The 6dF Galaxy Survey: dependence of halo occupation on stellar mass

Florian Beutler,1,2⋆ Chris Blake,3 Matthew Colless,4 D. Heath Jones,5 Lister Staveley-Smith,2,6 Lachlan Campbell,7 Quentin Parker,4,8 Will Saunders4 and Fred Watson4

1Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
2International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
3Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
4Australian Astronomical Observatory, PO Box 296, Epping, NSW 1710, Australia
5School of Physics, Monash University, Clayton, VIC 3800, Australia
6ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), 44 Rosehill Street, Redfern, NSW 2016, Australia
7Western Kentucky University, Bowling Green, KY 42101, USA
8Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109, Australia

Accepted 2012 December 14. Received 2012 November 13; in original form 2012 August 8

ABSTRACT

In this paper we study the stellar mass dependence of galaxy clustering in the 6dF Galaxy Survey (6dFGS). The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the halo occupation distribution model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, \(w_p(r_p) \). We find that the typical halo mass (\(M_1 \)) as well as the satellite power-law index (\(\alpha \)) increases with stellar mass. This indicates (1) that galaxies with higher stellar mass sit in more massive dark matter haloes and (2) that these more massive dark matter haloes accumulate satellites faster with growing mass compared to haloes occupied by low stellar mass galaxies. Furthermore, we find a relation between \(M_1 \) and the minimum dark matter halo mass (\(M_{\text{min}} \)) of \(M_1 \approx 22 M_{\text{min}} \), in agreement with similar findings for Sloan Digital Sky Survey galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21 per cent at \(M_{\text{stellar}} = 2.6 \times 10^{10} h^{-2} M_\odot \) to 12 per cent at \(M_{\text{stellar}} = 5.4 \times 10^{10} h^{-2} M_\odot \) indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally, we compare our results to studies of halo occupation using galaxy–galaxy weak lensing. We find good overall agreement, representing a valuable cross-check for these two different tools of studying the matter distribution in the Universe.

Key words: surveys – galaxies: formation – galaxies: haloes – galaxies: statistics – cosmology: observations – large-scale structure of the Universe.

1 INTRODUCTION

The first statistical studies of galaxy clustering (Totsuji & Kihara 1969; Hauser & Peebles 1973, 1974; Peebles 1973, 1974) found that the galaxy correlation function behaves like a power law, which is difficult to explain from first principles (Berlind & Weinberg 2002). More recent studies, however, found deviations from a power law. For example Zehavi et al. (2005a) showed that the projected correlation function \(w_p(r_p) \) of Sloan Digital Sky Survey (SDSS) galaxies exhibits a statistically significant departure from a power law. They also showed that a three-parameter halo occupation distribution (HOD) model (e.g. Jing, Mo & Borner 1998; Ma & Fry 2000; Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002; Cooray & Sheth 2002) together with a Λ cold dark matter (ΛCDM) background cosmology, can account for this departure, reproducing the observed \(w_p(r_p) \).

Within the halo model the transition from the one-halo term to the two-halo term causes a ‘dip’ in the correlation function at around 1–3 \(h^{-1} \)Mpc, corresponding to the exponential cut-off in
the halo mass function. In the case of a smooth transition between the one- and two-halo terms, this can mimic a power-law correlation function. Studies with luminous red galaxies (LRGs) found that the deviation from a power law is larger for highly clustered bright galaxies (Zehavi et al. 2005a, 2011; Blake, Collister & Lahav 2008; Zheng et al. 2009), and at high redshift (Conroy, Wechsler & Kravtsov 2006), which agrees with theoretical predictions (Watson, Berlind & Zentner 2011).

While galaxy clustering is difficult to predict, dark matter clustering is dominated by gravity and can be predicted for a given cosmology using N-body simulations. Using models for how galaxies populate dark matter haloes, which are usually motivated by N-body simulations, we can directly link galaxy clustering and matter clustering. This can be modelled in terms of the probability distribution $p(N|M)$ that a halo of virial mass M contains N galaxies of a given type. On strongly non-linear scales the dark matter distribution is given by the actual density distribution of the virialized haloes, while on large and close to linear scales the dark matter distribution can be predicted from linear perturbation theory.

