterogeneous information networks and proposed the algorithm

RankClus that produces clusters with rank information of the objects in the network.

There is a wide application of graph partitioning for network community detection. In

[30], the authors explored some graph partitioning based community detection methods

and evaluated their relative performances. However, most works on graph partitioning

face time and space complexity issues with large networks.

2.1.4 Modularity

The modularity of a set of graph partitions Q(P) [17] is defined as the difference be-

tween the observed and expected fraction of links within a partition, and is formulated as

Equation 2.11. �

Q(P) =

k∑
i=1

[
W (Pi,Pi)

W (V,V)
−

(
W (Pi,V)

W (V,V)

)2
]

(2.11)

Larger modularity values are correlated with better graph partitioning. To maximize

modularity while partitioning a graph, in [17] the authors presented a spectral cluster-

ing solution. They showed that the partitioning can be obtained by using the k largest

eigenvalues and corresponding eigenvectors obtained after eigen-decomposition of the mod-

ularity matrix LQ.

Chapter 2. Literature Review 22

2.2 Spatial Data

Spatial data refers to spatial objects comprising geographic data like points, lines, regions,

surfaces, volumes, and even data of higher dimension which includes time [31]. Examples

of spatial data include cities, rivers, roads, counties, states, and such other geographical

landmarks, which are marked by some geographic latitude and longitude coordinates.

Spatial databases are able to efficiently store and query spatial data objects using suitable

data structures and indexing methods. Some popular index structures for spatial data,

described in the following section, are R-tree [32], R+-tree [33], and R∗-tree [34].

2.2.1 Basic Index Structures

(a) MBRs of each object (b) MBR of a set of objects

Figure 2.1: MBR

MBR: The geometry of the spatial objects in a two dimensional space can range from a

very simple structure like a point to complex structures like polygons or any other random

shape. In spatial query processing, the evaluation of the spatial predicates is very inefficient

when applied directly on the exact shapes of the objects. For an efficient solution, the

shape is approximated by considering the smallest rectangle that bounds the entire object

by the coordinates min(x), min(y), max(x), and max(y) in the (x,y) coordinate system.

This rectangle is called a minimum bounding rectangle (MBR) [35, 36] for that particular

object (or for a set of objects if there are multiple objects bounded by a single rectangle).

Chapter 2. Literature Review 23

If an MBR does not qualify for the spatial query, it implies that the object in that MBR

also does not qualify. In this way it improves the efficiency of this filtering step. Figure

2.1 shows some examples of MBR.

(a) Space partitioning for objects

(b) Quadtree creation

Figure 2.2: Quadtree

Quad Tree: Quad tree [31, 35–37] is a tree structure where each internal (or non-leaf)

node has exactly four children. It is used to index a two-dimensional space by recursively

partitioning the space into four quadrants until the spatial objects are evenly distributed

into the quadrants. The root node corresponds to the entire two-dimensional space, which

is divided into four quadrants corresponding to its four children. The subdivision of

Chapter 2. Literature Review 24

quadrants in this way goes on at each level for child nodes of all the internal nodes. The

data associated with the leaf nodes represent a single unit of spatial interest. Figure

2.2 illustrates the creation of a quadtree by recursive partitioning of the two-dimensional

space. A quadtree is not necessarily balanced.

cc

hh

dd

jj

ll qq

bb

nn

rr

pp

aa gg

ff

ee

ii

oo

kk
m

ii

m

i

R1

R2

R4 R5
R8

R7
R9

R6

R3

(a) Object and higher level MBRs

R1R1 R2R2 R3R3

R4R4 R5R5 R6R6 R7R7 R8R8 R9R9

aa bb cc dd ee ff gg hh ii jj kk ll mm nn oo pp qq rr

(b) R-Tree created from the MBRs

Figure 2.3: R-tree

R-Tree: R-Tree, proposed by Antonin Guttman in 1984 [32], is a height-balanced tree

structure similar to B+-tree. It indexes the MBRs of the spatial objects instead of their

exact extents, and is used for spatial access methods. The main idea is that the objects

Chapter 2. Literature Review 25

are represented by their MBRs and all the closely located MBRs are grouped together

and represented by their common MBR as node in the next higher level. Thus the root

node consists of MBRs of the highest level, and the leaf nodes are MBRs of the individual

spatial objects. Figure 2.3 shows an example of object MBRs and the created R-Tree.

R-Tree is the most popular spatial index structure, and has been significantly in use for

different theoretical and practical problems. An application where it is widely used is

storing spatial objects like restaurants and applying nearest neighbor queries on them.

Variants of R-Tree: R-Tree is a dynamic data structure, where the tree is also updated

using the insertion and deletion operations while performing the search operations. The

performance of the tree is greatly affected by these alternating update operations. Alto-

gether the performance is dependent on the coverage (the entire area to cover all related

rectangles) and overlap (the entire area which is contained in two or more nodes). A

minimal coverage means that the amount of dead space (or empty area in the nodes) is

minimal, and a minimal overlap means that the set of search paths to the leaves is mini-

mal. Both of these factors are critical to the search performance. Minimal coverage and

minimal overalp are the key to achieve a good performance. R+-Tree [33] and R∗-Tree

[34] are two optimized variants of the basic R-Tree, proposed in order to achieve a better

performance. In R+-Tree, there is no overlapping of MBRs of the internal nodes. The

objects in the overlapping portions are inserted into multiple leaves if required. On the

other hand, the R*-tree attempts to reduce both coverage and overlap by using a revised

node split algorithm and the concept of forced reinsertion of nodes. It achieves a well

clustered groups in the node entries, and thereby reduces the node coverage.

2.2.2 Query Processing

Processing spatial queries in spatial databases and geographic information systems (GIS)

have received wide attention [38, 39]. Some popular spatial queries are range search,

nearest neighbour search, closest pairs search, and spatial joins. To efficiently process

such queries, effective index structures are employed to aid search algorithms in efficiently

retrieving the target data objects. In range queries, the range usually corresponds to

a rectangular window or a circular area around a query point [38]. R-trees efficiently

Chapter 2. Literature Review 26

process these queries. k-nearest neighbor (kNN) queries retrieve k data point(s) closest

to a query point. The first popular approach to process these queries on R-trees is the

branch-and-bound R-tree traversal algorithm [40]. It traverses the R-tree while keeping a

priority queue of the k potential nearest neighbours, and at the same time searching and

pruning the unnecessary subtrees by applying the distance metrics. The reverse nearest

neighbor (RNN) query, which is retrieves the m the set of points that have the query point

as their nearest neighbor, was first proposed by Korn and Muthukrishnan [41]. In [42], the

authors proposed the ”time-interval all fastest path (allFP)” query and a solution method

for its processing. Given a user-dened leaving or arrival time interval, a source node and

an end node, allFP query asks for a set of all fastest paths from the source node to the

end node, one for each sub-interval. Various other related problems including identifying

top-k influential objects [43] and finding optimal locations [44] have also been studied in

the past.

With the increasing popularity of location-based services, spatial queries including some

textual keywords called spatial keyword queries have found their way. These queries are

able to handle new problems like mapping textual documents or webpages to specific

geographic regions. In [45], Chen et al. worked on improving performance of these queries

on search engines. Top-k spatial keyword queries retrieve k most suitable ranked objects

on the basis of a combination of their distance to a query location and relevance to the

associated query keywords in text. Efficient processing of these queries is a standard

problem these days. In [46], the authors processed these queries by integrating R-trees and

signature files in a hybrid index structure called IR2-tree. To improve the performance of

these queries, Rocha-Junior et al. proposed a new indexing structure based on aggregated

R-tree (aR-tree) in [47], and recently they proposed a technique for spatial keyword search

in road networks [48]. Some more recent works on this problem are [49–51]. This problem

has also expanded into various other similar problems [52].

2.2.3 Knowledge Discovery

With the advent of digitization and technological developments, in the present days we

continuously accumulate huge amounts of geospatial traffic data or travel footprints from

Chapter 2. Literature Review 27

different sources. The most common of them to capture the realtime traffic are video sen-

sors and loop detectors installed at different road network points which log the data auto-

matically by detecting vehicles in real-time, GPS-equipped devices capturing the real-world

trajectories, and location-based social media applications like Twitter1 and Foursquare2

logging geospatial digital footprints of urban social media users. Each source produces

data with a different kind of traffic information and may or may not be directly related to

others. This huge amounts of spatial data collected through various sources have the po-

tential to deal with crucial travel and transportation problems by applying different data

mining techniques. Several works of varied kind have been done in this area, including pat-

tern mining [53, 54], trajectory clustering [55, 56], hot and popular route discovery [57, 58],

fastest path computation [42, 59], mining interesting locations [60], and congestion-based

spatial partitioning of road networks [61].

• Pattern mining: There are often some obscured or trendy patterns in the spatial

or spatio-temporal data. An obvious example is the sudden increase in traffic con-

gestion in the office opening and closing hours in the city center areas. The area

of pattern mining covers the development of techniques to identify the hidden as

well as obvious patterns in large spatio-temporal databases. Mamoulis et al. [53]

proposed a framework to analyze, manage and query object movements to discover

hidden period patterns from spatiotemporal data. Gianotti et al. [54] extended the

sequential pattern mining area to introduce trajectory pattern mining to discover

frequent hidden behaviors in both space and time.

• Hot and popular route discovery: There are often some routes more popular

or preferred than others. There could be several obvious or unobvious reasons for

the personal preferences. This area covers development of techniques to efficiently

identify the hot routes considering the different factors. Marketing companies are

often interested in identifying the hot routes of a city or particular area. In [57],

Li et al. proposed a new density-based algorithm named FlowScan to discover hot

routes in a road network. Instead of clustering the moving objects, they applied

the clustering on road segments based on the density of common traffic they share.

1https://twitter.com/
2https://foursquare.com/

Chapter 2. Literature Review 28

Trajectory clustering is a similar problem. Lee et al. proposed a partition and

group framework for clustering trajectories to partition a trajectory into a set of

line segments and then group similar line segments together into a cluster. A work

on online hot route discovery [62] searches and maintains hot motion paths that

are travelled by at least a certain number of moving objects. In [58], Chen et al.

proposed a method to discover popular routes from trajectories. They designed a

coherence expanding algorithm to retrieve a transfer network from raw trajectories

to indicate all the possible movements between locations. The absorbing Markov

chain model is then applied to derive the transfer probability from each node in

the network, and finally the most popular routes are discovered from the transfer

network using the their maximum probability product algorithm.

• Fastest path computation: With the emergence of digitized transportations maps

and increase in our travel patterns, online journey planning has become a frequently

performed and important task. Several online journey planning applications like

Google Maps3 provide this service. While planning a journey we are generally in-

terested in the route that takes minimum time to reach the destination. Therefore

fastest path computation is on of the most important and widely studied problems.

Efficient retrieval of the path is a major concern, as the results have to be returned in

real-time. In [59], Gonzalez et al. proposed an adaptive fastest path algorithm, that

efficiently uses a large set of historic traffic data to mine the important driving and

speed patterns, and make the algorithm adaptive to these patterns. The authors in

[63] perform an experimental study on routing algorithms and acceleration methods

for point-to-point shortest path computations in time-dependent directed graphs in

which the link weights vary over a period of time. They found that the A* is the

fastest algorithm with an enhanced heuristic estimate. It is up to 400 times faster

than Dijkstras original algorithm on short routes, and the speed up compared to

Dijkstra’s algorithm diminishes with the increase in the length of the route. Some

more interesting works on this problem are [64–68].

3https://maps.google.com.au

Chapter 2. Literature Review 29

• Mining interesting locations: The tour and travel is a big commercial industry.

Several companies like tripadvisor4 are often interested in identifying the interest-

ing destinations in a country or at a particular time. To boost the tourism industry,

sometimes the government tourism departments also are interested in mining these

locations. Zheng et al. [60] proposed to identify interesting locations and classic

travel sequences in a give geospatial region by mining multiple users GPS trajecto-

ries. Their method uses a tree-based hierarchical graph (TBHG) to model the user

location histories and is based on HITS (Hypertext Induced Topic Search) ranking

model. In [69], Majid et al. developed a system to recommend interesting tourist

locations and travel sequences from a collection of geo-tagged photos from platforms

like flickr5. Their method takes into account the environment context including

time, date and weather, and also the collective wisdom of people. The paper [70]

exploits massive amounts of GPS records of multiple individual users for identifying

the top-k significant semantic locations, e.g., shopping malls, restaurants, or tourist

attractions.

• Socio-spatial data: The knowledge discovery from socio-spatial databases is a new

and rapidly growing research area, having many unexplored problems [71]. Some of

the works done in the past include query processing [71–73], user location based per-

sonalized recommendation [74–76], and crowd management [77, 78]. In socio-spatial

recommendation research, the system learns users’ interests from their location his-

tory and uses them along with the social data to make recommendations. In [74, 76],

a user-location matrix is generated based on user location histories, where each entry

in the matrix is the number of visits of a particular user to a physical venue. Then

a user’s interest on unvisited venues is inferred by following a collaborative filtering

method. Cosine similarity is used to determine user similarities. The system of Bao

et al. [75] follows two stages, offline modeling and online recommendation, to rec-

ommend top-k ranked location to a user. The offline modeling considers personal

preferences and infers the expertise of each user in a city with respect to different

category of locations, whereas the online recommendation selects candidate local

experts in a geospatial range that matches the users preferences and then rank the

4https://www.tripadvisor.com.au/
5https://www.flickr.com/

Chapter 2. Literature Review 30

locations based on an inferred score. Lee et al. [77, 78] worked to develop a geo-social

event detection system by monitoring crowd behaviors indirectly via twitter. The ge-

ographical regularities are deduced from the usual behavior patterns of crowds with

geo-tagged microblogs. The unusual geo-social events are detected by comparing the

regularities with the estimated patterns. Li and Chen [79] performed quantitative

analysis of the socio-spatial data. Zhang et al. [80] determined user influence based

on spatial and social criteria.

For any kind of query processing or knowledge discovery, just like the spatial databases, it

needs an efficient data indexing structure. Yang et al. [72] proposed Social R-tree as a new

index structure and used it for socio-spatial group query (SSGQ) processing. The query

finds the set of most suitable candidates for a planned activity by taking into account

certain spatial and social constraints. Liu et al. [73] proposed k-Geo-Social Circle of

Friend Query (k-gCoFQ), in which for a given a weighted graph, a user u, and a positive

integer k, the query finds the group g of k + 1 users, which is connected, contains u,

and minimizes the maximum distance between any two of its members. Both SSGQ and

k-gCoFQ are NP-Hard, and their authors present approximation algorithms. In [71], the

authors proposed two basic queries, range friends (RF) and nearest friend (NF), and one

novel query, nearest start group (NSG). RF finds the friends of a user within a given

geographic range, NF finds the nearest friends of a user within a given range, and NSG,

for a given geographic query point q and an integer m, finds a user group of size m which

star subgraph of the social network and minimizes the aggregate distance of its members

to q.

In addition to the above recent works dealing with spatial traffic data, there are many other

similar knowledge discovery problems being studied these days in different perspectives.

2.3 Clustering on Spatial Data

In clustering general data objects, there is only one objective, and it is to group the

objects that have have similar properties. But when clustering is applied on spatial data,

the associated spatial properties bring in some spatial constraints. Therefore in most

Chapter 2. Literature Review 31

of the problems related to clustering spatial data or partitioning spatial networks, some

additional technical methods need to be developed on top of the traditional clustering

algorithms. In the following sections, we present a review of the works related to spatial

clustering and spatial network partitioning.

2.3.1 Spatial Clustering

Spatial clustering is an important component of spatial data mining, which groups similar

spatial objects into classes using basic clustering algorithms [81–83]. In the recent years,

it has been studied from different perspectives for different kinds of data including spatial

trajectories, traffic data, and spatial streaming data. It is an important component in

mining different traffic patterns. Trajectory clustering has remained an important problem

for mining people movement patterns [55, 84]. In [55], Lee et al. presented a partition-

and-group framework for clustering trajectories. It starts with optimally partitioning each

trajectory into a set of line segments using the minimum description length (MDL), and

then the grouping phase groups the similar line segments into clusters using a density based

clustering method. Recently Hung et al. [84] used clues based on movement behavior

to cluster similar trajectories into groups, which leads to find partial trajectory routes.

Thereafter they do a clue-aware trajectory aggregation to derive the complete trajectory

pattern and route. FlowScan proposed by Li et al. in [57] finds the hot routes in a road

network by clustering the road segments based on the density of commonly shared traffic.

The authors in [85] proposed an efficient incremental algorithm to cluster the spatial data

streams collected from sensors. Their method first predicts the clusters roughly using the

previous clustering results, and then refines them further in the next stage. In [86], the

authors discover the spatial co-clustering patterns in traffic collision data by identifying the

sets of non-spatial attribute-value pairs of collision data, e.g., weather conditions and day

of the week, that together contribute significantly to the spatial clustering of corresponding

collisions.

Chapter 2. Literature Review 32

2.3.2 Spatial Network Partitioning

Spatial network partitioning refers to the task of partitioning a spatial network into multi-

ple disjoint sub-networks or partitions in such a way that the partitions have homogeneous

properties inside them. In the context of urban road networks, this task is specially im-

portant to identify the differently-congested partitions in an urban area. These partitions,

also regarded as clusters of congestion in the network, help us to understand the congestion

spread at a point of time in an informative way.

Though graph partitioning in general has been well studied, not much work have been

done on the spatial partitioning of road networks. In [61], the authors proposed a normal-

ized cut based method for spatial partitioning of transportation networks. They tried to

achieve three predefined criteria of small variance of within-partition traffic density values,

small number of partitions, and spatially near-compact partitions. Their method starts

by excessive partitioning of the road network using normalized cut, followed by merg-

ing smaller partitions, and then locally adjusting the road segments lying on partition

boundaries by replacing them into the neighboring partitions. It works well for small road

networks, but suffers from high time and space complexities for large networks. In [87]

the authors proposed two heuristic methods to partition the road network into a set of

subnetworks that are balanced in terms of their size. The first method follows a recur-

sive approach to find the sparsest cuts that lead to balanced partitions in terms of their

size. The second method applies a greedy-based coarsening iteratively along the high-flow

links, and terminates when the number of nodes in the coarsened network is equal to the

required number of partitions. The authors have reported that their method works fine for

small-sized networks, but the running time increases significantly with the increasing the

network size because of the expensive computations in determining the optimal maximum

concurrent flow (MCF).

There exist some other works that treat spatial network partitioning as a secondary prob-

lem to solve some other problem of primary concern. Some works suggest to partition the

network into small subnetworks and use distributed computing in parallel to efficiently

solve different transportation related problems in large road networks [88]. The authors in

[88] used existing graph partitioning techniques to form a hierarchy of nodes in a spatial

Chapter 2. Literature Review 33

network and proposed an index structure called a partition tree that can be used for effi-

cient spatial query processing. Some works partition the road networks in a way that suits

their application, including monitoring proximity relations [89], point to point shortest

path query indexing [90], traffic prediction [91], and finding distance-preserving subgraphs

[92]. In [93], the authors partition a sensor network such that the data dissimilarity be-

tween any two nodes inside a partition is at most δ. They proposed a distributed clustering

algorithm called ELink that works for both synchronous and asynchronous networks.

2.4 Dynamic and Evolving Networks

While there has been significant research on static networks, the research on dynamic and

evolving networks is still in its early phase. In today’s world, where people travel more

frequently than ever before, dynamic traffic networks are becoming an important area of

study. In these networks, the spatial road network is static but the continuously changing

traffic makes it dynamic. Social networks are the other popular dynamic networks that

have received significant attention. The common problem in dealing with all such dynamic

networks is the limited ability to efficiently capture and process the frequent change in

the network. Below we discuss on the developments in two specific area related to these

networks.

2.4.1 Evolution of Clusters in Dynamic Networks

Traditional clustering methods directly apply only on static data. With the growth of

dynamic data and dynamic networks, the attention in the recent years diverted towards

developing clustering methods that can handle the changing behavior of the data. A naive

way to deal with such dynamic data is by applying the traditional clustering algorithms on

the dataset repeatedly whenever there is a change. The major drawback of this approach

is that the algorithm has to perform all the computations again from the scratch each time,

even when the change is very small. For clustering large data or partitioning large graphs,

it may take very long execution times. This property makes the traditional clustering

algorithms unsuitable to deal with dynamic data in real time. In dynamic evolving data,

Chapter 2. Literature Review 34

the change is generally a gradual process, and small at a time. For example, in road

networks, the traffic volume on a road segment can not become very high all of a sudden.

Rather, the traffic will gradually move in from connected road segments. Similarly in social

networks the relationships and their strengths grows and shrinks gradually in the global

perspective. The concept of incremental clustering is a solution for such environments,

which reuses the already available information in the form of clusters from the previous

time point. It looks into the most recent change, and heuristically updates the clusters

or partitions based on the change. Thus it avoids all the unnecessary computations.

Incremental clustering techniques are known to be more efficient than the traditional

clustering algorithms, and this is achieved at the cost of sacrificing the quality of results

up to some extent.

Evolution of specific events or characteristics in complex dynamic networks is studied in

different kinds of networks from different perspectives [61, 94, 95]. These events in the

networks are often captured in the form of clusters of the network. The temporal evolution

of traffic congestion is an important problem for a smartly managed transportation, but

has not been studied very well. Existing works consider an urban road network as a

set of differently congested individual subnetworks, which are identified by partitioning

the road network [61]. [95] investigates the spatiotemporal relation of congested road

segments, and performs an empirical observation on the propagation of congestion. In [85]

the authors incrementally cluster the spatial data streams collected from sensors. They

firstly predict the clusters roughly using the previous clustering results, and then refine

them further in the next stage. Li et al. [86] discover the spatial co-clustering patterns in

traffic collision data by identifying the sets of non-spatial attribute-value pairs of collision

data, e.g., weather conditions and day of the week, that together contribute significantly

to the spatial clustering of corresponding collisions.

These days the evolution of events is increasingly being studied in the domain of social

networks [96–99]. In [96], the authors incrementally update the evolving clusters in a

dynamic network by doing bulk updates, with the aim to track the evolution of events in

social networks. [99], [97] focus on identifying the emerging stories from social networks

in real-time. [99] considers the network of keywords from the social texts, from which

Chapter 2. Literature Review 35

the dense clusters are identified based on approximate quasi cliques and temporally main-

tained. [97] considers a network with streaming edge weight updates, and with the help

of an index they maintain the dense subgraphs. Community evolution in social networks

is generally tracked with the help of different events in community development, including

birth, death, merge, split, expansion and contraction [100]. The social networks are highly

dynamic in nature, and the graph representations on this platform continuously change in

both the nodes and links. Unlike these networks, the road networks are static in terms of

its topology, with the continuously changing bi-directional traffic. These differences make

our problem different than that studied in social networks.

2.4.2 Influence Propagation

Identification of important nodes in a network is a problem common to many different kinds

of networks [101, 102]. Some application examples are identification of influential persons

in social networks, key components in different information networks, key infrastructure

nodes in Internet, and important road segments in transportation networks. Centrality

measures including degree centrality, closeness centrality, and betweenness centrality give

a good indication of important nodes based on the structural properties of a graph [103–

105]. These measures have been found quite effective and popular in social networks. In

the recent years, information propagation and diffusion has been a hot area of research

in social networks [106–108]. Kempe et al. [107] devised a greedy discrete-optimization

model to maximize the spread of influence through social network. Gruhl et al. [106]

modeled information diffusion through blogosphere as an infectious process among users.

Several existing works focus on estimating the user influences in different types or platforms

of social networks [109–112]. Song et al. proposed InfluenceRank to identify opinion

leaders in blogosphere based on the users importance and the novelty of the content being

diffused. Goyal et al. [110] devised various probabilistic models of influence between users

in social networks and also showed that influence is genuinely happening in real-world social

network. Silva et al. [111] proposed an information diffusion model called ProfileRank

to identify influential users and content relevance based on random walks over a user-

content graph. Recently, Herzig et al. [112] devised an influence model to detect topic-

based influencers in social media. Information diffusion and influence propagation have

Chapter 2. Literature Review 36

mostly been studied as applications in social networks. Though some of their fundamental

concepts can be directly applied, not much work have been done on road traffic networks

for an in-depth study.

2.4.3 Traffic Congestion in Transportation Networks

Transportation networks are physical spatial networks, in which the network is static but

the traffic is dynamic. Crowd management and dealing with traffic congestions are prob-

lems of great importance in transportation networks [77, 113, 114]. Wang et al. [113]

developed an interactive system for visual analysis of urban traffic congestion based on

GPS trajectories. They clean the trajectories and match them to the road network, based

on which they detect the traffic jams. They also studied the traffic-jam propagation using

graphs over a period of time. Their work mainly shows congestion on individual road

segments having no concrete information about how the congestion is linked in the whole

network globally. Traffic congestions are known to often originate from bottleneck areas.

Bottlenecks are those sections of a road network where the traffic supply capacity is lower

than the traffic demand. Bottlenecks could be either in static form (e.g., on-ramp, off-

ramp, curve of road, and lanes merging) or in dynamic form (e.g., moving bottlenecks

due to low speed vehicles, incidents or traffic accidents) [115, 116]. Analysis of static and

dynamic traffic bottlenecks and development of models to identify and understand their

nature are crucial problems for dealing with traffic congestions and improving transporta-

tion operation [117]. There are often some unusual movement patterns on road networks,

and finding such patterns leads to the area of anomaly detection [118–120]. Traffic jam

detection and traffic pattern monitoring are its important applications [121]. Besides road

networks, such problems are also being studied in other forms of transportation networks

[122]. In [123], the authors demonstrated the applicability of cloud computing technique

for using the large traffic data to provide traffic information requirements to the general

public and traffic management organizations. Some recent works on data analytics to deal

with traffic congestion are [124, 125]. [124] proposed an algorithm for automatic prediction

of congestion at a future point of time by learning from the traffic history, so that effective

measures could be taken in advance. The authors in [125] argued that the generation and

propagation of congestion has a close relation with the network topology.

Chapter 2. Literature Review 37

2.5 Our Work vs. Existing Work

In recent years, the growth in multidimensional geospatial datasets has attracted the

attention of spatial database researchers to address the problems of transportation systems

[58, 59]. This thesis is on spatial partitioning of road traffic networks and tracking their

evolution over a period of time. There are not many works done so far in this research area.

However, there exists few works that are partly related to some sections of our research.

In this Section, we present the works related to our research, and show how we differ from

them.

2.5.1 Spatial Partitioning of Urban Road Networks

Chapter 3 of this thesis presents a spectral clustering based algorithm for partitioning

road traffic networks. On the same problem, but for a more efficient solution for large

road networks at the cost of compromising with accuracy up to some extent, Chapter 4

presents a framework that is based on both density and spectral based clustering.

The most closely related work on this problem are [61, 87, 126]. Ji and Geroliminis [61]

proposed a normalized cut based method for spatial partitioning of transportation net-

works. They tried to achieve three predefined criteria of small variance of within-partition

traffic density values, small number of partitions, and spatially near compact partitions.

Their method works in three steps, starting with excessive partitioning of the road network

using normalized cut, followed by merging smaller partitions up to a certain level, and then

locally adjusting the road segments lying on partition boundaries by replacing them into

the neighboring partitions, if doing so increases the segment uniformity. Their method

suffers from time and space complexity for large urban road networks. [126] showed that

an efficient real-time traffic control for a large-scale urban traffic network could be done

by dividing the large complex network into multiple small simple subnetworks controlled

in a hierarchical structure. They proposed a partitioning method based on the community

detection theory to maximize the modularity of a partition, and follow an agglomerative

approach to check each possible combination and compare their modularity. It is highly

computational and not scalable to check each possible combination, and therefore faces

Chapter 2. Literature Review 38

serious limitations for large networks. In [87] the authors proposed two heuristic methods

to partition the road network into a set of subnetworks that are balanced in terms of

their size. The first method follows a recursive approach to find the sparsest cuts that

lead to balanced partitions in terms of their size. The second method applies a greedy-

based coarsening iteratively along the high-flow links, and terminates when the number

of nodes in the coarsened network is equal to the required number of partitions. The au-

thors have reported that their method works fine for small-sized networks, but the running

time increases significantly with the increasing the network size because of the expensive

computations in determining the optimal maximum concurrent flow (MCF). [127] parti-

tioned the transportation network to develop a macroscopic fundamental diagram (MFD)

of Brisbane, Australia, based on data fusion from multiple sources.

In contrast to the works mentioned above, both of our methods (Chapters 3 and 4) follow

a two level-clustering to make the algorithm scalable for large urban road networks. Our

method in Chapter 3 applies k-means in the first level to group the road segments locally in

a bottom-up manner to form supernodes, and then applies a novel partitioning algorithm

(referred as α-Cut) that works in a top-down manner in the second level. Similarly, our

method in Chapter 4 applies density based clustering in the first level to construct a well

structured and condensed density peak graph. Then in the second level it applies our

α-Cut partitioning algorithm. The α-Cut algorithm helps us in achieving more accurate

results, and dividing the computations into two levels, helps us in improving our efficiency.

This problem is much related to general graph partitioning, which is a well studied problem.

It has applications to a wide variety of areas, and many solutions have been proposed in the

past. As mentioned earlier in Section 2.1.3, spectral clustering algorithms like minimum

cut and normalized cut have remained quite popular [16, 17]. In [18], the authors proposed

a spectral cut based on the min-max clustering principle for graph partitioning from a data

clustering point of view. In [17], White and Smith proposed a spectral clustering based

solution to find communities in graphs by partitioning. Their objective function is based

on network modularity.

This modularity matrix [17] (described earlier in Section 2.1.4) actually equals to the

negative of our α-Cut matrix derived in Equation 3.10 of Chapter 3. As we obtain the

Chapter 2. Literature Review 39

partitioning by selecting the k smallest eigenvalues and corresponding eigenvectors, both

the techniques result in the same set of eigenvalues and eigenvectors, and thus the same

partitioning. It means that the minimization of α-Cut approximately maximizes the

modularity.

More works related to general graph partitioning are covered in detail in Section 2.1.2.

2.5.2 Tracking and Capturing the Spatio-temporal Evolution of Conges-

tion

The temporal evolution of traffic congestion is an important problem for a smartly managed

transportation, but has not been studied very well. Existing works consider an urban road

network as a set of differently congested individual subnetworks, which are identified by

partitioning the road network [61]. Chapter 5 of this thesis presents a comprehensive

framework to track and capture the spatiotemporal evolution of road network partitions

by incrementally updating them in an efficient manner. In road networks, there exists

no such work that incrementally updates the partitions for capturing the spatiotemporal

evolution. [95] investigates the spatiotemporal relation of congested road segments, and

performs an empirical observation on the propagation of congestion. Unlike our framework,

this work is more of an experimental analysis. In [85] the authors incrementally cluster the

spatial data streams collected from sensors. They firstly predict the clusters roughly using

the previous clustering results, and then refine them further in the next stage. Li et al. [86]

discover the spatial co-clustering patterns in traffic collision data by identifying the sets

of non-spatial attribute-value pairs of collision data, e.g., weather conditions and day of

the week, that together contribute significantly to the spatial clustering of corresponding

collisions.

These days the evolution of events is increasingly being studied in the domain of social

networks [96–99]. In [96], the authors incrementally update the evolving clusters in a

dynamic network by doing bulk updates, with the aim to track the evolution of events in

social networks. [99], [97] focus on identifying the emerging stories from social networks

in real-time. [99] considers the network of keywords from the social texts, from which

Chapter 2. Literature Review 40

the dense clusters are identified based on approximate quasi cliques and temporally main-

tained. [97] considers a network with streaming edge weight updates, and with the help

of an index they maintain the dense subgraphs. Community evolution in social networks

is generally tracked with the help of different events in community development, including

birth, death, merge, split, expansion and contraction [100]. The social networks are highly

dynamic in nature, and the graph representations on this platform continuously change in

both the nodes and links. Unlike these networks, the road networks are static in terms of

its topology, with the continuously changing bi-directional traffic. These differences make

our problem different than that studied in social networks.

Chapter 5 of this thesis also presents an in-memory index structure called BIN to compactly

store the historical congestion-related information in the form of small subgraphs (a set of

building blocks) generated by the method. The storage of historical graph data is an old and

well studied problem [128]. There has been a lot of works on temporal relational databases

[129] [130]. With the rise of temporally evolving networks and problems related to efficient

snapshot retrieval, index structures have also become important for main memory-resident

graphs [131]. However, none of the prior works focus on memory-resident structures for

maintenance of the road network partitions.

2.5.3 Applications using Real Traffic Data

Chapter 6 of this thesis presents an experimental study to discover the congestion propa-

gation patterns. There are two specific applications considered. First one is the temporal

tracking of congested partitions, and the other one is the traffic diffusion and influence

estimation.

The first application of temporal tracking of congested partitions is much related to our

work presented in Chapter 5. However, the objective here is to analyze the real data to

discover the unknown traffic propagation patterns. We defined certain measures to identify

the congested partitions, and track their evolution with time. One closely related work

is that of Wang et al. [113]. They developed an interactive system for visual analysis of

urban traffic congestion based on GPS trajectories. They clean the trajectories and match

them to the road network, based on which they detect the traffic jams. They also studied

Chapter 2. Literature Review 41

the traffic-jam propagation using graphs over a period of time. Their work mainly shows

congestion on individual road segments having no concrete information about how the

congestion is linked in the whole network globally. In contrast our congested partitions

give the information about how congestion is spread in the network globally and how the

different congested partitions are linked. In another work [95], the authors investigate

the spatiotemporal relation of congested road segments, and performs an empirical obser-

vation on the propagation of congestion. The Google Traffic service on Google Maps6

anonymously collects the traffic data from different sources mostly from a large number of

mobile phone users. Based on this data, it visualizes the traffic condition using a simple

heat map in real time. The information here again is local to the referred road segment.

In contrast our congested partitions give the global information about the whole network,

particularly, how the congestion is spread in the network and how the different congested

partitions are linked.

The second application of traffic diffusion and influence estimation is a novel application

for road networks. We could not find any existing work talking about road traffic diffusion.

However, there exists the concept of information diffusion since a long time. Identifying

important nodes in a network is a problem common to many different kinds of information

networks [101, 102]. In the recent years, information propagation and diffusion has been

a hot area of research in social networks [106–108]. Kempe et al. [107] devised a greedy

discrete-optimization model to maximize the spread of influence through social network.

Gruhl et al. [106] modeled information diffusion through blogosphere as an infectious

process among users. Several existing works focus on estimating the user influences in dif-

ferent types or platforms of social networks [109–112]. Song et al. proposed InfluenceRank

to identify opinion leaders in blogosphere based on the users importance and the novelty

of the content being diffused. Goyal et al. [110] devised various probabilistic models of

influence between users in social networks. Silva et al. [111] proposed an information diffu-

sion model called ProfileRank to identify influential users and content relevance based on

random walks over a user-content graph. Recently, Herzig et al. [112] devised an influence

model to detect topic-based influencers in social media.

6https://maps.google.com.au

Chapter 3

Spatial Partitioning of Road

Traffic Networks

The rapid global migration of people towards urban areas is multiplying the traffic volume

on urban road networks. As a result these networks are rapidly growing in size, in which

different sub-networks exhibit distinctive traffic flow patterns. In this chapter, we propose

a scalable framework for traffic congestion-based spatial partitioning of large urban road

networks. It aims to identify different sub-networks or partitions that exhibit homogeneous

traffic congestion patterns internally, but heterogenous to others externally. To this end,

we develop a two-stage procedure within our framework that first transforms the large road

graph into a well-structured and condensed supergraph via clustering and link aggregation

based on traffic density and adjacency connectivity, respectively. We then devise a spectral

theory based novel graph cut (referred as α-Cut) to partition the supergraph and compare

its performance with that of an existing method for partitioning urban networks. Our

results show that the proposed method outperforms the normalized cut based existing

method in all the performance evaluation metrics for small road networks and provides

good results for much larger networks where other methods may face serious problems of

time and space complexities.

43

Chapter 3. Spatial Partitioning of Road Traffic Networks 44

3.1 Introduction

Traffic flow patterns in urban road networks have been found to vary significantly in

different sub-networks depending on two critical factors– i) spatial importance, and ii)

temporal importance. Usually roads of each locality, say inside a suburb or part of a suburb

in a city, experience a specific traffic flow pattern regardless of the global flow. For example,

roads inside the city centre or any area having popular venues like a monument or hospital,

usually remain more congested than others without any such significance. Additionally, the

congestion on roads connecting important places of human gathering like airports, train

stations, hospitals, bus stops, etc., remains comparatively higher than others. Similarly

in the temporal perspective, roads usually remain busier and more congested in peak

hours (normally 7 AM to 10 AM and 4 PM to 7 PM) than off-peak hours. As the sub-

networks exhibit distinctive traffic flow patterns, the traffic management decisions for each

sub-network need to reflect these differences.

It urges for an intelligent and effective traffic management to make crucial decisions on

issues, like flow smoothening and streamlined infrastructure deployment, which would

treat the varying traffic patterns in different sub-networks accordingly. To aid in these

decision making, the transport department authorities might be very keen to identify the

different sub-networks or partitions which exhibit homogeneous traffic flow patterns and

properties inside them locally whereas heterogeneous to others globally in the urban road

network [61]. Then instead of looking into the whole network globally, each partition

with homogeneous congestion patterns within can be considered as a unit, and traffic

monitoring strategies can be developed individually. The identification of the differently

congested partitions further aids in understanding and analyzing the congestion and its

evolving nature with respect to time. These sub-networks can also be helpful for travelers

to get information about the differently congested areas at a point of time. Therefore, the

congestion-based spatial partitioning of urban road networks from a large data perspective

is becoming a problem of growing importance.

Although there exist many other kinds of information networks and the application of

graph partitioning on such networks has been studied in the past [20, 28], the geospatial

properties of a road network associated with traffic flow patterns make a unique kind of

Chapter 3. Spatial Partitioning of Road Traffic Networks 45

network [61]. The problem was recently raised in the intelligent transportation systems

(ITS) community [61]. They contend that transportation networks have unique dynamic

features and an arbitrary clustering algorithm may not produce the desired kind of par-

titions. They tried to achieve three predefined criteria of small variance of traffic density

values inside a partition, small number of partitions, and spatially near-compact partitions.

Their normalized cut based method works in three steps, starting with excessive partition-

ing of the road network, followed by merging smaller partitions up to a certain level, and

then locally adjusting the road segments lying on partition boundaries by replacing them

into the neighbouring partitions, if doing that increases the segment uniformity.

In this chapter, we present a method for traffic-based spatial partitioning of large urban

road networks. Same as [61], we do not focus much on the dynamic nature of traffic con-

gestion in this work, and consider partitioning the network repeatedly at regular intervals

of time using static traffic measures. As we focus on large road networks, scalability of

the method for real-world applicability is also a major concern.

The partitioning framework is based on traffic density measures on a road network defined

by the count of vehicles per unit distance on each road segment. Its objective is to

identify the different heterogeneous regions of an urban network which internally exhibit

homogeneous traffic congestion patterns. The method starts with transforming the actual

road network into a road graph, which is followed by mining the road supergraph. Finally

the supergraph is subjected to a spectral theory based novel graph cut called α-Cut

to obtain the set of road segments partitioned into several subsets called road network

partitions. As the partitioning algorithm is applied on a supergraph with much reduced

order(number of supernodes), the framework becomes more scalable by managing the

computational and space complexity. In summary, we make the following contributions in

this chapter.

– We mine a well-structured and condensed road supergraph from the road graph.

Its main advantage is in making the partitioning method applicable on large road

networks where the number of road segments is large.

– To identify the optimal number of clusters for k-means while forming the condensed

supergraph, we devise a measure to help find the optimal clustering.

Chapter 3. Spatial Partitioning of Road Traffic Networks 46

– We devise a spectral theory based novel graph cut called α-Cut to partition the road

supergraph, which outperforms normalized cut in our empirical study.

– Extensive experiments are performed on both small and large road networks to

establish its efficacy.

The rest of the chapter is organized as follows. Section 3.2 presents some preliminary

theories followed by the problem definition. Section 3.3 presents the framework briefly.

The complete methodology is described in Sections 3.4 and 3.5. Experimental results are

shown in Section 3.6, followed by the chapter summary in Section 3.7.

3.2 Preliminaries

In this section, we present some preliminary theories on road networks and then formulate

the problem.