HOD modelling has been applied to galaxy clustering data from the 2-degree Field Galaxy Redshift Survey (2dFGRS; Porciani, Magliocchetti & Norberg 2004; Tinker et al. 2007) and the SDSS (Magliocchetti & Porciani 2003; van den Bosch, Yang & Mo 2003; Tinker et al. 2005; Yang et al. 2005; Zehavi et al. 2005a, 2011; Yang, Mo & van den Bosch 2008). More recently it also became possible to model the clustering of high-z galaxies using VIMOS-VLT Deep Survey (VVDS; Abbas et al. 2010), Boötes (Brown et al. 2008), DEEP2 (Coil et al. 2006) and Lyman-break galaxies at high redshift in the Great Observatories Origins Deep Survey (GOODS; Lee et al. 2006). Such studies revealed that the minimum mass, M_{min}, for a halo to host a central galaxy more luminous than some threshold, L, is proportional to L at low luminosities, but steepens above L. Massive haloes have red central galaxies with predominantly red satellites, while the fraction of blue central galaxies increases with decreasing host halo mass. Furthermore, Zehavi et al. (2005b) found that there is a scaling relation between the minimum mass of the host haloes, M_{min}, and the mass scale, M_1, of haloes that on average host one satellite galaxy in addition to the central galaxy, $M_1 \approx 23 M_{\text{min}}$. Using a different HOD parametrization, Zheng, Coil & Zehavi (2007) found the relation to be $M_1 \approx 18 M_{\text{min}}$, very similar to Zehavi et al. (2011) who found $M_1 \approx 17 M_{\text{min}}$.

The 6dF Galaxy Survey (6dFGS) is one of the biggest galaxy surveys available today with a sky coverage of 42 per cent and an average redshift of $\sigma = 0.05$. The survey includes about 125 000 redshifts selected in the J, H, K, b_j, r_j bands (Jones et al. 2004, 2005, 2009). The near-infrared selection, the high completeness and the wide sky coverage make 6dFGS one of the best surveys in the local Universe to study galaxy formation. This data set has been used to study the large-scale galaxy clustering to measure the Hubble constant using baryon acoustic oscillations (Beutler et al. 2011), as well as the growth of structure at low redshift (Beutler et al. 2012). While these previous studies used the K-band selected sample, in this analysis we use the J band. The J band allows the most reliable stellar mass estimate of the five bands available in 6dFGS, because of its lower background noise. Together with the $b_j - r_j$ colour we can derive stellar masses using the technique of Bell & De Jong (2001), which leads to a data set of 76 833 galaxies in total. The photometric near-infrared selection from Two Micron All Sky Survey (2MASS) makes the stellar mass estimates in 6dFGS more reliable than stellar mass estimates in other large galaxy surveys which rely on optical bands (Drory, Bender & Hopp 2004; Kannappan & Gawiser 2007; Drory et al. 2008; Gallazzi & Bell 2009; Longhetti & Saracco 2009).

Numerical N-body simulations are usually restricted to dark matter only. To understand galaxy formation, baryonic effects such as feedback and gas cooling have to be included. Such simulations face severe theoretical and numerical challenges. Semi-analytic models build upon pre-calculated dark matter merger trees from cosmological simulations and include simplified, physically and observationally motivated, analytic recipes for different baryonic effects. Semi-analytic models have been shown to successfully reproduce observed statistical properties of galaxies over a large range of galaxy masses and redshifts (e.g. Bower et al. 2006; Croton et al. 2006; Bertone, De Lucia & Thomas 2007; De Lucia & Blaizot 2007; Font et al. 2008; Guo et al. 2010) and allow a level of understanding unavailable in N-body simulations. The underlying models are necessarily simplified and often use a large number of free parameters to fit different observations simultaneously. In this paper, we derive 6dFGS mock surveys from semi-analytic models based on the Millennium Simulation (Springel et al. 2005) and compare the properties of these surveys with measurements in 6dFGS. Our results can be used to improve upon these semi-analytic models and further our understanding of baryonic feedback processes on galaxy clustering.

Mandelbaum et al. (2006) studied halo occupation as a function of stellar mass and galaxy type using galaxy–galaxy weak lensing in SDSS. They found that for a given stellar mass, the halo mass is independent of morphology below $M_{\text{stellar}} = 10^{11} M_\odot$, indicating that stellar mass is a good proxy for halo mass at that range. We compare our results with Mandelbaum et al. (2006) which represents a valuable cross-check of the HOD analysis using two very different techniques, weak lensing and galaxy clustering.