3.2.1 Road Networks and their Mathematical Representation

Urban roads exist in the form of a physical network spatially spread over a large urban

area. To make it a machine-interpretable network, we need to give it a mathematical

representation in the form of a graph, which we name as a road graph. The unique features

associated with this kind of network, like varying spatial importance of different roads and

the traffic flow being unidirectional on some roads whereas bidirectional on others, make

it a challenging task to give a realistic mathematical representation. Previous works have

represented it in different graph-based structures that suited the application area [42, 59].

Unlike the previously attempted problems, the focus of spatial partitioning of road net-

works is on the road segments, not on the intersection points. A trivial representation in

the form of a graph by considering roads as links and their intersection points as nodes

is not suitable as its partitioning results into subsets of intersection points, which is not

the objective. To make the representation applicable to spatial partitioning, we trans-

form the actual road network into its dual, which forms an undirected road graph. This

transformation is an improved version of that used in our earlier work [3].

Chapter 3. Spatial Partitioning of Road Traffic Networks 47

1a 3b

4b
2a

1b 3a

4a
2b

(a) Intersection point

1a 2a 3a 4a

1b 2b 3b 4b

(b) Bipartite formation

Figure 3.1: Star topology to bipartite formation

Definition 3.1. (Road Network) A real urban road network is defined as N = (I,R)

comprising a set of intersection points I = {ι1, ι2, . . . , ιnι} as nodes that are connected

among themselves by the set of directed road segments R = {r1, r2, . . . , rnr} as its

links, where each road segment ri associates the traffic density ri.d with itself. �

Definition 3.2. (Road Graph) Given a road network N , the corresponding road graph

G = (V, E) is constructed by adding each road segment ri ∈ N as a node vi, and

establishing an undirected link ei between each possible node pair (vj, vk) if there exists

at least one intersection point ιl which is a common intersection for the roads rj and rk,

and the traffic can flow either from rj to rk or vice versa, as shown in Equation 3.1.

Chapter 3. Spatial Partitioning of Road Traffic Networks 48

V = {v1, v2, . . . , vnr} ,where vi = node(ri)

E = {link(vj, vk) : ∃ ιl as the commnon intersection

point for rj and rk} (3.1)

Thus the links stand for the adjacency relationships among the road segments. In this

manner, the road network components in a star topology form bipartites in the road graph,

as shown in Figure 3.1, where each partite stands for either incoming flow to or outgoing

flow from a common intersection point. Each node vi (node(ri)) ∈ V associates with it

a feature value vi.f which is the road traffic density ri.d. �

Most urban roads exist as two-way roads, which are two oppositely directed one-way parts

separated from each other. Each of the two parts (directions) undergo different kinds

of traffic flow patterns. For example, in the morning office hours, a road that connects

outskirts with the city center would find more traffic heading towards the city center than

the opposite direction. This feature of the urban network is accommodated in Definition

3.2 by considering the two traffic directions as separate road segments, if they share a

common intersection point and thus are adjacent. Figure 3.2 shows an example of our

road network representation in which Figure 3.2(a) is a sample road map, Figure 3.2(b)

is the corresponding road network of those colored yellow in the map, and Figure 3.2(c)

is the final representation called the road graph. When representing any kind of network

in the form of a graph, normally the main objects of study in the network are considered

as nodes and the links define the affinity between them. In the road network in Figure

3.2(b), we can see that nodes represent the intersection points of roads, which actually do

not have much importance for the problem of spatial partitioning as compared to roads,

which appear as links. The road graph in Figure 3.2(c) solves this problem as the objects

of study are represented as nodes.

Chapter 3. Spatial Partitioning of Road Traffic Networks 49

(a) Actual road map

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St
W

ill
ia

m
 S

t

He
nr

y
St

Gl
en

fe
rr

ie
 R

oa
d

(B1e) (B2e) (B3e)

(Ly1e)

(My1e)

(C1w)
(Ld1e) (Ld2e)(G

1s
)

(G
2n

)
(G

3n
)

(G
4n

)

(Mn1e)

(O1w)

(H
1n

)

(W
1n

)
(My1w)

(C1e)

(Ly1w)

(B1w)

(Mn1w)

(O1e)

(B2w) (B3w)

(Ld1w) (Ld2w)

(G
1n

)

(G
2s

)
(G

3s
)

(G
4s

)

(W
1s

)

(H
1s

)

(b) Road network

(My1w)

(C1w)

(G1s)

(G2s)

(Ld1w) (Ld2w)

(H1s)
(W1s)

(Ly1w)

(G3s)

(B1w)

(G4s) (B2w)

(Mn1w) (O1w)

(B3w)

)

33

(My1e)

(C1e)

(Ly1e)

(G1n)

(G2n)

(G3n)

(G4n)

(Mn1e)

(B1e)

(Ld1e)

(B2e)

(O1e)

(Ld2e)

(H1n)

(B3e)

(W1n)

(c) Road graph

Figure 3.2: Mathematical representation of road networks

Chapter 3. Spatial Partitioning of Road Traffic Networks 50

3.2.2 Problem Definition

The problem of spatial partitioning of large urban road networks is defined as splitting up

a given large urban road network based on traffic congestion measures into several dis-

joint partitions, keeping intact the associated spatial properties. The different partitions

exhibit the property of intra-partition congestion homogeneity and inter-partition conges-

tion heterogeneity. Let us suppose we have a real urban directed road network N , which is

transformed into a road graph G by following the method described in Section 3.2.1. This

graph is then subjected to congestion-based spatial partitioning. Before formally stating

the problem on G, we present three definitions.

Definition 3.3. (Cost of Partitioning) While partitioning the set of nodes V in a

road graph G into different partitions P = {P1,P2, . . . ,Pk}, the cost of partitioning is

defined as the aggregation of affinity values of all possible node pairs (vi, vj) for which vi

and vj lie in different partitions in the final result, where the affinity values are a measure

of congestion similarity between the pair of nodes. �

Definition 3.4. (Partition Volume) Given a set of road graph partitions P =

{P1,P2, . . . ,Pk}, partition volume is defined as the aggregation of affinity values of

all possible pairs (vi, vj) for which vi and vj lie in the same partition, where the affinity

values are a measure of congestion similarity between the pair of nodes. �

Definition 3.5. (Partition Connectivity) A partition Pl is said to be connected if for

any given node pairs (vi, vj) ∈ Pl there exists a path from vi to vj or vice versa. �

The problem of congestion-based spatial partitioning of a road graph G is to split its

node set V into k partitions (or subsets) P = {P1,P2, . . . ,Pk} such that the following

conditions hold.

C.1
⋃k

i=1 Pi = V and Pi
⋂

Pj = φ for all i �= j;

C.2 each Pi is connected and all adjacency relations, except the cross-partition relations,

are maintained as in G;

C.3 the cost of partitioning of G is the minimum; and

C.4 the partition volume of G is the maximum.

Chapter 3. Spatial Partitioning of Road Traffic Networks 51

In the above conditions, C.1 is a general condition of grouping the set of nodes (or road

segments) into k non-overlapping subsets, C.2 introduces the spatial connectivity (or link-

age) of nodes, C.3 enforces the condition of inter-partition traffic congestion heterogeneity,

and C.4 enforces intra-partition traffic congestion homogeneity. A partitioning may not

satisfy C.3 and C.4 together simultaneously, and therefore the best possible trade-off has

to be found.

3.3 Framework

The task of road network partitioning can also be viewed as similar to that of clustering

road segments based on their traffic density values. However, the main drawback of this

approach is that traditional clustering algorithms do not take care of the associated spatial

connectivities (connectivity of road segments). Consequently we treat it as a 2-level par-

titioning problem, in which the first level follows a bottom-up approach considering only

data in the form of density values, whereas the second level follows a top-down approach

considering both the density data along with the road segment connectivities.

The complete framework for spatial partitioning of road networks, shown in Figure 3.3,

comprises three different modules– i) road graph construction, ii) road supergraph mining,

and iii) supergraph partitioning. The first module deals with transforming the real road

networkN into a road graph G to give it a mathematical representation, which is explained

as a preliminary step in Section 3.2.1. Due to the large and rapidly expanding urban area,

the size of an urban road network |R| and the order of the corresponding road graph |V|
may become extremely large, which heavily affects the computational and space complexity

for partitioning G. To address this problem, the framework follows a 2-level partitioning.

The first level (which is the second module described in Section 3.4) mines a road su-

pergraph Gs from the road graph G with a much reduced order following a bottom-up

approach. It goes through the steps of clustering feature values vi.f using k-means in

Section 3.4.1 and constructing the road supergraph in Section 3.4.3.

Furthermore, an extended version of this module introduces the concept of stable supern-

odes. A supernode is considered to be stable if its stability measure, defined later, is above

Chapter 3. Spatial Partitioning of Road Traffic Networks 52

Road segment densities

Supergraph Partitioning

Supernode partition set

α -Cut

Road segment partition set

Partition ExtractionRoad Graph Construction

Road Supergraph Mining

Optimal cluster set Supernodes Supergraph

Supergraph
construction

Supernode
creationK-Means

Road map Road graph

Figure 3.3: Proposed spatial partitioning framework

a predefined threshold. To have a stable supergraph, all the supernodes that are found

unstable are further split up, which is repeated until they become stable. We can have

the supergraph of different structures as per the application environment by varying the

stability threshold. The stability threshold scale is also a trade-off between complexity

and accuracy. A lower threshold value reduces the complexity by reducing the supergraph

order while sacrificing some level of accuracy by presuming all nodes inside a supernode

to belong to the same final partition. On the other hand a higher value can give more

accurate results at the cost of computational and space complexity.

The last module of supergraph partitioning, described in Section 3.5, is the second level

partitioning that follows a top-down approach to split up the supergraph into multiple

heterogeneous partitions that are homogeneous within. It is achieved by approximately

optimizing a measure called α-Cut, by following a spectral clustering based solution. It

produces supernode partitions, from which the road segment partitions are extracted.

Chapter 3. Spatial Partitioning of Road Traffic Networks 53

3.4 Road Supergraph Mining

A naive approach to obtain road network partitions is to apply the partitioning algorithm

on the road graph directly. However, we reduce the load of partitioning by following a

2-level partitioning. The first level mines a condensed road supergraph, before partitioning

it in the second level.

The road segments inside a road sub-network or partition are linked together. Any vehicle

entering into a partition through a road segment needs to go through the following seg-

ments to cross the partition or reach the destination. It makes the congestion pattern of a

segment more likely to be similar to (or dependent on) other (following or preceding) seg-

ments inside the partition. Thus the similar spatial importance of road segments within

a partition leads them to exhibit similar congestion patterns. That means if they are

grouped based on their traffic density measures, most of the time, they could be expected

to be grouped together. To capture this aspect, before applying the partitioning algorithm

we group the segments based on their traffic density measures to find their clustering pat-

tern, and use them to construct a condensed road supergraph. The following definitions

present the idea of a supergraph used in this chapter.

Definition 3.6. (Supernode) Given a road graph G = (V, E), a supernode ςi having a

feature value ςi.f , is defined as a set of nodes {vj} that exhibit the properties of being

similar in terms of their feature values {vj.f} (density measures), and interlinked together.

�

Definition 3.7. (Superlink) Given a road graph G = (V, E), a superlink εi is defined

as a link between a pair of supernodes (ςp, ςq), which exists only if there is at least one

link link(vx, vy) ∈ E such that vx ∈ ςp and vy ∈ ςp. �

Definition 3.8. (Road Supergraph) Given a road graph G = (V, E), a road supergraph

Gs is defined as an ordered 3-tuple (Vs, Es,Ws), where Vs = {ς1, ς2, . . . , ςnς} is the set

of supernodes comprising the set of road segments, Es = {ε1, ε2, . . . , εnε} is the set of

superlinks, and Ws = {ω1, ω2, . . . , ωnε} is the set of weights associated with each of the

corresponding superlinks, which is defined as a measure of congestion similarity between

the pair of supernodes connected by the superlink. �

Chapter 3. Spatial Partitioning of Road Traffic Networks 54

The task of mining the supergraph Gs = (Vs, Es,Ws) is done in two steps. The first

step deals with the feature values vi.f associated with each node in G to group them into

different clusters, whereas the second step uses these clusters to construct the supergraph.

The complete algorithm is shown in Algorithm 1. The popular clustering algorithm k-

means is used to cluster the feature values associated with the node set. A major problem

with k-means is its requirement for a pre-determined number of clusters. We overcome

this problem by designing a novel optimality measure called moderated clustering gain

(MCG) to determine the optimal number1 of clusters κ for a dataset (line 6). Instead of

considering the optimal value of κ, we consider all those κ for which the MCG value lies

above a threshold (lines 3–9), and the one that produces the least number of supernodes is

finally selected as optimal (lines 10–16). After creating the supernodes and assigning their

feature values as cluster means from the optimal cluster set (lines 17–20), the superlinks

in between the supernodes are established and weighted (lines 21–25) to construct the

supergraph (line 26).

3.4.1 Feature Value Clustering

This step looks into the feature values vi.f associated with the nodes in G without con-

sidering its adjacency relationships or connectivities with the intent to get a rough idea

of the partitions, which are refined in subsequent steps to find the actual partitions. Let

F = {v1.f, v2.f, . . . , vnr .f} be the set of feature values associated with the set of nodes

V in G. The objective is to extract information about grouping patterns of the feature

values, and therefore F is treated with the k-means clustering algorithm. It results in

an organization of feature values in the form of clusters. There are a few limitations of

k-means, and one of them is that it may result in a clustering configuration having a local

maxima that may not be the global maxima. The outcome depends on the initialization

of cluster means. As we have the feature values in a single dimension, we overcome this

limitation by firstly sorting the feature values vi.f ∈ F and then initializing the cluster

means with feature values at equal intervals. That means, when we have nr number of

1We use the Greek lowercase letter kappa (κ) to refer the number of clusters produced by k-means
in Section 3.4.1, and the English lowercase letter k to refer the number of partitions produced by the
framework.

Chapter 3. Spatial Partitioning of Road Traffic Networks 55

Algorithm 1: Road supergraph mining (Road graph G, optimality threshold εθ)

1 AG ← adjacency matrix of G;
2 F ← {v1.f, v2.f, . . . , vnr .f};
// shortlist cluster sets based on MCG threshold εθ

3 � ← φ;
4 for κ ← 2 to (nr − 1) do
5 (Cκ, μ(Cκ)) ← k-means(F , κ);
6 Θ(Cκ) ← MCG of Cκ;
7 if Θ(Cκ) ≥ εθ then
8 �κ ← cluster indicator vector of Cκ;
9 � ← � ∪ �κ;

// select the optimal cluster set

10 �θ ← φ, Cθ ← φ;
11 min ← number of connected components in (�1, AG);
12 forall �κ ∈ � do
13 comp ← number of connected components in (�κ, AG);
14 if min > comp then
15 min ← comp;

16 �θ ← �κ, Cθ ← Cκ;

// create supernodes and assign their feature values

17 Vs ← createSupernodes(�θ, AG);
18 forall Cθ

i ∈ Cθ do
19 forall ςj ∈ Cθ

i do
20 ςj.f ← μ(Cθ

i);

// establish superlinks and assign their weights

21 Es ← φ, Ws ← φ;
22 forall link(vx, vy) ∈ E do
23 if vx ∈ ςp and vy ∈ ςq and p �= q then
24 Es ← Es ∪ establishLink(ςp, ςq);
25 Ws ← Ws ∪ assignWeight(ςp, ςq);

26 Gs ← (Vs, Es,Ws);
27 return Gs

sorted feature values, the mean of the jth cluster is initialized by vi.f , where i =
nr

κ
× j,

and the following steps remain the same as the standard k-means algorithm.

As stated earlier, k-means needs to have a predetermined number of clusters that has to be

provided as input to the algorithm. We address this problem by applying k-means repeat-

edly with different values of κ producing the set of clusters as Cκ = {Cκ
1 , Cκ

2 , . . . , Cκ
κ}.

It starts with κ = 2 incrementally and at each value an optimality test is performed. The

Chapter 3. Spatial Partitioning of Road Traffic Networks 56

optimality test compares the MCG measure, described in Section 3.4.2, with that com-

puted in the preceding iteration at κ− 1 and the following iteration at κ+ 1. The point

where the value found is higher than both its preceding and following points, represents

a local optimality maxima. However there is no guarantee that it will serve as the global

optimality maxima. Applying k-means repeatedly on a large dataset just to learn the op-

timal number of clusters makes the method computationally very expensive, particularly

in situations when the dataset is extremely large. To overcome this problem, repetitive

clustering is applied on a randomly generated sample dataset, much smaller than the ac-

tual dataset. Let θ be the value of κ that produces the clustering configuration having

the global optimality maxima. Instead of considering only the clustering configuration at

θ, we consider all values of κ for whom MCG lies above a predefined threshold εθ, which

are passed on to the next step to create supernodes in Section 3.4.3.

The computational complexity of k-means is O(tndκ), where t is the number of iterations

needed to converge, n is the number of data items, d is the data dimension, and κ is the

number of required clusters. In our case, d = 1, which makes it O(tnκ). Also κ is usually

very small.

3.4.2 Optimality Measure

In this section, we design an optimality measure to learn the optimal number of clusters

θ suitable for a data set. Let D = {d1, d2, . . . , d(nd)} be the dataset consisting of

nd data items, where each di has md feature values forming an md-dimensional vector

〈f1, f2, . . . , f(md)〉. The global mean μ0 is a vector given by 〈μ0
1, μ

0
2, . . . , μ

0
(md)

〉 where
μ0
p = 1

nd

∑nd
i=1 di.fp corresponding to each feature fp. Let C = {C1, C2, . . . , Cκ} be the

set of clusters generated by k-means, then the mean μq of each cluster Cq is a vector of

feature means given by 〈μq
1, μ

q
2, . . . , μ

q
(md)

〉 where μq
p = 1

|Cq|
∑

di∈Cq
di.fp corresponding

to each feature fp. A measure called clustering balance E(C), defined in [132], has been

found to be a good indicator for the optimal number of clusters, outperforming previous

measures. Another comparable and computationally efficient measure called clustering

gain Δ(C) is defined in the same work. The optimal clustering configuration is achieved at

that value of κ where the clustering balance reaches its minimum, whereas clustering gain

Chapter 3. Spatial Partitioning of Road Traffic Networks 57

reaches its maximum. Although these measures were proposed for identifying optimality in

hierarchical clustering, they were shown to be suitable for k-means too. In our analysis we

found that when these measures are applied with k-means they produce a smaller number

of sparse clusters. In this work we extend and improve clustering gain to make the clusters

compact and far apart from others, named as moderated clustering gain, denoted by Θ(C).
Shown in Equation 3.2, it is the summation of a value over all clusters Cq, in which the

value consists of two parts multiplied by each other. The first part Θ1(Cq) is the clustering

gain, whereas the second part Θ2(Cq) is a function of the ratio of intra-cluster and inter-

cluster error sums. For each q ∈ [1, κ], the value of Θ2(Cq) lies in the range [0, 1] and it

moderates the value of Θ1(Cq) by reducing its effect accordingly.

MCG, Θ(C) =
κ∑

q=1

(Θ1(Cq) × Θ2(Cq)) (3.2)

where, Θ1(Cq) = (|Cq| − 1)
∥∥μq − μ0

∥∥2

2

Θ2(Cq) =

⎛
⎜⎜⎜⎝1 − log2

⎛
⎜⎜⎜⎝1 +

∑
di∈Cq

‖di − μq‖22

|Cq| × ‖μq − μ0‖22

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

The optimal number of clusters θ is that value of κ where Θ(C) attains the maxima.

3.4.3 Supergraph Construction

Supergraph construction starts with creating supernodes, then establishing weighted su-

perlinks between them.

Chapter 3. Spatial Partitioning of Road Traffic Networks 58

3.4.3.1 Supernode creation

Once the MCG measure for all values of κ are computed for the sample data, all those κ

for which the value lies above a predefined threshold value εθ, are considered for supern-

ode creation. The k-means algorithm is now applied on the complete dataset with the

shortlisted values of κ. Let � = {�κ : Θ(Cκ) ≥ εθ} be the set of clustering configuration

indicator vectors, where each �κ is of length nr, and the value of �κ(i) indicates the

cluster to which the node vi belongs. These vectors along with the adjacency matrix AG

give the connectivity information of nodes. Nodes vi and vj are considered as directly

connected if they are grouped in the same cluster by k-means and are adjacent as well

in the actual road network. Using this information the total number of connected com-

ponents is computed for each �κ and the clustering configuration having the minimum

number of connected components is finally selected as the optimal �θ. These components

form the supernodes. A lesser number of supernodes makes the framework more scal-

able for large networks. Therefore in order to get fewer but informative supernodes, the

method of supernode creation selects that clustering configuration among the short-listed

ones as optimal, which leads to the lowest number of connected components. We apply the

standard FIFO based connected components identification algorithm. Its computational

complexity is O(max(nr, ne)), where nr and ne are the total number of nodes (road

segments) and edges (adjacency relationships) in the road graph respectively.

All the connected components corresponding to �θ are then considered as supernodes to

form the set Vs = {ς1, ς2, . . . , ςnς}. Thus each cluster of nodes which is connected as

well in G is accepted as a supernode. Feature value of each supernode is set as the mean

of the cluster (given by k-means) to which they belong, i.e., ∀ςi ∈ Cθ
j , ςi.f = μ(Cθ

j).

Setting an appropriate optimality threshold value is crucial to the complexity of the overall

algorithm. A lower value would lead to a large number of κ for which the MCG measure

would be above the threshold, and would require computing and storing a large number of

clustering configuration indicator vectors. It may sometimes lead to have fewer supernodes,

but the cost of complexity for so many clustering indicator vectors has to be borne. On the

other hand, a higher threshold would lead to fewer clustering indicator vectors but may

Chapter 3. Spatial Partitioning of Road Traffic Networks 59

result in producing more supernodes, which increases the complexity of the partitioning

algorithm.

19

17

11

20

12

13

1418

(a) Sample graph

17

Stable Stable

11 12 13 14
Stable

Unstable

2018 19

(b) Supernodes

Figure 3.4: Supernode stability check

3.4.3.2 An extension for supernode stability check

Sometimes the clustering and adjacency patterns of the road graph G may lead to form

supernodes that do not guarantee the compactness and tightness of bonding that we want

to impose. Figure 3.4 shows such an example, in which supernodes are formed from a

sample graph after applying k-means with κ = 2 (which is optimal as per our MCG).

The {11, 14} set is loosely bonded. Considering it as a supernode will bind them together

to belong to the same final partition. However, as it is connected to both 17 and 18 of

the other cluster, it may suit 14 more to be with them in the final partition. Taking this

matter into concern, here we present an extended method that determines the stability of

created supernodes and splits them to make them reach a desired stability. We define a

Chapter 3. Spatial Partitioning of Road Traffic Networks 60

measure called stability that determines how much the nodes inside a supernode deserve to

be together by looking into the tightness of bonding. The closer the nodes in a supernode

are, the higher will be its stability measure.

Algorithm 2: Supernode stability check(Supernode set Vs, stability threshold εη)

1 stack ← initialize a stack;
// push all the supernodes to check their stability

2 forall ςi ∈ Vs do
3 push ςi into stack;

// split the unstable supernodes until made stable

4 while stack is not empty do
5 ςi ← pop from stack;
6 if η(ςi) < εη then
7 ςpre ← instantiate an empty supernode;
8 ςpost ← instantiate an empty supernode;
9 forall vj ∈ ςi do

10 if vj.f ≤ μ(ςi) then
11 add vj to ςpre ;

12 else
13 add vj to ςpost ;

14 Vs ← Vs \ ςi,Vs ← Vs ∪ ςpre ∪ ςpost;
15 push ςpre into stack, push ςpost into stack;

16 return Vs;

Definition 3.9. (Supernode Stability) The stability measure η(ςi) ∈ [0, 1] of a su-

pernode is defined in Equation 3.3, where |ςi| denotes the number of nodes vj in ςi and

μ(ςi) denotes the mean of feature values vj.f of all nodes in ςi. The supernode ςi is

said to be stable if its stability measure is greater than or equal to a pre-defined stability

threshold εη, else it is said to be unstable. �

η(ςi) =
1

|ςi|
×

∑
vj∈ςi

exp

(
−abs

(
vj.f + 1

μ(ςi) + 1
− 1

))
(3.3)

The above formulation looks into the distance of all nodes from the supernode centroid

by the ratio of their feature values to their supernode mean values, and then takes their

average value. The 1s are added in the numerator and denominator to avoid the zero

values. It would yield its value as 1 when all the nodes inside the supernode have their

feature values same as the supernode mean, and lower as much as the node feature values go

Chapter 3. Spatial Partitioning of Road Traffic Networks 61

far from the supernode mean up to 0. The LIFO based stability check algorithm is shown

in Algorithm 2. All stable supernodes are accepted right away retaining their existing

feature value ςi.f (lines 5–6). However the unstable supernodes are further processed to

split up into two parts from its centroid (lines 7–13). They are created as two independent

supernodes and again checked to confirm their stability (lines 14–15). The interleaved steps

of stability checking (lines 5–6) and their splitting into two supernodes from the centroid

(lines 7–15) goes on indefinitely until all of them are made stable. The supernodes that were

unstable earlier and made stable this way, their means become their new feature values,

i.e. ςi.f = μ(ςi). Thus the newly formed set of supernodes is Vs =
{
ς1, ς2, . . . , ςn′

ς

}
,

where n′
ς ∈ [nς , nr]. The exact gaps between nς and n′

ς , and n′
ς and nr, depend on the

imposed stability threshold εη. It has two extremes. When it is set to 1, the set of all nodes

in the road graph G that have the same feature value vi.f as well as are linked directly

by an edge, is accepted as a complete supernode. In extreme case n′
ς could be equal to

nr if no two nodes have the same feature value. On the other hand when it is set to 0,

all connected components obtained using the optimal clustering configuration indicator

vector �θ are considered as supernodes as if without any stability check where n′
ς = nς .

Setting the stability threshold is based on the trade-off between quality and complexity.

The worst case complexity of this task is O(2nr − nς) when all the supernodes are split

up repeatedly until only single nodes are left in each supernode, whereas the best case

complexity is O(nς) when no supernode needs to be split.

3.4.3.3 Superlink establishment

For the obtained set of supernodes Vs and the available road graph G, let Lpq be the

set of links {ej = link(vx, vy)} existing between all vx ∈ ςp and all vy ∈ ςq. A

superlink εi is established between each pair of supernodes (ςp, ςq), for which the condition

Lpq �= φ is fulfilled (Algorithm 1, lines 21–25). The set of superlinks is denoted by

Es = {ε1, ε2, . . . , εnε}. At the same time, each superlink εi is weighted by a value

ωi ∈ [0, 1] in Equation 3.4, where |Lpq| denotes the number of links in Lpq, ςp.f and

ςq.f are the feature values of ςp and ςq respectively, and σ2(ς) = 1
nς

×
∑nς

i=1

(
ςi.f − μ0

)2
is the variance of supernode features with respect to the global mean μ0.

Chapter 3. Spatial Partitioning of Road Traffic Networks 62

ωi =

√√√√√ 1

|Lpq|
×

∑
ej∈Lpq

(
exp

(
− (ςp.f − ςq.f)

2

2 × σ2(ς)

))2

(3.4)

The above formulation is in the form of a Gaussian function that assigns a similarity

measure between the two supernodes of each linked pair, and takes their average value.

The effect of individual links on the weight is high if the supernodes connected by the link

have closer feature values, and low otherwise. The normalization by |Lpq| normalizes the

bias towards the supernode pairs having large number of links but highly dissimilar feature

values. Thus the overall weight considers both the number of individual links between the

participating supernodes and their feature values, where larger number of links and closer

supernode feature values together lead to higher superlink weight. The set of computed

weights associated with each superlink is denoted by Ws = {ω1, ω2, . . . , ωnε}. Hence

the supergraph mining step becomes complete producing Gs = (Vs, Es,Ws) (Algorithm

1, lines 26–27).

3.5 Road Supergraph Partitioning

Although a preliminary level of grouping of road segments has already happened in the

form of supernodes, the number of supernodes still can be very large. Moreover, the

linkages that represent the spatial associations have remained under-utilized, as they have

just directly been employed in supernode creation until this stage. This step aims to

group the set of supernodes into different partitions in a top-down manner by using the

superlinks by which they are connected. These different supernode partitions are obtained

as connected within, and this in turn achieves the ultimate objective of getting partitions

as node partitions where spatial adjacencies are maintained.

3.5.1 Spectral Clustering for Partitioning

Spectral clustering treats clustering as a graph partitioning problem. In our case, we

already have a graph that we want to partition. Among the existing graph cuts, normalized

Chapter 3. Spatial Partitioning of Road Traffic Networks 63

cut has been found to be comparatively effective for graph partitioning, due to the reason

that it optimizes both the intra-partition homogeneity and inter-partition heterogeneity at

the same point [16, 61]. Its optimization function minP
∑k

i=0
W (Pi,Pi)
W (Pi,P)

is a normalized

summation of the cross-partition weighted links, where the normalization is done by all

the weighted links having at least one end in the corresponding partition. In this function,

both the numerator and denominator take into account just the weighted links, and no

consideration is made for the node groupings (or node counts) in the resulting partitions.

The links in our road graph are established only if they are adjacent in the road network,

and thus the superlinks too are based on adjacency relationships. To partition the graph

based on both weighted links and node counts in resulting partitions, in the next section

we propose a novel k-way graph cut. Instead of repeated bipartitioning of the whole

graph, it produces k′(> k) partitions in just a single iteration, and then applies recursive

bipartitioning to produce k partitions, which significantly improves its efficiency.

3.5.2 The k-way α-Cut

For a given weighted graph, which in our case is the supergraph2 Gs, let us suppose its

supernode set is partitioned into k disjoint subsets or clusters as P = {P1,P2, . . . ,Pk}.
The adjacency matrix of Gs is denoted by A, the degree matrix is denoted by D, which is

a diagonal matrix having row sums of A at the diagonal shown in Equation 3.5, and the

Laplacian matrix (D − A) is denoted by L.

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nς∑
i=1

a1i 0 · · · 0

0

nς∑
i=1

a2i · · · 0

...
...

. . .
...

0 0 · · ·
nς∑
i=1

anςi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.5)

2In this subsection the supergraph can be treated just like a weighted graph, and the terms supergraph,
supernode, and superlink, could be read synonymously as graph, node, and link, respectively for the
application of α-Cut in graph partitioning.

Chapter 3. Spatial Partitioning of Road Traffic Networks 64

A function W (Pi,Pj) is defined in Equation 3.6 as the sum of weights associated with

all the superlinks having its supernode at one end in Pi and the supernode at the other

end in Pj .

W (Pi,Pj) =
∑

εr∈{SLinks(Pi,Pj)}
ωr =

∑
ςp∈Pi,ςq∈Pj

A(p, q) (3.6)

Definition 3.10. (Cut) For a given partition set P = {P1,P2, . . . ,Pk} the cut of

a partition Pi is defined as the summation of weights associated with all the superlinks

having their supernodes at one end in Pi and supernodes at other end in any partition

other than Pi, i.e., W (Pi,Pi). �

Definition 3.11. (Association) For a given partition set P = {P1,P2, . . . ,Pk} the

association of a partition Pi is defined as the summation of weights associated with all

the superlinks having supernodes at both ends in Pi, i.e. W (Pi,Pi). �

The cut value of a partition Pi gives a measure of connectivity strength between Pi and

the rest of the partitions, and thus quantifies the loss incurred in cutting those superlink

connections while partitioning the graph. When this value is divided by the number of

supernodes in Pi, it gives the average contribution of each supernode in the overall cut

of Pi. It represents the inter-partition similarity. Similarly, the association value of a

partition Pi gives a measure of connectivity strength within Pi that binds it as a unit,

and thus quantifies the retained association of Pi after partitioning the graph. When this

value is divided by the number of supernodes in Pi, it gives the average contribution of

each supernode in the overall association of Pi. It represents the intra-partition similarity.

A good partitioning is achieved by minimizing the summation of average cut values and

simultaneously maximizing the summation of average association values of each partition

[16]. However, optimizing any one of these objectives does not guarantee the other. One

possible approach is that of normalized cut [16]. It minimizes inter-partition similarity

and maximizes intra-partition similarity simultaneously. But that optimization is based

on normalized values of cut and association, where the normalization considers the link

connectivities between nodes, instead of the nodes directly, and it does not guarantee the

optimization of their average cut and association.

Chapter 3. Spatial Partitioning of Road Traffic Networks 65

To achieve a well balanced optimization of both average cut and average association, in this

chapter we design a novel k-way graph cut called α-Cut. It aims to achieve a partitioning

configuration optimized by the objective function minP α-Cut(P), where α-Cut(P) is

shown in Equation 3.7.

α-Cut(P) =
k∑

i=1

(
α × W (Pi,Pi)

|Pi|
− (1 − α) × W (Pi,Pi)

|Pi|

)
(3.7)

It minimizes a combination of two components, which separately are the minimization of

average cut representing the inter-partition similarity, and the maximization of average

association representing the intra-partition similarity. The α ∈ [0, 1] acts as a balance

between the two components. Its value is crucial to obtain the best possible optimized

partitions. An advantage of α-Cut over normalized cut is that α-Cut normalizes the cut

and association by the partition size, whereas normalized cut normalizes the cut by the

association.

3.5.3 Determining α in α-Cut

Instead of considering α as a single constant value for all the partitions, we consider it

as a vector α = 〈α1, α2, . . . , αk〉, where each αi corresponds to the partition Pi. The

advantage in considering it as a vector over a single scalar value is its non-uniformly defined

value depending on the nature of the respective partition. We consider this factor αi as

the portion of connectivity weight contributed by Pi in the whole supergraph (including

intra-connections as well as inter-connections), and define it as the ratio of the summation

of its superlink connection weights to the summation of all superlink connection weights

in the supergraph, i.e., αi =
W (Pi,Vs)
W (Vs,Vs)

. Its value ranges from 0 to 1. On the other hand,

(1 − αi) gives the portion of the connectivity weight contributed by all partitions other

than Pi. Putting this value of αi in Equation 3.7, α-Cut simplifies as shown in Equation

3.8.

Chapter 3. Spatial Partitioning of Road Traffic Networks 66

α-Cut(P) =

k∑
i=1

(
W (Pi,Vs)

W (Vs,Vs)
× W (Pi,Pi)

|Pi|
− W (Pi,Pi)

|Pi|

+
W (Pi,Vs)

W (Vs,Vs)
× W (Pi,Pi)

|Pi|

)

=

k∑
i=1

(
W (Pi,Vs)

W (Vs,Vs)
×

(
W (Pi,Pi)

|Pi|
+

W (Pi,Pi)

|Pi|

)

− W (Pi,Pi)

|Pi|

)

=

k∑
i=1

(
W (Pi,Vs)

W (Vs,Vs)
× W (Pi,Vs)

|Pi|
− W (Pi,Pi)

|Pi|

)

(3.8)

Like normalized cut [16], the problem to achieve a partitioning configuration which mini-

mizes this cost is an NP-complete problem. To solve it in a time-bound and computation-

ally efficient manner, we follow a spectral clustering approach described in the following

subsection.

3.5.4 Spectral Clustering Approach to α-Cut

If P = {P1,P2, . . . ,Pk} is the set of k disjoint partitions of Gs, let 1 ∈ R
nς be a vector

with each of its values as 1, and ci ∈ R
nς be the cluster indicator vector of Pi such that

its jth value ci(j) = 1, if ςj ∈ Pi, and ci(j) = 0 otherwise, as shown in Equation 3.9..

ci(j) =

⎧⎪⎨
⎪⎩
1, if (ςj ∈ Pi)

0, if (ςj /∈ Pi)

(3.9)

The spectral clustering approach to minimize the cost of α-Cut partitioning follows a

relaxed approach based on eigenvectors and eigenvalues. The relaxation lies in the cluster

indicator vectors, which are allowed to take on any real value, instead of restricting them

only to discrete values. Using the cluster indicator vectors, the α-Cut formulation can be

simplified by substituting W (Pi,Vs) by 1TDci, W (Pi,Pi) by cTi Aci, W (Vs,Vs) by

Chapter 3. Spatial Partitioning of Road Traffic Networks 67

Algorithm 3: α-Cut Partitioning(Supergraph Gs, number of desired partitions k)

1 A ← adjacency matrix of Gs;
2 D ← degree matrix of Gs;

3 M ←
(
(1TD)

T
(1TD)

1TD1
− A

)
; // get the α-Cut matrix

4
⋃nς

i=1 {(yi, λi)} ← get eigenvector and eigenvalue pairs of M ;
5 sort eigenvalues λi to have λnς ≤ λnς−1 ≤ · · · ≤ λ1;
6 select {λnς , λnς−1, . . . , λnς−k+1} eigenvalues and corresponding eigenvectors

{ynς , ynς−1, . . . , ynς−k+1};
7 generate matrix Ynς×k =

(
y1 y2 . . . yk

)
;

8 Z ← row normalize Y ;
9 {z1, z2, . . . , znς} ← get row vectors of Z;

10 C = {C1, C2, . . . , Ck} ← k-means ({z1, z2, . . . , znς} , k);
11 P = {P1,P2, . . . ,Pk′} ← get disjoint partitions from C;

// global recursive bipartitioning to obtain k partitions

12 A′
k′×k′ ← compute partition connectivity matrix of P ;

13 queue ← initialize a queue;
14 partition set P ← initialize with a single partition of A′;
15 enqueue A′ into queue;
16 repeat
17 A′ ← dequeue from queue;
18 (P1,P2) ← bipartition A′ using α-Cut;
19 A′

1 ← create adjacency matrix for P1;
20 A′

2 ← create adjacency matrix for P2;
21 enqueue A′

1 into queue, enqueue A′
2 into queue;

22 P ← P\ partition of A′;
23 P ← P ∪ P1 ∪ P2;

24 until number of partitions in P equals to k;
25 return P ;

1TD1, and |Pi| by cTi ci in Equation 3.8. The simplification steps are shown in Equation

3.10.

Chapter 3. Spatial Partitioning of Road Traffic Networks 68

α-Cut(P) =

k∑
i=1

(
1TDci

1TD1
× 1TDci

cTi ci
− cTi Aci

cTi ci

)

=
k∑

i=1

1

cTi ci
×

((
1TDci

)2
1TD1

− cTi Aci

)

=

k∑
i=1

1

cTi ci
×

(
cTi

(
1TD

)T (
1TD

)
ci

1TD1
− cTi Aci

)

=

k∑
i=1

1

cTi ci
× cTi

((
1TD

)T (
1TD

)
1TD1

− A

)
ci

=

k∑
i=1

cTi Mci

cTi ci

where M =

((
1TD

)T (
1TD

)
1TD1

− A

)

(3.10)

The derived matrix M is called the α-Cut matrix for αi =
W (Pi,Vs)

W (Vs,Vs)
, and the spectral

clustering algorithm works on this matrix. Equation 3.10 is further simplified as follows.

k∑
i=1

cTi Mci

‖ci‖2
=

k∑
i=1

(
ci

|ci|

)T

M

(
ci

|ci|

)
=

k∑
i=1

yT
i Myi

where yi is a unit vector in the direction of ci, such that yT
i yi = 1. Hence the optimization

function becomes

min
P

k∑
i=1

yT
i Myi subject to yT

i yi = 1 (3.11)

This is solved by setting its derivative with respect to yi to zero and introducing a Lagrange

multiplier λi for eachPi to incorporate the associated constraint [27], as shown in Equation

3.12.

Chapter 3. Spatial Partitioning of Road Traffic Networks 69

∂

∂yi

(
k∑

i=1

yT
i Myi +

n∑
i=1

λi

(
1 − yT

i yi

))
= 0

Myi − λiyi = 0

Myi = λiyi

(3.12)

It implies that yi is one of the eigenvectors of M corresponding to the eigenvalue λi,

and yT
i Myi = yT

i λiyi = λi. As the objective is minimization, we select k smallest

eigenvalues from the total of nς eigenvalues as λnς ≤ λnς−1 ≤ · · · ≤ λnς−k+1 and

corresponding eigenvectors ynς , ynς−1, . . . , ynς−k+1 which represent the relaxed cluster

indicator vectors. Thus, it leads to Equation 3.13.

min
P

α-Cut(P) = yT
nς
Mynς + · · · + yT

nς−k+1Mynς−k+1

= λnς + · · · + λnς−k+1

(3.13)

Algorithm 3 presents the complete partitioning method, where the α-Cut matrix is com-

puted in line 3 and eigen-decomposed in line 4. Lines 5–6 select the k smallest eigenvalues

and corresponding eigenvectors. Ideally the indicator vectors should have only binary

values, but the actually obtained indicator vectors are in fact the relaxed vectors and do

not follow the binary pattern. Due to the lack of concrete information about clusters, it

becomes another problem to separate the k clusters. Here we assume that the clusters are

well-separated in the k-dimensional eigenspace, which is a general assumption in spectral

clustering [27], and use the eigenvectors (or indicator vectors) to generate a matrix Y of

nς × k dimensions (line 7). It is then row-normalized using Equation 3.14 to have row-

vectors zi of unit length giving the final matrix Z (line 8). Each row-vector zi represents

a supernode ςi. The set of row-vectors are used to cluster the supernodes by applying

k-means to find a set of k clusters C = {C1, C2, . . . , Ck} (lines 9–10), where each cluster

Ci comprises one or more row vectors (supernodes) in Z. The supernodes inside each

cluster are linked together as they exist in the supergraph. Upon linking them, sometimes

Chapter 3. Spatial Partitioning of Road Traffic Networks 70

even more than one connected components may be found inside a single cluster. These

connected components are extracted from each cluster to form disjoint partitions (line 11).

Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y11 y21 . . . yk1

y12 y22 . . . yk2

| | |
y1n y2n . . . ymn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

— zT
1 —

— zT
2 —
...

— zT
n —

⎞
⎟⎟⎟⎟⎟⎟⎠

= Z (3.14)

where, zi =
1√√√√ k∑

j=1

y2
ji

(y1i, y2i, . . . , ymi)
T

Depending on data, the number of disjoint partitions may sometimes be large, which

would yield the partition set from C as P = {P1,P2, . . . ,Pk′}, where k′ ≥ k. These k′

partitions may be accepted as the final result. However, if the requirement to have exactly

k partitions is strict, there are two approaches as described in [16]– i) greedy pruning,

and ii) global recursive bipartitioning. The greedy pruning approach iteratively merges

the two nearest partitions optimizing the defined graph cut, until it results in a total of k

partitions. In contrast, the global recursive bipartitioning approach generates a condensed

graph where each partition forms a node and adjacent partitions are connected by weighted

links with W (Pi,Pj) as the weight, and is recursively bipartitioned until it results in a

total of k partitions. For large k′ values, the greedy pruning approach is computationally

intensive. Therefore we follow the global recursive bipartitioning approach.

It begins with computing a partition connectivity matrix A′ of dimension k′ × k′ (line

12). Its values are computed as connectivity strengths between the partitions A′(i, j) =√
1

numadj(Pi,Pj)
×

∑
ςp∈Pi,ςq∈Pj

(A (p, q))2, where numadj(Pi,Pj) gives the number

of supernode adjacency relationships between the supernodes of Pi and Pj . This value

automatically becomes zero for the pair of partitions that do not share any adjacency

relationship. We use a queue to recursively apply the bipartitioning (lines 13–24). The

α-Cut algorithm is applied on A′ to have two partitions (line 18). Nodes of A′ (old

Chapter 3. Spatial Partitioning of Road Traffic Networks 71

partitions) belonging to each partition (new partition) are separated, and two new matrices

are created by separating the corresponding rows and columns of A′, such that the sum

of dimensions of the two new matrices equals to the dimension of A′ (lines 19–20). Each

matrix now represents one partition. The bipartitioning is again applied on each matrix

individually to yield more than two partitions. These interleaved steps of bipartitioning

and matrix creation are repeated until the total number of final partitions equals k (lines

16–24).

The computational complexity of eigen-decomposition is O(n3) in general and O(n2)

for sparse matrices. The application of k-means on row-vectors to find the clusters costs

O(tnk2). In these costs, n = nς when the spectral clustering is applied on the super-

graph, and n = nr when it is applied directly on the road graph.

3.6 Experimental Evaluation

In this section, we evaluate the proposed framework in terms of different evaluation metrics.

Although there exist many works on general graph partitioning, we compare our results

to a recent work [61], which is on the same problem, for a close and specific comparison.

3.6.1 Datasets

We perform experiments on two kinds of datasets, small (D1) and large (M1, M2, and M3)

road networks. Table 3.1 shows the statistics of all these datasets. The traffic on the small

network, shared by the authors of [61], is based on a micro-simulation performed for 4

hours at 120 time intervals of 2 minutes. At each time point t, the traffic density on each

road segment is computed in terms of vehicle/metre. In this work we perform experiments

at t = 71 to compare our results with [61] which used the same dataset.

The traffic data for the large networks is generated by a web-based3 random road traffic

generator MNTG [133]. We populate M1, M2, and M3 by 25,246, 62,300, and 84,999 vehicles

respectively, and obtain their trajectories for 100 continuous timestamps. A self-designed

3It can be accessed through http://mntg.cs.umn.edu/tg/

Chapter 3. Spatial Partitioning of Road Traffic Networks 72

Table 3.1: Dataset statistics

D1 M1 M2 M3

Place Downtown San
Francisco

CBD Mel-
bourne

CBD(+) Mel-
bourne

Melbourne

Area (sq. ml.) 2.5 6.6 31.5 42.03
Road seg 420 17,206 53,494 79,487
Intersection pt 237 10,096 28,465 42,321

program is used to map their positions to corresponding road segments, and compute the

traffic density of road segments (in terms of vehicles/metre) at each point of time.

3.6.2 Evaluation Metrics

The partitioning framework is evaluated using metrics that quantify the quality of re-

sults from different perspectives. The problem defined in Section 3.2.2 intends to achieve

four different conditions. As we obtain results in the form of disjoint and connected road

network partitions, C.1 and C.2 are automatically fulfilled. C.3 which enforces inter-

partition heterogeneity is evaluated by the inter metric. It is the average of inter-partition

distances between each pair of spatially adjacent partitions, where the inter-partition dis-

tance is the average absolute distance between nodes from the respective pair of adjacent

partitions. C.4 which enforces intra-partition homogeneity is evaluated by the intra met-

ric4. For each partition, it computes the intra-partition distance as the average absolute

distance between the pair of nodes, and then takes the average of that computed for all

the partitions.

Additionally, we also evaluate the overall partitioning. The standard metrics of cluster

evaluation do not take the associated spatial adjacencies into account. For its proper eval-

uation, we use two metrics derived from the standard cluster evaluation metrics to make

them suitable for the graph partitioning problem. They are the graph Davies-Bouldin in-

dex (GDBI). based on Davis-Bouldin index (DBI), and the average NcutSilhouette (ANS)

4Intra(P) = 1
|P| ×

∑

Pi∈P

∑

vp,vq∈Pi
p �=q

abs(vp.f − vq.f)

|Pi| · (|Pi| − 1)

Chapter 3. Spatial Partitioning of Road Traffic Networks 73

measure defined in [61] especially for partition evaluation. In both these measures, smaller

values indicate better partitioning.

3.6.3 Experimental Results on Small Networks

We perform experiments on the small road network D1 to compare the partitioning quality

of our α-Cut based partitioning framework with other state-of-the-art techniques using

performance evaluation metrics listed in Section 3.6.2, and demonstrate its effectiveness.

For an exhaustive analysis from different perspectives we present the results obtained on

several different schemes. Here we introduce the notations used for those schemes. AG

and NG are the schemes when α-Cut and normalized cut are applied directly on the road

graph respectively, and ASG and NSG are the schemes when α-Cut and normalized cut are

applied on the road supergraph with no stability check respectively.

Results in this section are the median values of evaluation metrics obtained from 100

execution of the algorithm. The reason is that k-means (used to cluster eigenvectors) may

sometimes produce slightly different results in different executions because of randomized

cluster initialization.

We consider NG as the baseline, and comparatively show our results. Figure 3.5 shows the

complete results of AG and ASG in comparison to NG in terms of evaluation metrics for the

number of partitions k ranging from 2 to 20. GDBI and ANS measures quantify the overall

partitioning quality. In terms of both these measures, both AG and ASG schemes of our

framework outperform NG at all values of k. Also in terms of intra, that quantifies intra-

partition homogeneity, we outperform NG. In terms of inter, that quantifies inter-partition

heterogeneity, AG outperforms NG at all values except k = 2, whereas ASG outperforms at

all values.

The overall partitioning quality is evaluated by GDBI and ANS, which consider both the

inter-partition heterogeneity and intra-partition homogeneity simultaneously. As stated

earlier, lower values indicate better partitioning for both these measures. In both the

Figures 3.5(c) and 3.5(d), AG is much lower than NG at all values of k. The GDBI measure

increases with increasing k, but this is not the case with ANS. In [61], the authors used

Chapter 3. Spatial Partitioning of Road Traffic Networks 74

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

In
te

r

k

AG ASG NG

(a) Inter

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20
In

tr
a

k

AG ASG NG

(b) Intra

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

GD
BI

 (i
n

hu
nd

re
ds

)

k

AG ASG NG

(c) GDBI

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2 4 6 8 10 12 14 16 18 20

AN
S

k

AG ASG NG

(d) ANS

Figure 3.5: Road graph and supergraph partitioning results in small networks

the ANS measure to learn the number of optimal partitions. They accept the value of

k that leads to the ANS minima as the optimal number of partitions, which in this case

is 6 for AG and 8 for NG. The minima of AG being much lower than that of NG, is found

as the better performer. As the schemes AG and NG applies α-Cut and normalized cut

respectively directly on the graph, the obtained results shows the superiority of α-Cut.

The supergraph technique, as said earlier, is to make the framework applicable for large

road networks, in which we may need to compromise the quality to some extent. Here we

show the effects of the supergraph on the partitioning quality. Figure 3.7(a) shows the

stability measures η(ς) of the 105 supernodes. When the stability threshold εη = 0, the

partitioning scheme behaves as ASG, whereas εη = 1 makes it behave as AG. The figure,

Chapter 3. Spatial Partitioning of Road Traffic Networks 75

which also presents the results obtained by ASG, shows how the inclusion of the supergraph

technique affects the partitioning. The GDBI and ANS plots show that partitioning a

network by ASG is qualitatively almost the same as that by AG. However, AG generally

lies below ASG in the ANS plot indicating its superiority. At few points (k = 4, 5) in

Figure 3.5(d), ASG is better than AG. The reason is that those values do not suit the

dataset for partitioning and therefore sometimes it takes place arbitrarily. Applying the

stability check on the supergraph with any value between 0 to 1 as its threshold results in

a partitioning that is qualitatively between AG and ASG.

To summarize the overall results, like Ji and Geroliminis [61], we consider the ANS measure

as the deciding factor for the optimal number of partitions. We now compare the best

(lowest) ANS measures (which gives the optimal partitioning) of all the schemes along

with [61]. Table 3.2 shows that both of our schemes AG and ASG are much lower (better)

than NG and [61]. As Ji and Geroliminis perform additional adjustments after partitioning

by normalized cut, their partitions are somewhat improved in quality than NG, but even

then our method outperforms theirs.

Table 3.2: Overall quality of partitioning

Scheme ANS k Scheme ANS k

AG 0.3392 6 NG 0.9362 8
ASG 0.3526 6 Ji and Geroliminis [61] 0.6210 3

We can also look into the partitioning quality more closely in Figures 3.5(a) and 3.5(b),

which show the inter-partition and intra-partition distances separately. As we want to

obtain a partition set having the highest possible inter-partition distances, higher values

of inter indicate better partitioning. Except k = 2, at all values of k in the range, AG

has higher values than NG. Thus if the optimal number of partitions for this data comes

out to be 2, which is not true (found as 6 in previous paragraphs), NG outperforms AG

in terms of this measure. The value of AG increases rapidly until k = 6, which is the

maxima. After that point it decreases rapidly again, and gradually comes to relatively

stable values. The maxima of AG for inter lies at k = 6 which coincides with the minima

of ANS. Another perspective to evaluate the partitioning is to look into the intra-partition

distances using intra. As our objective is to minimize intra-partition distances, lower

Chapter 3. Spatial Partitioning of Road Traffic Networks 76

values are an indicator of better partitioning. In the figure we can see that at all values

of k in the range, AG has lower values than NG.

In the curve of ASG of inter, there is a sudden rise at k = 2, but then it comes down

in between AG and NG. Similarly intra fluctuates over the initial values of k, after which

it comes in between the other two, whereas at higher values its trend becomes similar to

NG. The reason for the abnormal behavior at the initial values is that they do not suit the

dataset for partitioning by the α-Cut. When the partitioning is applied at those values,

it takes place arbitrarily for some instances, which makes it behave abnormally. As is

evident from the ANS plot, the initial values of k are not so good for partitioning.

3.6.4 Experimental Results on Large Networks

We perform experiments on large road networks M1, M2 and M3 to validate the scalability of

our framework. Additionally, we also show that the quality of partitioning large networks

is comparable to that of partitioning small networks.

Figure 3.6 shows the MCG measures and the number of supernodes obtained from the

cluster sets produced by k-means at different values of κ on M1 and M2. At the initial

values, the MCG measure rises steeply up to some point, beyond which there is little

change. In case of M1, the maxima 2326.88 is attained at κ = 18, after which it starts

declining gradually, but the major rise is only up to κ = 5. As higher MCG measures

indicate better clustering, the best quality cluster set of M1 is obtained at κ = 18, but

those obtained at lower values, up to κ = 5 with an MCG measure of 2075.16, do not

differ much in quality. If we look into the number of obtained supernodes, it increases

monotonically with the increasing value of κ. As having larger number of supernodes

adds on complexity to the remaining partitioning task, it is worth choosing the value of

κ after which there is little increase in MCG. We get this value by fixing the optimality

threshold εθ to 2000 for M1 and 5000 for M2. It leads to an optimal κ of 5 for both

datasets, and the obtained number of supernodes are 2,081 and 5,391 respectively. Thus

our supergraph technique reduces the adjacency matrix dimension from 17,206 and 53,494

to 2,081 and 5,391 for M1 and M2 respectively. Similarly, the optimal κ for M3 is found as

5, which produces 9179 supernodes. This significantly reduces both the space and time

Chapter 3. Spatial Partitioning of Road Traffic Networks 77

complexity, and if required the complexity can further be reduced by selecting a lower κ,

in which the partitioning quality may degrade to some extent. Figure 3.7(b) shows the

supernode stability measures of 5391 supernodes of the M2 dataset. We can see that most

supernodes are highly stable. Therefore we proceed with these supernodes for supergraph

construction and its partitioning by α-Cut.

0

1

2

3

4

5

6

1 3 5 7 9 11 13 15 17 19

(in
 th

ou
sa

nd
s)

MCG Supernodes

(a) M1

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19

(in
 th

ou
sa

nd
s)

MCG Supernodes

(b) M2

Figure 3.6: MCG measure and number of supernodes in large networks

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

St
ab

ili
ty

Supernode ID
(a) D1

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

St
ab

ili
ty

Supernode ID
(b) M2

Figure 3.7: Stability measure of supernodes

Figure 3.8 shows the final partitioning results obtained for all the three large datasets. The

plots show the measures of respective metrics in Y-axis at different values of k. As shown

in Figures 3.8(b), 3.8(d), and 3.8(f), we get the best (lowest) ANS measures of 0.423 at

k = 4, 0.511 at k = 5, and 0.512 at k = 5 on M1, M2, and M3, respectively. These values

are not as good as we found on small networks (AG- 0.3392 and ASG- 0.3526) in Section

Chapter 3. Spatial Partitioning of Road Traffic Networks 78

3.6.3, but still they are much better than the small network baseline results (NG- 0.9362,

[61]- 0.6210). Moreover, results indicate that the partitioning of M1 is qualitatively better

than that of M2 and M3, but worse than that of D1. It shows that as the size of the road

network increases, the partitioning quality decreases.

As we get the lowest ANS measure for M1 at k = 4, the best possible way to partition this

network is to divide it into 4 segments as produced by our framework, each of which exhibit

distinctive traffic congestion inside. However, if the congestion pattern has to be analyzed

more closely, we can also have more partitions, and k = 7, 9, 13, . . . being the local min-

ima serve as good candidates for the number of partitions. Similarly, some other suitable

candidates for having a good congestion-based partitioning are k = 7, 9, 12, 14, . . . for

M2, and k = 9, 11, 14, 17, . . . for M3.

At lower values of k, a small change makes a big effect in the partitioning quality, as can

be seen from the fluctuations in Figures 3.8(b), 3.8(d) and 3.8(f). However, as k becomes

large, the fluctuations diminish. The reason behind this is that at smaller values of k, say

2, when it is increased to 3, a large re-arrangement takes place inside the partitions. It

would be much larger than the re-arrangement that takes place at higher values of k, say

when it increases from 22 to 23. Unlike the results of the small network, the intra and

inter measures here are very small. The reason is that the road segment densities in M1

and M2 are much lower than those in D1, and those in M3 is even lower than all.

For large road networks, the most time-taking task in the framework is the eigen-

decomposition (Algorithm 3, line 4). This becomes a major overhead when dimension

of the matrix M becomes large. We overcome this issue (up to some extent) in our study

by applying a high performance algorithm developed and used in Matlab [134]. It reduces

of the original matrix to a condensed form by orthogonal transformations, decomposes the

matrix, and then transforms it back. Table 3.3 shows the running time of our framework

in number of seconds consumed in its complete execution. The total time has been broken

down to show the individual times consumed int the different modules, where the different

modules are those described in Section 3.3. For the small dataset D1, it takes just fractions

of a second to complete, whereas for large datasets M1, M2, and M3 it takes 2.15 minutes,

31.75 minutes, and 1.64 hours, respectively. Module 1 takes the lowest amount of time,

Chapter 3. Spatial Partitioning of Road Traffic Networks 79

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

Intra Inter

(a) Inter and Intra in M1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2 4 6 8 10 12 14 16 18 20
k

(b) ANS in M1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

Intra Inter

(c) Inter and Intra in M2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

(d) ANS in M2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

Intra Inter

(e) Inter and Intra in M3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2 4 6 8 10 12 14 16 18 20
k

(f) ANS in M3

Figure 3.8: Road supergraph partitioning results in large networks

Chapter 3. Spatial Partitioning of Road Traffic Networks 80

whereas module 3, which includes the eigen-decomposition task, takes the highest amount

of time. The total time taken for M3 is certainly very high, and therefore while applying

repeated partitioning on an urban road network, at the beginning it can be started by par-

titioning the whole network. But after having its relatively small partitions, they can be

repeatedly subjected to partitioning distributively with the changing congestion measures

with respect to time. In this way it helps in reducing the running time, and can even be

applied in real-time if the network becomes as small as M1.

Table 3.3: Running Time (in seconds)

Module D1 M1 M2 M3

1 less than 1 9 24 137

2 less than 1 54 848 2044
3 less than 1 66 1033 3726

Total less than 1 129 1905 5907

3.7 Summary

In this chapter, we presented a spectral clustering based framework for traffic congestion-

based spatial partitioning of large urban road networks. We first formally gave a mathe-

matical representation of actual road networks and transformed the road network into a

road graph, and then to a road supergraph by clustering the node feature values. The novel

k-way α-Cut partitioning algorithm is applied on the supergraph to obtain k partitions.

The mining of the supergraph leads to a preliminary grouping of road segments in the form

of supernodes, which significantly reduces the partitioning load. This technique makes the

framework scalable and suitable to handle the rapidly growing urban road networks. The

α-Cut algorithm, proposed in this chapter, aims to achieve a good balance of average cut

and average association through spectral clustering. This algorithm also approximately

maximizes the network modularity. In our experiments, we found that it produces par-

titions qualitatively better than normalized cut. We performed experiments on a small

road network of Downtown San Francisco to demonstrate the framework effectiveness, and

on three large road networks of Melbourne of different sizes to demonstrate its scalability

along with effectiveness. In all the four networks, we outperform the existing techniques

in terms of different performance evaluation metrics.

Chapter 4

Fast Partitioning of Road Traffic

Networks Using Density Peak

Graphs

The task of spatial partitioning of road networks is inherently complex. The application

of our spectral clustering based α-Cut directly on the large road networks takes long ex-

ecution time. In this chapter, we propose a robust framework for spatial partitioning of

large urban road networks based on traffic measures, with an emphasis on minimizing the

execution time for large networks. For a given urban road network, we aim to identify the

different sub-networks or partitions that exhibit homogeneous traffic patterns internally,

but heterogeneous patterns to others externally. To this end, we develop a two-stage algo-

rithm (referred as FaDSPa) within our framework. It first transforms the large road graph

into a well-structured and condensed density peak graph (DPG) via density based clus-

tering and link aggregation using traffic density and adjacency connectivity, respectively.

Thereafter we apply our spectral theory based α-Cut to partition the DPG and obtain the

different sub-networks. Thus the framework applies the locally distributed computations

of density based clustering to improve efficiency and the centralized global computations of

spectral clustering to improve accuracy. We perform extensive experiments on real as well

as synthetic datasets, and compare its performance with that of an existing road network

partitioning method. Our results show that the proposed method outperforms the existing

81

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 82

normalized cut based method for small road networks and provides impressive results for

much larger networks, where other methods may face serious problems of time and space

complexities.

4.1 Introduction

These days there is an increase in the frequency of traffic congestion on urban road net-

works, especially during the peak hours and in the city centers. This increasing congestion

requires an improvement in its management by learning from its behavior to help bal-

ance the traffic flow. Usually the roads of each locality, say inside a suburb, experience

a specific traffic flow pattern regardless of the global flow. For example, roads inside the

city centre or any area having popular venues like a stadium or hospital, usually remain

more congested than others without any such significance. Additionally, the congestion

on roads connecting important places of public gatherings like airports, train stations,

hospitals, and bus stops, remains comparatively higher than other locations. Thus dif-

ferent subnetworks of the urban road network exhibit congestion at different times. To

analyze the behavior of congestion it is important for traffic management authorities to

be able to partition an urban road network into different sub-networks based on the road

connectivities and their congestion level, which is determined by the real traffic measures

[3].

Moreover, as we move towards smart urban infrastructure, there is a growing demand

for traffic-aware smart travel services, including route guidance and trip planning. These

services are usually based on complex graph processing methods dealing with the road

network. One way to efficiently process the execution of these services is to exploit com-

putation in a distributed computing environment, in which the large road network is

partitioned into several small sub-networks, so that queries can be focused on the rel-

evant sub-networks [88]. Thus there exist different applications where instead of using

the complete urban network, problem solving can be simplified by separately processing

the smaller sub-networks that exhibit homogeneous traffic patterns inside. This leads to

the important problem of traffic-based spatial partitioning of urban road networks. The

application of graph partitioning on general information networks has been studied in the

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 83

past [20, 28]. However, the geospatial properties of a road network associated with traffic

flow patterns makes a unique kind of network [61]. The problem was recently raised in

the intelligent transportation systems (ITS) community [61], where the authors proposed

a normalized cut based method for partitioning road networks. While this works well

for small networks, it faces serious limitations in its time and space complexity for large

networks.

In Chapter 3 and our recent work [3], we proposed a method for traffic-based spatial

partitioning of large road networks that outperformed existing techniques. The method

comprises three different modules– road graph construction, road supergraph mining, and

supergraph partitioning. The first module deals with transforming the real road network

into a road graph to give it a mathematical representation. To address the problem of

large number of road segments in large urban road networks, we followed a 2-level parti-

tioning. The second module is the first level partitioning, which mines a road supergraph

from the road graph with a much reduced order following a bottom-up approach. It goes

through the steps of clustering feature values using k-means and constructing the road

supergraph. The last module of supergraph partitioning is the second level partitioning,

which follows a top-down approach to split up the supergraph into multiple heterogeneous

partitions that are homogeneous within. It is achieved by approximately optimizing α-

Cut by following a spectral clustering based solution (proposed in Chapter 3). It produces

supernode partitions, from which the road segment partitions are extracted. Despite ob-

taining good results the following issues are still outstanding, i) the problem of learning

the right number of clusters, while applying k-means to create supernodes, is a computa-

tionally expensive task; ii) when the value of k in k-means is set very low, the number

of supernodes is sometimes still very large, implying the relation between k and the su-

pernodes is weak; iii) the connectivity among the nodes is not considered together with

their feature values when applying clustering (k-means) to mine the supergraph. In this

chapter, we address the above issues and present a robust framework employing both den-

sity and spectral based clustering. It is known that spectral clustering based solutions

provide good results but exhibit high computational complexity [3, 135]. On the other

hand, density-based methods are able to discover clusters of arbitrary shapes and are very

fast. Our framework combines the advantages of spectral and density based approaches

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 84

simultaneously, and also overcomes the issues that existed in our previous work [3].

Our partitioning framework aims to identify the different heterogeneous regions of an

urban network that internally exhibit homogeneous traffic patterns. We propose three

algorithms, FaDPa, FaDPa+, and FaDSPa. The main scalable algorithm FaDSPa, which is

based on the other two, mines a density peak graph by identifying the density peaks from

the road graph. Then the density peak graph is subjected to our spectral theory based

α-Cut to obtain the set road network partitions. In summary, we make the following

contributions in this chapter.

– We develop a fast density-based road network partitioning method FaDPa (extended

to FaDPa+). It identifies the density peaks locally in the graph, and gradually grows

them to form clusters. Unlike spectral clustering methods, it works very fast, and is

highly suitable to large networks.

– Using FaDPa, we develop an efficient and effective method FaDSPa for partitioning

small as well as large road networks. It provides an option to input a factor to control

the trade-off between efficiency and partitioning quality.

– We perform extensive experiments on real as well as synthetic datasets including

road networks of different sizes to establish its efficacy.

The rest of the chapter is organized as follows. Section 4.2 presents some preliminary

theories followed by the problem definition and framework overview. Section 4.3 presents

our density-based partitioning algorithm FaDPa and its extension FaDPa+, followed by the

main algorithm FaDSPa in Section 4.4. Experimental results are shown in Section 4.5,

followed by the chapter summary in Section 4.6.

4.2 Problem Definition and Framework Overview

This section defines the problem, and presents the framework overview.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 85

4.2.1 Problem Definition

The problem of partitioning road networks addressed in this chapter is defined as splitting a

given urban road network based on traffic measures into several disjoint partitions, keeping

intact the associated spatial properties. The different partitions exhibit the property of

intra-partition traffic homogeneity and inter-partition traffic heterogeneity. Let us suppose

we have a real urban directed road network N = (I,R), which is transformed into a

road graph G = (V, E) by following the method described in Section 3.2.1 of Chapter 3.

Before formally stating the problem, we present four definitions.

Definition 4.1. (Cost of Partitioning) While partitioning the set of nodes V in a

road graph G into different partitions P = {P1,P2, . . . ,Pk}, the cost of partitioning is

defined as the aggregation of affinity values of all possible node pairs (vi, vj) for which vi

and vj lie in different partitions in the final result, where the affinity values are measures

of traffic similarity between nodes in the pairs. �

Definition 4.2. (Partition Volume) Given a set of road graph partitions P =

{P1,P2, . . . ,Pk}, partition volume is defined as the aggregation of affinity values of

all possible linked pairs (vi, vj) for which vi and vj lie in the same partition. �

Definition 4.3. (Partition Connectivity) A partition Pl = (Vl, El) is said to be

connected if for any node pair (vi, vj) ∈ Pl there exists a path from vi to vj (or vice

versa), such that each node vk in the path belongs to Vl (i.e., vk ∈ Vl). �

The problem of traffic-based spatial partitioning of a road graph G is to split its node set V
into k partitions (or subsets) P = {P1,P2, . . . ,Pk} such that the following conditions

hold.

C.1
⋃k

i=1 Pi = V and Pi
⋂

Pj = ∅ for all i �= j;

C.2 each Pi is connected, and all adjacency relations, except the cross-partition relations

(inter-partition links), are maintained as in G;

C.3 the partition volume of G is the maximum; and

C.4 the cost of partitioning G is the minimum;

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 86

In the above conditions, C.1 is a general condition of grouping the set of nodes (or road

segments) into k non-overlapping subsets, C.2 introduces the spatial connectivity (or

linkage) of nodes, C.3 enforce the condition of intra-partition traffic homogeneity, and

C.4 enforces inter-partition traffic heterogeneity. A partitioning may not satisfy C.3 and

C.4 together simultaneously. Optimizing one of them may lead to sacrificing the other

condition. Therefore, our goal is to make an optimized trade-off between C.3 and C.4.

4.2.2 Framework Overview

The task of road network partitioning is to cluster the road segments of a given road

network based on their traffic measures and the associated spatial connectivities (connec-

tivity of road segments). However, the traditional clustering algorithms, like k-means,

do not take care of the connectivities directly. It requires to develop ways to incorporate

the connectivities during clustering in an efficient and effective manner. In the proposed

framework shown in Figure 4.1, our partitioning algorithm called FaDSPa uses a combina-

tion of an efficient density-based clustering approach and an effective spectral clustering

approach. It starts with constructing a road graph from the given road network. The graph

is passed to the partitioning algorithm FaDSPa to obtain the set of partitions. Lastly the

real road network partitions are extracted from the resulting road graph partitions.

The transformation of the real road networkN into a road graph G is done in the beginning

to give it a mathematical representation, explained as a preliminary step in Chapter 3

Section 3.2.1. Due to the large and rapidly expanding nature of urban areas, the size of an

urban road network |R| and the order of the corresponding road graph |V| may become

very large, which heavily affects the time and space complexity for partitioning G. To

address this problem, the framework follows a two-level partitioning (FaDSPa), where the

first level is fast and the second level produces quality partitions. The first level follows a

bottom-up approach and applies a density based algorithm called FaDPa+ to compress the

large graph G into a small density peak graph Gd (defined later) by identifying the locally

dense components. The second level partitioning follows a top-down approach to split

up the density peak graph Gd into multiple heterogeneous partitions that are internally

homogeneous. It is achieved by approximately optimizing α-Cut, by following a spectral

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 87

Compute LD

Compute HDD

Identify Density Parent/Child Nodes

Extract DGCs

FaDPa

Construct DPG

FaDPa+

Compute α-Cut Matrix

Compute Eigen-pairs

Construct Matrix from Eigen Vectors

K-Means on Rows

Get Disjoint Partitions

Road Graph Construction

Road graph

α-Cut Partitioning

Partition Extraction

FaDSPa

DPGDPG

DGC

Road network Road network partitions

Road traffic
measures

Construct Graph

Partition graph

Disjoint partitions

Figure 4.1: Architecture of the proposed framework

clustering based solution. It produces partitions of the density peak graph, from which

the road segment partitions are extracted.

The density based FaDPa+ is fast and thus suitable for large networks. On the other hand,

the spectral based α-Cut produces quality partitions, but comes with high time and space

complexity, and thus is suitable for small networks. Depending on the available computing

resources and processing time, FaDSPa maintains a balance between the efficiency and

accuracy of the partitioning task, by using an input parameter. If the urban network is

small in size (manageable by the available resources), the task is done more by the α-Cut,

and if it is large (beyond manageable by the available resources), the task is transferred

more to FaDPa+. This makes FaDSPa effective as well as efficient in dealing with graphs of

all sizes.

We propose FaDPa (in Section 4.3) as a fast density-based partitioning algorithm, which is

further extended to FaDPa+ (in Section 4.3.4) to partition into any desired small number of

clusters, and FaDSPa (in Section 4.4) as a combined density and spectral based partitioning

algorithm. FaDSPa is the main partitioning algorithm that is able to handle all small to

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 88

large urban road networks, by following an appropriate balance between the density based

(FaDPa+) and spectral based (α-Cut [3]) algorithms.

4.3 FaDPa: Fast Density-based Partitioning

The road segments inside a road sub-network or partition are linked together. Any ve-

hicle entering into a partition through a road segment needs to go through the following

segments to cross the partition or reach the destination. It makes the traffic pattern of a

road segment more likely to be similar to (or dependent on) other (following or preceding)

segments inside the partition. Also in each partition, locally there exist some important

road segments that are spatially more closely connected to others and play a special role

in the traffic movement. The road network segments including these important roads and

the surrounding roads form dense components with high similarity in the traffic density,

where the most important and dominating road occupies the density peak. The traffic

on the surrounding roads, other than the density peak, is heavily dependent on the peak,

which again have following roads that depend on these nearby roads. In this section we use

this natural phenomenon of road traffic networks to propose a fast density-based network

partitioning method called FaDPa (pronounced as fad-paa). It first identifies the density

peaks in a network and then grows them to identify the density-based clusters.

There exist density based clustering algorithms like DBSCAN [12], which are efficient,

able to detect clusters of arbitrary shapes, and able to find the suitable number of clusters

automatically. They identify a cluster by looking into the neighborhood of each object

within a radius of a predefined threshold ε distance. With each minpts (predefined)

objects in the ε-neighborhood, a new cluster is formed. The process is carried out to find all

density-connected clusters, where a density-connected cluster is defined as the maximal set

of density-connected objects. The main drawback of this method is the predetermination

of ε and minpts thresholds, and their high sensitivity to cluster formation [13]. The

method we propose here is free from these requirements. We start with presenting the

main concepts and terminology, which is followed by the algorithm.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 89

a

b

c d

gh

e

f

i

j

k

l

8

3

5 3

6

5

4

6

8

9

42

(a) Sample road graph

a

b

c d

gh

e

f

i

j

k

l

8

3

5 3

6

5

4

6

8

9

42

(b) Identification of DPNs

a

f
e j

k

l

i
b d

g

h

c

D1

D3 D4

D5
D2

(c) DGCs

f

i

c

k

g

(d) DPG

Figure 4.2: Illustration of DPG construction from a graph

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 90

4.3.1 Concepts and Terminology

We use some of the ideas of [13] in Definitions 4.4 and 4.5 to find the density peaks in

unlinked data, and then extend them to graph data.

Definition 4.4. (Local Density (LD)) Given a set of data objects D =

{d1, d2, ..., d(nd)}, the local density ρ(di) of an object di is defined as the number of

objects closer than a predefined distance threshold εd to di. It is formulated in Equation

4.1, where dist(di, dj) gives the distance1 between di and dj in terms of their feature

values, and χ(.) is a binary function defined in Equation 4.2. �

ρ(di) =
∑
j

χ(dist(di, dj) − εd) (4.1)

χ(x) =

⎧⎨
⎩ 1 if x < 0

0 otherwise
(4.2)

Definition 4.5. (Higher Density Distance (HDD)) Given a set of data objects D =

{d1, d2, ..., d(nd)}, the higher density distance δ(di) of an object di is defined as the

distance from di to the closest object dj of higher local density. It is formulated in

Equation 4.3 as the minimum distance between di and any other object dj with higher

density. �

δ(di) = min
∀dj :ρ(dj)>ρ(di)

dist(di, dj) (4.3)

Definition 4.6. (LD in Graph) Given a graph G = (V, E), the LD ρg(vi) of a node vi

is defined as the number of nodes that are directly linked to vi and closer than a predefined

distance threshold εd. It is formulated in Equation 4.4, where neigh(vi) returns all the

neighboring or linked nodes to vi, dist(vi, vj) returns the distance between vi and vj in

terms of their feature values, and χ(.) is the same binary function defined in Equation

4.2. �
1We use Gaussian based distance measure defined later in Section 4.3.2

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 91

ρg(vi) =
∑

∀vj∈neigh(vi)

χ(dist(vi, vj) − εd) (4.4)

Table 4.1: Distance measures in the sample road graph

Distance measures LD

a b c d e f g h i j k l

a - 0.93 - 0.93 - 0.10 - 0.98 - - - - 1

b 0.93 - 0.35 - 0.62 - 0.10 - - - - - 2

c - 0.35 - 0.35 - 0.82 - 0.62 - - - - 2

d 0.93 - 0.35 - 0.62 - 0.10 - - - - - 2

e - 0.62 - 0.62 - 0.62 - 0.82 0.10 - 0.00 - 2

f 0.10 - 0.82 - 0.62 - 0.93 - - 0.93 - 0.10 2

g - 0.10 - 0.10 - 0.93 - 0.35 - - - - 3

h 0.98 - 0.62 - 0.82 - 0.35 - - - - - 1

i - - - - 0.10 - - - - 0.10 - 0.62 2

j - - - - - 0.93 - - 0.10 - 0.35 - 2

k - - - - 0.00 - - - - 0.35 - 0.35 3

l - - - - - 0.10 - - 0.62 - 0.35 - 2

Example 4.1. Figure 4.2(a) shows an example of a road graph constructed from a small

road network, in which exemplary node feature values are shown beside the nodes, and

Table 4.1 shows the distance measures computed for each pair of nodes. Setting the distance

threshold εd to 0.5, the distances lower than this threshold are highlighted (bold) in the table,

and the rightmost column shows the node local density as the count of these highlighted

entries in each row. �

Definition 4.7. (Density Parent) Given a graph G = (V, E), the density parent of a

node vi is defined as the linked node vj having the closest higher local density, such that

χ(dist(vi, vj)− εd) = 1. If there are multiple nodes equally close to vi in terms of LD,

then the one with the lowest dist(vi, vj) is chosen as the parent. �

Definition 4.8. (Density Child) Given a graph G = (V, E), the density children of a

node vi is defined as the set of linked nodes {vj} that have vi as their density parent. A

node can have multiple density children. �

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 92

Definition 4.9. (HDD in Graph) Given a graph G = (V, E), the HDD δg(vi) of a

node vi is defined as the distance from vi to its density parent vj if vj exists (Equation

4.5), otherwise it is the maximum of all distances between any two linked nodes (Equation

4.6). In the equations, neigh(vi) returns all the neighboring or linked nodes to vi,

dist(vi, vj) returns the distance between vi and vj in terms of their feature values, and

vk ⇔ vl denotes that vk is linked to vl. �

δg(vi) = min
∀vj

{dist(vi, vj)} (4.5)

δg(vi) = max
∀vk,vl,vk⇔vl

{dist(vk, vl)} (4.6)

Definition 4.10. (Density Peak Node (DPN)) Given a graph G = (V, E), a node

vj is called a density peak node ςi, if vj does not have any density parent. Like nodes, the

DPNs also associate a feature value ςi.f(= vj.f) with them. �

Definition 4.11. (Density Similar) Given a graph G = (V, E), two nodes vi and vj

are said to be density similar, if they have a density parent and density child relationship,

or if there is another node vk such that vi is density similar to vk and vk is density similar

to vj . Hence this relationship is both reflexive and transitive. �

Definition 4.12. (Graph Component (GC)) Given a graph G = (V, E), a graph

component is defined as a subgraph in which there exists a path between any two nodes

vi, vj ∈ V in such a way that each node vk in the path belongs to V . �

Definition 4.13. (Dense Graph Component (DGC)) Given a graph G = (V, E), a
dense graph component Di is defined as a graph component in which each pair of nodes

(vi, vj) are density-similar. Every DGC must have exactly 1 DPN, which will not have

any density parent, whereas all other nodes in the DGC must have. �

Definition 4.14. (Density Peak Graph (DPG)) Given a graph G = (V, E), a density

peak graph Gd is defined as a 3-tuple
(
Vd, Ed,Wd

)
, where Vd = {ς1, ς2, . . . , ςnς} is

the set of DPNs, Ed = {ε1, ε2, . . . , εnε} is the set of links connecting the DPNs, and

Wd = {ω1, ω2, . . . , ωnε} is the set of weights associated with each of the corresponding

links. The links between the DPNs are established by looking into the neighborhood

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 93

relationships between the corresponding DGCs. For each pair of DPNs (ςi, ςj) in the

DPG, if there exists a link ek between a pair of nodes (vp, vq), such that (vp ∈ Di and

vq ∈ Dj) or (vq ∈ Di and vp ∈ Dj), then a link εl is established between them. The

weight of this link is set as a measure of similarity between ςi and ςj , i.e., ωl = sim(ςi, ςj)

(defined later in Equation 4.10). �

Example 4.2. In Table 4.1, the LD of node a is 1. To find its density parent, we look

into the LD of all the linked nodes (i.e., b, d, f, h) that have their distance less than

εd(= 0.5) (i.e., f), and select the node having the closest higher LD, which is f . Thus a

becomes density child of f , and f becomes the density parent of a. After establishing this

relationship, a and f are called to be density similar. In the set {b, d, g, h}, b, d, and h

are children of g, which makes all the nodes density similar to each other. Therefore the

set forms a dense graph component. For a node, if there does not exist any linked node

with higher LD, then it forms the density peak. As shown in the table, g has b, d, and h as

the linked nodes satisfying the εd condition, but none of them have their LD higher than g.