This paper is organized as follows. First we introduce the 6dFGS in Section 2 together with the technique to derive the stellar masses. We also explain how we derive our four volume-limited subsamples in stellar mass and redshift, which are then used for the further analysis. In Section 3 we calculate the projected correlation function, $w_p(r_1)$, for each subsample and use jack-knife re-sampling to derive the covariance matrices. In Section 4 we fit power laws to the projected correlation functions of the four subsamples. In Section 5 we introduce the HOD framework and in Section 6 we apply the HOD model to the data. In Section 7 we derive 6dFGS mock samples from two different semi-analytic models, which we then compare to our results in Section 8 together with a general discussion of our findings. We conclude in Section 9.

Throughout the paper we use r to denote real-space separations and s to denote separations in redshift space. Our fiducial model to convert redshifts into distances is a flat universe with $\Omega_m = 0.27$, $w = -1$ and $\Omega_\Lambda = 0$. The Hubble constant is set to $H_0 = 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$ which sets the unit of stellar masses to $h^{-2} M_\odot$, while most other masses are given in $h^{-1} M_\odot$. The HOD model uses cosmological parameters following 7-year Wilkinson Microwave Anisotropy Probe (WMAP7; Komatsu et al. 2011).

2 THE 6dF GALAXY SURVEY

The 6dFGS (Jones et al. 2004, 2005, 2009) is a near-infrared selected (J, H, K) redshift survey covering $17 000 \text{ deg}^2$ of the southern sky. The J, H and K surveys avoid a $\pm 10^\circ$ region around the Galactic plane to minimize Galactic extinction and foreground source confusion in the plane. The near-infrared photometric selection was based on total magnitudes from the Two Micron All Sky Survey Extended Source Catalog (2MASS XSC; Jarrett et al. 2000). The
spectroscopic redshifts of 6dFGS were obtained with the Six-

degree Field (6dF) multi-object spectrograph of the United

Kingdom Schmidt Telescope (UKST) between 2001 and 2006.

The 6dFGS J-selected sample used in this paper contains (after

completeness cuts) 76,833 galaxies selected with $9.8 \leq J \leq 13.75$.

We chose the J band because it has the highest signal-to-noise ratio

(S/N) of the three 2MASS bands. While there is slightly less extinc-

tion in the K band compared to the J band, for practical purposes,

the J band has better S/N because the night sky background glow is

much less in the J than in the K band. The near-infrared selection

makes 6dFGS very reliable for stellar mass estimates.

The mean completeness of 6dFGS is 92 per cent and the median

redshift is $z = 0.05$. Completeness corrections are derived by nor-

malizing completeness–apparent magnitude functions so that, when

integrated over all magnitudes, they equal the measured total com-

pleteness on a particular patch of sky. This procedure is outlined in

the luminosity function evaluation of Jones et al. (2006) and also in

Jones et al. (in preparation). The original survey papers (Jones et

al. 2004, 2005, 2009) describe in full detail the implementation of

the survey and its associated online data base.

The clustering in a galaxy survey is estimated relative to a ran-

dom (unclustered) distribution which follows the same angular and

redshift selection function as the galaxy sample itself. We base our

random mock catalogue generation on the 6dFGS luminosity function

(Jones et al. 2006), where we use random numbers to pick

volume-weighted redshifts and luminosity function-weighted ab-

solute magnitudes. We then test whether the redshift–magnitude

combination falls within the 6dFGS J-solute magnitudes. We then test whether the redshift–magnitude

combination falls within the 6dFGS J-band faint and bright apparent magnitude limits ($9.8 \leq J \leq 13.75$). We assigned a $b_J - r_J$ colour to each random galaxy using the redshift–$b_J - r_J$ colour relation measured in the data and used these to derive stellar masses for the random galaxies using the same technique as for the actual galaxies (see Section 2.1).