Therefore, g becomes a density peak node. Figure 4.2(b) shows the DPNs (colored) found

in the sample graph. The solid lines represent a parent-child relationship and the dotted

lines represents a link in the road graph. Figure 4.2(c) shows the identified dense graph

components enclosed in the circles with solid lines, where the colored nodes are the DPNs,

and the links with solid lines represent the neighborhood relationship between the DGCs.

Figure 4.2(d) shows the density peak graph, where the nodes are the identified DPNs linked

by the neighborhood relationship. �

For a given graph G = (V, E), the density parent-child relationships among the nodes

can be easily established after computing their LD and HDD. According to Definitions

4.7 and 4.10, all nodes must have a density parent, unless they are DPNs. It means that

except the DPNs, all other nodes in V can be accessed by traversing through the children

of DPNs, followed by their children, and so on, until the nodes do not have any children.

This traversal from a single DPN results into accessing a complete DGC, and doing this

for all the DPNs, gives the complete set of DGCs, which include all the nodes in V . It

leads to the conclusion that any given G can be decomposed into a set of DGCs, where

each of them have one DPN. These DPNs are the density peaks, which form the center

of attention in a surrounding. They become nodes in the DPG Gd = (Vd, Ed,Wd),

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 94

while the remaining surrounding nodes in V disappear, as shown in Figure 4.2. Each

DPN represents its corresponding DGC, and thus constructing a DPG from a road graph

condenses the graph using the density peaks.

4.3.2 Algorithm

The algorithm (shown in Algorithm 4) starts after transforming the given road network

N = (I,R) into the road graph G = (V, E) as explained in Section 3.2.1 of Chapter

3. For all the nodes V in G, the LD (lines 3–4), and the HDD with density parent/child

nodes (lines 5–19) are computed. We assume that the feature values are in Gaussian

distribution2 and define the distance measure for computing LD and HDD based on the

Gaussian similarity. Equation 4.7 formulates the Gaussian similarity between two linked

nodes vi and vj , where σ
2(v) = 1

nv
×

∑nv
i=1 (vi.f − μv)2 is the variance of node feature

values with respect to the node mean μv. It is a direct similarity with path length3 1.

gsim1(vi, vj) = exp

(
− (vi.f − vj.f)

2

2 × σ2(v)

)
(4.7)

Equation 4.8 shows the similarity with path length 2 where we multiply the gsim1(.) of

intermediate links together for each different path between vi and vj and get the average

of all such paths. As the value of gsim1(.) ranges from 0 to 1, its product of intermediate

links also lies in the same range, and thus it also follows to gsim2(.). This equation is

generalized for path length n in Equation 4.9.

gsim2(vi, vj) =
1

|V2
(vi,vj)

|
×

⎛
⎜⎝ ∑

vk∈V(vi,vj)

(
gsim1(vi, vk) × gsim1(vk, vj)

)⎞⎟⎠ (4.8)

2In [61], the authors have used the Gaussian function in road networks, and we follow them.
3It refers to the number of links in the path connecting the two nodes.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 95

gsimn(vi, vj) =
1

|Vn
(vi,vj)

|
×

⎛
⎜⎝ ∑

〈vk1,vk2,...,vk(n−1)〉∈Vn
(vi,vj)

(
gsim1(vi, vk1)

×gsim1(vk1, vk2) × . . . × gsim1(vk(n−1),vj
)
))

(4.9)

The final similarity measure is defined in Equation 4.10, by considering all the possible path

lengths up to n, where we weight the similarity terms with the harmonic series members

and divide their summation by the harmonic series. Generally the shorter paths between

two nodes define their associativity (or relationship) strength more accurately than the

longer paths. The rationality behind using the harmonic series to define the aggregated

similarity is to make the effect of shorter paths more than longer paths, proportional to the

path length. All the measures gsim1(vi, vj), gsim
2(vi, vj), ..., gsim

n(vi, vj), range

between 0 and 1, and so does the sim(vi, vj).

sim(vi, vj) =
gsim1(vi, vj) +

gsim2(vi,vj)
2

+ . . . +
gsimn(vi,vj)

n

1 + 1
2
+ . . . + 1

n

(4.10)

Based on this, the distance between a pair of nodes (vi, vj) is defined in Equation 4.11,

which again makes it range between 0 and 1.

dist(vi, vj) = 1 − sim(vi, vj) (4.11)

All those nodes having their HDD value δg(vi) as the maximum of all distances between

a pair of linked nodes max∀vk,vl,vk⇔vl {dist(vk, vl)} are designated as a DPN (line 17).

For each DPN, a search is then started for the density children, which are combined with

the DPNs to form a DGC (lines 20–29). This component is grown further by looking into

the density children of the children of each DPN, and so on, until they return null. Thus a

DGC is the largest component that could be grown from a DPN by exploring the density

children. The number of DGCs in G is equal to the number of DPNs, |D| = |Vd|, and
the union of all the DGCs equals to the whole graph, {∪∀iDi} = G. These DGCs are

finally accepted as the different partitions of the road graph G (lines 30–31).

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 96

4.3.3 Determining Distance Threshold

As mentioned earlier, the main drawback of DBSCAN is the requirement of predetermined

constants, ε and minpts. The cluster formation is highly sensitive to these parameters;

a bad value for these parameters will lead to poor results. In FaDPa, one of our objectives

is to make the algorithm more robust against these pre-determined parameters. We have

only one constant, which is the distance threshold εd used in Equation 4.4. We consider

this as a vector 〈εd1, εd2, . . . , εdnv
〉 of dimension nv, instead of a single constant value, where

each εdi corresponds to the distance threshold for node vi. The value of εdi is computed

by looking into the neighborhood of vi locally using Equation 4.12, where V1
(vi)

denotes

the set of nodes directly linked to vi (with path length 1).

εdi = 1 − 1

|V1
(vi)

|
×

∑
vj∈V1

(vi)

sim(vi, vj) (4.12)

4.3.4 FaDPa+: Reducing the Number of Partitions Further

In a graph where nodes are linked among themselves, each node is exposed only to its

neighboring nodes. While computing the DPNs in G in Section 4.3.2, the density parents

and density children relationships are established by looking into only the neighboring

nodes. The DPNs obtained in this manner are based on the local connections (not on the

complete node set globally). This leads to a large number of DPNs locally, and in turn a

large number of DGCs. But in real situations, we may sometimes need to cluster the graph

into a small number of partitions to know the global partitioning pattern. For example,

in our experimental dataset M2 that has a graph of 53,494 nodes, the number of partitions

produced by FaDPa is 22670; it generally depends on the number of nodes, links, and their

distance weights. This number is still large. A manual analysis of these partitions would

be very difficult, and the user may want to have far fewer partitions numbering less than

100 or even 10.

To further reduce the number of partitions generated by FaDPa as per the user require-

ments, we propose an extended algorithm named FaDPa+ (shown in Algorithm 5). In

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 97

Algorithm 4: FaDPa (Road graph G, Distance threshold εd)

1 Vd ← instantiate an empty set of DPNs;
2 stack ← initialize a stack;
// compute LD

3 for i ← 1 to (nr) do
4 ρg(vi) =

∑
∀vj∈neigh(vi)

χ(dist(vi, vj) − εd);

// compute HDD, and density parent/child nodes

5 for i ← 1 to (nr) do
6 δg(vi) ← −1 ; // initialize with null

7 forall vj ∈ neigh(vi) do
8 if ρg(vj) > ρg(vi) then
9 if δg(vi) = −1 then

// assign distance

10 δg(vi) ← dist(vi, vj);
11 parentnode ← vj ;

12 else if δg(vi) > dist(vi, vj) then
// overwrite HDD with the minimum distance

13 δg(vi) ← dist(vi, vj);
14 update, parentnode ← vj ;

15 if δg(vi) = −1 then
// Equation 4.6

16 δg(vi) = max∀vk,vl,vk⇔vl {dist(vk, vl)};
17 Vd ← Vd ∪ {vi} ; // vi found as DPN ςi

18 else
19 Set vi as child of parentnode, and parentnode as parent of vi;

// extract DGCs

20 D ← instantiate an empty set of DGCs;

21 forall ςi ∈ Vd do
22 push ςi into stack;
23 d ← {φ} ; // instantiate an empty DGC

24 while stack is not empty do
25 node ← pop out from stack;
26 d ← d ∪ {node} ; // add density-similar nodes to the DGC

27 forall childnode ∈ child(node) do
28 push childnode into stack;

29 D ← D ∪ {d};
// extract partitions from DGCs

30 P ← extract partitions from D;
31 return P ;

this extension, the DPNs obtained from G by FaDPa are used to construct a DPG

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 98

Gd =
(
Vd, Ed,Wd

)
(defined in Definition 4.14). The new graph Gd becomes a con-

densed form of the original graph G where some local information is merged together.

Considering Gd as the main graph now, the DPNs are further obtained using FaDPa. This

time the number of DPNs would reduce further, and so would the number of partitions.

These steps of constructing the DPG and identifying the DPNs are repeated alternatively

until the number of DPNs becomes lower than the predefined number of partitions εp

(lines 2–4). Thereafter the DGCs are obtained in the same way as explained earlier and

accepted as the different partitions of the road graph (line 5).

Algorithm 5: FaDPa+ (Road graph G, Distance threshold εd, Number of partitions thresh-
old εp)

1 Gd = (Vd, Ed,Wd) ← G = (V, E,W);

2 while |Vd| > εp do
3 partition set P ← FaDPa(Gd, εd);

4 Gd ← construct DPG from P ;

5 return P ;

4.4 FaDSPa: Fast Density and Spectral based Partitioning

FaDPa+, proposed in the previous section, is a complete road network partitioning algo-

rithm in itself. It grows the clusters in arbitrary shapes by first identifying the dense

components, and is able to work efficiently. In contrast, spectral clustering methods have

been a major focus in the literature due to their ability to produce high quality results.

Due to its high computational complexity, spectral clustering is often not used directly

in large-scale data mining problems. However, attempts are being made to improve the

efficiency of spectral clustering [135]. In this section, we propose FaDSPa (pronounced as

fad-spaa and shown in Algorithm 6) as an efficient as well as effective road network parti-

tioning algorithm that employs both density-based (FaDPa) (lines 2–4) and spectral-based

(α-Cut) (line 5) theories.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 99

Algorithm 6: FaDSPa (Road graph G, Distance threshold εd, Compression threshold εc,
Number of desired partitions k)

1 Gd = (Vd, Ed,Wd) ← G = (V, E,W);
// density based clustering

2 while |Vd| > εc do
3 partition set P ← FaDPa(Gd, εd) ; // Algorithm 4

4 Gd ← construct DPG from P ;

// spectral based clustering

5 partition set P ← α-Cut Partitioning(Gd, k) ; // Algorithm 7

6 return P ;

4.4.1 Mining DPG

FaDSPa starts by mining a road DPG Gd =
(
Vd, Ed,Wd

)
from the road graph G. It

uses FaDPa+ to mine this DPG, in which εc is a compression threshold that determines

the number of DPNs (|Vd|). The value of εc is pre-defined depending on the available

computing resources and the time that we can afford to spend in order to obtain good

partitioning results. FaDPa+ compresses the graph until |Vd| becomes lower than or equal

to εc. G is normally a sparse graph in nature. Gd is mined by identifying the dense

components in G in arbitrary shapes, which reduces the sparsity of the graph as well as

the overhead in dealing with that sparsity. The resulting graph Gd becomes a condensed

form of the road graph G, which is much smaller in order. As the level of compression of

G is controlled by εc, there exist two extremes. At one end, εc could be set to |V|, and
on the other end, it could be the number of required partitions k. The first case makes it

FaDPa+, whereas the second case makes it the α-Cut spectral clustering algorithm. Thus

FaDSPa provides a good balance of FaDPa+ and α-Cut, and is a generalization of these

two algorithms. After mining the DPG, a preliminary level of grouping of road segments

has already happened in the form of DGCs in the DPG (Gd) in a bottom-up manner.

Thereafter the spectral based partitioning algorithm α-Cut is applied on the compressed

graph Gd, instead of the large graph G, in a top-down manner.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 100

Algorithm 7: α-Cut Partitioning (DPG Gd, number of desired partitions k)

1 A ← adjacency matrix of Gd;

2 D ← degree matrix of Gd;
// repeated partitioning to obtain k partitions

3 repeat

4 M ←
(
(1TD)

T
(1TD)

1TD1
− A

)
; // get the α-Cut matrix

5
⋃nς

i=1 {(yi, λi)} ← get eigenvector and eigenvalue pairs of M ;
6 sort eigenvalues λi to have λnς ≤ λnς−1 ≤ . . . ≤ λ1;
7 select {λnς , λnς−1, . . . , λnς−k+1} eigenvalues and corresponding eigenvectors

{ynς , ynς−1, . . . , ynς−k+1};
8 generate matrix Ynς×k =

(
y1 y2 . . . yk

)
;

9 Z ← row normalize Y ;
10 {z1, z2, . . . , znς} ← get row vectors of Z;
11 C = {C1, C2, . . . , Ck} ← k-means ({z1, z2, . . . , znς} , k);
12 P = {P1,P2, . . . ,Pk′} ← get disjoint partitions from C ; // resulting set of

partitions

13 if k′ is not equal to k then
// construct a graph from the partitions and consider this as the

new graph for partitioning

14 nς ← k′;
15 Gp ← construct partition graph from P ;
16 A′

nς×nς
← adjacency matrix of Gp;

17 D′
nς×nς

← degree matrix of Gp;

18 A ← A′;
19 D ← D′;

20 until number of partitions in P equals to k;
21 return P ; // return the partitions when their number equals to k

4.4.2 The Spectral based α-Cut

Algorithm 7 presents the complete partitioning method using α-Cut. The detailed theo-

retical derivations of α-Cut are shown in Chapter 3. It starts with getting the adjacency

and degree matrices in lines 1 and 2. The steps 4–19 are repeatedly performed until the

resulting number of partitions equals to k. The α-Cut matrix is computed from the ad-

jacency and degree matrices in line 4 and eigen-decomposed in line 5. Lines 6–7 select

the k smallest eigenvalues and corresponding eigenvectors. Ideally the indicator vectors

should have only binary values, but the actually obtained indicator vectors are in fact the

relaxed vectors and do not follow a binary pattern. Due to the lack of concrete information

about clusters, it becomes another problem to separate the k clusters. We assume that the

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 101

clusters are well-separated in the k-dimensional eigenspace, which is a general assumption

in spectral clustering [27], and use the eigenvectors (or indicator vectors) to generate a

matrix Y of nς × k dimensions (line 8). It is then row-normalized using Equation 4.13

to have row-vectors zi of unit length giving the final matrix Z (line 9). Each row-vector

zi represents a DPN ςi. The set of row-vectors are used to cluster the DPNs by applying

k-means to find a set of k clusters C = {C1, C2, . . . , Ck} (lines 10–11), where each cluster

Ci comprises one or more row vectors (DPNs) in Z. The DPNs inside each cluster are

linked together as they exist in the DPG. Upon linking them, sometimes more than one

connected component may be found inside a single cluster. As these multiple connected

components within a single cluster are disjoint, they can not become part of the same

partition. These connected components are extracted from each cluster to form disjoint

partitions (line 12).

Y =

⎛
⎜⎜⎜⎜⎜⎜⎝

y11 y21 . . . yk1

y12 y22 . . . yk2

| | |
y1n y2n . . . ymn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

— zT
1 —

— zT
2 —
...

— zT
n —

⎞
⎟⎟⎟⎟⎟⎟⎠

= Z (4.13)

where, zi =
1√√√√ k∑

j=1

y2
ji

(y1i, y2i, . . . , ymi)
T

Depending on the data, the number of disjoint partitions may sometimes be large, which

would yield the partition set from C as P = {P1,P2, . . . ,Pk′}, where k′ ≥ k. These

k′ partitions may be accepted as the final result. However, if the requirement to have

exactly k partitions is strict, Shi and Malik [16] described two approaches to achieve

this, which are greedy pruning and global recursive bipartitioning. The greedy pruning

approach iteratively merges the two nearest partitions optimizing the defined graph cut,

until it results in a total of k partitions. In contrast, the global recursive bipartitioning

approach generates a condensed graph where each partition forms a node and adjacent

partitions are connected by weighted links with W (Pi,Pj) as the weight, and is recur-

sively bipartitioned until it results in a total of k partitions. For large k′ values, the greedy

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 102

pruning approach is computationally intensive. On the other hand, as the global recursive

approach bipartitions each time, it would yield a balanced set of partitions only when k

follows the pattern 2i for any value of i. For example, if the value of k is 3, firstly the

graph is bipartitioned to get 2 partitions, and then only one of them has to be biparti-

tioned to get a total of 3 partitions, whereas the other partition remains as it is. In this

way it generates one large partition and two small partitions, where the large partition

is approximately double in size than the small ones. Moreover, the selection of the large

partition that is to be bipartitioned first, is either arbitrary or some additional condition

has to be applied to decide this.

To avoid these complexities and make the method efficient, we follow a repeated parti-

tioning approach where the interleaved steps of partitioning and constructing a new graph

each time from the obtained partitions are repeated until we obtain exactly k partitions

(lines 4–12). In each repetition, we construct a new graph from the set of partitions, by

considering each partition as a node and their connectivity via the nodes belonging to

them as links (lines 14–15). The feature value of the nodes (formed from the partitions

obtained in the last iteration) is assigned as the average of feature values of all nodes

belonging to the respective partitions (old partitions), based on which the link weights are

assigned. In lines 16–17, we get its adjacency and degree matrices. These matrices are

considered to compute the α-Cut matrix for the next iteration of partitioning. Finally the

k partitions are returned at the end (line 21).

4.4.3 Computational Complexity

The algorithm FaDSPa comprises successive applications of FaDPa to mine the DPG of

desired order, followed by α-Cut. The computational complexity of FaDPa is O(n2) for

computation of ρg(vi) and δg(vi), after which the partitions are extracted using a stack.

Thus the overall computational complexity of FaDPa becomes O(n2), which is applied

multiple times but still much less than n, thereby making it ≈ O(n2). In α-Cut, the

eigen-decomposition task is done in O(n3) time in general and O(n2) time for sparse

matrices. The application of k-means on row-vectors to find the clusters costs O(tnk2),

where t is the number of iterations required to reach the convergence. In these costs,

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 103

n = nς when the spectral clustering is applied on the DPG, and n = nr when it is

applied directly on the road graph.

4.4.4 Relation with Modularity

Definition 4.15. (Modularity) The modularity of a set of graph partitions Q(P) [17]

is defined as the difference between the observed and expected fraction of links within a

partition, and is formulated as Equation 4.14. �

Q(P) =
k∑

i=1

[
W (Pi,Pi)

W (V,V)
−

(
W (Pi,V)

W (V,V)

)2
]

(4.14)

Larger modularity values are correlated with better graph partitioning. To maximize

modularity while partitioning a graph, in [17] the authors presented a spectral clustering

solution. They showed that the partitioning can be obtained using the k largest eigenvalues

and corresponding eigenvectors obtained after eigen-decomposition of a derived matrix

called Q-Laplacian [17]. This matrix actually equals to the negative of our α-Cut matrix

derived in Chapter 3. As we obtain the partitioning by selecting the k smallest eigenvalues

and corresponding eigenvectors, both the techniques result into the same set of eigenvalues

and eigenvectors, and thus the same partitioning. It means that the minimization of α-Cut

approximately maximizes the modularity.

4.5 Experimental Evaluation

Although there exist many works on general graph partitioning, we compare our results

to a recent work [61] on the same problem, for a specific comparison. In addition we also

compare with the results obtained by replacing α-Cut by normalized cut in FaDSPa to

show the effectiveness of α-Cut. Section 4.5.3 presents our experiments on small road

networks, where we compare the results obtained by α-Cut, normalized cut, FaDSPa, [61],

and FaDPa+. Section 4.5.4 presents our experiments on the real SCATS dataset, where we

compare the results obtained by the proposed FaDSPa and a modified version of FaDSPa

(by replacing α-Cut by normalized cut in FaDSPa). Section 4.5.5 presents our experiments

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 104

on large networks, where we show the performance of FaDPa+ and FaDSPa for varying

values of the compression threshold εc to understand the trade-off between efficiency and

accuracy.

4.5.1 Datasets

We perform experiments on five datasets of different sizes including both real data and

synthetic data generated on real road networks. Table 4.2 shows the statistics of all these

datasets. The real data (Ms) is recorded by the Sydney Coordinated Adaptive Traffic

System (SCATS)4 from the Melbourne road networks provided to us by VicRoads5. This

dataset is an accumulation of the traffic records of individual road segments for each signal

cycle from 1st Jan 2011 to 1st Jan 2013. The considered Melbourne network consists of

7245 road segments and 2928 intersection points, where the traffic measures are logged by

the installed sensors, respective to each lane of road segments at the SCATS sites. The

traffic measures include traffic volume (number of vehicles crossing a road segment during

the green time) and degree of saturation (the ratio of the effectively used green time to

the total available green time). In this dataset we consider the degree of saturation as

feature value of the road segments, as it gives an indication of the traffic density. The

degree of saturation measure for each road segment is computed by taking the average of

this measure of all the different lanes that are part of the referred road segment.

The other datasets include synthetic data generated on real small and large road networks.

The traffic on the small network (D1), shared by the authors of [61], is based on a micro-

simulation performed for 4 hours at 120 time intervals of 2 minutes. At each time point

t, the traffic density on each road segment is computed in terms of number of vehicles

per meter. For large road network, we consider the city of Melbourne with three sets of

data, M1, M2, and M3. M1 is the road network of the 6.6 sq. miles CBD area consisting

of 10,096 intersection points and 17,206 directed road segments. M2 and M3, larger than

M1, is the road network of the CBD and adjoining areas in a total of 31.5 and 42.03

4SCATS is a fully adaptive urban traffic control system developed in Australia in 1970. It manages the
signal phases (cycle times, phase splits and offsets) of the traffic signals dynamically in real-time, based on
the traffic data collected by the vehicle sensors (inductive loops) installed within road pavements of each
traffic signal.

5https://www.vicroads.vic.gov.au

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 105

sq. miles, consisting of 28,465 and 42,321 intersection points, and 53,494 and 79,487

directed road segments respectively. These road segments are obtained by considering all

the two-way road segments as two different one-way road segments. The traffic data for

the large networks is generated by a web-based6 random road traffic generator MNTG

[133, 136]. It populates vehicles on a selected real road network, which keep on moving for

a time duration on the roads. We populate M1, M2, and M3 by 25,246, 62,300, and 84,999

vehicles respectively, and obtain their trajectories for 100 continuous timestamps. The

trajectories are sequences of 100 or less 〈latitude,longitude〉 pairs corresponding to vehicle

positions at each timestamp. A self-designed program is used to map their positions

to corresponding road segments, and compute the traffic density of road segments (in

terms of vehicles/meter) at each point of time. While doing this, after each interval of

10 timestamps, each vehicle is considered as a different one and its updated position is

recounted to compute the density. Thus it makes t range from 1 to 10, and in this work we

experiment with t = 1. It is done to make the network more dense, and reflect the flow

speed on corresponding road segments. The count is then divided by the road segment

length to get the average traffic density in terms of vehicles per meter.

Table 4.2: Dataset statistics

Dataset Place Area (sq ml) # Road segments # Intersec-
tion points

Real SCATS data on real road network

Ms Melbourne 627.5 7245 2928

Synthetic data generated on real road network

D1 Downtown San
Francisco

2.5 420 237

M1 CBD Mel-
bourne

6.6 17,206 10,096

M2 CBD(+) Mel-
bourne

31.5 53,494 28,465

M3 Melbourne 42.03 79,487 42,321

6It can be accessed through http://mntg.cs.umn.edu/tg/

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 106

4.5.2 Evaluation Metrics

The partitioning framework is evaluated using metrics that quantify the quality of the

results from different perspectives. The problem defined in Section 4.2.1 intends to achieve

four different conditions. As we obtain results in the form of disjoint and connected road

network partitions (connected components), C.1 and C.2 are automatically fulfilled. C.3

which enforces intra-partition homogeneity is evaluated by the intra metric defined in

Equation 4.15. For each partition, it computes the intra-partition distance as the average

absolute distance between the pair of nodes, and then takes the average of that computed

for all the partitions. Lower values of intra indicate better partitioning.

Intra(P) =
1

|P|
×

∑
Pi∈P

∑
vp,vq∈Pi

p �=q

abs(vp.f − vq.f)

|Pi| · (|Pi| − 1)
(4.15)

C.4 which enforces inter-partition heterogeneity is evaluated by the inter metric defined

in Equation 4.16, where Pi
adj←→ Pj denotes the set of adjacency relationships7. It is

the average of inter-partition distances between each pair of spatially adjacent partitions,

where the inter-partition distance is the average absolute distance between nodes from the

respective pair of adjacent partitions. Higher values of inter indicate better partitioning.

Inter(P) =
1∣∣∣∣Pi
adj←→ Pj

∣∣∣∣
×

∑
Pi,Pj∈P
Pi

adj←→Pj

∑
vp∈Pi

∑
vq∈Pj

abs(vp.f − vq.f)

|Pi| · |Pj| (4.16)

We also evaluate the overall partitioning using average NcutSilhouette (ANS) mea-

sure defined in [61] especially for partition evaluation. It is derived from the stan-

dard Silhouette measure used for cluster evaluation. NS between a pair of partitions

7A pair of partitions Pi and Pj are said to be adjacent, if there exists at least one link connecting nodes
vp and vq such that vp ∈ Pi and vq ∈ Pj

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 107

(Pi,Pj) is calculated using Equation 4.17, and the quality of each individual parti-

tion is evaluated using NS(Pi) defined in Equation 4.18, where NSN(Pi,Pj) =

min {NS(Pi,Px)|Px ∈ neighbor(Pj)}.

NS(Pi,Pj) =

∑
vp∈Pi

∑
vq∈Pj

(vp.f − vq.f)
2

|Pi| × |Pj|
(4.17)

NS(Pi) =
NS(Pi,Pi)

NSN(Pi,Pj)
(4.18)

Average NS (ANS) is computed as the average of NS(Pi) for all Pi ∈ P . A value less

than 1 indicates a good partitioning, and lower values indicate better partitioning.

4.5.3 Experimental Results on Small Networks

We perform experiments on the small road network D1 to compare the partitioning quality

of our α-Cut, FaDPa+ and FaDSPa, with other state-of-the-art techniques (normalized cut

and [61]) using performance evaluation metrics listed in Section 4.5.2, and demonstrate

their effectiveness.

Quality comparison of NCut, α-Cut, and FaDSPa: We consider normalized cut as the

baseline, and show our comparative results. Figure 4.3 shows the complete results obtained

by α-Cut (ACut) and FaDSPa in comparison to normalized cut (NCut). We present the

results in terms of inter, intra and ANS in Figures 4.3(a), 4.3(b) and 4.3(c) respectively,

for the number of partitions k ranging from 2 to 20. The ANS measure quantifies the

overall partitioning quality. In terms of ANS, ACut of our framework outperforms NCut

for most of the values of k, whereas NCut outperforms FaDSPa for most of the values. This is

expected because FaDSPa is of lower complexity and suitable for large networks. In terms

of inter, which quantifies inter-partition heterogeneity, we observe that ACut performs

similar to NCut. However, both of them outperform FaDSPa for all k ≥ 8, and for k ≤ 7

sometimes FaDSPa outperforms NCut and ACut. In terms of intra, which quantifies intra-

partition homogeneity, ACut outperforms NCut for most of the values except k = 3, 6,

13, 14, and 19, whereas both of them outperform FaDSPa for all k ≥ 6. These results

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 108

0
10
20
30
40
50
60
70
80

2 4 6 8 10 12 14 16 18 20

In
te

r

k

NCut ACut FaDSPa

(a) Inter

0

10

20

30

40

50

2 4 6 8 10 12 14 16 18 20

In
tr

a

k

NCut ACut FaDSPa

(b) Intra

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

2 4 6 8 10 12 14 16 18 20

AN
S

k

NCut ACut FaDSPa

(c) ANS

Figure 4.3: Road graph and DPG partitioning results in small networks

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 109

of FaDSPa are obtained by setting the compression threshold εc to the number of DPNs

obtained after the first round of FaDPa+, which is 109.

Experiments with FaDPa+: FaDPa+, as proposed in this chapter, does not provide the

option to input the value of k. It has a parameter called the number of partitions threshold

εp. The algorithm merges the partitions on the basis of their local densities, until k is

lower than or equal to εp for the first time. Thus its k can be any value closest to and

lower than or equal to εp. In our experiment on this dataset it started with 420 nodes,

and after the first round of FaDPa it gave 109 partitions with 14.61, 7.85, and 0.74, as their

inter, intra and ANS measures respectively. After the second round, it gave 13 partitions

with the values as 20.69, 16.11, and 1.00, respectively, and after the next round all the

partitions were merged to a single partition. Looking into the ANS values, it shows that

the quality of 109 partitions are better than the 13 partitions obtained after the second

round. However, Figure 4.3 shows that the best clustering is obtained at lower values (e.g.,

k = 5, 6 and 8, by different methods). To know how FaDPa+ behaves for these lower k,

we merged the density-closest partitions one by one, and found the best partitioning at

k = 5. The performance metric values are found as 42.16, 16.53, and 0.68, respectively.

Summary of comparisons: The overall partitioning quality is evaluated by ANS, which

considers both the inter-partition heterogeneity and intra-partition homogeneity simulta-

neously. Lower values indicate a better partitioning. In Figure 4.3(c), ACut is lower than

NCut at most values of k, whereas FaDSPa is mostly above both of them. In [61], the

authors used the ANS measure to learn the number of optimal partitions. They accept

the value of k that leads to the ANS minimum as the optimal number of partitions, which

in this case is 8 for NCut, 4 for ACut, and 9 for FaDSPa. We observe in the figure that the

minimum of ACut is the lowest followed by NCut, and that of FaDSPa is the highest. It

shows the accuracy of the partitioning task by these three methods. ACut performs the

best, followed by NCut, and both of them are better than FaDSPa. Figure 4.4 and Table

4.3 show the obtained ANS measures by ACut, FaDSPa, FaDPa+, NCut, in comparison to

the existing work [61]. Our methods ACut and FaDSPa are lower (and thus perform better)

than [61]. In the methods, we determine the optimal value of k by repeatedly obtaining

the results for a range of k and comparing their ANS measure. It can also be an appli-

cation dependent issue, as a small k produces partitions of coarse granularity and this

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 110

granularity becomes finer with an increasing k.

0.40

0.55
0.60 0.62

0.69

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AN
S

ACut NCut FaDSPa Ji-Ger FaDPa+
Figure 4.4: Overall comparison of partitioning results in small networks

Table 4.3: Overall quality of partitioning

ACut NCut FaDSPa Ji-Ger FaDPa+

ANS 0.4009 0.5470 0.6041 0.6210 0.6853
k 4 8 9 3 5

Even though the results of FaDSPa do not look very impressive (in comparison to α-Cut or

NCut), its advantage is that it can efficiently handle large networks while simultaneously

maintaining the quality. The spectral based algorithms face time and space complexity

issues, whereas the density based algorithms compromise the partitioning accuracy.

4.5.4 Experimental Results on Real Data

We perform experiments on real data to see the applicability of the proposed method in

real environments. For this we consider the SCATS data Ms, described in Section 4.5.1.

Through our experiments on this dataset, we show the results obtained by the proposed

FaDSPa algorithm and also compare them with those obtained by replacing α-Cut by

normalized cut in FaDSPa.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 111

Different schemes of FaDSPa: Before going further, we explain the different schemes we

have used to present our result insights. We applied the proposed method FaDSPa in dif-

ferent ways, which are denoted by F〈number〉. This stands for the method when FaDSPa

is applied by repeatedly running FaDPa+ 〈number〉 number of times forming hierarchical

groups, before passing the control to α-Cut. Thus F1 applies one round8 of FaDPa+, and

the generated DPG after that is treated by α-Cut to obtain the k partitions. F2, F3, F4,

and F5 work similarly with two, three, four and five rounds of FaDPa+ followed by α-Cut.

One alternative to α-Cut in the proposed FaDSPa is to replace α-Cut by normalized cut

and keep the remaining method same. We denote these schemes by N〈number〉. This

stands for the method when FaDSPa is applied by repeatedly running FaDPa+ 〈number〉
number of times before passing the control to normalized cut. Thus N1 applies one round

of FaDPa+, and the generated DPG after that is treated by normalized cut to obtain the

k partitions.

Quality comparison of F1 and N1: Figure 4.5 shows the quality of partitioning ob-

tained by the F1 and N1 schemes of FaDSPa. It presents a clear comparison of α-Cut

and normalized cut when they are embedded in FaDSPa. Figures 4.5(a), 4.5(b), and 4.5(c)

show the quality in terms of inter, intra, and ANS respectively (shown in Y-axis) for

the number of partitions k varying from 2 to 20 (shown in X-axis) using two curves. The

overall partitioning quality is shown in terms of ANS in Figure 4.5(c). We observe that at

all the values of k, F1 is lower (better in quality) than N1. As this measure considers both

the inter-partition and intra-partition distances, it very clearly shows that our proposed

FaDSPa algorithm (using α-Cut) outperforms the other method.

We also look into the inter-partition heterogeneity and intra-partition homogeneity indi-

vidually. In Figure 4.5(a), we observe that except at k = 2, 3 and 4, the inter measure

of F1 is always greater than or equal to that of N1. As a higher inter indicates a better

partitioning in terms of inter partition distances, it means that most of the times F1 per-

forms better than N1 in terms of this measure. In Figure 4.5(b), we observe that except

at k = 12 and 17, the intra measure of F1 is always smaller than that of N1. As a

lower intra indicates a better partitioning in terms of intra partition distances, it means

that most of the times F1 performs better than N1 in terms of this measure. Thus we see

8All subsequent usage of this term refer to the schemes F〈number〉

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 112

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

In
te

r

k

F1 N1

(a) Inter

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

In
tr

a

k

F1 N1

(b) Intra

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16 18 20

AN
S

k

F1 N1

(c) ANS

Figure 4.5: Comparison of proposed FaDSPa and normalized cut based FaDSPa on real
data

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 113

that sometimes F1 performs inferior to N1 in terms of either inter or intra individually,

but as the overall partition quality considers both the factors simultaneously, F1 always

outperforms N1.

Quality comparison of F1 and F2: After we are known about the good performance

of our proposed FaDSPa, it is important to look into the variation in quality as we increase

the number of rounds. Figure 4.6 shows the quality of partitioning obtained by the F1 and

F2 schemes of FaDSPa. Both of them use α-Cut. It presents a comparison of one and two

rounds of the density-based FaDPa+ (both followed by α-Cut). The overall partitioning

quality is shown in terms of ANS in Figure 4.6(c). We observe that at all the values

of k except 10, F1 is lower (better in quality) than F2. It shows that generally fewer

rounds of FaDPa+ followed by α-Cut produces results in better quality. Also in terms of

inter-partition and intra-partition distances individually, we found that most of the times

F1 performs better than F2. In Figure 4.6(a), we observe that except at k = 2 and 3,

the inter measure of F1 is always greater than that of N1. It means that most of the

times F1 performs better than F2 in terms of inter-partition distances. In Figure 4.6(b),

we observe that except at k = 4, 12 and 20, the intra measure of F1 is always smaller

than that of F2. It means that most of the times F1 performs better than F2 in terms of

intra-partition distances.

Summary of comparisons: Figure 4.7 presents the overall results summary obtained on

the real Ms dataset. It shows the final comparison of the F1, F2, and N1 schemes (in the

X-axis) in terms of ANS (in the Y-sxis). As mentioned in Section 4.5.3, the ANS measure

also gives the information to identify the optimal number of partitions by selecting the k

where the its minimum is found. We see in Figures 4.5(c) and 4.6(c) that the minima of

F1, F2 and N1 occur at k = 6, 2, and 6 respectively. These values of k become the optimal

number of partitions for the respective schemes. We compare the quality of partitioning in

terms of ANS obtained at these optimal values of k in the figure. The lowest value of F1

shows itself as the best performer, followed by F2 and N1. Looking into the running times

of F1 and F2, we found that they take 173.56 and 17.41 seconds respectively to complete

the execution. Thus F1 produces better results than F2 in terms of effectiveness, but takes

longer execution time, thus sacrificing the efficiency. The running time of FaDSPa on all

the datasets is discussed in detail in Section 4.5.5.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 114

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

In
te

r

k

F1 F2

(a) Inter

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

In
tr

a

k

F1 F2

(b) Intra

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2 4 6 8 10 12 14 16 18 20

AN
S

k

F1 F2

(c) ANS

Figure 4.6: Partitioning results of FaDSPa on real data

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 115

0.35
0.42

0.76

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AN
S

F1 F2 N1
Figure 4.7: Partitioning results summary on SCATS data

Impact of εd in FaDPa+: The distance threshold εd is a fundamental parameter of FaDPa+

and has an impact on the quality of partitioning. As mentioned in Section 4.3.3, we con-

sider εd as a vector of values, where each of those values individually refer to a specific

node in the graph. It means that the distance threshold for each node is customized

according to the kind of links of the referred node, which helps in clustering the nodes

relatively. As it is an external parameter, it can also be set to some fixed value (∈ [0, 1])

that is same for all the nodes. When it is set to low values (less than 0.4), due to the

strict condition the number of established density parent-child relationships is found to be

low. As shown in Figure 4.8(a), the DPG is compressed at a slow rate in each round of

FaDPa+ for εd = 0.1, 0.2,& 0.3, and therefore requires more rounds to produce the final

partitions. During this gradual compression, most of the nodes accumulate as children of

one (or very few) density peak. It results into an imbalanced set constituting one (or very

few) big partition and several small partitions, which is not good. For example, setting

εd = 0.1 results into one big partition of 7179 nodes and the remaining 66 nodes are

distributed into 61 other partitions. The results gradually improve as this threshold is in-

creased, and become satisfactory only after 0.4. Therefore, ignoring εd = 0.1, 0.2,& 0.3,

Figure 4.8(b) shows the quality of partitions obtained by varying εd from 0.4 to 1, and

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 116

compares it with the proposed method of determining its value. Observe that the ANS

measure for the proposed method is the lowest of all, and thus leads to the best quality

results.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f D
PN

s

Round

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.9 1

Proposed

(a) DPG compression

0

0.2

0.4

0.6

0.8

1

1.2

AN
S

Distance threshold ϵd

(b) Quality of Partitions

Figure 4.8: Impact of the distance threshold εd

Visualization of obtained partitions: Figure 4.9 presents a snapshot of the different

partitions obtained by F1 setting k = 6 (optimal number of partitions) at 08:00 AM on

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 117

03-12-2012 (Monday). The road segments in each different color represent a partition.

The displayed road network includes only those road segments that are operated by traffic

signals and have the traffic sensors installed. Therefore even though the area is large, the

number of road segments is relatively small. In the Section 4.5.5, we consider all the road

segments that exist on digital maps, which results into large number of road segments in

small areas.

Figure 4.9: Partitions obtained from the Melbourne network at 08:00 AM on 03-12-2012
(Monday)

4.5.5 Experimental Results on Large Networks

Through our experiments on large urban road networks, we show the performance of

FaDPa+ and FaDSPa at different values of the thresholds εp and εc respectively. As FaDSPa

provides the flexibility to handle the complexity of large networks, we also show the trade-

off between efficiency and accuracy by varying the external parameter εc.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 118

Impact of εp in FaDPa+: Table 4.4 shows the results obtained using FaDPa+ on the M1

and M2 datasets. In this algorithm the number of desired partitions is controlled by εp,

shown in the left column, and the actual number of partitions denoted by k could be any

value less than or equal to that number. The results in terms of intra, inter, and ANS are

shown for εp = 25, 50, 75, and 100. The optimal εp, optimal k, and optimal partitioning

are determined by looking into the minimum ANS. The minimum values of 0.75 in M1 and

0.78 in M2 at εp = 75 (k = 69 and 63 respectively) indicate that 75 is the optimal εp for

both the datasets. We also observe that the same value of εp leads to different values of

k in different datasets.