2.1 Stellar mass estimate and volume-limited subsamples

To calculate the stellar mass for our data set we use the stellar

population synthesis results from Bruzual & Charlot (1993) together

with a scaled Salpeter initial mass function (IMF) as reported in Bell

& De Jong (2001):

\[
\log_{10}(M_{\text{stellar}}/L_J) = -0.57C_{b_J-r_F} + 0.48, \\
\log_{10}(L_J) = (M^\text{min}_J - M_J)/2.5, \\
\log_{10}(L_{\text{stellar}}) = \log_{10}(M_{\text{stellar}}/L_J) + \log_{10}(L_J),
\]

(1)

with the 2MASS $b_J - r_F$ colours, $C_{b_J-r_F}$, the J-band absolute

magnitude, M_J, and the J-band absolute magnitude of the Sun,

$M^\text{min}_J = 3.70$ (Worthey 1994). The biggest uncertainty in stellar

mass estimates of this type is the choice of the IMF. Assuming no

trend in IMF with galaxy type, the range of IMFs presented in the

literature cause uncertainties in the absolute normalization of the

stellar M/L ratio of a factor of 2 in the near-infrared (Bell & De Jong

2001). The 6dFGS stellar mass function as well as a comparison

doof different stellar mass estimates is currently in preparation (Jones

e al., in preparation).

We create four volume-limited subsamples in redshift and stellar

mass. This is done by choosing an upper limit in redshift (z_{max}) and then maximizing the number of galaxies by choosing a lower limit in stellar mass ($M^\text{min}_{\text{stellar}}$), meaning that every galaxy above that stellar mass will be detected in 6dFGS, if its redshift is below the redshift limit (see Fig. 1). Because of the distribution in $b_J - r_F$ colour, a clear cut in absolute magnitude does not correspond to a clear cut

in stellar mass and therefore our samples are not perfectly volume

limited. We use the absolute magnitude limit which corresponds to

a chosen redshift limit and derive a stellar mass limit, using the

$b_J - r_F$ colour corresponding to the 50 per cent height of the

$b_J - r_F$ distribution ($b_J - r_F(50 \text{ per cent}) = 1.28$). We create four

subsamples (S_1 to S_4, see Table 1) are shown by the coloured lines. All galaxies in the upper left quadrant created by the two correspondingly coloured lines are included in the volume-limited subsamples. The plot

shows a randomly chosen set of 20 per cent of all galaxies.

Figure 1. The distribution of 6dFGS galaxies in log stellar mass and red-

shift. The redshift and stellar mass cuts imposed to create the four volume-

limited samples (S_1 to S_4, see Table 1) are shown by the coloured lines.

in stellar mass and therefore our samples are not perfectly volume

limited. We use the absolute magnitude limit which corresponds to

a chosen redshift limit and derive a stellar mass limit, using the

$b_J - r_F$ colour corresponding to the 50 per cent height of the

$b_J - r_F$ distribution ($b_J - r_F(50 \text{ per cent}) = 1.28$). We create four

subsamples (S_1 to S_4, see Table 1) are shown by the coloured lines. All galaxies in the upper left quadrant created by the two correspondingly coloured lines are included in the volume-limited subsamples. The plot

shows a randomly chosen set of 20 per cent of all galaxies.

Figure 2. Galaxy density as a function of redshift for the four different

volume-limited subsamples S_1 to S_4. All samples follow an approximately

constant number density indicated by the dashed lines and listed in the last column of Table 1.

Figure 2. Galaxy density as a function of redshift for the four different

volume-limited subsamples S_1 to S_4. All samples follow an approximately

constant number density indicated by the dashed lines and listed in the last column of Table 1.
3 DATA ANALYSIS

We measure the separation between galaxies in our survey along the line of sight (π) and perpendicular to the line of sight (r_p) and count the number of galaxy pairs on this two-dimensional grid. We do this for the 6dFGS data catalogue, a random catalogue with the same selection function, and a combination of data–random pairs. We call the pair-separation distributions obtained from this analysis step $DD(r_p, \pi)$, $RR(r_p, \pi)$ and $DR(r_p, \pi)$, respectively. In the analysis we used 30 random catalogues with the same size as the real data catalogue and average $DR(r_p, \pi)$ and $RR(r_p, \pi)$. The random mocks are sampled from the 6dFGS luminosity function (Jones et al. 2006; Jones et al., in preparation), and hence they contain the same evolution of luminosity with redshift that we see in 6dFGS itself. The redshift–space correlation function is then given by the Landy & Szalay (1993) estimator:

$$\xi(r_p, \pi) = 1 + \frac{DD(r_p, \pi)}{RR(r_p, \pi)} \left(\frac{n_t}{n_d} \right)^2 - 2 \frac{DR(r_p, \pi)}{RR(r_p, \pi)} \left(\frac{n_t}{n_d} \right),$$ \hspace{1cm} (2)

where the ratio n_t/n_d is given by

$$\frac{n_t}{n_d} = \frac{\sum_j N_j w_j}{\sum_j N_j w_j},$$ \hspace{1cm} (3)

and the sums go over all random (N_i) and data (N_d) galaxies. Here we employ a completeness weighting, w_j, where we weight each galaxy by the inverse sky- and magnitude completeness at its area of the sky (Jones et al., in preparation).