Table 4.4: FaDPa+: quality of partitioning

M1 M2

εp k Intra Inter ANS k Intra Inter ANS

25 23 0.4554 1.2805 1.1375 24 0.1691 0.2904 1.1857
50 47 0.4384 1.2886 0.8071 46 0.2274 0.3735 0.8632
75 69 0.3878 1.2934 0.7463 63 0.2947 0.5810 0.7826
100 93 0.4849 1.1628 0.8322 89 0.3326 0.6113 0.8146

Accuracy in FaDSPa: Figure 4.10 shows the partitioning quality of FaDSPa in large road

network datasets M1, M2 and M3. Figure 4.10(a) shows the ANS measures obtained for

k = 2 to 10 for M1. There are four curves for F2, F3, F4 and F5. As explained earlier

in Section 4.5.4, F〈number〉 denotes the method when FaDSPa is applied by repeatedly

running FaDPa+ 〈number〉 number of times before passing the control to α-Cut. Thus F2,

F3, F4, and F5 apply two, three, four, and five rounds of FaDPa+, and the generated DPG

after that is treated by α-Cut to obtain the k partitions. Fewer rounds of FaDPa+ produces

a large DPG and puts more work on α-Cut, and vice versa. Thus the figure shows the

quality of results obtained by varying the combination of our density and spectral based

methods. We observe that there is no such clear trend that for all the values of k, one

setting outperforms the other. The reason is that the partitioning quality is also highly

dependent on the selected value of k, which could vary for the different schemes. To know

their relative performance, we find the most suitable k for each of them. The scheme F2

has its minimum at k = 7, which shows 7 as its most suitable k. Similarly F3, F4, and F5,

have their most suitable k as 6, 6 and 9 respectively. Their ANS values at the minimum

are 0.56, 0.60, 0.59 and 0.68 respectively. Comparing the depth of their minimum we

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 119

0.4

0.6

0.8

1.0

1.2

1.4

2 4 6 8 10

AN
S

k

F2 F3 F4 F5

(a) ANS in M1

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

3 5 7 9 11

AN
S

k

F3 F4 F5 F6

(b) ANS in M2

0.4

0.6

0.8

1.0

1.2

1.4

3 5 7 9 11

AN
S

k

F3 F4 F5 F6

(c) ANS in M3

Figure 4.10: Partitioning results in large networks

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 120

observe that the order of their performance is F2 > F3 � F4 > F5. Figures 4.10(b)

and 4.10(c) show the ANS measures for the larger datasets M2 and M3 starting9 from F3

to F6. A similar performance trend is found also for these larger datasets, which are

F3 > F4 > F5 � F6 and F3 > F4 > F5 > F6 respectively. We observe that

the partitioning quality is generally better with fewer rounds of FaDPa+ (or lower values

of 〈number〉) and doing more of the task by α-Cut. The reason behind this is that a

larger value of 〈number〉 compromise more with the partitioning accuracy, and improve

the efficiency10. We saw in previous experiments that α-Cut performs better than the

density-based FaDPa+, because of its global perspective in partitioning. When FaDPa+ is

repeatedly applied for F〈number〉, it starts with forming small partitions locally which

combine with others in the subsequent rounds and form larger partitions in each repetition.

In this way, they form hierarchical partitions locally. Once a grouping (in the form of a

partition) is formed based on the local density-based information during these steps, it is

done permanently for the final result. These small partitions are not broken or re-adjusted

later, which leads to increase in lose of accuracy in each round. After 〈number〉 rounds,

α-Cut (that looks into the graph globally) is applied on the DPG constructed from the

obtained intermediate partitions to get the final partitions.

Efficiency in FaDSPa: Figure 4.11 shows the execution time (in seconds) when k is set to

4, 6, 8, and 10, for all the three large datasets. In the X-axis we vary the number of rounds

of FaDPa+ from 2 to 10 (F2 to F10). We observe that for any value of k, as the rounds

increase the execution time decreases, while at the same time the accuracy degrades, and

vice versa. Another thing to note is that, the execution time decreases drastically in the

initial rounds (decreases from more than 100 secs to around 40 secs from F2 to F3 for

M1) and this amount of decrease reduces in the subsequent rounds (decreases from around

40 secs to around 30 secs from F3 to F4). Thus the efficiency increases drastically as we

progress through the initial rounds but becomes almost stable later, whereas the accuracy

decreases as the rounds increase and no such drastic decrease is seen. It suggests that if the

efficiency of execution is also a concern in addition to accuracy, then it is worth sacrificing

the accuracy in the first few rounds. Thus a good choice of rounds for M1 could be any one

9The reason we do not start from F2 is that their DPGs produced after two rounds of FaDPa+ have a
large number of DPNs (close to 10,000), and to apply α-Cut on such a large graph is beyond the scope of
our computing environment because of the high computational complexity.

10Shown in Figure 4.11 and explained in the next paragraph.

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 121

20

40

60

80

100

120

140

2 4 6 8 10

Ti
m

e
(in

 se
co

nd
s)

Round

k=4 k=6
k=8 k=10

(a) Running time in M1

400

600

800

1000

1200

1400

2 4 6 8 10

Ti
m

e
(in

 se
co

nd
s)

Round

k=4 k=6
k=8 k=10

(b) Running time in M2

700

900

1100

1300

1500

1700

2 4 6 8 10

Ti
m

e
(in

 se
co

nd
s)

Round

k=4 k=6
k=8 k=10

(c) Running time in M3

Figure 4.11: Running time in large networks

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 122

of F3, F4, and F5, as they can do the work efficiently with a satisfactory accuracy. The

elbow point can be used as an indicator to locate the best choice. In the higher rounds,

the execution time goes a little higher, though it is not very significant. This behavior and

the reason behind it are explained later in detail. In the figures we see that the curves for

the different values of k almost overlap. It shows that though a larger k requires a longer

execution time, the difference is small.

Table 4.5: Running Time (in seconds)

Method DPN-D1 Time-D1 DPN-Ms Time-Ms DPN-M1 Time-M1 DPN-M2 Time-M2 DPN-M3 Time-M3

FaDPa+ NA less than 1 NA 16.01 NA 37.58 NA 538.16 NA 887.196

F0 (α-Cut) 420 less than 1 7245 10507.20 17206 - 53494 - 79487 -

F1 109 less than 1 2124 173.56 7402 10723.70 22670 - 30543 -

F2 13 less than 1 224 17.41 2990 116.15 9398 25018.30 9967 28477.60

F3 1 NA 17 15.77 1419 47.39 4715 1237.63 4495 1553.46

F4 NA NA NA NA 814 37.39 2874 607.31 2654 995.10

F5 NA NA NA NA 512 35.96 1938 486.61 1785 879.18

F6 NA NA NA NA 355 36.18 1439 452.09 1327 847.59

F7 NA NA NA NA 257 36.20 1125 437.43 1047 843.25

F8 NA NA NA NA 190 36.55 906 432.22 849 845.61

F9 NA NA NA NA 145 36.83 752 433.77 698 846.46

F10 NA NA NA NA 115 37.19 626 436.90 591 851.39

Efficiency analysis in detail: Table 4.5 shows the running time of FaDPa+ and FaDSPa

at varying εc (by varying the number of rounds) on all the datasets. The left most column

stands for the method, which is either FaDPa+ or F〈number〉, where F0 refers to the

method of applying α-Cut directly on the road graph. The table has other columns for

the number of DPNs obtained after 〈number〉 rounds and the execution time in seconds

for each dataset. For the small dataset D1 that has 420 nodes, the methods F3 and higher

are not applicable, as in the third round it FaDPa+ merges all the partitions into a single

large partition. It completes running within fractions of a second. Similar to D1, F4 and

higher are not applicable to the real dataset Ms. In the large datasets, the running time

decreases as εc becomes lower (with increasing rounds). The reason for this decrease is

that εc decides how much the road graph is to be compressed using FaDPa+ to form the

DPG, and thus the size of the matrix that has to be eigen-decomposed for applying α-Cut.

As eigen-decomposition is a computationally expensive task, the running time increases

substantially as the size of this matrix goes beyond a limit, where the limit depends on the

computing environment. We see that there is a large difference between the time taken by

F0 and F1 in Ms. It jumps to 10507.20 seconds in F0 from 173.56 seconds in F1. Similarly

there is a sudden rise of execution time from F2 to F1 in M1, and F3 to F2 in M2 and M3. On

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 123

applying α-Cut directly (F0) on M1, it could not complete execution even in 10 hours, and

its application on M2 and M3 could not be performed due to higher memory requirement.

The reason for such behavior is the expensive eigen-decomposition task. In the initial

rounds of FaDPa+, the number of DPNs reduce rapidly whereas in the successive rounds

they reduce at a slower rate. In M1 the number of DPNs at F1, F2, F3, and F4 are 7402,

2990, 1419, and 814, respectively. The difference between the first two cases is more than

the difference between the last two. The same trend is also observed with M2 and M3.

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1 6 11 16 21 26 31 36 41

Lo
g 1

0(
N

um
be

r o
f D

PN
s)

Round

M1 M2 M3

Figure 4.12: Compression of the DPG at different rounds

While normally it is expected that FaDPa+ would have the lowest running time because

no eigen-decomposition task is needed, we actually see that the minimum running time is

taken by F5 in case of M1. It reduces as the method goes close to F5 and then increases

gradually as it goes further. Similarly, the minimum execution time for M2 and M3 occur at

F8, and F7 respectively. It shows that for large datasets, purely density based clustering

methods take more time than when it is combined with spectral clustering as in FaDSPa.

The reason behind this phenomenon can be explained from Figure 4.12. For all three

datasets, it shows the compression rate of the DPG by using FaDPa+. The vertical axis

is the logarithm of the number of DPNs and the horizontal axis is the number of rounds

of FaDPa+. We observe that at lower rounds, the number of DPNs reduces rapidly, and

Chapter 4. Fast Partitioning of Road Traffic Networks Using Density Peak Graphs 124

at later rounds, the DPNs remain almost constant. Thus achieving further compression

requires many more iterations in the higher rounds, which consumes much longer time for

FaDPa+. But if α-Cut is applied at that point instead of further compression using FaDPa+,

the task can be done in a single iteration, thus requiring much less execution time.

4.6 Summary

In this chapter, we presented a framework called FaDSPa for spatial partitioning of large

urban road networks, which employs both density and spectral based clustering. It is based

on the data of traffic congestion on a road network defined by the vehicle density per unit

distance on each road segment. It starts by transforming the actual road network into

a road graph, followed by mining a density peak graph using our density based clustering

algorithm called FaDPa. Thereafter we apply our spectral clustering based α-Cut on this

graph to obtain the different road network partitions. The framework makes use of the

locally distributed computations of FaDPa and the globally centralized computations of

α-Cut together to make it efficient as well as effective. Our experiments on real SCATS

data shows that it is very much applicable in real environments. Our method outperforms

the existing road network partitioning method based on normalized cut. We found that in

small networks our α-Cut performs the best whereas FaDSPa produces satisfactory results,

but in large networks direct application of α-Cut brings huge time and space complexities

that may go beyond the scope of the computing environment. FaDSPa handles such large

networks with the help of a density peak graph, also providing the flexibility of setting the

trade-off between efficiency and accuracy. We found that density based computations are

faster, whereas the spectral based computations give better results in terms of quality.

Chapter 5

Tracking and Capturing the

Spatio-temporal Evolution of

Congestion

Nowadays the urban road networks undergo frequent traffic congestions, specially during

the peak hours and around the city centre areas. Capturing the spatiotemporal evolution

of the congestion scenario in real-time can aid in developing smart traffic management

systems, and guiding commuters in understanding the real-time traffic. Some previous

works have developed methods for traffic based spatial partitioning of road networks at

a particular point of time, and represented the congestion scenario using the obtained

differently congested partitions. These partitions have homogeneous level of congestion

inside, but heterogeneous to others. As the traffic is dynamic and changes continuously in

real-time, the partitions would evolve with time in terms of their structure and location.

Partitioning the network at each point of time is a computationally expensive task. In

this chapter, we propose a comprehensive framework to capture the evolution by incre-

mentally updating the partitions in an efficient manner using a two-layer approach. The

physical layer maintains a set of small-sized road network building blocks, and performs

low-level computations to incrementally update them, whereas the logical layer performs

high-level computations in order to serve as an interface to query the physical layer about

the congested partitions. At each time point, the least stable road segments are identified

125

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 126

based on a stability measure, and their processing is prioritized using a heap tree. We

draw the concept of road network motifs and use the short cycles to heuristically iden-

tify the most suitable building block for an unstable road segment. We also propose an

in-memory index called Bin that compactly stores the historical sets of building blocks

with no information loss and facilitates their efficient retrieval. Extensive experiments are

performed on real and synthetic datasets. Our results show that the proposed method

is much efficient than the existing re-partitioning methods without significant sacrifice in

accuracy. The proposed Bin consume a minimum space with least redundancy at different

time points. The proposed framework can be used for a real-time continuous tracking and

capturing of the evolution of congestion hotspots in an urban road network.

5.1 Introduction

All major cities these days are affected by the problems of frequent traffic congestions. It is

very important to maintain suitable traffic management policies and strategies according

to the nature of congestion occurring in the region. Traffic congestions generally occur

frequently during the peak hours and around the city center areas. The analysis of the

spatiotemporal evolution of the traffic leading to congestions is a problem of increasing

importance, in order to understand and optimize the traffic flow.

Generally the roads of different localities or suburbs experience specific traffic flow patterns

based on their spatiotemporal significance. In the spatial perspective, roads inside the city

center or an area having popular venues like a stadium or hospital, usually remain more

congested than others without such significance. It leads to the fact that the different

small sub-networks (of small areas like suburbs) of a large urban road network experience

distinctive traffic flow within them. Previous works have applied the partitioning of road

networks based on their traffic level to identify such sub-networks called spatial partitions

or simply partitions [3, 4]. The set of partitions obtained in this way include that of both

high and low levels of congestion at a particular point of time. On the other hand, in the

temporal perspective, the roads usually remain busier with higher congestion levels during

the peak times than the off-peak times. It reflects the dynamic nature of congestion in

the spatial partitions. These spatiotemporal behaviors altogether lead to the evolution

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 127

of traffic congestion on urban road networks. For example, during the morning office-

opening hours, the congestion generally starts developing in the outer suburbs and the

roads connecting them to the city center, mostly occur inside the city during the day,

and starts moving outwards again during the office-closing hours. The congestion can

be simply understood and represented as a congested partition that keeps on changing

its structure, location, and level of congestion. The non-congested partitions and their

evolution further strengthens our understanding of the overall traffic dynamics. Thus the

continuous maintenance, tracking, and capturing of the differently congested partitions in

an incremental approach can potentially aid traffic management systems [61, 91].

The Google Traffic feature of Google Maps1 visualizes real-time road traffic, based on

anonymously collected data. It is simply a heatmap of the actual traffic on the correspond-

ing roads. Figure 5.1 shows a snapshot of a typical Monday 11:00 AM visualization. Using

this visual information, the commuters can plan their journey, including route and travel-

time selections, instead of unexpectedly getting stuck into a congestion. As the congestion

forms and dissolves via the linked road segments, the level of congestion on a road segment

is dependent on the preceding and following segments. Instead of naively considering the

congestion level of individual road segments, they can be effectively grouped in the form

of differently congested partitions (including both congested and non-congested ones), and

visualized to show the real-time congestion scenario. It would further enrich the visual

information about the congestion spread and connectivity of the different individual con-

gestions [6, 7]. Some other applications of the maintenance of road network partitions are

partition-based route-guidance, trip planning, recovery of missing traffic data, and other

complex graph processing methods for traffic-aware smart travel services [3, 4, 85].

The naive way to track the change in partitions is to perform spatial partitioning of

the road network at each time point based on the corresponding traffic measures, and

analyze the change. But a complete re-partitioning is a computationally expensive task

and may even require more time than the time-interval of data collection. Generally in

successive time points, the traffic does not change abruptly, rather it is a gradual process.

A logically better and efficient way is to incrementally update the previously obtained set

of partitions by processing only the sections of probable change. It significantly reduces the

1https://maps.google.com.au

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 128

Figure 5.1: Google Traffic visualization at 11:00 AM (typical, Monday)

computations, while may sacrifice the quality of partitions marginally. There exist works

on the complete partitioning of road networks [3, 4, 61], but the problem of incremental

maintenance of their partitions has still remained unexplored. The main challenges in this

problem are two folds. First, the computations need to be efficient enough to complete

the incremental update before the arrival of data from the next time point. Second, there

needs to be a mechanism to economically store the historical information in primary or

secondary memory, which provides its efficient retrieval.

We extend this work in the current chapter, and develop a comprehensive framework to

capture the spatiotemporal evolution of the traffic scenario. We models the building blocks

in the form of a congestion evolution graph and propose an in-memory index called Bin

to compactly store the historical sets of building blocks.

In this chapter, we present a comprehensive framework to capture the spatiotemporal

evolution of the traffic congestion scenario by incrementally updating the road network

partitions. This framework works in a two-layer approach, consisting of a physical layer

and a logical layer. The physical layer performs low-level computations for the incremental

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 129

update, whereas the logical layer presents those obtained results to the user after a light

makeover. Our method in the physical layer starts with a set of building blocks (defined

in Section 5.4.1) of the road network at the beginning time point. During the period of

evolution, the unstable road segments are identified at each time point, indexed as a heap

tree, and moved to their most suitable building blocks. We models the building blocks

in the form of a congestion evolution graph and propose an in-memory index called Bin

to compactly store the historical sets of building blocks. Bin is referenced and updated

by the physical layer during the incremental updates. The logical layer accesses Bin to

efficiently retrieve and present the congestion evolution graph, and support specific queries

related to congested partitions. In summary, we make the following main contributions.

– We model the road network congestion in the form of a congestion evolution graph

using a set of building blocks, to effectively capture its spatiotemporal evolution.

– We develop an in-memory index for the building blocks to compactly store the histor-

ical information in the main memory. It facilitates efficient retrieval, visualization,

and understanding of the evolution using the congestion evolution graph.

– We adapt the two-layer method for incremental maintenance of the differently con-

gested partitions (proposed in our previous preliminary work [5]) with respect to

Bin, and develop a comprehensive framework. The method incrementally updates

the building blocks at each new time point in Bin. The stability measure, used to

identify the unstable road segments, and the concepts of road network motifs used

to understand the grouping patterns, are the two main highlights, which set the

foundation.

– We perform extensive experiments on both real and synthetic data to demonstrate

the effectiveness of our method.

The rest of the chapter is organized as follows. We start with some preliminaries and

problem definition in Section 5.2. Section 5.3 describes the proposed method in a high

level, which is followed by the dynamics of road networks in Section 5.4, and capturing the

spatiotemporal evolution in Section 5.5. The experimental results are presented in Section

5.6, followed by the chapter summary in Section 5.7.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 130

5.2 Preliminaries

In this section, we firstly introduce some fundamental concepts related to road networks,

and then define the problem.

5.2.1 Road Networks

Urban roads exist in the form of a physical network, defined in Definition 5.1, spatially

spread over a large urban area. We give it a graphical representation2 in Definition 5.2.

Definition 5.1. (Road Network) An urban road network is defined as N = (I,R)

comprising a set of intersection points I = {ι1, ι2, . . . , ιnι} as nodes that are connected

among themselves by directed road segments R = {r1, r2, . . . , rnr} as links, where each

road segment ri associates a measure of traffic density ri.d with itself. �

Definition 5.2. (Road Graph) Given a road network N , the corresponding road graph

G = (V, E) is constructed by representing each road segment ri ∈ N as a node vi, and

establishing an undirected link ei between each possible node pair (vj, vk) if there exists

at least one intersection point ιl which is a common intersection for the roads rj and rk,

and the traffic can flow either from rj to rk or vice versa. Each node vi (node(ri)) ∈ V
associates with it a feature value vi.f , which is the road traffic density ri.d. �

Definition 5.3. (Partition) A given road network N can be partitioned into multiple

segments, each of whom is called a partition Pi of N . All the different segments form a

set of partitions P = {P1,P2, . . . ,Pk}, such that i)
⋃k

i=1 Pi = R and Pi
⋂

Pj = ∅
for all i �= j, and ii) each Pi is connected inside and all adjacency relations, except the

cross-partition relations (inter-partition links), are maintained as in N . �

A partition of a road network can be transformed to that of a road graph by following

Definition 5.2, and vice versa. Most of the urban roads exist as two-way roads, which are

divided into two parts from the middle for traffic of the two opposite directions. These

two parts undergo different kinds of traffic flow patterns. For example, on a road that

connects outskirts with the city center, the morning office hours would find more traffic

2Further details of this representation can be found in [4]

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 131

heading towards the city center, whereas the evening hours would find more traffic in the

opposite direction. This feature is accommodated by considering the two directions as

separate road segments that share common intersection points, and thus are adjacent.

Definition 5.4. (Inter-Partition Associativity) For a given set of partitions P , the

inter-partition associativity is defined as the aggregation of the level of congestion similarity

between all possible pairs (ri, rj) for which ri and rj lie in different partitions. �

Definition 5.5. (Intra-Partition Associativity) For a given set of partitions P , intra-

partition associativity is defined as the aggregation of the level of congestion similarity

between all possible linked pairs (ri, rj) for which ri and rj lie in the same partition. �

5.2.2 Problem Definition

Given an urban road network N = (I,R) and its road graph G = (V, E), the problem

addressed in this chapter is to incrementally update the road network partitions with the

aim to capture the evolution of traffic congestion. Let us suppose, we are given a set of

road network partitions Pi−1 =
{
Pi−1

1 ,Pi−1
2 , . . . ,Pi−1

k

}
based on the traffic at time

ti−1, such that Pi−1 has a minimum possible inter-partition associativity and a maximum

possible intra-partition associativity.

i) The first objective is to incrementally update Pi−1 to Pi =
{
Pi

1,Pi
2, . . . ,Pi

k

}
at

each new time point ti based on the respective traffic data, without re-partitioning the

whole network, in such a way that the properties of inter-partition and intra-partition

associativities are maintained.

ii) The second objective is to develop an in-memory indexing scheme for a compact storage

of the incrementally obtained historical sets of partitions P0,P1, . . . ,Pi and facilitate

their efficient retrieval.

5.3 Proposed Method

The proposed method tracks the evolution of traffic congestion over a period of time.

Instead of incrementally maintaining the partitions directly, we embed the functionalities

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 132

in two different layers. The logical layer gets the query to identify the congested partitions

at a time point from the user, passes it to the physical layer, lightly processes the returned

data, and returns the results to the user, whereas the physical layer efficiently maintains

a large number of evolving building blocks using an index structure.

5.3.1 Logical Layer

From the user end, the logical layer provides the service to get the congested/non-congested

partitions at any point of time. It is based on a set of so-called building blocks that are

maintained up-to-date by the physical layer. After getting a query from the user, this

layer transforms the granularity of the query from partitions to the building blocks, and

passes to to the physical layer. For example, a query to fetch k differently congested

partitions of the network at the current time is transformed to fetch the building blocks

of the current time. The physical layer returns the result as B = {B1,B2, . . . ,Bnb}.
The logical layer constructs a building block graph Gb =

(
Vb, Eb

)
, where each building

block forms a node ςi ∈ Vb and all pairs of neighboring (defined later) building blocks

or nodes {ςi, ςj} ∈ Vb are connected by links εl ∈ Eb. The number of nodes in this

graph is much smaller than that in the road graph (|Vb| = nb << nr). The nodes are

first assigned their feature values ςi.f as the mean of the corresponding building block.

The links εl between nodes ςi and ςj are weighted by the similarity between ςi.f and

ςj.f as in [3, 4]. Then a partitioning is performed on Gb to obtain a set of k differently

congested partitions, utilizing any existing method. For example, α-Cut [3, 4] is one such

algorithm to do this task. Those with high means are considered as congested, and those

with low means are considered as non-congested. Using this information the user query is

responded accordingly.

The physical layer always keeps itself up-to-date with the building blocks that are to

be served to the logical layer, and the logical layer partitions a small graph of building

blocks, which takes fractions of a second. Thus the method is able to produce the results

immediately for any query. Below we will focus on the development of the physical layer

and the algorithms to maintain the building blocks.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 133

5.3.2 Physical Layer

The traffic congestion has the property to form and gradually grow from small regions

to spread into other parts via the linked road segments. It is also very natural to have

multiple blocks of independent congestions at the same time, which sometimes even merge

with others. Considering both the congested and non-congested blocks of road segments,

we propose the concept of building blocks in road networks.

Definition 5.6. (Building Block) Given a road graph G, a building block Bi =(
Vb

i , Eb
i

)
is defined as a subgraph that forms one of the nb fundamental constituents

B = {B1,B2, . . . ,Bnb} in the physical layer at a time point, such that
⋃nb

i=0 Vb
i = V

and Vb
i

⋂
Vb

j = ∅ for all i �= j. �

The physical layer is the backbone of the proposed tracking method. It continuously

maintains the evolving building blocks by incrementally updating them based on the most

recent traffic data. To efficiently perform the incremental update, we start with an off-line

preprocessing step to mine the road network building blocks. In the illustration examples

of this chapter, we will partition the road network based on the historical traffic data using

α-Cut [3], and consider the obtained partitions as the building blocks for the starting point.

At each new time point, the most recent traffic data is fetched, based on which these blocks

are incrementally updated by identifying and processing the unstable road segments. The

building blocks for all the time points are stored and maintained in an index structure that

facilitates their compact storage for later reference and efficient retrieval. For any query

being passed from the logical layer, it retrieves the result from the index and returns back

instantly.

5.4 Road Network Dynamics

The road networks are structurally static, but the continuously changing traffic induces

the dynamics. It is this continuous change that leads to the formation and deformation of

congestion.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 134

5.4.1 Congestion Evolution

Definition 5.7. (Boundary Node) Given a set of building blocks B =

{B1,B2, . . . ,Bnb} of a road graph G, a node vi ∈ Bp is called a boundary node if

there exists another node vj such that 〈vi, vj〉 ∈ E and vj /∈ Bp. �

Definition 5.8. (Neighbor) Given a set of building blocks B = {B1,B2, . . . ,Bnb} of

a road graph G, Bp is called a neighbor of Bq if there exist nodes vi and vj such that

〈vi, vj〉 ∈ E and vi ∈ Bp ∧ vj ∈ Bq. �

A quality building block3 Bi is characterized by two properties: high homogeneity (in

terms of their feature values) amongst the nodes inside, and a stable structure that tends

to change the least with time. We capture the evolution of network congestion by tracking

the evolution of blocks in a low level. The blocks for the beginning time point are mined

by partitioning the network based on historical traffic data, and the proposed method in

this chapter starts tracking from this initial set.

B00

B02

B01

B11

B10

B12

B13

B21

B20

B22

B23

B30

B32

B31

Temporal links

Spatial links

Time window = 4
t0 t1 t2 t3

Figure 5.2: Congestion evolution graph

The building blocks are small constituents that represent the differently congested blocks

of the spatial road network at a point of time in a fine granularity. Each of them have

3Building block and block are used synonymously hereafter.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 135

a set of spatially linked building blocks as neighbors. The continuously changing traffic

conditions affect their structure in terms of size, shape and location. For example, in

the day time the traffic generally remains varied in the different regions, and thus require

building blocks in fine granularity to effectively represent the traffic condition. At each

subsequent time point their structure keeps changing, as much as the variation in network

traffic, and the congestion hotspots keep evolving. The possible operations leading to the

change are shifting nodes from one block to another, splitting one into multiple blocks,

and merging of multiple blocks into one. We model this temporal evolution of spatially

connected building blocks into a structure called congestion evolution graph, shown in

Figure 5.2. At a time, it maintains a window of t time points in the form of t partites,

with two exceptions, i) each partite forms a quasi clique of spatially connected blocks

inside, and ii) blocks from each partite have links only to the preceding and following

partites.

5.4.2 Stability

During the 24 hours of a day, the traffic load on an urban road network varies from time

to time. For example, in early morning the roads are mostly free, and as peak hour

draws near, they become busy quite rapidly. The period of time during which the traffic

changes from free to congested (or vice versa) is very short for some roads, depending on

their spatial importance, which makes the vicinity unstable. After sometime, the traffic

gradually approaches towards being stable. Thus stability is an important feature of road

networks that leads to a better understanding of the spatio-temporal aspects of traffic

congestion.

Definition 5.9. (Node Stability) If a node vi belongs to building block Bj at time

tr−1, then the stability stabr(vi) is defined as the likelihood of vi to remain in the same

block Bj at time tr. �

We consider two different kinds of node stability, i)spatial stability, which looks into how

well the feature values of vi match with those of the rest in Bj at the current time tr;

and ii) temporal stability, which looks into how much stable was vi in the previous time

points. Equation 5.1 shows the formulation to compute its measure, where μr
j denotes the

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 136

mean feature value inside Bj at time tr. The formula is an average of two quantities – the

first one stab(r−1)(vi), which is its stability measure from the previous time point tr−1,

stands for the temporal stability, and the second quantity, which is from the current time

point tr, stands for the spatial stability. The second quantity firstly gets the normalized

distance of the node from the centroid of its block, and then subtracts it from 1 to get

the closeness, which determines the spatial stability. Its value (∈ [0, 1]) becomes 1 when

the node feature value is exactly the same as the block mean value. A low value of this

measure indicates that the node is less suitable for being part of the corresponding block.

stab(r)(vi) =

(
stab(r−1)(vi) +

(
1 − abs

(
vi.f−μr

j

factor

)))
2

(5.1)

factor = max{(μr
j − vmin

j), (vmax
j − μr

j)} (5.2)

5.4.3 Road Network Motifs

A large graph comprises a large number of nodes and edges, and it is generally not easy to

analyze local structural components by looking into the overall graph. Graph (or network)

motifs are small connected components that exist in significantly large numbers in a graph

globally [137], and form the elementary structures or patterns to make up the whole graph.

Motifs have been found to be very useful in understanding the local structural principles

of real world graphs. Some examples of commonly found graph motifs are 2-path, 3-path,

3-cycle (triangle), and 4-cycle (rectangle), shown in Figure 5.3.

Definition 5.10. (Path) Given a graph G = (V,E), a path p = (v1, v2, . . . , vl+1)

is defined as a sequence of nodes such that each pair of nodes (vi, vi+1) is a link ∈ E,

where i ∈ [0, l]. The path length is defined as the number of links l in a path, and a path

of length l is called an l−path. �

Definition 5.11. (Cycle) Given a graph G = (V,E), a cycle p = (v1, v2, . . . , vl+1) is

defined as a path such that v1 = vl+1. A cycle of length l is called an l−cycle, which is

also an l−path. The shortest cycle is a 3-cycle. �

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 137

(a) 2-Path (b) 3-Cycle (c) 3-Path (d) Tree

(e) Paw (f) 4-Cycle (g) Kite (h) Clique

Figure 5.3: Graph motif examples with 3 and 4 nodes

Similar to general graph motifs, road networks too have small connected structures that

are commonly found all over the network. Generally the intersection points connect four

different roads, each of which have their own traffic in the two opposite directions. This

kind of intersections lead to the formation of directed cycles of length 4 (4-cycle or rect-

angle), 6 (6-cycles), and other cycles of higher even length in the road network. Triangles,

5-cycles, and other cycles of higher odd length are found only in rare situations. Based on

the concepts of graph motifs, we define the following motif concepts in road networks.

Definition 5.12. (Road Cycle) Given a road network N = (I,R), a path p =

(r1, r2, . . . , rl) comprising l different road segments is said to be an l-roadcycle if there

exists a path p′ = (r1, r2, . . . , rl, rl+1) such that r1 = rl+1 and the traffic flow is

directed as r1 → r2 → · · · → rl → rl+1. �

Definition 5.13. (Bounded Road Cycle) Given a road network N = (I,R), a path

p = (r1, r2, . . . , rl) is said to be a γ-bounded-l-roadcycle if it is an l-roadcycle and the

Euclidean distance between each ri and ri+1 in p′ is less than or equal to γ. �

A bounded road cycle ensures that it is a tightly bound cycle where all the participating

road segments have similar traffic measures up to a certain extent. All such cycles are

transformed into paths of the road graph G as p = (v1, v2, . . . , vl) where each vi refers

to the node in V corresponding to road segment ri in R. Due to the static structure of

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 138

ra rb
7 6

re rf
7 6

rk rl
4 3

ro rp
4 5

rc

rd

6

6

rg

rh

7

8

ri

rj

4

6

rm

rn

4

3

B1
B2

(a) A road sub-network

B1 B2

ra-rc-rf -rh ri-rl-rn-ro
ra-rc-rd-rb ri-rl-rk-rj
ra-rb-rg-rh ri-rj-rp-ro
rb-rg-re-rd rj-rp-rm-rk
rc-rf -re-rd rk-rl-rn-rm
re-rf -rh-rg rm-rn-ro-rp

re-rf -ri-rj
(b) 2-bounded-4-roadcycles

Figure 5.4: Example of γ-bounded-l-roadcycles

.

the road networks, the road cycles remain the same throughout, but the dynamic traffic

keeps the set of bounded road cycles open to change at any point of time.

The building blocks maintained by our method have the properties of high homogeneity

and high connectivity inside them. Figure 5.4 shows an example of a small road sub-

network (each road segment has its own name and indicative traffic measure) and the list

of all γ-bounded-l-roadcycles where γ and l are set to 2 and 4 respectively. The network

in Figure 5.4(a) is divided by a dashed line into blocks B1 and B2, in which both the

blocks have homogeneous traffic measures inside them, with B1 having higher measures

than B2. Their difference is clearly identified by looking into the traffic measures and the

structure. Figure 5.4(b) shows all the 2-bounded-4-roadcycles. It is found that out of the

total of 13 cycles, 6 lie completely inside B1, the same amount being inside B2, and only

one cycle shown at the bottom is shared between the two blocks. This observation leads

to the fact that the number of occurrences of bounded cycles inside each building block

is significantly higher than those across different blocks. These bounded cycles thus give

information about the block structure and can be used to locate their suitable boundaries.

The lengthy cycles are mostly composed of short cycles (e.g., rectangles). Therefore,

instead of all the possible cycles, we consider only the short-length bounded cycles to give

an indication about the building block structures.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 139

5.5 Tracking and Capturing the Evolution

We track the spatiotemporal evolution by incrementally updating the building blocks and

capture this evolution with the help of the proposed in-memory index. In this section, we

present our method in detail.

5.5.1 Index Structure

For efficient computation and economic memory consumption, we index the historical sets

of building blocks, the current boundary nodes, and the static short cycles using suitable

structures.

5.5.1.1 Building Block Index (Bin)

The tracking of the evolution of building blocks needs to maintain the historical informa-

tion (of selected time points) in the main memory. It demands an index structure that

provides a compact in-memory storage and efficient retrieval. We propose an in-memory

block index called Bin (illustrated in Figure 5.5) to address these requirements. It

consists of three different components: a tree structure Tr, a list of linked lists TL, and

an inverted list NI. Each block at time ti is a set of road segments having a unique

identifier. These blocks are indexed in the form of a tree Tr having a root node R, a

set of internal nodes that correspond to the road segments, and a set of leaf nodes that

stand for the different time points. All nodes except the root have one parent, and all

nodes except the leaves have one or more children. Figure 5.5 shows the index for sets of

building blocks at three time points – i) {{12, 6, 1}, {4, 8, 7, 3, 2}, {11, 10, 5, 9}}
at t0, ii) {{11, 12, 6, 1}, {8, 7, 3, 2}, {4, 10, 5, 9}} at t1; and iii)

{{10, 11, 12, 6, 1}, {5, 8, 7, 3, 2}, {9}, {4}} at t2. A block can be retrieved by

traversing up from the leaf node until the root node is reached, and the time point of

that leaf node indicate the time point of the retrieved block. TL maintains a list of all

the time points where each one of them is linked to all the leaf nodes referring to that

time. As shown in the figure, t0 from the list is linked to all the leaf nodes referring to t0

in different branches of the tree. To access blocks of a particular time point, say t0, the

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 140

linked list for t0 can be accessed from TL, using which all the leaf nodes corresponding

to t0 can be accessed, which further lead to retrieval of all the building blocks by upward

tree-traversal. For a fast lookup of the latest time point (supports faster incremental

update computations), NI maintains an inverted list of the leaf nodes, which lead to

access the corresponding node at the latest time point. The figure shows that at time t2,

the node v1 can be accessed by the leaf node in the left most branch (child of 10), and v2

can be accessed by the leaf child of 5. NI is simply used to refer to the building block to

which a particular node belongs.

R

1 2 9 4

6

12

11

10

T2

T1

T0

3

7

8

4

T2

T1

T0

5

5

10

11 4

T1T0

T2 T2

T0T0

T1T1

T2T2

TntTnt

v1 v2 vnr

Figure 5.5: Bin

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 141

5.5.1.2 Stability Tree

The building blocks have one set of nodes lying on the boundaries (boundary nodes) and

another set lying in the interior. As the boundary nodes are directly linked to nodes of

a neighboring building block, they are more likely to undergo a change (change in the

block to which a node belongs) than the internal nodes in the next time point. Moreover,

through boundary adjustment an internal node can undergo a change only after at least

one of its linked nodes has undergone a change that makes this internal node a boundary

node. Even among the boundary nodes, they all differ in their likelihood of change, which

is captured by our stability measure. We use this measure to prioritize the boundary

adjustment of nodes with high unstablity. At the beginning time point, we compute all

the boundary nodes and index them as follows. A min-heap tree is created based on the

stability measure, in which the least stable or the most unstable node becomes the root.

This tree is called stability tree (denoted by ST) and shown in Figure 5.6(a). During

the process of boundary adjustment the node with highest priority is processed first, and

this min-heap tree is maintained all throughout the incremental update by adding all the

newly becoming boundary nodes and removing all the newly becoming internal nodes.

5.5.1.3 Short cycle Index

We pre-compute all the possible cycles of path length smaller than or equal to

εpath in the road graph as an offline task and index them as follows. Firstly a

sorted set of all nodes in V is created based on their id. For each node vi ∈ V ,

all the cycles that involve this node in the path are computed. Let us suppose

{(vi, va, vb, vi), (vi, va, vc, vi), (vi, vd, ve, vi), (vi, vd, vf , vi)} is the set of cycles in-

volving vi. A trie tree is created having vi as the root node, va and vd as the children of

vi, vb and vc as the children of vb, and ve and vf as the children of vd. Then the end-

marker leaf nodes having the information of their depth in the tree are added as children

of vb, vc, ve, and vf . In this way the trie trees corresponding to all vi ∈ V are created

and attached to the sorted set as shown in Figure 5.6(b). This structure is called short

cycle index (denoted by SCI).

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 142

vb

ve

vc

vf vg

va

vi

vd

vh

Most unstable
node

va < vb
va < vc

vb < vd
vb < ve

vd < vh
vd < vi

vc < vf
vc < vg

(a) Stability tree

v1 v2 vrn

va

vb vc

vd

ve vf

vi

Ø Ø Ø Ø
vi-va-vb-vi vi-va-vc-vi vi-vd-ve-vi vi-vd-vf-vi

(b) Short cycle index

Figure 5.6: Index for boundary nodes and their short cycles (’<’ denotes less stable
than)

5.5.2 Incremental Update

The incremental update algorithm looks into all the unstable nodes and moves them to

the most suitable building blocks at each time point. Broadly it consists of two main tasks

– the incremental computation of the set of building blocks for the current time point

followed by updating the index Bin. Let us suppose we have a given Bin and short cycle

index SCI at time ti−1 for sets of building blocks from time t0 to ti−1. The complete

algorithm to incrementally compute and update Bin at time ti is shown in Algorithm

8. It starts with computing the stability measures from the traffic data at ti for all the

boundary nodes and creating the stability tree ST (lines 1-2). Then the Tr, TL, and

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 143

NI components of Bin are updated to add the leaf nodes for ti and re-direct the links

in TL and NI (lines 3-5). The iterative steps of computing the most suitable building

block for the most unstable boundary node and updating Bin is carried out until all the

boundary nodes having their stability measure less than the threshold εstab have been

processed (lines 6-15). After getting the most unstable node v by deleting the root of ST

(line 6), the short cycle tree sctree is accessed from SCI (line 9), and the most suitable

leaf node lnext (∈ Bin.T r) is computed using the function IdentifyMSL(.) described

later in Algorithm 9 (line 10). This computation is based on the new traffic data at ti in

contrast to the current leaf node lcurrent based on the data at ti−1. If the new leaf node

is different than the existing one (line 11), then v is deleted from the branch of lcurrent

using function DeleteFromBranch(.) described later in Algorithm 10 (line 12). It is

followed by inserting v into the branch of lnext using function InsertIntoBranch(.)

described later in Algorithm 11 (line 13). This step completes the update of Bin for

v. The stability tree ST is then updated by inserting all the newly created boundary

nodes and deleting those nodes which no more lie on the boundary because of the change

using function AddRemoveSTNodes(.) described later in Algorithm 12 (line 14). After

completing the processing of v, the next most unstable node is extracted from ST (line

15) and the same process (lines 7-15) is carried out repeatedly until all the unstable nodes

have been processed.