From the two-dimensional correlation function, $\xi(r_p, \pi)$, we calculate the projected correlation function:

$$w_h(r_p) = 2 \int_0^{\pi_{\max}} d\pi \xi(r_p, \pi),$$ \hspace{1cm} (4)

where we bin $\xi(r_p, \pi)$ in 30 logarithmic bins from 0.1 to 100 h^{-1} Mpc in r_p and π. The upper integration limit in equation (4) was chosen to be $\pi_{\max} = 50 h^{-1}$ Mpc for all subsamples. We tested different values for π_{\max}, changing it between 20 and 90 h^{-1} Mpc without any significant effect to r_p or γ if the errors on $w_h(r_p)$ are adjusted accordingly. The error on scales larger than $r_p = 20$ is very large and hence the contribution of these scales to the fit is small.

To derive a covariance matrix for the projected correlation function we use the method of jack-knife re-sampling our galaxy samples. First we divide the data set into $N = 400$ subsets, selected in RA and Dec. Each re-sampling step excludes one subset before calculating the correlation function. The covariance matrix is then given by

$$C_{ij} = \frac{(N - 1)}{N} \sum_{k=1}^{N} \left[w_h^k (r_p^i) - \bar{w} (r_p^i) \right] \left[w_h^k (r_p^j) - \bar{w} (r_p^j) \right] ,$$ \hspace{1cm} (5)

where $w_h^k (r_p^i)$ is the projected correlation function estimate at separation r_p^i with the exclusion of subset k and $\bar{w} (r_p^i)$ is the mean.

We also note that wide-angle effects can be neglected in this analysis, since we are interested in small-scale clustering (see Beutler et al. 2011, 2012 for a detailed investigation of wide-angle effects in 6dFGS).

3.1 Fibre proximity limitations

The design of the 6D instrument does not allow fibres to be placed closer than 0.3 h^{-1} Mpc at redshift $z = 0.07$. This limitation is relaxed in 6dFGS where about 70 per cent of the survey area has been observed multiple times. However, for the remaining 30 per cent we have to expect to miss galaxy pairs with a separation smaller than 5.7 arcmin.

Fig. 3 shows the angular correlation function for the 6dFGS redshift catalogue (w_π, blue data points) and the target catalogue...
4 POWER-LAW FITS

The projected correlation function can be related to the real-space correlation function \(\xi(r) \), using (Davis & Peebles 1982)

\[
w_p(r_p) = 2 \int_0^\infty dy \, y \left[(r_p^2 + y^2)^{1/2} \right] = 2 \int_{r_p}^\infty r \, dr \, \xi(r)(r^2 - r_p^2)^{-1/2}.
\]

(6)

If the correlation function is assumed to follow a power law, \(\xi(r) = (r/r_0)^{\gamma} \), with the clustering amplitude \(r_0 \) and the power-law index \(\gamma \), this can be written as

\[
w_p(r_p) = r_p \left(\frac{r_p}{r_0} \right)^{\gamma} \Gamma \left(\frac{1}{2} \right) \Gamma \left(\frac{2 - \gamma}{2} \right) / \Gamma \left(\frac{\gamma}{2} \right),
\]

(7)

with \(\Gamma \) being the Gamma function. Using this equation we can infer the best-fitting power law for \(\xi(r) \) from \(w_p(r_p) \).

Table 2 summarizes the results of the power-law fits to the four 6dFGS subsamples. The best-fitting power laws are also included in Fig. 4 together with the four projected correlation functions.

We set the fitting range to be \(0.1 < r_p < 40 \, h^{-1} \) Mpc which includes 24 bins. Although 6dFGS has very good statistics at scales smaller than \(0.1 \, h^{-1} \) Mpc we do not use them for our fits, since at such scales the fibre proximity correction becomes more than 30 per cent (see Section 3.1 and Fig. 3).