5.5.3 Computing the most suitable block

As mentioned earlier in Section 5.4.3, on the basis of the properties of network motifs and

building blocks, the short length bounded road cycles are likely to be found in significantly

large numbers within the building blocks rather than crossing multiple of them. A naive

way to find the most suitable block for a node v at time ti is to select the one having the

highest number of bounded road cycles with all the nodes lying in the same block. But

often there are cycles passing through multiple blocks, where most part of the cycle lie

within the most suitable block leaving some fractions in neighboring blocks. The naive

method ignores these fractions. Our main idea here is to identify the block that is involved

in most part of the bounded road cycles of node v. For this, we consider all the road cycles

of path length shorter than or equal to εpath, making the range as [3, εpath]. Each block

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 144

Algorithm 8: IncrementalUpdate(Block index Bin, Stability tree ST , Short cycle index
SCI)

1 Compute stability of boundary nodes at ti;
2 Stability tree ST ← Create a max-heap tree;
3 Update Bin.T r ← Add a leaf node Ti as sibling of each Ti−1;
4 Update Bin.TL ← Link all Ti and add the list to TL;
5 Update Bin.NI ← Set (node.leaf ← Ti) instead of Ti−1, ∀node ∈ Bin.NI;
6 Node v ← Delete root of ST ;
7 while stablity(v) ≤ εstab do
8 Leaf lcurrent ← Bin.NI.v.leaf ;
9 sctree ← SCI[v];

10 Leaf lnext ← IdentifyMSL(Bin, sctree);
11 if lnext �= lcurrent then
12 Update Bin ← DeleteFromBranch(Bin , lcurrent, v);
13 Update Bin ← InsertIntoBranch(Bin, lnext, v);
14 Update ST ← AddRemoveSTNodes(Bin, ST, v, lcurrent, lnext);

15 Node v ← Delete root of ST ;

16 return Bin ;

is quantified by a weight function W (.) that considers the total of fractions from all the

cycles lying in the respective block. For this quantification, all cycles account for a weight

of 1, which is equally divided among all the cycle nodes other than v. For longer cycles the

value being divided among more nodes gives lesser power to each. Therefore, the shorter

the cycle, the bigger the impact of its nodes.

Formulated in Equation 5.3, W (v,Bj) computes the weight assigned to block Bj to

identify the most suitable block for v, where RCycles(v) gives all the γ-bounded short

road cycles involving v, and u is another node that is involved in the same cycle and

belongs to Bj at time ti.

W (v,Bj) =
∑

∀C ∈ RCycles(v)

(u ∈ C) ∧ (u ∈ Bj)

1

pathlength(C) − 1
(5.3)

In other words, each road cycle C that involves v is traversed, and for each node u in

that cycle, if it belongs to block Bj , the weight for Bj is incremented by 1
pathlength(C)−1

.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 145

Algorithm 9: IdentifyMSL(Block index Bin, Short cycle tree sctree)

1 s1, s2, s3 ← initialize new stack;
2 Node nparent ← sctree(root);
3 forall Node nchild ∈ sctree(root).child do
4 if nchild �= φ AND dist(nparent, nchild) ≤ γ then
5 Push nchild into s1;

6 repeat
7 Node nparent ← pop out from s1;
8 Push nparent into s2;
9 count = 0;

10 forall Node nchild ∈ ctree(nparent).child do
11 if nchild �= φ AND dist(nparent, nchild) ≤ γ then
12 Push nchild into s1;
13 count ← count + 1;

14 Push count into s3;

15 until s1 �= empty;
16 s1 ← re-initialize stack;
17 wleaf [] ← initialize an array of values for each leaf of current time point in Bin.T r;
18 repeat
19 Node node ← pop out from s2;
20 countchild ← pop out from s3;
21 if countchild = 0 then

22 Value weight = 1
depth(node)

;

23 else
24 Value weight ← initialize with 0;
25 for i ← 1 to countchild do
26 Value childweight ← pop out from s1;
27 weight ← weight + childweight;

28 Push weight into s1;
29 wleaf [Bin.NI.node.leaf] ← Increment by weight;

30 until s2 �= empty;
31 wmax ← wleaf [0];
32 forall wl ∈ wleaf [] do
33 if wmax < wl then
34 wmax ← wl;

35 msl ← leaf corresponding to wmax;
36 return msl;

For example, if there is a cycle {v1(∈ B1), v2(∈ B2), v3(∈ B1), v4(∈ B1)}, each node

(except the one for which the weight is being computed) will have the power to make an

affect by 1
3
, which in total equals to 1. To compute W (v1,B1), v3 and v4 both belonging

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 146

to B1 adds up to 2
3
, and the weight 1

3
of v2 ∈ B2 is added to W (v1,B2). In this

manner, the weights for all the blocks are computed by adding the values from all the

different cycles, and the one with the highest weight is selected as the most suitable block.

However, as the number of road cycles is usually large, traversing all of them individually

to compute the weight for the building blocks in this way adds a lot of computations, and

affects the running time.

In most of the road cycles in which a node v is involved, there exists overlapping of some

parts of the complete path of multiple cycles. For example, the cyclesC1 = {v, v1, v2, v3}
and C2 = {v, v1, v2, v4} of v have three overlapping nodes (v, v1 and v2). Computing

the weights by traversing through C1 and C2 independently, repeats the computations

done for v, v1 and v2. We make use of these overlappings in computing the building block

weights, thereby avoid redundant computations. This is done by our multi-stack based

algorithm (shown in Algorithm 9) with the help of our short cycle index SCI that keeps

the cycles indexed as a tree, having no repeating nodes even for the overlapping cycles. It

accesses the block index Bin and the short cycle tree sctree from SCI, and computes the

most suitable leaf (∈ Bin.T r) for node v (root node of sctree) at time ti. The stacks used

in the algorithm explore the cycles in sctree and keep part of the computed information

saved for its reuse later for the overlapping cycles.

The algorithm starts with pushing all the children of root node of sctree to the stack s1,

if the Euclidean distance between the parent and the child dist(nparent, nchild) is less

than or equal to γ (lines 1-5). The dist(.) function ensures that only the γ-bounded road

cycles are explored. It is followed by iterative steps of popping out a node from s1 (line 7),

pushing it into the stack s2 (line 8), pushing all its children back into s1 if the parent-child

satisfies the γ distance condition (lines 10-13), and pushing the count of these children into

the stack s3. These steps are repeated until s1 becomes empty (line 15). They compute

the number of children of each node and keep them saved in the stacks for computing the

block weights (or leaf weights) later. Thereafter an array of values is initialized to store

the weights W (.) computed for each block in order to select the most suitable one (line

17). As the blocks are retrieved by the leaf nodes in Bin, the weights correspond to the

leaf nodes of Bin.T r at time ti. Then the nodes are popped out from s2 one after another

(line 19), the count of their children are popped out from s3 (line 20), followed by a set of

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 147

Algorithm 10: DeleteFromBranch(Block index Bin, Leaf lcurrent, Node v)

1 Node nodepre ← lcurrent.parent;
2 Node node ← nodepre.parent;
3 if nodepre �= v then
4 repeat
5 if {node.child\nodepre} �= φ then
6 Node vclone ← new clone of v;

7 vclone
parent-child link←−−−−−−−→ {node.child\nodepre};

8 node
parent-child link←−−−−−−−→ vclone;

9 nodepre ← node;
10 node ← node.parent;

11 until nodepre = v;

12 node
parent-child link←−−−−−−−→ {nodepre.child};

13 lcurrent.parent
parent-child link←−−−−−−−→ nodepre;

14 nodepre
parent-child link←−−−−−−−→ {lcurrent.parent.child};

15 Set Ti as child of nodepre.parent;
16 return Bin ;

steps to compute the weights. A value of 0 as the count of children indicates that it is the

last node in the branch and its depth gives the path length of the cycle. Hence the weight

of 1
pathlength(C)−1

that is carried by each node in the cycle C is computed as 1
depth(node)

(line 22) and pushed into s1 (line 28) to be used later to compute weights for its parents.

The depth of the node is found from its leaf node that contains the depth information.

If the count of children is non-zero, the weight is computed by adding the weights of all

its children obtained by popping up s1 as many times as the count (lines 23-27), which

is again pushed back into s1 (line 28). In addition to pushing the weight of nodes into

s1, the weight for the leaves in the array wleaf [] is updated by adding weight to the

array element corresponding to the leaf of node, i.e., Bin.T r.node.leaf . These steps

of popping out from s2 and s3 and computing the values of wleaf [] using s1 (lines

19-29) are repeated until s2 becomes empty (lines 18,30), which marks the completion of

processing of all the bounded short road cycles. At last we select the most suitable leaf for

the current time ti by getting the leaf corresponding to the maximum weight in wleaf []

(lines 31-36).

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 148

5.5.4 Updating Index

After identifying the most suitable leaf in the index Bin at time ti for a node v, the re-

maining task is to update Bin and ST with this change. This is done by the functions

DeleteFromBranch(.), InsertIntoBranch(.), and AddRemoveSTNodes(.). The opera-

tions of inserting/deleting a node into/from a branch defined on Bin are performed in such

a manner that the data redundancy at different time points is minimum and there is no

information loss in the historical data. This section explains each of the three mentioned

functions individually.

The function DeleteFromBranch(.) (Algorithm 10) is called to delete a node v from

its current branch in Bin Its main objective is to delete v in such a way that the block

retrieved for time ti−1 includes v in the set of nodes but excludes it for time ti. For

this we start from the leaf of its branch, and traverse upwards towards the root using two

pointers nodepre and node until v is found (lines 1-11). During the traversal, we check

if there are other nodes that do not lie in the traversal path (branch out somewhere). It is

done by looking into the set of children of node. If there are other children in addition to

nodepre (line 5), then a new node vclone is created as a clone of v (line 6), and inserted

as parent of all the siblings of nodepre (line 7) and as child of node (line 8). This process

is continued until nodepre reaches v (line 11), after which v is simply removed from there

by making all its children (or that of nodepre) as the children of node (line 12). This

node is added as child of the parent of leaf lcurrent.parent (line 13) and as parent of

all the children of lcurrent.parent (line 14). At the end, the leaf lcurrent (referring

to Ti) is set as the child of nodepre.parent or sibling of nodepre (line 15). After doing

this change, the block retrieved by traversing from Ti to root includes all the previous

nodes except v, whereas the set of nodes remain the same for all other time points or

leaves. By inserting additional clones of v, we add some redundancy, but it is kept the

minimum that is required to keep all the information for previous time points without

any loss. A delete operation takes the node closer to the leaf. The unstable nodes, which

frequently undergo deletion from a branch, are quickly found in the upward traversal from

the leaf, thereby improves its efficiency for such nodes.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 149

Algorithm 11: InsertIntoBranch(Block index Bin, Leaf lnext, Node v)

1 Node node ← lnext.parent;
2 if v /∈ {node.child} then
3 Create a node for v;

4 node
parent-child link←−−−−−−−→ v;

5 Set Ti as child of v;
6 return Bin ;

Algorithm 12: AddRemoveSTNodes(Block index Bin, Stability tree ST , Node v, Leaf
lcurrent, Leaf lnext)

1 forall Node u ∈ neighbour(v) do
2 if Bin.NI.u.leaf = lcurrent AND u /∈ ST then
3 Insert u into ST ;

4 if Bin.NI.u.leaf = lnext AND u ∈ ST AND u does not lie on boundary then
5 Delete u from ST ;

6 return ST ;

After the deletion of v from its previous branch it is inserted into the most suitable branch

lnext in Bin using the function InsertIntoBranch(.) (Algorithm 11). The main idea

here is that if v already exists there as a sibling of lnext (referring to Ti), then without

adding any new node, lnext is simply set as the child of v (line 5). Otherwise (line 2),

a new node is created for v (line 3) and added as a child of the parent of lnext (line 4),

after which lnext is set as the child of v (line 5). After this update, the complete block

including v can be retrieved directly by traversing upwards from lnext to the root. As

the insertion takes place at the leaf, the time complexity of this operation is always O(1).

The stability tree ST contains all the boundary nodes in the road network at a point of

time, heapified based on their stability measure. After deleting its root to get the unstable

nodes and process them, if the node changes its branch in Bin.T r (or changes it block),

several nodes newly become boundary nodes. On the other hand, several nodes that were

on the boundary earlier, no more lie on the boundary. The function AddRemoveSTNodes(.)

(Algorithm 12) updates ST by adding the new boundary nodes into the tree and removing

the internal nodes from the tree. It starts with getting all the nodes u linked to v in the

road graph (line 1). If the leaf of u referred in the node inverted list Bin.NI.u.leaf

is same as the leaf node of v before the update lcurrent (line 2), it means that u is a

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 150

boundary node. If it does not exist in ST , being a new boundary node it is added to the

tree (lines 2-3). If the leaf of u referred in Bin.NI.u.leaf is same as the leaf node of v

after the update lnext (line 4), it means that u may not be a boundary node anymore. If

it does not exist in ST and does not lie on the boundary, it is removed from the tree (lines

4-5). Everytime a node v changes its branch in Bin.T r, all its linked nodes are checked

to keep an up-to-date collection of the boundary nodes.

5.6 Experiments

We conducted experiments on four datasets, and present our evaluation results in three

main aspects: the quality of incremental results, the efficiency of incremental computa-

tions, and the memory consumption for storing the historical information in Bin. We also

show the effects of external parameters and visualize some obtained results.

5.6.1 Datasets

Our datasets, shown in Table 5.1, include one real (Ms) and three semi-synthetic (M1,

M2, and M3) datasets. Ms is recorded by the SCATS System (please refer to Chapter 6,

Section 6.1, for a detailed description of the SCATS system) from the Melbourne road

network provided to us by VicRoads (road and traffic authority in the state of Victoria,

Australia)4. It is an accumulation of the traffic records of individual road segments for

each signal cycle from 1st Jan 2011 to 1st Jan 2013. The considered Melbourne network

consists of 7245 road segments and 2928 intersection points. The traffic measures include

traffic volume (number of vehicles crossing a road segment during the green time) and

degree of saturation (the ratio of the effectively used green time to the total available

green time). We consider degree of saturation as the feature value of road segments,

which approximates the traffic density. M1, M2, and M3 are synthetically generated on the

real road network of Melbourne using a web-based5 random road traffic generator MNTG

[133]. We populated 25,246, 62,300, and 84,999 vehicles respectively, and obtained their

movement trajectories for 100 continuous time points. The trajectories are sequences of

4https://www.vicroads.vic.gov.au/
5It can be accessed through http://mntg.cs.umn.edu/tg/

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 151

100 or less 〈latitude,longitude〉 pairs corresponding to vehicle positions at each timestamp.

The vehicle positions are mapped to corresponding road segments and the traffic density

measures (in terms of vehicles/meter) are computed at each time point. We use traffic

density as the feature value of road segments for these datasets.

Table 5.1: Dataset statistics

Dataset Place Area(sq ml) Road seg Inter pts

Ms(real) Melbourne 627.5 7245 2928

M1 CBD Melbourne 6.6 17,206 10,096
M2 CBD(+) Melbourne 31.5 53,494 28,465
M3 Melbourne 42.03 79,487 42,321

5.6.2 Evaluation Metrics

The quality of the incremental partitioning results are evaluated by using the metric

ANS that looks into the inter-partition heterogeneity and intra-partition homogeneity

and quantify the quality of the obtained partitions [3, 4, 61]. It is derived from the

standard Silhouette measure used for cluster evaluation. A value less than 1 for this

measure indicates a good partitioning, and lower values indicate better partitioning.

5.6.3 Quality of Incremental Results

We start the experiments by firstly mining a set of building blocks that are to be main-

tained and incrementally updated in the physical layer. For this, we partition the road

network into a relatively large number of small sized partitions and consider them as

the building blocks for the beginning time point. As a preprocessing step, all the short

road cycles are computed and indexed in SCI. We evaluate the quality of our results by

comparing them with the partitions obtained by directly applying the α-Cut partitioning

algorithm [3, 4] on the considered dataset. Figure 5.7 shows this comparison on Ms, M1

and M2 datasets in terms ANS. The measure for the proposed method is computed by

incrementally maintaining a set of 200 building blocks in the physical layer and obtaining

a set of 10 partitions from the logical layer at each of the shown time points. The results

shown on the Ms dataset refer to the real scats traffic data on 03-12-2012 (Monday). We

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 152

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00

AN
S

Time

ACut Proposed

(a) ANS on Ms

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

1 3 5 7 9 11 13 15 17 19

AN
S

Timepoint

ACut Proposed

(b) ANS on M1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

1 3 5 7 9 11 13 15 17 19

AN
S

Timepoint

ACut Proposed

(c) ANS on M2

Figure 5.7: Partitioning quality

observe that the curve of the proposed method is most of the time higher but close to that

of the α-Cut, which means that the incrementally obtained partitions by the proposed

method are not significantly inferior than those obtained by partitioning the road network

directly using α-Cut. Also, the ANS measure is always less than 1 for the real Ms dataset

and most of the times less than 1 for the M1 and M2 datasets, which indicates that our

results are still considerably good in quality. The main objective of the proposed method

is to maintain the partitions efficiently, which lacks in α-Cut or any other road network

(or graph) partitioning algorithm.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 153

5.6.4 Efficiency of Incremental Computations

As the proposed method continuously operates to incrementally update the building blocks

in real-time, its efficiency is of great importance. Table 5.2 shows the average running

time6 of the logical layer for producing partitions from the building blocks and that of the

physical layer for incrementally updating the building blocks at each time point, for all

the considered datasets. Its shows the running time by varying the number of maintained

building blocks, in comparison to [3]. We observe that the lower the number of maintained

building blocks, the faster is the method. The logical layer performs faster because it has

to partition a smaller graph where the number of nodes is the number of maintained

building blocks, and the physical layer is faster because of lesser overhead. When there is

a large number of building blocks, it creates a large number of unstable and noisy road

segments lying on the boundaries, which too often shift themselves from one block to

another, leading to an overhead. Therefore selecting the right number of building blocks

for an application environment is important for the method to have stable building blocks

and partitions. The longest running time for the real dataset Ms (Melbourne road network)

is just a few seconds, which shows its applicability for the real urban road networks. It

can also be performed in fractions of a second by maintaining less number of blocks.

The longest running time shown in the table is around 6 minutes for the largest dataset

(M3) on an ordinary PC, which may drastically improve on a high performance computer.

Moreover it can also be performed in shorter time with less number of blocks. Comparing

these times with the existing re-partitioning method [3], we observe that even our longest

running time is significantly lower than the existing method. Thus it suggests that our

method can be effectively used with any real traffic management systems by correctly

setting its parameters to deal with the real situation.

5.6.5 Memory Consumption in Bin

As the incremental update continuously generates data, the compact in-memory storage

of this historical data for later use is important. Without using any index, a system would

simply dump the sets of building blocks at each new time point, which would proportionally

6On a Core i5 computer with 8GB RAM

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 154

Table 5.2: Running time (in seconds)

Number of maintained Dataset

building blocks Ms M1 M2 M3

100 Logical layer <1 <1 <1 <1

Physical layer <1 1 72 129

200 Logical layer <1 <1 <1 <1

Physical layer <1 1 86 184

400 Logical layer <1 <1 1 1

Physical layer <1 1 96 218

600 Logical layer 1 1 1 1

Physical layer <1 1 117 265

800 Logical layer 3 3 5 7

Physical layer 1 1 145 307

1000 Logical layer 10 12 15 16

Physical layer 1 6 173 354

[3, 4] (α-Cut) 98 129 1905 5907

keep on increasing the memory usage with lots of redundant information. In contrast, our

Bin stores the complete information with minimum redundancy. The compactness of our

index is quantified by the measure gain = D−DI
D

, where D is the number of data items

stored in memory when no index is used, and DI is the number of data items stored in

memory using Bin. Figure 5.8(a) shows the number of data items stored for maintaining

100 building blocks of the Ms dataset, and 5.8(b) shows our gain in memory consumption.

The gain starts with even less than -1, but keeps on increasing with time and crosses 0.8

within two hours. The reason for a negative gain in the beginning is that it needs to store

the extra information in Bin.TL and Bin.NI in addition to the blocks in Bin.T r. For the

Ms dataset, the number data items stored in these components in the first time point are

7245 (for 7245 road segments), 100 (for maintaining 100 blocks), and 7246 (road segments

+ root node in the tree), respectively. Over the period of time, Bin.NI consumes the

same space, and Bin.TL and Bin.Tr keep increasing, but in a slow rate.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 155

0

50

100

150

200

250

300

350

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00

Da
ta

 It
em

s (
in

 th
ou

sa
nd

s)

Time

D DI

(a) Stored data items

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00Ga
in

Time

(b) Gain

Figure 5.8: Memory consumption in Bin

.

5.6.6 Effects of external parameters on blocks

There are some external parameters that are required to be set for the experiments, and

have some effects on the results. Figure 5.9 shows the effects of stability threshold εstab,

the number of incrementally maintained building blocks nb, and the roadcycle length l.

The results are shown from the experiments on the real data Ms. Figure 5.9(a) shows the

ANS measures of the set of building blocks at varying εstab at five different time points.

We observe that the quality of results are best at εstab = 0.7 and 1. When it is 1, all the

boundary nodes are considered unstable processed once, because of which it gives good

results. Interestingly 0.7 also produces good results for all the time pints, which may be

because nodes above this εstab are very stable, and processing them worsens the situation

until all the nodes in the stability tree are processed. Similarly, Figure 5.9(b) shows the

ANS measure of the building blocks at five different time points when the number of

such maintained blocks are from 200 to 1000. We observe that the more the number of

partitions maintained, the better is the quality. Figure 5.9(c) shows the ANS measure of

the building blocks obtained by setting the roadcycle length l to 4, 6, and 8. There exists

26622, 165971, and 959528 roadcycles respectively for each value of l in the considered

network. It is very rare to find roadcycles of odd length, because of which we test with

only even lengths. We observe that the quality of results generally gets better upto some

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 156

extent with increasing cycle length. The reason for this behavior is that the cycles with

high l include all the shorter cycles, and thus check the homogeneity in a larger region.

With a small l, it checks only a very local region, and may lead to results that are not

very good with respect to the global data. However, exceptional situations may occur in

case of abrupt changes in the traffic. One such example is 07:24 AM, where 4-roadcycles

give better result than 6-roadcycles.

5.6.7 Visualization comparison with Google Traffic

This section demonstrates the usefulness of the proposed framework in traffic visualization

in an informative way. As shown in Figure 5.1, Google Traffic simply visualizes a

heatmap of the traffic data on individual road segments. Its limitations are, i) there is no

information about how the multiple independent or linked congestions are spread, and ii)

very limited features to understand the temporal evolution. In contrast, our framework

is able to produce an information rich visualization shown in Figures 5.10 and 5.11. To

keep the pictures simple and easy to understand, only one direction7 of traffic flow is

shown. Figure 5.10 shows 4 color-coded partitions from the Ms at 07:06 AM computed

in the logical layer. It gives a high level information of the traffic scenario at this time.

Each single color has homogeneous traffic inside. If we are interested further, we can

zoom-in into the partitions to see the actual building blocks being maintained in Bin in

the physical layer. Figures 5.11(a), 5.11(b), 5.11(c), and 5.11(d) show the building blocks

of the four partitions. A large number of maintained building blocks would produce the

zoomed-in view in a fine granularity. Looking into the partitions and building blocks, it is

easy to understand how the congestion is spread. Some partitions or building blocks may

be congested, others may be non-congested (can be identified from the color codes). There

may be multiple independent congestion blocks in different regions at the same time. In

the temporal domain, the evolution in those congestion blocks can be seen. A common

phenomenon is that different independent congestions start growing from different regions

in busy hours, merge with others to form a big congestion in a the peak time, and then

gradually disperse back again. These evolutions can be understood clearly with the help

of our visualizations. A commuter can make use of this information in planning a journey.

7The framework considers the two traffic directions as separate connected road segments.

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 157

0.75

0.8

0.85

0.9

0.95

1

0.5 0.6 0.7 0.8 0.9 1

AN
S

Stability Threshold

7:15 7:18 7:21
7:24 7:27

(a) Stability threshold

0.5
0.55
0.6

0.65
0.7

0.75
0.8
0.85
0.9

0.95

200 400 600 800 1000

AN
S

Number of Bulding Blocks

7:15 7:18 7:21

7:24 7:27

(b) Number of building blocks

0.7

0.75

0.8

0.85

0.9

0.95

1

7:03 7:12 7:21 7:30 7:39 7:48 7:57

AN
S

Timepoint

4-Cycles
6-Cycles
8-Cycles

(c) Length of roadcycle

Figure 5.9: Effects of external parameters

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 158

Figure 5.10: Partitions in the Logical layer at 07:09 AM

.

5.7 Summary

In this chapter, we proposed a comprehensive framework using a two-layer approach to

incrementally update the differently congested partitions of a road network in an efficient

manner, and capture the evolution of traffic congestion. The physical layer incrementally

maintains a set of small-sized building blocks of the network, and the logical layer provides

an interface to query the physical layer about the congested partitions. We also proposed

Bin, an in-memory index for a compact storage and efficient retrieval of the historical

building blocks. We conducted extensive experiments on real and synthetic datasets to

demonstrate the efficacy of our method. The method is more efficient than the existing

re-partitioning methods without significant sacrifice in accuracy. It is also found that the

in-memory building block index saves a significant amount of memory space to store the

history in the main memory. Thus, it can effectively serve real traffic management systems

Chapter 5. Tracking and Capturing the Spatio-temporal Evolution of Congestion 159

(a) Building blocks in Partition 1 (b) Building blocks in Partition 2

(c) Building blocks in Partition 3 (d) Building blocks in Partition 4

Figure 5.11: Building blocks in the Physical layer at 07:09 AM

.

for continuously capturing the evolution of congestion and aid in smart transportation

services.

Chapter 6

Applications using Real Traffic

Data

The real road traffic networks experience different kinds of situations at different times

of the day. The traffic pattern keeps varying depending on specific factors. For example,

school going time and office going time may lead to different traffic patterns. This kind of

patterns are not always easy to notice, without an experimental study. Therefore analyz-

ing real traffic data in light of specific applications is very important. In this chapter, we

present an experimental study to discover the congestion propagation patterns. For this,

we considered two specific applications. First one is the temporal tracking of congested

partitions, and the second one is the traffic diffusion and influence estimation. The first

application of temporal tracking of congested partitions is related to our work presented

in Chapter 5, but our objective here is to analyze the real data to discover the unknown

traffic propagation patterns. We define certain traffic measures (e.g. volume and green

time utilization) available from the traffic signal control system to identify the congested

partitions, and track their evolution with time. We conducted experiments using real

historical traffic data collected from the 493 signalized traffic sites in Melbourne (Aus-

tralia) with a total of 1444 road segments and 581 intersection points. Our experimental

results show that the large-scale urban traffic networks undergo many rapid but regular

and frequent traffic patterns, which often go unnoticed by the traffic network operators.

Tracking this kind of changes in real-time by means of our framework can improve the

161

Chapter 6. Applications using Real Traffic Data 162

reaction time of the traffic management team resulting in less congestion. The second

application of traffic diffusion and influence estimation is on the way traffic diffuses from

one road segment to another and thereby keeps influencing the traffic of connected road

segments. Traffic congestions generally originate from some crowded road segments, and

diffuse towards other parts of the urban road networks creating further congestions. This

behavior of road networks motivates the need to understand the influence of individual

road segments on others in terms of congestion. In this work, we propose RoadRank, an

algorithm to compute the influence scores of each road segment in an urban road network,

and rank them based on their overall influence. It is an incremental algorithm that keeps

on updating the influence scores with time, by feeding with the latest traffic data at each

time point. The method starts with constructing a directed graph called influence graph,

which is then used to iteratively compute the influence scores using probabilistic diffusion

theory. We show promising preliminary experimental results on real SCATS traffic data

of Melbourne.

6.1 Introduction

The developed urban areas these days are well equipped with urban traffic control systems

(UTCS) like Sydney coordinated adaptive traffic system (SCATS) and split cycle offset

optimisation technique (SCOOT). These traffic management systems log the aggregated

traffic movement data on each of the road segments in real-time. This data do not contain

individual movement trajectories, rather they are different traffic measures indicating the

traffic load on the different road segments at each point of time.

The Sydney Coordinated Adaptive Traffic System (SCATS)1 is a fully adaptive urban

traffic control system developed in Australia in 1970. This intelligent transport system

requires a minimal manual intervention and thus saves substantial operational costs. It

has been continually developed for over 40 years and sold to 27 countries, delivering real

and measurable reductions in road travel times and delays. It manages the signal phases

(cycle times, phase splits and offsets) of the traffic signals dynamically in real-time, based

on the traffic data collected by the vehicle sensors (inductive loops) installed within road

1http://www.scats.com.au/

Chapter 6. Applications using Real Traffic Data 163

Figure 6.1: Melbourne Road Network

pavements of each traffic signal. The recorded traffic data is used by SCATS to calculate

and adapt the timing of traffic signals in the network. A standard SCATS database

contains records logged by loop detectors (having a detector identifier) corresponding to

each lane (having lane number) of each specific road segment (having a road identifier)

at each SCATS site (road intersection points operated by traffic signals). The overall

measures corresponding to road segments are computed by referring to those of the lanes

in them (having a site identifier). The traffic records include the following main fields.

• Traffic data (corresponding to detector id, lane id, road id, scats id, and time-stamp):

traffic count (Vo), maximum traffic flow (MF), and corresponding vehicle occupancy

(KP).

• Control data (corresponding to detector id, lane id, road id, scats id, and time-

stamp): signal cycle time (c), green time (g, for each traffic movement) and infor-

mation related to the offset between signals.

• The other important data calculated from the above data are the so called degree of

saturation (DS), equivalent count (Vk), and volume ratio (VR). DS gives a measure

of the density of traffic flow on a road segment and used in traffic control. It is

defined in equation 6.1 as the ratio of the effectively used green time to the total

available green time on the approach, where T is the total space (non-occupancy)

Chapter 6. Applications using Real Traffic Data 164

time, t is the average space time during saturated flow conditions, and n is the

number of vehicles counted. Equation 6.1 may result into a DS of more than 100 %,

which indicates an over-saturated traffic [138].

DS =
g − (T − n × t)

g
(6.1)

Vk is defined in equation 6.2 as the estimated traffic count having the same DS under

free flow conditions.

V k = g × DS × MF (6.2)

VR is defined the ratio of the estimated traffic count to that in real (i.e., V k
V o

), and is

considered as another indicator of traffic congestion. A value greater than 1 indicates

an over-saturated traffic [138].

Theoretically DS alone should be able to identify the congestion in SCATS based traf-

fic networks. A value of DS close to or greater than 1 (100 %) indicates a saturated

or over-saturated traffic. However, [138] argued that since this value is continually

modified within SCATS control algorithms, it no longer correctly demonstrates the

state of congestion. On the other hand, Vo gives the actual number of vehicles cross-

ing a road segment in a signal cycle. A high value of this measure indicates a free

traffic flow, but a low value does not give a clear indication. It could mean that

there are very few vehicles on the road and the traffic is very smooth, or the traffic

is heavily congested and very few vehicles are able to cross in one signal cycle. Pre-

vious research shows that none of the fields in the SCATS traffic data give a direct

indication of congestion independently.

VicRoads (aka Roads Corporation of Victoria) is the road and traffic authority in the

state of Victoria, Australia. The operation of SCATS based traffic signals in Victoria are

managed by VicRoads. Our database is an accumulation of the data collected from the

multiple SCATS sites in Victoria over a period of time. As mentioned in [139], dealing with

large traffic data is not an easy task. In many instances, the SCATS sensors fail and give

inaccurate (or no) measurements. Sometimes the measures face unexpected interference

of mediators. On many roads there exist no installed sensors. These factors altogether

Chapter 6. Applications using Real Traffic Data 165

lead the SCATS sensors to introduce uncertainty into the system, and the collected data

has chances of being poor in quality. There exist many roads for which no measures exist

in the data. One major challenge is to handle this incompleteness of the sparse data. To

overcome this, the data requires to go through some pre-processing and repairing tasks.

Our database primarily consists of five tables interlinked by primary keys and foreign

keys, which are SiteLayout, SiteList, SMData, SMDetectorInfo, and VolumeData. To

recover the missing values for the roads that have no traffic measures in the database,

we apply some pre-processing and repairing tasks. They are assigned an average of the

corresponding measures of their adjacent roads. If their adjacent roads themselves do not

have these measures, then firstly the measures of these roads (adjacent to the first one)

are found, from their own adjacent roads (adjacent to the adjacent to the first one). It

goes on recursively until such a road is encountered, which has its adjacent roads’ traffic

measures recorded in the database.

Urban roads exist in the form of a physical transportation network spatially spread over a

large urban area. Figure 6.1 shows the Melbourne road network and the signalized intersec-

tion points used in SCATS. In the following definitions, we present the main components

and the terminology of these networks.

Definition 6.1. (Road) A road is a generally used term to mean a publicly accessible

way for transportation. It has no standard range for its length and can vary from a very

short one to a very long. �

Definition 6.2. (Road Segment) A road segment ri is defined as the smallest unit of

a road having its traffic flow in a single direction. Thus a road is composed of one or

more road segments, where the two opposite directions of traffic flow form different road

segments. �

Definition 6.3. (Intersection Point) An intersection point (or road intersection point)

ιi is defined as the point connecting two or more road segments. �

Definition 6.4. (Road Network) A road network is defined as N = (I,R) comprising

a set of road intersection points I = {ι1, ι2, . . . , ιnι} as nodes that are connected among

themselves by the set of directed road segments R = {r1, r2, . . . , rnr} as its links, where

each road segment ri associates a set of feature values with itself, including the different

traffic measures ri.f . �

Chapter 6. Applications using Real Traffic Data 166

In this chapter, we present two important applications on road traffic networks. The first

one is the temporal tracking of congested partitions, in which we define certain traffic

measures (e.g. volume and green time utilization) available from the traffic signal control

system to identify the congested partitions, and track their evolution with time. The sec-

ond application, we propose an algorithm (referred as RoadRank) to compute the influence

scores of each road segment in an urban road network, and rank them based on their

overall influence.

The rest of the chapter is organized as follows. It starts with the first application of tem-

poral tracking of the congested partitionsin Section 6.2, followed by the second application

of traffic diffusion and influence estimation in Section 6.3. Finally Section 6.4 presents a

summary of the chapter.

6.2 Temporal Tracking of Congested Partitions in Dynamic

Urban Road Networks

Most of the people living in urban areas are daily or frequent travelers within the urban

road network. Traffic congestion is indeed a practical issue. The currently operating

traffic management systems, such as SCATS and SCOOT log the traffic data continuously

in real time. Based on those data, the systems adaptively control the traffic flow. To cover

our journey in minimum possible time and avoid any unexpected circumstances, journey

planning services on the Internet and mobile applications are of great use. The Google

Traffic service on Google Maps visualizes the traffic condition using simple heat map in

real time by anonymously collecting GPS data from a large number of mobile phone users.

However, further efficiency improvement in the traffic management and advanced traffic

visualization techniques are necessary to meet the growing traffic demand.

As discussed in the previous chapters, the traffic flow patterns vary significantly in different

sub-networks, greatly influenced by their spatial and temporal importance. Even though

we are accumulating huge amounts of traffic data these days through various sources,

not much work have been done on studying the pattern of movement of congestion and

its evolution with time. In this work, we develop a simple framework to monitor the

Chapter 6. Applications using Real Traffic Data 167

evolution of traffic congestion in real time. It firstly identifies a set of differently congested

road network partitions in the beginning, incrementally updates them at each subsequent

time points in real time, identifies the congested partitions, and tracks their evolution with

time.

The main contributions made in this application are summarized below.

– We propose a framework for identifying and monitoring the congested partitions over

a period of time, that considers several key parameters in SCATS data to identify

the congestion.

– Our method to incrementally update the identified partitions without re-partitioning

the network each time is much more efficient for large scale urban road networks. This

is achieved by defining a stability measure of road segments that is used to prioritize

the processing and boundary adjustment of relatively unstable road segments.

– We identify and track the evolution of congested partitions using different visualiza-

tion schemes and statistical measures.

– Our experimental study based on SCATS data give insights to the real traffic con-

gestion scenario. We found that congestion in Melbourne and its pattern can change

quickly over the course of as short as 3 minutes during peak hours. Tracking these

changes by means of our framework can improve the reaction time of the traffic

management team resulting in less congestion.

6.2.1 Proposed Congestion Monitoring Method

In the proposed framework, we consider congestion as a road network partition having a

homogeneous level of congestion inside, which is higher than a given threshold, and call it

as a congested partition. The level of congestion is defined based on key parameters (DS

and VR) recorded in SCATS, detailed later. Monitoring such partitions over a period of

time requires to firstly identify them and then track the change in them over a period

of time. Our method for identifying and monitoring these congested partitions, shown

in Figure 6.2, consists of three main tasks. It starts with transforming the given large

Chapter 6. Applications using Real Traffic Data 168

Road Graph Construction

-Cut

Road network
Road graph

Congested Partition Tracking

Initial Partitioning

Incremental Update

Time point, TiTime point, Ti+1Time point, Ti+2Time point, Ti+3

Time point, T0

SCATS

Figure 6.2: Proposed congestion monitoring method based on real-time traffic data
from SCATS

urban road network into a road graph as a preliminary step. Then the first task identifies

the differently congested partitions in the road graph based on the traffic data collected

from SCATS. We approximate the freeway traffic with the SCATS data collected at the

intersections next to on-ramp location, which serve as an indicator for the congestion of

the freeway section between those on-ramps (note that Melbourne freeways are regulated

by ramp metering that aims to avoid congestion on the freeways and thus congestion will

be observed at intersections around the proximity of freeways due to traffic overflow from

the on-ramps). Though we consider only the SCATS data in this work, the method can

be easily adopted to include more traffic data collected from different sources. The second

task accepts the obtained set of partitions as its input and incrementally updates them

in an efficient manner at each subsequent time point based on the newly collected traffic

data in real time. The third task identifies the congested partitions from the complete

set, and effectively presents them to the end user by their geographic visualization and

statistical measures. The first task is performed only at the beginning time point, whereas

the second and third tasks are a continuous process performed indefinitely to track the

Chapter 6. Applications using Real Traffic Data 169

change in congestion in terms of its size and location happening in real time. The first and

second tasks consider both congested and non-congested partitions and sets the base of

the system, whereas the third task focuses only on the congested partitions. The following

subsections describe these tasks in detail.

6.2.1.1 Partitioning Road Network in the Beginning

Definition 6.5. (Road Graph) Given a road network N , the corresponding road graph

G = (V, E) is constructed as the dual of N by adding each road segment ri as a node vi,

and establishing a link ei between each possible pair of nodes (vj, vk) if there exist at least

one intersection point ιl which is a common intersection for the roads rj and rk in N ,

and the traffic can flow either from rj to rk or vice versa. Each node vi (node(ri)) ∈ V
associates with it a feature value vi.f which is the road traffic measure ri.f . �

The partitioning task accepts the road network and the feature values, DS and VR, corre-

sponding to each road segment in the network at the beginning time point t0 as input, and

partitions the network based on road segment connectivities (i.e., the connectivity of one

road segment to other subsequent and preceding segments through the intersection points)

and similarity of their feature values. It goes through two main steps, i) transforms the

real road network into the road graph; and ii) applies a partitioning algorithm on the road

graph based on DS and VR. After the construction of road graph G = (V, E) following

definition 6.5, all the road segments ri which exist as nodes vi in the graph are assigned

their feature vector vi.f = 〈DS(ri), V R(ri)〉 consisting of DS and VR as feature values

at time t0. Each of the links in li ∈ E between the nodes vp and vq are assigned a weight

ωi using Equations 6.3 and 6.4, where σ2(v) is the variance of node feature vectors with

respect to the mean vector μ = 〈μds, μvr〉 of DS mean and VR mean. It makes the road

graph a weighted graph G = (V, E,W).