The value of the clustering amplitude, \(r_0 \), increases from 5.14 to \(6.21 \, h^{-1} \) Mpc with increasing stellar mass, while there does not seem to be a clear trend in \(\gamma \), which varies around the value of \(\gamma = 1.84 \). The reduced \(\chi^2 \) in the last column of Table 2 indicates a good fit to the data for the first two subsamples but grows to \(\chi^2/\text{dof} = 1.48 \) and 1.63 for the high stellar mass subsamples, indicating deviations from a power law. The lower panels of Fig. 4 show the different projected correlation functions divided by the best-fitting power law (blue data points). Here we can see that the deviations show systematic patterns. Such effects could be related to the strong correlations between bins in the correlation function. Nevertheless, these patterns can be addressed with a full HOD analysis, which we will pursue in the next section. We will compare the result of our power-law fits with other studies in a more detailed discussion in Section 8.

5 THEORY: HALO OCCUPATION DISTRIBUTION

The HOD model describes the relation between galaxies and mass in terms of the probability distribution \(p(N|M) \) that a halo of virial mass \(M \) contains \(N \) galaxies of a given type. Knowing how galaxies populate dark matter haloes, we can use a dark matter correlation function and infer the galaxy correlation function. We use CAMB (Lewis & Bridle 2002) to derive a model matter power spectrum which we then turn into a correlation function using a Hankel transform:

\[
\xi(r) = \frac{1}{2\pi^2} \int_0^\infty dk P(k) k^2 \frac{\sin(kr)}{kr}.
\]

(8)

The underlying cosmological model is fixed to (\(\Omega_m h^2, \Omega_c h^2, n_s, \sigma_8 \)) = (0.2227, 0.1116, 0.966, 0.8) as reported in Komatsu et al. (2011) (we set \(\sigma_8 = 0.9 \) for one special case). We have to be aware of the fact that the fitted HOD parameters depend somewhat on the assumed values of \(\Omega_m \) and \(\sigma_8 \) and hence the absolute values of the HOD parameters could be biased, if the assumed cosmology is wrong. However in this study we focus on the relative HOD parameters for different stellar mass selected subsamples, which is fairly robust against such uncertainties.

Here we employ an analytic HOD methodology that is similar to that of Zheng et al. (2007), Blake et al. (2008) and Zehavi et al. (2011). We utilize analytic approximations for the halo mass function (Tinker et al. 2008), the biased clustering of haloes (Tinker et al. 2005) and the non-linear dark matter power spectrum (Smith et al. 2003). The profile of dark matter within haloes is well described by the NFW (Navarro, Frenk & White 1997) profile parametrized by the concentration–mass relation (Duffy et al. 2008):

\[
c(M,z) = 6.71 \left(\frac{M}{M_{\text{pivot}}} \right)^{-0.991} (1 + z)^{-0.44},
\]

(9)

with \(M_{\text{pivot}} = 2 \times 10^{12} \, h^{-1} \) M⊙. We tried replacing equation (9) with the form suggested by Bullock et al. (2001), and found that the best-fitting HOD parameters changed by much less than the statistical errors.

5.1 HOD framework and formalism

In the HOD parametrization it is common to separate the clustering contributions from the most massive galaxies, which are assumed to sit in the halo centre, from satellite galaxies. This picture of how galaxies populate haloes is supported by hydrodynamic simulations (e.g. Berlind et al. 2003; Simha et al. 2009) and semi-analytic
Figure 4. The projected correlation function for the four different volume-limited 6dFGS subsamples (S_1–S_4). The dashed black lines show the best-fitting power laws (see Table 2) while the solid black lines show the best-fitting HOD models, derived by fitting the data in the range $0.1 \leq r_p \leq 40 \, h^{-1} \text{Mpc}$. The lower panel shows the data and HOD models divided by the best-fitting power laws.

models (e.g. White & Frenk 1991; Kauffmann, White & Guiderdoni 1993; Bower et al. 2006; Croton et al. 2006). The mean central and satellite number density of galaxies that populate dark matter haloes of mass M is (Zheng et al. 2005)

\[
\langle N_c(M) \rangle = \begin{cases}
0 & \text{if } M < M_{\text{min}}, \\
1 & \text{if } M \geq M_{\text{min}},
\end{cases}
\]

\[
\langle N_s(M) \rangle = \left(\frac{M}{M_1} \right)^{\alpha},
\]

where M_{min} is the minimum dark matter halo mass which can host a central galaxy, M_1 corresponds to the mass of haloes that contain, on average, one additional satellite galaxy ($\langle N_s(M_1) \rangle = 1$) and α sets the rate at which haloes accumulate satellites when growing in mass. In very massive haloes the number of satellites is proportional to halo mass M to the power of α. The total HOD number is given by

\[
\langle N_t(M) \rangle = \langle N_c(M) \rangle \left[1 + \langle N_s(M) \rangle \right],
\]

so that a dark matter halo can only host a satellite galaxy if it contains already a central galaxy. In our model we assume a step-like transition from $\langle N_c(M) \rangle = 0$ to 1. In reality this is more likely to be a gradual transition with a certain width $\sigma_{\log M}$ (More et al.
where \(N \) is the number of galaxies in a halo of mass \(M \), following the Akaike (1974) information criterion. For our largest subsample (S2) we found that the reduction in \(\chi^2 \) is not big enough to justify this additional parameter. Hence we chose the three parameter model \((M_1, \alpha, M_{\text{min}})\) of equation (10).

Within the halo model we can account separately for the clustering amplitude of galaxies which sit in the same dark matter halo (one-halo term) and galaxies which sit in different dark matter haloes (two-halo term). At small scales the clustering will be dominated by the one-halo term and at large scales it will be dominated by the two-halo term. For the correlation function this can be written as

\[
\xi(r) = \xi_{1h}(r) + \xi_{2h}(r),
\]

where \(\xi_{1h}(r) \) and \(\xi_{2h}(r) \) represent the one-halo and two-halo terms, respectively.

5.2 The one-halo term, \(\xi_{1h}(r) \)

We separate the one-halo term into contributions from central–satellite galaxy pairs and satellite–satellite galaxy pairs. The central–satellite contribution is given by

\[
\xi_{1h}^{c-s}(r) = \frac{2}{n_g} \int_{M_{\text{min}}}^{\infty} dM \frac{dn(M)}{dM} N_c(M) N_s(M) \rho(r, M),
\]

where \(n_g \) is the galaxy number density and \(\rho(r, M) \) is the halo density profile. The lower limit for the integral is the virial mass \(M_{\text{vir}}(r) \) corresponding to the virial separation \(r_{\text{vir}} \).

The satellite–satellite contribution is usually given by a convolution of the halo density profile with the halo mass function. Here we calculate this term in \(k \)-space since a convolution then turns into a simple multiplication:

\[
P^{c-s}_{1h}(k) = \frac{1}{n_g^2} \int_{M_{\text{min}}}^{\infty} dM \frac{dn(M)}{dM} N_c(M) N_s(M) k^2 \frac{\lambda(k, M)}{M},
\]

where \(\lambda(k, M) \) is the normalized Fourier transform of the halo density profile \(\rho(r, M) \). The real-space expression of equation (16) is

\[
\xi_{1h}^{c-s}(r) = \frac{1}{2\pi^2} \int_{0}^{\infty} dk P^{c-s}_{1h}(k) \frac{\sin(kr)}{kr},
\]

which can then be combined with the central–satellite contribution to obtain the one-halo term

\[
\xi_{1h}(r) = \xi_{1h}^{c-s}(r) + \xi_{1h}^{c-s}(r).
\]

5.3 The two-halo term, \(\xi_{2h}(r) \)

The two-halo term, \(\xi_{2h}(r) \), can be calculated from the dark matter correlation function since on sufficiently large scales the galaxy and matter correlation function are related by a constant bias parameter. We calculate the two-halo term in Fourier space as

\[
P_{2h}(k, r) = P_m(k) \times \left[\int_{M_{\text{min}}}^{\infty} dM \frac{dn(M)}{dM} b_0(M, r) N_c(M) \lambda(k, M) \right]^2.
\]

where \(P_m(k) \) is the non-linear model power spectrum from \textsc{CAMB} including halo-fit (Smith et al. 2003) and \(M_{\text{min}}(r) \) is the halo mass limit for which we can find galaxy pairs with a separation larger than \(r_{\text{vir}} \). To fix the value of \(M_{\text{min}}(r) \) we use the number density matching model in the appendix of Tinker et al. (2006).

\[
b^{\xi}_c(M, r) = b^2(M) \left[1 + 1.17 \xi_m(r) \right]^{1/\alpha} \left[1 + 0.69 \xi_m(r) \right]^{2/\alpha},
\]

where \(\xi_m(r) \) is the non-linear matter correlation function and \(b(M) \) being the bias function of Tinker et al. (2005).