ωi = exp

(
− (vp.f − vq.f)

2

2 × σ2(v)

)
(6.3)

σ2(v) =
1

|V|
×

|V|∑
i=1

(vi.f − μ)2 (6.4)

Chapter 6. Applications using Real Traffic Data 170

Throughout the process in this work, the network undergoes transformation twice. At the

beginning, the given actual road network is transformed into the road graph representation

to apply the algorithm. While it is simple and easier to mathematically process the network

in this representation, it is very hard to visually interpret the obtained results in this

form. Therefore after treating the road graph with the proposed method to get congested

partitions, it is transformed back again into its original representation form.

After construction of the road graph G, it is subjected to a partitioning algorithm based on

α-Cut [3] (proposed in Chapter 3) to obtain a set of graph partitions or subgraphs, each

of which are expected to have homogeneous feature values inside them, and heterogeneous

to those in other partitions. The obtained partitions are a set of differently congested

partitions (high as well as low) based on DS and VR.

6.2.1.2 Incremental Update of Partitions with Time

The previous section provides the k differently congested partitions at the beginning time

point t0. In this section, we fix the number of partitions to k and track their evolution

by adjusting the boundary nodes and incrementally updating the partitions based on the

newly obtained traffic data in real-time. It starts with computing the mean VR μ1
vr(Pj)

and mean DS μ1
ds(Pj) inside all the partitions Pj individually from the traffic data

obtained at the next time point t1. The VR (vi.vr) and DS (vi.ds) values of nodes lying

on boundary of the partitions are compared with μ1
vr(Pj) and μ1

ds(Pj) of the current

partition and also the neighboring partitions. They are moved to the partition whose

mean values are closest to their own feature values. Comparing the node feature values

with the partitions’ mean values for all the nodes becomes a tedious and computationally

expensive task. To efficiently do this in real-time, we define a novel measure called stability

of a node.

Definition 6.6. (Node Stability) If a node vi belongs to partitions Pj at time tr, then

the stability stab(vi) is defined as the likelihood of vi to remain in the same partition

Pj at time tr+1. To compute its measure we consider two of its kinds- i)spatial stability,

which looks into how well the feature values of vi match with those of the rest in Pj at

Chapter 6. Applications using Real Traffic Data 171

time tr+1; and ii) temporal stability, which looks into how much stable vi was in the

previous time points. �

stab(r+1)(vi) =
1

2
×

(
stab(r)(vi) + exp

(
−1

2
×

(
abs

(
vi.vr + 1

μ
(r+1)
vr (Pj) + 1

− 1

)

+abs

(
vi.ds + 1

μ
(r+1)
ds (Pj) + 1

− 1

))))
(6.5)

The first part stab(r)(vi) coming from the previous time point r stands for the temporal

stability, and the remaining part stands for the spatial stability. The spatial stability is

based on the distance of the node from its partition centroid by ratio of their feature values

(VR and DS) to partition mean values. We maintain all the boundary nodes in a heap

tree based priority queue. Firstly, the stability measure is computed for all the boundary

nodes, based on which they are inserted into the queue. The node with least stability

measure is given the highest priority, and this order of stability and priority is maintained

for all in the queue. One after another, a node vi with highest priority is picked from

the queue, and its feature vector vi.〈vr, ds〉 is compared with the partition mean vector

〈μr
vr(Pj), μ

r
ds(Pj)〉 using Euclidean distance, ∀j such that Pj ∈ {current partition(vi),

neighboring partition(vi)}. It is then removed from the queue and allotted to the closest

partition based on the comparison. Among the nodes linked to vi, all those that became

new boundary nodes are inserted into the queue, and all those that were on boundary

earlier but not now after this change are removed from the queue. This process of getting

a node from the queue, allotting to a partition, and updating the queue is carried out until

stab(r)(vi) < εstab, where εstab is a predefined threshold for stability comparison. All

the stable boundary nodes (having their stability measure greater than the threshold) are

assumed that they already belong to the correct partition, and therefore are not checked.

This task of incrementally updating the partitions is a continuous process, performed at

each time point when new traffic data arrives into the system.

Chapter 6. Applications using Real Traffic Data 172

6.2.1.3 Identification of Congested Partitions and their Tracking

In a road network, the road segments often have hierarchy, where big roads are connected

by small roads. Some roads may experience heavy congestion while other connected ones

may have no congestion at a point of time. As connectivity is an important factor in

partitioning the network, it may also happen that a road with very low congestion lies in a

partition that has a high congestion overall, because of the reason that it is surrounded by

roads with high congestion. This property leads all the partitions to have roads with both

high and low congestion inside, but their overall level of congestion in the subnetwork are

different and unique. Based on this property, we define the congestion measures below.

Definition 6.7. (Congested Road Segment) A road segment ri is said to be congested,

if its VR and DS measures are greater than certain thresholds, i.e., ri.vr > εvr and

ri.ds > εds. �

Definition 6.8. (Congestion Ratio) The congestion ratio (CR) of a partition Pi is

defined as the ratio of the number of congested road segments to their total number in

Pi. �

Definition 6.9. (Congested Partition) A partition Pi is said to be congested if at least

half of its road segments are congested. It also means that the congestion ratio of Pi has

to be at least 0.5 to call it as congested. �

While all the differently congested partitions have their own significance in the road net-

work from different perspectives, those having high level congestion are of particular inter-

est to the travelers and traffic management authorities. This task identifies the congested

partitions based on Definition 6.9 and selectively tracks the change in their structure and

movement with time. As the representation of these partitions is not in the form the actual

network topology, they are transformed back into their original representation in the last

step.

The tracking of the congested partitions over the period of time is done in two ways, i)

through geographic visualization, and ii) through statistical measures. The visualization

displays the congestion on geographic map that keeps on updating with time to reflect the

latest scenario. It gives a way to visually analyze the congestion in real time for the traffic

Chapter 6. Applications using Real Traffic Data 173

management authorities as well as the commuters. We found three main visualization

schemes that give a good understanding of the traffic scenario.

• Simple heat map: All the road segments are assigned their feature values, and their

strength is visualized by using color codes on a geographic map.

• Partition visualization: All the differently congested partitions are visualized on a

geographic map by using light and dark color codes to represent the different levels

of congestion in them. It is updated at each new time point to reflect the latest

scenario, and the change in their structure and location can be seen clearly with

time. As our method takes into account both the volume and degree of saturation

data in identifying the congested partitions, this scheme gives a summarized view of

congestion altogether on the network, and makes its analysis easy to interpret.

• Congested partition visualization: It focuses only on the congested partitions, and

ignores the remaining sections of the road network. The main advantage of this

scheme is that it helps in understanding how the congestion grows, shrinks, and

moves over a period of time.

We also compute some congestion related statistical measures and show the change in

them over the period of time in the form of charts.

• Congestion size in terms of road segments (CSR): It is defined as the number of road

segments lying in the set of congested partitions. It gives the information about how

big is the congestion, but do not tell whether the whole congestion is interdependent

or not.

• Congestion size in terms of partitions (CSP): It is defined as the number of congested

partitions. A large CSP indicates that there exists several independent congestions

in different portions of the network.

• Congestion Magnitude (CM): It is defined as the average of CR of the congested

partitions, and gives the information about how much congested are the congested

partitions at a point of time.

Chapter 6. Applications using Real Traffic Data 174

• Average congestion ratio (ACR): It is defined as the average of CR of all the partitions

irrespective of whether they are congested or not, and gives the information how

much is the complete road network congested at a point of time.

6.2.2 Experimental Results

We performed experiments using SCATS data collected from the Melbourne road networks

provided to us by VicRoads2. This dataset is an accumulation of the traffic records of

individual road segments for each signal cycle from 1st Jan 2011 to 1st Jan 2013, and

stored as a database of five interlinked tables on a local server. As mentioned in Section

6.1, many road segments have their traffic measures missing, for which we applied a data

repairing technique to regain those measures. The considered Melbourne sub-network

consists of 1444 road segments and 581 intersection points, where the traffic measures are

logged by 493 SCATS sites.

6.2.2.1 Simple Heatmap Visualization

Figure 6.3 shows the heat map based on Vo, VR and DS at 08:30 AM on 03-12-12 (Monday)

in 6.3(b), 6.3(c), and 6.3(a) respectively. The color ranges from light green to dark red,

where the darkness indicates a higher value. Though it helps to visually interpret those

values at a particular time point, but as they change with time, it becomes very hard to

perceive and track the change, as is evident from the figure. It urges for a more informative

and effective visualization. Therefore we apply our proposed method on the SCATS data

in the next section.

6.2.2.2 Visualization Comparison with Google Traffic

Congestions in the network can be simply (but not necessary effectively) visualized as a

heat map using individual parameters. Figure 6.4(a) shows the Google Traffic visual-

ization of a typical Monday traffic at 11:00 AM in Melbourne, which is a simple heat map.

2http://www.vicroads.vic.gov.au/

Chapter 6. Applications using Real Traffic Data 175

(a) Heat map generated using DS at 08:30 AM

(b) Heat map generated using Vo at 08:30 AM

(c) Heat map generated using VR at 08:30 AM

Figure 6.3: Visualization of traffic data

Chapter 6. Applications using Real Traffic Data 176

(a) Google Traffic visualization of at 11:00 AM (typical, Monday)

(b) Partition visualization by our framework at 11:00 AM (03-12-12, Monday)

Figure 6.4: Visualization of traffic data

Chapter 6. Applications using Real Traffic Data 177

A commuter can see which of the roads are congested at a point of time. The same col-

ored road segments are not necessarily connected, which does not give information about

how the congestion is actually spread or moving. Figure 6.4(b) shows a snapshot of the

visualization of all the differently congested partitions by our framework at 11:00 AM on

03-12-12 (Monday). We run the α-Cut algorithm in the beginning for initial partitioning

and run the incremental update algorithm after each 3 minute intervals of time. The two

directions of traffic flow of the partitions are shown separately side by side in the figure.

All the 5 partitions are shown in different colors ranging from green (indicating low con-

gestion) to red (indicating high congestion). Comparing the two figures, there may be

difference in the level of congestion (color) shown for particular road segments because

the underlying traffic data for the two methods is not same. Our aim here is to make

the visualization informative and effective. Each partition in our visualization is a sub-

network (connected from inside) and represents a certain level traffic congestion shown by

the color. It shows how the different sub-networks are spread across the network and gives

a more informative high level view of the congestion. The zoom in and zoom out features

give further information regarding how the sub-networks are spread or connected.

6.2.2.3 Congested Partition Identification

Generally the regions or road segments where the congestion originates and comes to end,

the path or direction of congestion movement, and the rate in which the congestion grows

and shrinks are of keen interest to the traffic management authorities. Our third form

of visualization sets a threshold to accept a partition as congested, and shows only those

congested partitions for a close look with the aim to discover the mentioned congestion

evolution patterns. Based on our experimental study and an existing work [138], we

set the thresholds εstab, εds and εvr to 0.99, 0.7 and 1.1, respectively, and obtain the

congested partitions. The number and size of these congested partitions vary from time

to time. Figure 6.5 shows snapshots of the congested partitions (in red color) at different

times in the morning of 03-12-12 (Monday). We found that congestion starts building

up in early morning and the first to face is the area around the intersection of Monash

Freeway and Toorak Rd at 07:21 AM, as shown in Figure 6.5(a). It starts spreading to

neighboring road segments at 07:39 AM (Figure 6.5(b)). At 07:45 AM the congestion

Chapter 6. Applications using Real Traffic Data 178

Monash Fwy

(a) At 07:21 AM

Monash Fwy

Malvern Rd

Aurburn RdToorak Rd

Kooyong Rd

Glenferrie Rd

(b) At 07:39 AM

Monash Fwy

Malvern Rd

Aurburn Rd

Toorak Rd

Glenferrie Rd

(c) At 07:45 AM

Malvern Rd

Aurburn Rd

Toorak Rd

Glenferrie Rd

Eastern Fwy

Princess St

Earl St

Hoddle St

Lygon St

Swan St

Chandler Hwy

Yarra Blvd

(d) At 07:51 AM

Monash Fwy

Malvern Rd

Aurburn Rd

Toorak Rd

Glenferrie Rd

Eastern Fwy

Princess St

Earl St

Hoddle St

Chandler Hwy
Yarra Blvd

Williamstown Rd

St Kilda Rd

Royal Pde

Princes Hwy

Bridge Rd

(e) At 08:06 AM

Monash Fwy

Malvern Rd

Aurburn Rd

Toorak Rd

Glenferrie Rd

Eastern Fwy

Princess St

Earl St

Hoddle St

Chandler Hwy
Yarra Blvd

Williamstown Rd

St Kilda Rd

Royal Pde

Princes Hwy

Bridge Rd

(f) At 08:24 AM

Figure 6.5: Congested partitions obtained by the proposed method

Chapter 6. Applications using Real Traffic Data 179

0

100

200

300

400

500

600

7:
33

:0
0

7:
39

:0
0

7:
45

:0
0

7:
51

:0
0

7:
57

:0
0

8:
03

:0
0

8:
09

:0
0

8:
15

:0
0

8:
21

:0
0

8:
27

:0
0

8:
33

:0
0

8:
39

:0
0

8:
45

:0
0

8:
51

:0
0

8:
57

:0
0

9:
03

:0
0

CS
R

M
ea

su
re

Time

(a) CSR

0

1

2

3

4

5

7:
33

:0
0

7:
39

:0
0

7:
45

:0
0

7:
51

:0
0

7:
57

:0
0

8:
03

:0
0

8:
09

:0
0

8:
15

:0
0

8:
21

:0
0

8:
27

:0
0

8:
33

:0
0

8:
39

:0
0

8:
45

:0
0

8:
51

:0
0

8:
57

:0
0

9:
03

:0
0

CS
P

M
ea

su
re

Time

(b) CSP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

7:
33

:0
0

7:
39

:0
0

7:
45

:0
0

7:
51

:0
0

7:
57

:0
0

8:
03

:0
0

8:
09

:0
0

8:
15

:0
0

8:
21

:0
0

8:
27

:0
0

8:
33

:0
0

8:
39

:0
0

8:
45

:0
0

8:
51

:0
0

8:
57

:0
0

9:
03

:0
0

CM
 /

 A
CR

 M
ea

su
re

Time

CM ACR

(c) CM and ACR

0

5

10

15

20

25

7:
33

:0
0

7:
39

:0
0

7:
45

:0
0

7:
51

:0
0

7:
57

:0
0

8:
03

:0
0

8:
09

:0
0

8:
15

:0
0

8:
21

:0
0

8:
27

:0
0

8:
33

:0
0

8:
39

:0
0

8:
45

:0
0

8:
51

:0
0

8:
57

:0
0

9:
03

:0
0

Pe
rc

en
ta

ge
 o

f R
oa

d
Se

gm
en

ts

Time

CRNP NRCP

(d) Accuracy of the proposed framework

Figure 6.6: Congestion statistics

moves in anti-clockwise direction on Toorak Rd, Glenferrie Rd, Malvern Rd, Tooronga

Rd, and the Monash Freeway, and forms a round (Figure 6.5(c)). The other congestion

hotspot in the early morning is the Eastern Fwy that is used by the people from far east

to enter towards the city (Figure 6.5(d)). Though the congestion starts a little later on

this freeway, the big size of this partition indicates its bigger effect on the whole network.

The congestion spreads around the intersection of Chandler Hwy and Eastern Fwy to

connecting roads like Princess St and Earl St. We see that people also try to avoid the

freeway congestion by taking early exits (at Princess St) or going through the Yarra Blvd,

and in turn they also become affected. Moving towards the west, after the intersection

of the freeway with Hoddle St, the congestion spreads all around in the city, and starts

growing rapidly. During this time the change in the size and location of congestion is very

Chapter 6. Applications using Real Traffic Data 180

frequent. We observe that at 08:03 AM the congestion on intersection of Monash Freeway

and Toorak Rd also starts growing, and meets the others at 08:06 AM (Figure 6.5(e)). At

08:24 AM the congestion spreads on all the main roads all over the network, especially

the CBD area (Figure 6.5(f)). In our experiments we found that the level and the size

of congestion keeps on increasing until 08:45 AM, then decreases gradually till 09:00 AM,

and decreases drastically after that. The reason could be that by that time most of the

people might have reached to their destinations.

We present the statistical measures in Figure 6.6. Figure 6.6(a) shows the number of road

segments affected by the congestion, in which we see that there is a rapid increase from

08:03 AM to 08:09 AM. Figure 6.6(b) shows the number of different congested partitions,

which means that there exist multiple independent congestions that can be visualized

as different layers individually. For example, it shows two partitions at 08:03 AM as

two independent congestions. Figure 6.6(c) shows CM as the level of congestion in the

congested partitions and ACR as that in the overall network. The values of both CM and

ACR can range from a minimum of 0 when there is no congestion at all to 1 when the

network is fully congested. We see that in the peak hours the CM reaches even more than

0.7. Also there is a big gap between CM and ACR. An optimization of the traffic flow

would bring the CM down and result into minimization of this gap.

Figure 5(d) shows the percentage of congested road segments in non-congested partitions,

and that of non-congested road segments in congested partitions denoted as CRNP and

NRCP, respectively. Observe that the percentages are under 23% for CRNP and 15%

for NRCP, which indicates a good accuracy in terms of partitioning performance (more

discussions based on this measure see [3]).

The SCATS traffic data in our framework is collected and preprocessed in every 3 minutes

interval. The computations take 92 seconds for the initial partitioning, approximately 1

second for each incremental update of partitions, and less than a second for identifying

the congested partitions. Thus it takes approximately 2 seconds to visualize the updated

congested partitions at each successive 3-minute interval. It shows the applicability of our

system in the real scenario, where looking into the trend of congestion evolution in real

time, the traffic management authorities can prioritize their attention on these congested

Chapter 6. Applications using Real Traffic Data 181

partitions and alleviate any unexpected circumstances (e.g., accident). Also the commuters

can have a good idea about the congestion spread and connectivity, and plan their travel

accordingly.

6.3 Traffic Diffusion and Influence Estimation

Traffic congestion remains a big challenge in the 21st century due to the rapid growth of

population and their mobility demand within the urban areas [3]. Congestion often starts

in few confined places within the network and propagates through various connected road

segments. The propagation of congestion is due to the diffusion (or movement) of traffic

from one road segment to another where the amount of traffic on any particular road

segment is influenced by and influences that of others. The level of influence one road

segment can have on others in terms of congestion depends on their spatial and temporal

attributes and is not the same across the network. Clearly, high influential road segments

play a more important role in the building up of congestion and will need to be better

managed in order to alleviate or delay the congestion onset.

In this application, we propose our novel algorithm named RoadRank that computes the

influence scores (called roadrank scores) of each road segment in an urban road network.

Figure 6.7 shows the work flow of the complete method. To deal with the dynamic nature

of traffic on a road network, it also updates the scores incrementally with time, by feeding

in the latest traffic measures at each timestamp. The method starts with constructing a

directed graph called influence graph. It is used to compute the traffic diffusion from one

road segment to another, based on the collected traffic measures. Finally the roadrank

scores are iteratively computed using probabilistic diffusion theory for the starting point

of time. At each successive timestamps, they are iteratively updated based on the new

traffic measures. We also show preliminary experimental results on real SCATS traffic

data of Melbourne.

Chapter 6. Applications using Real Traffic Data 182

Road Influence Graph Construction

Road network

Traffic Diffusion Computation

Data di

Data di+1

Data di+2

Data d0

SCATS

Road Influence Graph

Initial Ranking

Iterative computation of
RR scores

Incremental Ranking

Iterative computation of RR scores

TDP for d0

TDP for diTDP for di+1

TDP for di+2

RR at t0

RR at ti

RR at ti+1RR Scores

Figure 6.7: Proposed method for ranking influential road segments

6.3.1 Problem definition

Let us suppose we have a given urban road network N having all recorded historical

traffic data D corresponding to each of the road segments in the network. Let T =

〈t0, t1, . . . , tl−1, tl〉 be the timestamps of the recorded data, where t0 is the very first

record, and tl is the latest record that keeps on updating with time. Thus the dataset

D = 〈d0, d1, . . . , dl−1, dl〉 becomes an incrementally updating vector, where each di

is the traffic data recorded at time ti. The problem of estimating the influence of road

segments is to incrementally compute an influence score for each road segment ri in N
corresponding to each di (at ti) and rank them based on this measure. The influence score

(also called roadrank score to be defined in Section 6.3.2.3) of a road segment ri gives a

Chapter 6. Applications using Real Traffic Data 183

(a) Actual road map

Mary St

Chrystobel Cres

Lynch St

Burwood Rd

Manningtree Rd Oxley Rd

Burwood Rd

Liddiard St

W
ill

ia
m

 S
t

He
nr

y
St

Gl
en

fe
rr

ie
 R

oa
d

(B1e) (B2e) (B3e)

(Ly1e)

(My1e)

(C1w)
(Ld1e) (Ld2e)(G

1s
)

(G
2n

)
(G

3n
)

(G
4n

)

(Mn1e)

(O1w)

(H
1n

)

(W
1n

)

(My1w)
(C1e)

(Ly1w)

(B1w)

(Mn1w)

(O1e)

(B2w) (B3w)

(Ld1w) (Ld2w)

(G
1n

)

(G
2s

)
(G

3s
)

(G
4s

)

(W
1s

)

(H
1s

)

(b) Road network

Figure 6.8: An example of a road network

measure of how much the traffic on ri influences that on the global network N because of

the traffic diffusion going on via its linked road segments.

6.3.2 RoadRank Algorithm

6.3.2.1 Road Influence Graph Construction

The method starts with constructing a road influence graph Ginf from the road network

N , having the road segments as nodes and the directed edges between them represent the

Chapter 6. Applications using Real Traffic Data 184

(My1w)

(C1w)

(G1s)

(G2s)

(Ld1w) (Ld2w)

(H1s)
(W1s)

(Ly1w)

(G3s)

(B1w)

(G4s) (B2w)

(Mn1w) (O1w)

(B3w)

)

33

(My1e)

(C1e)

(Ly1e)

(G1n)

(G2n)

(G3n)

(G4n)

(Mn1e)

(B1e)

(Ld1e)

(B2e)

(O1e)

(Ld2e)

(H1n)

(B3e)

(W1n)

Figure 6.9: Road Influence graph

influences relationship.

Definition 6.10. (Road Influence Graph) Given a road network N = (I,R), the

corresponding road influence graph Ginf = (V, E) is constructed by adding each road

segment ri ∈ R as a node vi ∈ V , and establishing a directed link ei ∈ E from vj to

vk if these two conditions hold- i) there exist at least one intersection point ιl that is a

common intersection for the roads rj and rk, and ii) the direction of traffic flow leads the

movement from rj to rk. The directed link ei shows that the traffic on road segment rj

(or node vj) influences the traffic on road segment rk (or node vk). �

We assume that the traffic rule allows a moving vehicle to take all the turns including left-,

right-, and U-turns at intersection points on all the roads in the network (though in real

there exist restrictions). In Figure 6.8, we have shown an example of road networks, where

only the yellow major roads from Figure 6.8(a) are considered3 to show the equivalent

road network. The influence graph is constructed from this road network as shown in

Figure 6.9. A traversal from one node to another in the influence graph gives the path of

the traffic flow as well as the traffic diffusion process. One such example is (My1e)
inf−−→

(G1s)
inf−−→ (G2s)

inf−−→ (G3s)
inf−−→ (B2e)

inf−−→ (B3e)
inf−−→ (B3w).

3To keep the example simple (all the roads including small ones are considered in real)

Chapter 6. Applications using Real Traffic Data 185

6.3.2.2 Traffic Diffusion Computation

Information diffusion is a widely studied research area in social media, where the informa-

tion propagates from one source to another. In road traffic networks, there is a physical

movement of the traffic from one road segment to another. We model this movement

as a traffic diffusion process, in which the traffic diffuses among differently concentrated

road segments through their connectivities. The directed links in the influence graph con-

structed in Section 6.3.2.1 show the direction and order of movement of this traffic. To

find the exact amount of traffic that diffuse from one road segment to another in a directed

link, we compute a measure based on their real time traffic measures.

Let V o = 〈vo1, vo2, . . . , vonr〉 and DS = 〈ds1, ds2, . . . , dsnr〉 be the vectors having

the traffic volume and degree of saturation measures of all the road segments ri ∈ R. We

compute two similarity matrices Svo and Sds for the V o and DS vectors respectively

such that Svo
ij = GSim(voi, voj) and Sds

ij = GSim(dsi, dsj). Equation 6.6 defines

the Gaussian similarity measure GSim(xi, xj), where σ
2 = 1

n
×

∑n
i=1 (xi − μ)2 is the

variance of all values in the vector.

GSim(xi, xj) = exp

(
− (xi − xj)

2

2 × σ2

)
(6.6)

Definition 6.11. (Traffic Diffusion) The traffic diffusion td(ri → rj) is defined as

the actual amount of traffic diffused from ri to rj . We compute this measure by using

Equation 6.7, where αij is a balance factor called traffic condition factor, whose value is

based on the real traffic conditions. �

td(ri → rj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αij × Svo
ij + (1 − αij) × Sds

ij , if (ri → rj) ∈ E

0, otherwise

(6.7)

The traffic condition factor αij ∈ [0, 1] is a measure that quantifies the actual traffic

condition on the roads. For example, let ri and rj be a narrow and a wide road segment

Chapter 6. Applications using Real Traffic Data 186

respectively. When a certain number of vehicles move from ri to rj , the dsi will be greater

than dsj . Thus even though all the vehicles from ri move on to rj , their similarity

in the DS measure becomes low, because of the difference in their width. The traffic

condition factor captures this aspect of road segments to balance the V o andDS similarity

measures and aid in accurately computing the traffic diffusion. Setting this value to 1

makes Definition 6.11 behave as volume diffusion, where as 0 makes it behave as degree of

saturation diffusion, and setting an appropriate value4 in between them makes it behave

as the traffic congestion diffusion.

Definition 6.12. (Traffic Diffusion Probability) The traffic diffusion probability tdp(ri →
rj) is defined as probability of the traffic that diffuse from ri to rj . We compute this mea-

sure by using Equation 6.8, where ri
inf−−→ rk means ri influences rj in Ginf (in other

words, ri → rk ∈ E). �

tdp(ri → rj) =
td(ri → rj)∑

∀k:ri
inf−−→rk

td(ri → rk)
(6.8)

6.3.2.3 Ranking

PageRank

The PageRank is one of the most popular ranking algorithms [101]. It computes a ranking

of the webpages to estimate their importance to Web navigators. It initializes each of the

pages with a small value as their page rank score (PR(pi)), and iteratively uses the linkages

(L) among them to compute their new page rank score (PR(pj)) using equation 6.9, where

d ∈ [0, 1] is the damping factor typically set to 0.85 [101], prob(pj|pi) = 1
out−degree(pi)

is the transition probability from webpage pi to webpage pj , and lij ∈ L is the hyperlink

from page pi to pj .

4It can be done based on experimental results and inputs from the experienced traffic management
people.

Chapter 6. Applications using Real Traffic Data 187

PR(pj) = (1 − d) + d ×
∑

∀pi:lij∈L

prob(pj|pi) × PR(pi) (6.9)

In the road traffic network scenario, the top-k influential road segments can be identified

by ranking and selecting the top-k of them. Moreover, as the road networks are dynamic

in nature because of the frequently changing traffic, the ranking is time-sensitive, and

needs to be updated with time based on the real-time traffic measures. Therefore we start

with computing the ranking at timestamp t0, and keep on updating the ranking at each

new timestamps t1, t2, . . . tl to always have the ranking obtained from the latest collected

traffic measures.

Ranking at t0: Our ranking algorithm borrows some concepts of the PageRank algorithm

[101]. The traffic on road networks consists of vehicles moving on its road segments. In

the proposed RoadRank algorithm, we consider that the traffic moving from one road

segment ri to another road segment rj as the recommendation made by ri to rj . Over

a period of time, also new vehicles start and existing vehicles stop randomly on different

road segments. Let vpn be the probability that a new random vehicle starts on any road

segment in the given road network N at timestamp tr, such that (1 − vpn) gives the

probability that the vehicle was already there in N . For the new random vehicle that

started in N , let vp(rj) be the probability that the vehicle started on rj , such that

(1 − vp(rj)) gives the probability that the vehicle started on any other road segment

rk ∈ {V − rj}. Thus vpn × vp(rj) gives the probability that a new random vehicle

started on rj , and (1 − vpn × vp(rj)) gives the probability that the vehicles currently

on rj were there on N since before. We compute the roadrank score of a road segment

rj by considering and aggregating these two scenarios using Equation 6.10, where RR(x)

denotes the updated score of x andRR′(x) denotes the score of x in the previous iteration.

For the new traffic, it simply counts the probability vpn × vp(rj), and for the existing

traffic it counts the summation of all roadrank scores diffused from the neighboring road

segments, multiplied by the probability (1−vpn×vp(rj)). The diffused roadrank scores

are computed as multiplication of the previous roadrank scores (RR′(ri)) of the roads

influencing rj with their traffic diffusion probability.

Chapter 6. Applications using Real Traffic Data 188

RR(rj) = f(new traffic) + f(existing traffic)

= vpn × vp(rj) + (1 − vpn × vp(rj))

×
∑

∀i:ri
inf−−→rj

(
tdp(ri → rj) × RR′(ri)

)
(6.10)

To start with, the roadrank scores RR(ri) for all the road segments are set to 1. Equation

6.10 is then used to iteratively update the RR(rj) scores from the previously available

RR′(ri) scores. Each iteration updates RR(rj) for all rj ∈ R using RR′(ri), and the

iterations are repeated until convergence is achieved.

Incremental ranking at each new timestamp tl: If we closely monitor the traffic

on road networks in very short intervals of time, we will notice that the change in traf-

fic in successive timestamps are very smooth. Therefore we can expect that in these

short intervals of time there will be no big change also in the roadrank scores. Let

RR0(rj), RR1(rj), . . . , RRl(rj) denote the roadrank scores at timestamps t0, t1, . . . , tl

respectively, based on the traffic datasets d0, d1, . . . , dl respectively. Similarly vpnl,

vpl(rj), and tdpl(ri → rj) denote the values at timestamp tl based on the dataset dl.

To compute the score at the latest timestamp tl, the roadrank scores of all ri are initial-

ized as those computed from the previous timestamp tl−1, i.e., RR′l(ri) = RRl−1(ri).

Equation 6.11 is then used to iteratively compute latest roadrank scores. The iterations

are continued until it reaches the convergence.

RRl(rj) = vpnl × vpl(rj) + (1 − vpnl × vpl(rj))

×
∑

∀i:ri
inf−−→rj

(
tdpl(ri → rj) × RR′l(ri)

)
(6.11)

Thus at each new timestamp, instead of recomputing the roadrank scores by initializing

them to 1, we incrementally update them. It significantly improves the performance by

Chapter 6. Applications using Real Traffic Data 189

requiring comparatively fewer iterations and making the task much faster. In this way,

the algorithm is able to maintain the roadrank scores with the real time data.

6.3.3 Experimental Results

To show the performance of RoadRank, we conducted experiments on real traffic data

collected from the urban Melbourne road network. The considered Melbourne sub-network

consists of 1444 road segments and 581 intersection points, where the traffic measures are

logged by 493 SCATS sites. In the dataset, many road segments have their traffic measures

missing because of faulty SCATS sensors. We regain those missing data by applying a data

repairing technique. The traffic measures are recorded for each signal cycle that differs for

the different SCATS sites. To make them consistent, we made slots of 5 minutes each and

aggregate the traffic measures during that time slot for all the road segments.

Table 6.1: Top-5 influential road segments

Rank Road segment RR Score

03-02-2012 08:05 AM

1. Hoddle St (Victoria Parade to Elizabeth St) 02.57095
2. Hoddle St (Elizabeth St to Albert St) 02.00645
3. Mills St (Canterbury Rd to Danks St) 01.89356
4. Heidelberg Rd (Hoddle St to The Esplanade) 01.83253
5. Heidelberg Rd (The Esplanade to Hoddle St) 01.81797

03-02-2012 10:05 AM

1. Hoddle St (Victoria Parade to Elizabeth St) 03.49890
2. Hoddle St (Elizabeth St to Albert St) 02.50019
3. Heidelberg Rd (Hoddle St to The Esplanade) 02.38343
4. Heidelberg Rd (The Esplanade to Hoddle St) 02.35427
5. Hoddle St (Elizabeth St to Victoria Parade) 02.31045

Table 6.1 shows the 5 top-ranking influential road segments in the considered network

on 03-12-2012 (Monday) at 08:05 AM and 10:05 AM. These results are obtained by set-

ting the traffic condition factor αij to 0.5, and getting the values of vpn and vp(rj)

from the dataset. A few road segments of Hoddle St and Heidelberg Rd are there in the

list which are well known as a congestion hotspot for both the network operators and

the commuters during the aforementioned time period. The ranking varies greatly for

different values of α. We obtained the rankings at α = 0.00, 0.25, 0.50, 0.75, 1.00,

Chapter 6. Applications using Real Traffic Data 190

and compared the top-100 of them using the Kendal’s Tau measure. The measures

we obtained are KT(RRα=0, RRα=0.25) = 2409, KT(RRα=0, RRα=0.5) = 4516,

KT(RRα=0, RRα=0.75) = 6428, and KT(RRα=0, RRα=1) = 7590. These values

show the difference in behavior of Vo diffusion and DS diffusion. A good balance between

these two diffusion can be obtained through αij by incorporating the real traffic conditions

to improve the ranking accuracy.

The ranking also keeps on changing with time based on the new traffic measures. Com-

paring the previous ranking to that obtained at 10:05 AM, we found that while few road

segments in the top order remain same, those in the lower order change greatly with

KT(RR08:05AM , RR10:05AM) = 3794 for the top 100 segments. Also some small road

segments sometimes become influential for a short period of time but quickly goes down in

the next time point as the congestion scenario changes. The convergences for t0 = 08:00

AM and 10:05 AM are achieved5 in 922 (taking 36 seconds) and 1193 (taking 42 seconds)

iterations respectively, which take significantly lesser iterations and time in incrementally

computing the ranking at subsequent timestamps tl. Normally a traffic signal takes one to

three minutes to complete a cycle. With this much interval of available time for processing

the data, our algorithm is efficient enough to perform the computations in real time.

6.4 Summary

In this chapter, we presented two important applications and performed an experimental

study using real traffic data. Through our analytical study, we showed the importance

of these applications in understanding the propagation of congestion patterns. The first

application monitors the congested partitions in dynamic urban road networks. It is able

to capture both the spatial and temporal change in the congestion pattern over a period

of time. The novelty of this method lies in utilizing the SCATS data for identifying the

congested partitions by means of graph transformation, graph partitioning and incremen-

tal update based on different system parameters. We found that the traffic congestion

in Melbourne can change rapidly in as short as 3 minutes interval during peak hours.

Some of the interesting patterns we found include the anti-clockwise congestion formation

5Performed on a Core i5 computer with 8GB RAM

Chapter 6. Applications using Real Traffic Data 191

on Monash Freeway and Toorak Rd, and then rapidly forming bigger congestion in the

east-west direction through the Eastern Fwy in less than 10 minutes. The framework can

be a useful tool to assist traffic network operators via tracking congestion patterns and

their behavior in real-time. In the second application, we developed a probabilistic traffic

diffusion model to identify the most influential road segments in an urban road network.

We presented RoadRank as a novel algorithm to compute the influence scores (or roadrank

scores) of each road segment, which are updated incrementally with time to deal with

the dynamic nature of traffic. The method starts with constructing a directed influence

graph that is used to compute the traffic diffusion from one road segment to another at

each timestamp. The roadrank scores are iteratively computed using probabilistic diffu-

sion theory. We conducted experiments on historical traffic data collected from the 493

SCATS sites in Melbourne (Australia), and presented insights to the real traffic congestion

scenario.

Chapter 7

Conclusion and Future Work

In this chapter, we summarize the major contributions made in this thesis and propose

some interesting future research directions that can be explored further.

7.1 Summary of this Thesis

We proposed and implemented a series of techniques to partition the urban road traffic

networks based on the traffic load, and capture the spatiotemporal evolution of congestion

through the obtained differently congested partitions. We also presented two important

applications to demonstrate the usefulness of our theoretical contributions and showed

interesting experimental results on real traffic data. We now summarize the research

works done in this thesis.

• Firstly, we developed a scalable method for traffic-based spatial partitioning of large

urban road traffic networks (see Chapter 3). We investigated the structure of real

road networks and developed an equivalent graph representation upon which the

technical methods can be applied. The proposed method transforms the large road

graph into a supergraph by clustering the road segments in a bottom-up manner. We

developed a spectral theory based novel graph cut (referred as α-Cut) to partition

the supergraph (or any graph). In our experimental results, we compared the per-

formance of our α-Cut and the complete road network partitioning algorithm with

193

Chapter 7. Conclusion and Future Work 194

existing existing methods. Our results show that the proposed method outperforms

the normalized cut based existing method in all the performance evaluation metrics

for small road networks and provides good results for much larger networks where

other methods may face serious problems of time and space complexities.

• Secondly, we developed a robust framework for spatial partitioning of large urban

road traffic networks using density peak graphs (see Chapter 4). It includes the

properties of both density-based and spectral-based clustering methods, and provides

an option to select a trade-off between efficiency and accuracy. It consists of a

two-stage algorithm (referred as FaDSPa) embedded in the framework. It starts

with transforming the large road graph into a well-structured and condensed density

peak graph (DPG) using the concepts of density based clustering. Thereafter our

spectral theory based α-Cut is applied on the DPG for partitioning, and the different

sub-networks or partitions are obtained. Experimental results show that for large

networks where efficiency is an important concern, we can opt for the settings to

fasten its execution. This come at the cost of compromising accuracy up to some

extent.

• Thirdly, we presented a comprehensive framework to track and capture the spa-

tiotemporal evolution of road network partitions (see Chapter 5). The evolution is

tracked by incrementally updating the partitions in an efficient manner, instead of

repartitioning the network after each update. The functionalities are embedded in

two different layers, including physical layer and logical layer. The physical layer

maintains a large number of small-sized road network building blocks, and performs

low-level computations to incrementally update them, whereas the logical layer per-

forms high-level computations in order to serve as an interface to query the physical

layer about the congested partitions. To capture the historical information and keep

them saved, we also present an in-memory index called Bin that compactly stores the

historical sets of building blocks with no information loss and facilitates their effi-

cient retrieval. Our experimental results demonstrate the effectiveness and efficiency

of the framework.

• Fourthly, we presented two important applications to study the traffic congestion

propagation patterns in the dynamic urban road networks (see Chapter 6). These are

Chapter 7. Conclusion and Future Work 195

the temporal tracking of congested partitions, and the traffic diffusion and influence

estimation. We investigated real traffic data and presents our application-specific

experimental study. During our study we found some interesting insights about the

formation and spreading of the congestion. In the first application, we found that

the traffic congestion in Melbourne can change rapidly in as short as 3 minutes

interval during peak hours. Some of the interesting patterns we found include the

anti-clockwise congestion formation on Monash Freeway and Toorak Rd, and then

rapidly forming bigger congestion in the east-west direction through the Eastern

Fwy in less than 10 minutes. In the second application, we developed a probabilistic

traffic diffusion model to identify the most influential road segments in an urban

road network. We found that the Hoddle Steert, Mills Street, and Heidelberg Road

are among the most influential roads in the Melbourne road network in the morning

hours.

In a nutshell, the techniques proposed in this thesis provide a way to analyze and under-

stand the sptiotemporal evolution of traffic congestion in dynamic urban road networks.

The traffic congestion is marked by the characteristics of being spatially diverse and tempo-

rally dynamic. By partitioning the road network, we capture the spatially diverse property

of congestion in the form of differently congested partitions. By incrementally updating

those partitions, we capture its temporally dynamic nature in the form of the change in

structure and location of those partitions. We have greatly taken care of the efficiency of

our methods so that the tracking of the evolution can be performed in real time. This the-

sis aims at contributing to the area of traffic data analysis for an intelligent traffic (and/or

congestion) management in order to aid the smart transportation services. We hope that

our research contributes towards improving the understanding of spatiotemporal evolution

of traffic congestion.

7.2 Future Work

In this section, we point out several other interesting research directions that might be

explored in the future.

Chapter 7. Conclusion and Future Work 196

7.2.1 Extension of the Thesis

In this section, we point out several future works that can be attempted to improve and

/or extend the works presented in this thesis.

• Traffic congestions in peak hours is a big problem in urban road networks. The road

network partitions discussed in Chapter 3 and Chapter 4 are the sets of connected

differently congested segments of a road network at a point of time, which are deter-

mined by the level of traffic in them. In the road network partitions, it is often found

that there are some road segments whose traffic density do not match at all with

the partition in which they belong. Their connected neighboring road segments have

measures similar to that of the partitions. Because connectivity plays an important

role in partitioning, such non-matching road segments still become part of that par-

tition. One possible future work could be developing some method to consider them

as outliers and treating them accordingly.

• We developed two methods to partition the road traffic networks. The first one uses

only spectral clustering, whereas the second one uses both spectral and density based

clusytring. The second one is more efficient than the first, but still the execution time

is long. Improving this execution time further while maintaining a good accuracy

may not be so easy, but is definitely a problem to extend this work further.

• In Chapter 5 we incrementally update the partitions to track the spatiotemoporal

evolution. While doing the incremental update, our method checks each and every

node that lie on the boundary to compute its stability measure, and check each

unstable node to reallocate to the most suitable partition. One good thing we do

is that this measure is computed only for the boundary nodes, not all the nodes in

the network, but still computing the suitable partition for each unstable node one

by one is a tedious task. Some mechanisms could be developed to do the changed or

re-allocation in groups of nodes or subgraphs. Also the merge and split operations

on the partitions could be further developed to improve the efficiency.

• We have also presented an in-memory index to store the historical building blocks in

Chapter 5. One thing we noticed is that after long times of execution, when there is

Chapter 7. Conclusion and Future Work 197

lots of historical information stored and the index has become very big size, the tree

accumulates many unwanted duplicate nodes. It makes the index inefficient. This

can be handled by developing a method to regularly restructure the tree by filter the

unwanted duplicate nodes. Also the historical information can be squeezed at egular

intervals to maintain them sparsely, as generally we would not want the information

of long time back in fine granularity. As it is not possible to store all the historical

data in primary memory, development of an index for secondary memory storage is

also a problem worth considering.

• Some previous works have suggested to use partitions for route guidance, but do

not consider the real time traffic level to suggest the fastest route. An important

future work would be to investigate computation of fastest route from a source to a

destination by making use of the maintained differently congested partitions (from

Chapter 5).

• Our method for identifying influential road segments in a road network discussed

in Chapter 6 uses the diffused traffic. There has been some study on identifying

hot routes previously. These routes are generally targeted for marketing different

commercial products, or for other purposes they are considered important. It would

be interesting to extend our method further to identify the influential routes, and

compare how similar are the influential route with the hot routes.

7.2.2 Other Unexplored Areas

There are many other unexplored areas related to advanced and intelligent traffic data

analysis, which could be very useful for the traffic management authorities and the daily

commuters. Some of the important areas are discussed below, and can be considered for

further research.

• Exploiting Socio-Spatial Data for Advanced Traffic Management: With

the growing use of social media on mobile smart-phones and increasing pervasive-

ness of geo-positioning technologies, location-based social networks (LBSN), like

Foursquare, are getting popular these days [72]. An LBSN is a social networking

Chapter 7. Conclusion and Future Work 198

website coupled with location-based services. It allows a user to check-in at venues

using a mobile phone and share it with others in realtime, where the venue corre-

sponds to a location on the geographic map. Foursquare is the most popular LBSN

today, which has over 30M users, and receives millions of check-ins per day [71].

Recently, the traditional social networking sites, Facebook and Twitter, have also

added the check-in service functionality. Through these sources, huge amounts of

socio-spatial data are getting accumulated each day. It would be very interesting to

design methodologies to discover hidden facts and traffic patterns from these data

for advanced traffic management. The challenges with this problem are the large size

and semi-structured nature of the data. To overcome these challenges, efficient data

indexing structures and efficient algorithms need to be designed. This task consist

of two subtasks, which are as follows.

• Unusual geographic event detection through socio-spatial data: Transport

departments always try to maintain a smooth traffic flow on roads. However, if an

irregularity in traffic flow, like crowd, occurs somewhere, they need to get informed

about this in real-time. The term unusual socio-spatial event refers to any abnormal

crowd behavior at a specific geographic location. In [77], Lee and Sumiya studied

the problem of unusual event detection, but their method did not consider efficiency

as a major concern. Solving this problem so as to monitor the LBSN in realtime

is very important, as the monitoring has to be performed continuously. Developing

methodologies to continuously monitor an LBSN to investigate the crowd regulari-

ties and automatically detect unusual socio-spatial events would greatly benefit the

transport authorities.

• Socio-spatial-traffic keyword queries: In different location-based services, infor-

mation about locations is retrieved by passing spatial queries that consist of the lati-

tude and longitude coordinates, e.g. retrieving specific portion of a geographic map.

An advanced way to retrieve these information is to pass spatial keyword queries,

that consist of textual keywords in addition to geographic coordinates [46, 140].

The keywords characterize locations and they are so common that people are gen-

erally familiar with them. The combination of the two query components make it

a more meaningful query to retrieve an enriched information. For example, a query

Chapter 7. Conclusion and Future Work 199

“Indian restaurant nearest to me” gets the geographic coordinates from the device

geo-positioning technology and the keywords as “Indian restaurant”. With the rapid

growth in accumulation of spatial textual data through social media, it has become

much easier to answer the spatial keyword queries. Due to its increasing demand, it

has become a widely accepted problem and various models and techniques are being

proposed these days. The top-k spatial keyword queries [49–51] ranks the k best

matching spatial objects in terms of both spatial proximity to the query location

and textual relevance to the query keywords are returned. So far there has been

no work on socio-spatial-traffic queries to the best of our knowledge. These queries

combine the information of traffic load on the route along with the social and spatial

information. As the keyword queries are very commonly used in our daily lives, de-

veloping techniques to solve traffic based queries would give a lot more information

to the users.

• Detecting and Predicting Repeatable Congestion Related Events: Traffic

congestion is very much related to unusual events happening in an urban area. These

events can be as big as a football match in the Etihad Stadium (Melbourne), or as

small as a rush to the train station to board a specific train. Many times these events

go unnoticed and congestions keep on repeating with unknown patterns and reasons.

It is a very important research area to identify the patterns of such repeatable events

that happened in the past, and predict any such events going to happen in the near

future.

Bibliography

[1] Ken Henry. To build or not to build: Infrastructure challenges in the years ahead

and the role of the government. In Address to the Conf. on The Economics of

Infrastructure in a Globalised World: Issues, Lessons and Future Challenges, 2010.

[2] BTRE. Estimating urban traffic and congestion cost trends for australian cities,

2007. Working paper 71, BTRE, Canberra ACT.

[3] Tarique Anwar, Chengfei Liu, Hai L. Vu, and Christopher Leckie. Spatial partition-

ing of large urban road networks. In Proc. of the EDBT, pages 343–354, 2014.

[4] Tarique Anwar, Chengfei Liu, Hai L. Vu, and Christopher Leckie. Partitioning

road networks using density peak graphs: Efficiency vs. accuracy. Inf. Syst., 64:

22–40, 2017. doi: 10.1016/j.is.2016.09.006. URL http://dx.doi.org/10.1016/j.

is.2016.09.006.

[5] Tarique Anwar, Chengfei Liu, Hai L. Vu, and Md. Saiful Islam. Tracking the evolu-

tion of congestion in dynamic urban road networks. In Proceedings of the 25th ACM

International on Conference on Information and Knowledge Management, CIKM

2016, Indianapolis, IN, USA, October 24-28, 2016, pages 2323–2328, 2016. doi:

10.1145/2983323.2983688. URL http://doi.acm.org/10.1145/2983323.2983688.

[6] Tarique Anwar, Hai L. Vu, Chengfei Liu, and Serge P. Hoogendoorn. Temporal

tracking of congested partitions in dynamic urban road networks. In Proc. of the

TRB Annual Meeting, 2016.

[7] Tarique Anwar, Hai L. Vu, Chengfei Liu, and Serge P. Hoogendoorn. Temporal

tracking of congested partitions in dynamic urban road networks. Transportation

Research Record: Journal of the Transportation Research Board, 2595:8897, 2016.

201

Bibliography 202

[8] Tarique Anwar, Chengfei Liu, Hai L. Vu, and Md. Saiful Islam. Roadrank: Traffic

diffusion and influence estimation in dynamic urban road networks. In Proc. of the

CIKM, pages 1671–1674, 2015.

[9] J. B. MacQueen. Some methods for classification and analysis of multivariate obser-

vations. In Proc. of the 5th Symposium on Math, Statistics, and Probability, pages

281–297, 1967.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society. Series B

(Methodological), 39(1):1–38, 1977.

[11] Kriegel Hans-Peter, Kroger Peer, Sander Jorg, and Zimek Arthur. Density–based

clustering. WIREs Data Mining Knowl Discov, 1(3):231–240, 2011.

[12] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Proc. of

the KDD, pages 226–231, 1996.

[13] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of density

peaks. Science, 344(6191):1492–1496, 2014.

[14] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. Scan:

A structural clustering algorithm for networks. In Proceedings of the 13th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’07, pages 824–833, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-609-7. doi:

10.1145/1281192.1281280. URL http://doi.acm.org/10.1145/1281192.1281280.

[15] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. Scan++: Efficient algo-

rithm for finding clusters, hubs and outliers on large-scale graphs. Proc. VLDB En-

dow., 8(11):1178–1189, July 2015. ISSN 2150-8097. doi: 10.14778/2809974.2809980.

URL http://dx.doi.org/10.14778/2809974.2809980.

[16] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 22(8):888–905, August 2000. ISSN 0162-8828.

[17] Scott White and Padhraic Smyth. A spectral clustering approach to finding com-

munities in graph. In Proc. of the SDM, 2005.

Bibliography 203

[18] C.H.Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and H.D. Simon. A min-max

cult algorithm for graph partitioning and data clustering. In Proc. of the ICDM,

pages 107–114, 2001.

[19] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.

Recent advances in graph partitioning. CoRR, abs/1311.3144, 2013. URL http:

//arxiv.org/abs/1311.3144.

[20] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph clustering based on struc-

tural/attribute similarities. Proc. VLDB Endow., 2(1):718–729, August 2009.

[21] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.

The Bell System Technical Journal, 49(2):291–307, February 1970.

[22] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partition. In Proceedings of the 19th Design Automation Conference, pages 175–181,

1982.

[23] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):

395–416, December 2007. ISSN 0960-3174. doi: 10.1007/s11222-007-9033-z. URL

http://dx.doi.org/10.1007/s11222-007-9033-z.

[24] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Proceedings of the Advances in Neural Information Processing

Systems, pages 849–856. MIT Press, 2001.

[25] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: Spec-

tral clustering and normalized cuts. In Proceedings of the Tenth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’04,

pages 551–556, New York, NY, USA, 2004. ACM. ISBN 1-58113-888-1. doi:

10.1145/1014052.1014118. URL http://doi.acm.org/10.1145/1014052.1014118.

[26] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: Theory

and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,

15(11):1101–1113, November 1993. ISSN 0162-8828. doi: 10.1109/34.244673. URL

http://dx.doi.org/10.1109/34.244673.

Bibliography 204

[27] Mohammed J. Zaki and Wagner Meira Jr. Data Mining and Analysis: Fundamental

Concepts and Algorithms, pages 421–435. Cambridge University Press, 2014.

[28] Mijung Kim and K. Selçuk Candan. Sbv-cut: Vertex-cut based graph partitioning

using structural balance vertices. Data Knowl. Eng., 72:285–303, February 2012.

[29] Yizhou Sun, Jiawei Han, Peixiang Zhao, Zhijun Yin, Hong Cheng, and Tianyi Wu.

Rankclus: Integrating clustering with ranking for heterogeneous information network

analysis. In Proc. of the EDBT, pages 565–576, 2009.

[30] Jure Leskovec, Kevin J. Lang, and Michael Mahoney. Empirical comparison of

algorithms for network community detection. In Proc. of the WWW, pages 631–640,

2010.

[31] Hanan Samet. Spatial data structures, pages 361–385. ACM Press and Addison-

Wesley, 1995.

[32] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In

Proceedings of the 1984 ACM SIGMOD international conference on Management of

data, SIGMOD ’84, pages 47–57, 1984. ISBN 0-89791-128-8.

[33] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dy-

namic index for multi-dimensional objects. In Proceedings of the 13th International

Conference on Very Large Data Bases, VLDB ’87, pages 507–518, 1987. ISBN 0-

934613-46-X.

[34] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The

r*-tree: an efficient and robust access method for points and rectangles. In Proceed-

ings of the 1990 ACM SIGMOD international conference on Management of data,

SIGMOD ’90, pages 322–331, 1990. ISBN 0-89791-365-5.

[35] Mark Overmars Mark de Berg, Marc van Kreveld and Otfried Schwarzkopf.

Quadtrees, page 291306. Springer-Verlag, 2000.

[36] Nikos Mamoulis. Morgan & Claypool Publishers, 2011.

Bibliography 205

[37] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on composite

keys. Acta Inf., 4(1):1–9, March 1974. ISSN 0001-5903. doi: 10.1007/BF00288933.

URL http://dx.doi.org/10.1007/BF00288933.

[38] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing

in spatial network databases. In Proceedings of the 29th international conference on

Very large data bases - Volume 29, VLDB ’03, pages 802–813. VLDB Endowment,

2003. ISBN 0-12-722442-4. URL http://dl.acm.org/citation.cfm?id=1315451.

1315520.

[39] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag.

Efficient processing of top-k spatial preference queries. Proc. VLDB Endow., 4(2):

93–104, November 2010. ISSN 2150-8097. URL http://dl.acm.org/citation.

cfm?id=1921071.1921076.

[40] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor queries.

In Proceedings of the 1995 ACM SIGMOD international conference on Management

of data, SIGMOD ’95, pages 71–79, New York, NY, USA, 1995. ACM. ISBN 0-

89791-731-6. doi: 10.1145/223784.223794. URL http://doi.acm.org/10.1145/

223784.223794.

[41] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor

queries. In Proceedings of the 2000 ACM SIGMOD international conference on

Management of data, SIGMOD ’00, pages 201–212, New York, NY, USA, 2000.

ACM. ISBN 1-58113-217-4. doi: 10.1145/342009.335415. URL http://doi.acm.

org/10.1145/342009.335415.

[42] Evangelos Kanoulas, Yang Du, Tian Xia, and Donghui Zhang. Finding fastest paths

on a road network with speed patterns. In Proc. of the ICDE, 2006.

[43] Tian Xia, Donghui Zhang, Evangelos Kanoulas, and Yang Du. On computing top-t

most influential spatial sites. In Proceedings of the 31st international conference on

Very large data bases, VLDB ’05, pages 946–957. VLDB Endowment, 2005. ISBN

1-59593-154-6. URL http://dl.acm.org/citation.cfm?id=1083592.1083701.

Bibliography 206

[44] Yang Du, Donghui Zhang, and Tian Xia. The optimal-location query. In Proceedings

of the 9th international conference on Advances in Spatial and Temporal Databases,

SSTD’05, pages 163–180, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-

28127-4, 978-3-540-28127-6. doi: 10.1007/11535331 10. URL http://dx.doi.org/

10.1007/11535331_10.

[45] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. Efficient query processing

in geographic web search engines. In Proceedings of the 2006 ACM SIGMOD in-

ternational conference on Management of data, SIGMOD ’06, pages 277–288, New

York, NY, USA, 2006. ACM. ISBN 1-59593-434-0. doi: 10.1145/1142473.1142505.

URL http://doi.acm.org/10.1145/1142473.1142505.

[46] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial

databases. In Proceedings of the 2008 IEEE 24th International Conference on Data

Engineering, ICDE ’08, pages 656–665, 2008. ISBN 978-1-4244-1836-7.

[47] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørv̊ag. Effi-

cient processing of top-k spatial keyword queries. In Proceedings of the 12th inter-

national conference on Advances in spatial and temporal databases, SSTD’11, pages

205–222, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22921-3. URL

http://dl.acm.org/citation.cfm?id=2035253.2035270.

[48] João B. Rocha-Junior and Kjetil Nørv̊ag. Top-k spatial keyword queries on road

networks. In Proc. of the 15th EDBT, pages 168–179, 2012.

[49] Dingming Wu, Man Lung Yiu, Christian S. Jensen, and Gao Cong. Efficient contin-

uously moving top-k spatial keyword query processing. In Proceedings of the 2011

IEEE 27th International Conference on Data Engineering, ICDE ’11, pages 541–552,

2011. ISBN 978-1-4244-8959-6.

[50] Dongxiang Zhang, Kian-Lee Tan, and Anthony K. H. Tung. Scalable top-k spatial

keyword search. In Proceedings of the 16th International Conference on Extending

Database Technology, EDBT ’13, pages 359–370, 2013.

Bibliography 207

[51] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Inverted linear

quadtree: Efficient top k spatial keyword search. pages 901–912, 2013. ISSN 1063-

6382.

[52] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k

most relevant spatial web objects. Proc. VLDB Endow., 2(1):337–348, August 2009.

ISSN 2150-8097. URL http://dl.acm.org/citation.cfm?id=1687627.1687666.

[53] Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou, Yufei Tao,

and David W. Cheung. Mining, indexing, and querying historical spatiotempo-

ral data. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’04, pages 236–245, New York, NY,

USA, 2004. ACM. ISBN 1-58113-888-1. doi: 10.1145/1014052.1014080. URL

http://doi.acm.org/10.1145/1014052.1014080.

[54] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pat-

tern mining. In Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’07, pages 330–339, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-609-7. doi: 10.1145/1281192.1281230. URL

http://doi.acm.org/10.1145/1281192.1281230.

[55] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-

and-group framework. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data, SIGMOD ’07, pages 593–604, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-686-8. doi: 10.1145/1247480.1247546. URL

http://doi.acm.org/10.1145/1247480.1247546.

[56] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. Traclass: trajectory

classification using hierarchical region-based and trajectory-based clustering. Proc.

VLDB Endow., 1(1):1081–1094, August 2008. ISSN 2150-8097. URL http://dl.

acm.org/citation.cfm?id=1453856.1453972.

[57] Xiaolei Li, Jiawei Han, Jae-Gil Lee, and Hector Gonzalez. Traffic density-based

discovery of hot routes in road networks. In Proc. of the SSTD, pages 441–459,

2007.

Bibliography 208

[58] Zaiben Chen, Heng Tao Shen, and Xiaofang Zhou. Discovering popular routes from

trajectories. In Proc. of the ICDE, pages 900–911, 2011.

[59] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul Sondag.

Adaptive fastest path computation on a road network: a traffic mining approach. In

Proc. of the VLDB, pages 794–805, 2007.

[60] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations

and travel sequences from gps trajectories. In Proceedings of the 18th international

conference on World wide web, WWW ’09, pages 791–800, New York, NY, USA,

2009. ACM. ISBN 978-1-60558-487-4. doi: 10.1145/1526709.1526816. URL http:

//doi.acm.org/10.1145/1526709.1526816.

[61] Yuxuan Ji and Nikolas Geroliminis. On the spatial partitioning of urban transporta-

tion networks. Transportation Research Part B: Methodological, 46(10):1639–1656,

2012.

[62] Dimitris Sacharidis, Kostas Patroumpas, Manolis Terrovitis, Verena Kantere,

Michalis Potamias, Kyriakos Mouratidis, and Timos Sellis. On-line discovery of

hot motion paths. In Proceedings of the 11th international conference on Ex-

tending database technology: Advances in database technology, EDBT ’08, pages

392–403, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-926-5. doi:

10.1145/1353343.1353392. URL http://doi.acm.org/10.1145/1353343.1353392.

[63] Nicolas Lefebvre and Michael Balmer. Fast shortest path computation in time-

dependent traffic networks, 2007. Working paper 439.

[64] Ning Jing, Yun-Wu Huang, and Elke A. Rundensteiner. Hierarchical optimization

of optimal path finding for transportation applications. In Proceedings of the Fifth

International Conference on Information and Knowledge Management, CIKM ’96,

pages 261–268, New York, NY, USA, 1996. ACM. ISBN 0-89791-873-8. doi: 10.

1145/238355.238550. URL http://doi.acm.org/10.1145/238355.238550.

[65] Yu-Li Chou, H. Edwin Romeijn, and Robert L. Smith. Approximating shortest paths

in large-scale networks with an application to intelligent transportation systems.

Bibliography 209

INFORMS J. on Computing, 10(2):163–179, February 1998. ISSN 1526-5528. doi:

10.1287/ijoc.10.2.163. URL http://dx.doi.org/10.1287/ijoc.10.2.163.

[66] Camil Demetrescu, Stefano Emiliozzi, and Giuseppe F. Italiano. Experimental anal-

ysis of dynamic all pairs shortest path algorithms. In Proceedings of the Fifteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pages 369–378,

Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics. ISBN

0-89871-558-X. URL http://dl.acm.org/citation.cfm?id=982792.982845.

[67] Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path

queries. In Proceedings of the 13th Annual European Conference on Algorithms,

ESA’05, pages 568–579, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-

29118-0, 978-3-540-29118-3. doi: 10.1007/11561071 51. URL http://dx.doi.org/

10.1007/11561071_51.

[68] Ugur Demiryurek, Farnoush Banaei-Kashani, Cyrus Shahabi, and Anand Ran-

ganathan. Online computation of fastest path in time-dependent spatial networks.

In Proceedings of the 12th International Conference on Advances in Spatial and Tem-

poral Databases, SSTD’11, pages 92–111, Berlin, Heidelberg, 2011. Springer-Verlag.

ISBN 978-3-642-22921-3. URL http://dl.acm.org/citation.cfm?id=2035253.

2035263.

[69] Abdul Majida, Ling Chena, Hamid Turab Mirzaa, Ibrar Hussaina, and Gencai Chen.

A system for mining interesting tourist locations and travel sequences from public

geo-tagged photos. Data & Knowledge Engineering, 95:66–86, January 2015.

[70] Xin Cao, Gao Cong, and Christian S. Jensen. Mining significant semantic locations

from gps data. Proc. VLDB Endow., 3(1-2):1009–1020, September 2010. ISSN

2150-8097. doi: 10.14778/1920841.1920968. URL http://dx.doi.org/10.14778/

1920841.1920968.

[71] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. A general

framework for geo-social query processing. Proc. VLDB Endow., 6(10):913–924,

August 2013. ISSN 2150-8097.

Bibliography 210

[72] De-Nian Yang, Chih-Ya Shen, Wang-Chien Lee, and Ming-Syan Chen. On socio-

spatial group query for location-based social networks. In Proceedings of the 18th

ACM SIGKDD international conference on Knowledge discovery and data mining,

KDD ’12, pages 949–957, 2012.

[73] Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang, Yinan Jing, and Kunjie Chen.

Circle of friend query in geo-social networks. In Proceedings of the 17th interna-

tional conference on Database Systems for Advanced Applications - Volume Part II,

DASFAA’12, pages 126–137, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-

3-642-29034-3. doi: 10.1007/978-3-642-29035-0 9. URL http://dx.doi.org/10.

1007/978-3-642-29035-0_9.

[74] Chi-Yin Chow, Jie Bao, and Mohamed F. Mokbel. Towards location-based social

networking services. In Proceedings of the 2nd ACM SIGSPATIAL International

Workshop on Location Based Social Networks, LBSN ’10, pages 31–38, New York,

NY, USA, 2010. ACM. ISBN 978-1-4503-0434-4. doi: 10.1145/1867699.1867706.

URL http://doi.acm.org/10.1145/1867699.1867706.

[75] Jie Bao, Yu Zheng, and Mohamed F. Mokbel. Location-based and preference-aware

recommendation using sparse geo-social networking data. In Proceedings of the 20th

International Conference on Advances in Geographic Information Systems, SIGSPA-

TIAL ’12, pages 199–208, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1691-

0. doi: 10.1145/2424321.2424348. URL http://doi.acm.org/10.1145/2424321.

2424348.

[76] Justin J. Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F. Mokbel.

Lars: A location-aware recommender system. In Proceedings of the 2012 IEEE 28th

International Conference on Data Engineering, ICDE ’12, pages 450–461, Wash-

ington, DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4747-3. doi:

10.1109/ICDE.2012.54. URL http://dx.doi.org/10.1109/ICDE.2012.54.

[77] Ryong Lee and Kazutoshi Sumiya. Measuring geographical regularities of crowd be-

haviors for twitter-based geo-social event detection. In Proc. of the ACM SIGSPA-

TIAL Int’l Workshop on LBSN, pages 1–10, 2010.

Bibliography 211

[78] Ryong Lee, Shoko Wakamiya, and Kazutoshi Sumiya. Discovery of unusual regional

social activities using geo-tagged microblogs. World Wide Web, 14(4):321–349, July

2011. ISSN 1386-145X. doi: 10.1007/s11280-011-0120-x. URL http://dx.doi.

org/10.1007/s11280-011-0120-x.

[79] Nan Li and Guanling Chen. Analysis of a location-based social network. In Pro-

ceedings of the 2009 International Conference on Computational Science and En-

gineering - Volume 04, CSE ’09, pages 263–270, Washington, DC, USA, 2009.

IEEE Computer Society. ISBN 978-0-7695-3823-5. doi: 10.1109/CSE.2009.98. URL

http://dx.doi.org/10.1109/CSE.2009.98.

[80] Chao Zhang, Lidan Shou, Ke Chen, Gang Chen, and Yijun Bei. Evaluating geo-

social influence in location-based social networks. In Proceedings of the 21st ACM

international conference on Information and knowledge management, CIKM ’12,

pages 1442–1451, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1156-4. doi:

10.1145/2396761.2398450. URL http://doi.acm.org/10.1145/2396761.2398450.

[81] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for spatial

data mining. In Proc. of the 20th Int’l Conf. on Very Large Data Bases, VLDB ’94,

pages 144–155, 1994.

[82] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann,

2000.

[83] J. W. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data

mining: A survey, pages 188–217. Taylor & Francis, 2001.

[84] Chih-Chieh Hung, Wen-Chih Peng, and Wang-Chien Lee. Clustering and aggre-

gating clues of trajectories for mining trajectory patterns and routes. The VLDB

Journal, 24(2):169–192, April 2015. ISSN 1066-8888.

[85] Ling-Yin Wei and Wen-Chih Peng. An incremental algorithm for clustering spa-

tial data streams: exploring temporal locality. Knowl. Inf. Syst., 37(2):453–

483, 2013. doi: 10.1007/s10115-013-0636-8. URL http://dx.doi.org/10.1007/

s10115-013-0636-8.

Bibliography 212

[86] Dapeng Li, Joerg Sander, Mario A. Nascimento, and Dae-Won Kwon. Discovering

spatial co-clustering patterns in traffic collision data. In Proc. of the ACM SIGSPA-

TIAL Int’l Workshop on Computational Transportation Science, IWCTS ’13, pages

55:55–55:60, 2013.

[87] Hamideh Etemadniaa, Khaled Abdelghanya, and Ahmed Hassan. A network par-

titioning methodology for distributed traffic management applications. Transport-

metrica A: Transport Science, 10(6):518–532, 2014.

[88] Jiping Wang, Kai Zheng, Hoyoung Jeung, Haozhou Wang, Bolong Zheng, and Xi-

aofang Zhou. Cost-efficient spatial network partitioning for distance-based query

processing. In Proc. of the MDM, pages 13–22, 2014.

[89] Zhengdao Xu and Hans-Arno Jacobsen. Processing proximity relations in road net-

works. In Proc. of the ACM SIGMOD, SIGMOD ’10, pages 243–254, 2010.

[90] Georgios Kellaris and Kyriakos Mouratidis. Shortest path computation on air in-

dexes. Proc. VLDB Endow., 3(1-2):747–757, September 2010.

[91] Bowu Zhang, Kai Xing, Xiuzhen Cheng, Liusheng Huang, and Rongfang Bie. Traf-

fic clustering and online traffic prediction in vehicle networks: A social influence

perspective. In Proc. of the IEEE INFOCOM, pages 495–503, 2012.

[92] Da Yan, James Cheng, Wilfred Ng, and Steven Liu. Finding distance-preserving

subgraphs in large road networks. In Proc. of IEEE ICDE, pages 625–636, 2013.

[93] Anand Meka and Ambuj K. Singh. Distributed spatial clustering in sensor networks.

In Proc. of the EDBT, pages 980–1000, 2006.

[94] Min-Soo Kim and Jiawei Han. A particle-and-density based evolutionary clustering

method for dynamic networks. Proc. VLDB Endow., 2(1):622–633, August 2009.

ISSN 2150-8097. doi: 10.14778/1687627.1687698. URL http://dx.doi.org/10.

14778/1687627.1687698.

[95] Yuxuan Ji, Jun Luo, and Nikolas Geroliminis. Empirical observations of conges-

tion propagation and dynamic partitioning with probe data for large-scale systems.

Transportation Research Record, 2422:1–11, 2014.

Bibliography 213

[96] Pei Lee, Laks V. S. Lakshmanan, and Evangelos E. Milios. Incremental cluster

evolution tracking from highly dynamic network data. In Proc. ICDE, pages 3–14,

2012.

[97] Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. Dense subgraph

maintenance under streaming edge weight updates for real-time story identification.

VLDB, 5(6):574–585, 2012.

[98] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen, and

Srikanta Tirthapura. Dense subgraph maintenance under streaming edge weight

updates for real-time story identification. VLDB J., 23(2):175–199, 2014. doi: 10.

1007/s00778-013-0340-z. URL http://dx.doi.org/10.1007/s00778-013-0340-z.

[99] Manoj K. Agarwal, Krithi Ramamritham, and Manish Bhide. Real time discovery

of dense clusters in highly dynamic graphs: Identifying real world events in highly

dynamic environments. VLDB, 5(10):980–991, 2012.

[100] Derek Greene, Donal Doyle, and Padraig Cunningham. Tracking the evolution of

communities in dynamic social networks. In Proc. of the ASONAM, pages 176–183,

2010.

[101] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer Networks and ISDN Systems, 30(1-7), April 1998.

[102] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46

(5), September 1999.

[103] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,

1966. URL http://EconPapers.repec.org/RePEc:spr:psycho:v:31:y:1966:i:

4:p:581-603.

[104] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociom-

etry, 40(1):35–41, 1977.

[105] Linton C. Freeman. Centrality in social networks conceptual clarification. Social

Networks, page 215, 1978.

Bibliography 214

[106] Daniel Gruhl, R. Guha, David Liben-Nowell, and Andrew Tomkins. Information

diffusion through blogspace. In Proc. WWW, 2004.

[107] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model

for social networks. In Proc. ICALP, 2005.

[108] Meeyoung Cha, Alan Mislove, and Krishna P. Gummadi. A measurement-driven

analysis of information propagation in the flickr social network. In Proc. WWW,

2009.

[109] Xiaodan Song, Yun Chi, Koji Hino, and Belle Tseng. Identifying opinion leaders in

the blogosphere. In Proc. CIKM, 2007.

[110] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning influence

probabilities in social networks. In Proc. WSDM, 2010.

[111] Arlei Silva, Sara Guimarães, Wagner Meira, Jr., and Mohammed Zaki. Profilerank:

Finding relevant content and influential users based on information diffusion. In

Proc. SNAKDD, 2013.

[112] Jonathan Herzig, Yosi Mass, and Haggai Roitman. An author-reader influence model

for detecting topic-based influencers in social media. In Proc. HT, 2014.

[113] Zuchao Wang, Min Lu, Xiaoru Yuan, Junping Zhang, and Huub van de Wetering.

Visual traffic jam analysis based on trajectory data. IEEE Trans. on Visualization

and Computer Graphics, 19(12):2159–2168, December 2013. ISSN 1077-2626.

[114] Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. Crowd sensing of traf-

fic anomalies based on human mobility and social media. In Proceedings of the

21st ACM SIGSPATIAL International Conference on Advances in Geographic In-

formation Systems, SIGSPATIAL’13, pages 344–353, New York, NY, USA, 2013.

ACM. ISBN 978-1-4503-2521-9. doi: 10.1145/2525314.2525343. URL http:

//doi.acm.org/10.1145/2525314.2525343.

[115] JianCheng Long, ZiYou Gao, HuaLing Ren, and AiPing Lian. Urban traffic conges-

tion propagation and bottleneck identification. Science in China Series F: Informa-

tion Sciences, 51(7):948–964, 2008.

Bibliography 215

[116] Daqing Li, Bowen Fu, Yunpeng Wang, Guangquan Lu, Yehiel Berezin, H. Eugene

Stanley, and Shlomo Havlin. Percolation transition in dynamical traffic network with

evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112

(3):669–672, 2015.

[117] Hongsheng Qi, Meiqi Liu, Lihui Zhang, and Dianhai Wang. Tracing road network

bottleneck by data driven approach. PLoS One, 11(5), 2016.

[118] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. Trajectory outlier detection: A partition-

and-detect framework. In Proceedings of the 2008 IEEE 24th International Confer-

ence on Data Engineering, ICDE ’08, pages 140–149, Washington, DC, USA, 2008.

IEEE Computer Society. ISBN 978-1-4244-1836-7. doi: 10.1109/ICDE.2008.4497422.

URL http://dx.doi.org/10.1109/ICDE.2008.4497422.

[119] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. Discovering spatio-

temporal causal interactions in traffic data streams. In Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD

’11, pages 1010–1018, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0813-

7. doi: 10.1145/2020408.2020571. URL http://doi.acm.org/10.1145/2020408.

2020571.

[120] Sanjay Chawla, Yu Zheng, and Jiafeng Hu. Inferring the root cause in road traffic

anomalies. In Proceedings of the 2012 IEEE 12th International Conference on Data

Mining, ICDM ’12, pages 141–150, Washington, DC, USA, 2012. IEEE Computer

Society. ISBN 978-0-7695-4905-7. doi: 10.1109/ICDM.2012.104. URL http://dx.

doi.org/10.1109/ICDM.2012.104.

[121] Jinsong Lan, Cheng Long, Raymond Chi-Wing Wong, Youyang Chen, Yanjie Fu,

Danhuai Guo, Shuguang Liu, Yong Ge, Yuanchun Zhou, and Jianhui Li. A new

framework for traffic anomaly detection. In Proceedings of the 2014 SIAM In-

ternational Conference on Data Mining, Philadelphia, Pennsylvania, USA, April

24-26, 2014, pages 875–883, 2014. doi: 10.1137/1.9781611973440.100. URL

http://dx.doi.org/10.1137/1.9781611973440.100.

Bibliography 216

[122] R. Guimera, S. Mossa, A. Turtschi, and L.A.N. Amaral. The worldwide air trans-

portation network: Anomalous centrality, community structure, and cities’ global

roles. Proceedings of the National Academy of Sciences, 102(22):7794–7799, 2005.

[123] Hao Lei, Tao Xing, Jeffrey D. Taylor, and Xuesong Zhou. Monitoring travel time

reliability from the cloud. Transportation Research Record: Journal of the Trans-

portation Research Board, 2291:35–43, 2012.

[124] Mohammed Elhenawy and Hesham A. Rakha. Congestion prediction using adaptive

boosting machine learning classifiers. In Proc. of the 93rd Annual TRB Meeting,

2014.

[125] Huijun Sun, Jianjun Wu, Dan Maa, and Jiancheng Long. Spatial distribution com-

plexities of traffic congestion and bottlenecks in different network topologies. Applied

Mathematical Modelling, 38(2):496–505, 2014.

[126] Zhao Zhou, Shu Lin, and Yugeng Xi. A dynamic network partition method for

heterogenous urban traffic networks. In Proc. of the IEEE ITSC, pages 820–825,

2012.

[127] Takahiro Tsubota, Ashish Bhaskar, and Edward Chung. Brisbane macroscopic fun-

damental diagram: Empirical findings on network partitioning and incident detec-

tion. In Proc. of the 93rd Annual TRB Meeting, 2014.

[128] Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods for time-

evolving data. ACM Comput. Surv., 31(2), 1999.

[129] Richard Snodgrass and Ilsoo Ahn. A taxonomy of time databases. In Proc. of the

ACM SIGMOD, pages 236–246, 1985.

[130] Gultekin Ozsoyoglu and Richard Thomas Snodgrass. Temporal and real-time

databases: A survey. IEEE TKDE, 7(4):513–532, 1995.

[131] Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over historical

graph data. In ICDE, pages 997–1008, 2013.

Bibliography 217

[132] Yunjae Jung, Haesun Park, Ding-Zhu Du, and Barry L. Drake. A decision criterion

for the optimal number of clusters in hierarchical clustering. J. of Global Optimiza-

tion, 25(1):91–111, January 2003. ISSN 0925-5001.

[133] Mohamed F. Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mo-

hamed Sarwat, Ethan Waytas, and Steven Yackel. Mntg: an extensible web-based

traffic generator. In Proc. of the SSTD, pages 38–55, 2013.

[134] Jack J. Dongarra, Danny C. Sorensen, and Sven J. Hammarling. Block reduction of

matrices to condensed forms for eigenvalue computations. Journal of Computational

and Applied Mathematics, 27(1–2):215–227, September 1989.

[135] Donghui Yan, Ling Huang, and Michael I. Jordan. Fast approximate spectral clus-

tering. In Proc. of ACM SIGKDD, pages 907–916, 2009.

[136] Mohamed F. Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mo-

hamed Sarwat, Ethan Waytas, and Steven Yackel. A demonstration of mntg– a

web-based road network traffic generator. In Proc. of the ICDE, pages 1246–1249,

2014.

[137] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network

motifs: Simple building blocks of complex networks. Science, 298(5594):824–827,

2002.

[138] Ngoc Nguyen and John Gaffney. Real-time traffic performance measures of adaptive

traffic signal control systems. In Proc. of the 22nd ARRB Conference, 2006.

[139] Alexander Artikis, Matthias Weidlich, Francois Schnitzler, Ioannis Boutsis, Thomas

Liebig, Nico Piatkowski, Christian Bockermann, Katharina Morik, Vana Kaloger-

aki, Jakub Marecek, Avigdor Gal, Shie Mannor, Dimitrios Gunopulos, and Dermot

Kinane. Heterogeneous stream processing and crowdsourcing for urban traffic man-

agement. In Proc. of the EDBT, pages 712–723, 2014.

[140] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. Spatial keyword

query processing: an experimental evaluation. Proc. VLDB Endow., 6(3):217–228,

January 2013. ISSN 2150-8097.

Author’s Publications

1. Tarique Anwar, Chengfei Liu, Hai L. Vu, and Christopher Leckie, Spatial Partitioning of

Large Urban Road Networks, Proceedings of the 17th International Conference

on Extending Database Technology, Athens, Greece, Pages 343-354, 24-28 Mar,

2014 (ERA Rank: A)

2. Tarique Anwar, Chengfei Liu, Hai L. Vu, and Md. Saiful Islam, RoadRank: Traffic

Diffusion and Influence Estimation in Dynamic Urban Road Networks, Proceedings

of the 24th ACM International Conference on Information and Knowledge

Management, Melbourne, Australia, Pages 1671-1674, 19-23 Oct, 2015 (ERA Rank:

A)

3. Tarique Anwar, Hai L. Vu, Chengfei Liu, and Serge Hoogendoorn, Temporal Track-

ing of Congested Partitions in Dynamic Urban Road Networks, Proceedings of the

Transport Research Board 95th Annual Meeting, Washington, D.C., USA, 10-14

Jan, 2016 (ERA Rank: A)

4. Tarique Anwar, Hai L. Vu, Chengfei Liu, and Serge Hoogendoorn, Temporal Tracking of

Congested Partitions in Dynamic Urban Road Networks, Transportation Research

Record: Journal of the Transportation Research Board, Vol 2595, Pages 88-97,

2016 (ERA Rank: A)

5. Tarique Anwar, Chengfei Liu, Hai L. Vu, and Md. Saiful Islam, Tracking the Evolution

of Congestion in Dynamic Urban Road Networks, Proceedings of the 25th ACM

International Conference on Information and Knowledge Management, In-

dianapolis, USA, Pages 2323-2328, 24-28 Oct, 2016 (ERA Rank: A)

219

Appendix A. Author’s Publications 220

6. Tarique Anwar, Chengfei Liu, Hai L. Vu, and Christopher Leckie, Partitioning road

networks using density peak graphs: Efficiency vs. accuracy, Information Systems,

Vol 64, Pages 22-40, 2017 (ERA Rank: A*)