5.4 Derived quantities

Since the HOD model is directly based on a description of dark matter clustering and its relation to galaxy clustering, an HOD model can tell us much more about a galaxy population than just the two parameters \(M_1 \) and \(\alpha \).

For \(\lambda(k, M) \rightarrow 1 \) (which corresponds to large separations \(r \) in real space) the two-halo term simplifies to

\[
P_{2h}(k, r) \approx b_{\text{eff}}^2 P_m(k),
\]

where the effective bias is the galaxy number weighted halo bias factor (Tinker et al. 2005)

\[
b_{\text{eff}} = \frac{1}{n_g} \int_{0}^{\infty} dM \frac{dn(M)}{dM} \frac{M N_c(M)}{M},
\]

We can also ask what is the average group dark matter halo mass for a specific set of galaxies (often called host-halo mass). Such a quantity can be obtained as

\[
M_{\text{eff}} = \frac{1}{n_g} \int_{0}^{\infty} dM \frac{dn(M)}{dM} M N_c(M),
\]

which represents a weighted sum over the halo mass function with the HOD number as a weight.

The averaged ratio of satellite galaxies to the total number of galaxies is given by

\[
f_s = \frac{\int_{0}^{\infty} dM \frac{dn(M)}{dM} N_c(M)}{\int_{0}^{\infty} dM \frac{dn(M)}{dM} N_s(M) [1 + N_c(M)]},
\]

and the central galaxy ratio is given by \(f_c = 1 - f_s \).

6 HOD PARAMETER FITS

To compare the HOD models to the data we use the same fitting range as for the power-law fits earlier \((0.1 < r_s < 40 h^{-1} \text{ Mpc})\). The free parameters of the fit are \(M_1 \) and \(\alpha \) as described in the last section and hence we have the same number of free parameters as for the power-law fits.
Table 3. Summary of the best-fitting parameters for HOD fits to the four 6dFGS subsamples (S_1–S_4) with the fitting range $0.1 < r_p < 20 h^{-1} \text{ Mpc}$. The last column shows the reduced χ^2 derived from a fit to 24 bins with two free parameters and indicates good fits for all subsamples. Error bars on the HOD parameters correspond to 1σ, derived from the marginalized distributions. The sample S_4 uses a different fitting range of $0.1 < r_p < 20 h^{-1} \text{ Mpc}$ for the largest of our subsamples, S_1. Furthermore, we include a special fit to S_2 labelled $S_2^{\alpha=0.9}$, where we change our standard assumption of $\alpha_0 = 0.8$ to $\alpha = 0.9$. The satellite fraction f_s the effective dark matter halo mass M_{eff} and the effective galaxy bias b_{eff} are derived parameters (see Section 5.4). The bias depends on our initial assumption of α_0 and hence this parameter should be treated as $b_{\text{eff}}(\alpha_0)/0.8$.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$\log_{10} \left(\frac{M_1}{h^{-1} M_{\odot}} \right)$</th>
<th>α</th>
<th>$\log_{10} \left(\frac{M_{\text{min}}}{h^{-1} M_{\odot}} \right)$</th>
<th>f_s</th>
<th>$\log_{10} \left(\frac{M_{\text{eff}}}{h^{-1} M_{\odot}} \right)$</th>
<th>b_{eff}</th>
<th>χ^2/dof</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>13.396 ± 0.017</td>
<td>1.214 ± 0.031</td>
<td>12.0478 ± 0.0049</td>
<td>0.2106 ± 0.0078</td>
<td>13.501 ± 0.015</td>
<td>1.2704 ± 0.0087</td>
<td>13.5/(24−2) = 0.61</td>
</tr>
<tr>
<td>S_2</td>
<td>13.568 ± 0.013</td>
<td>1.270 ± 0.027</td>
<td>12.2293 ± 0.0043</td>
<td>0.1879 ± 0.0062</td>
<td>13.532 ± 0.012</td>
<td>1.3443 ± 0.0063</td>
<td>16.6/(24−2) = 0.75</td>
</tr>
<tr>
<td>S_3</td>
<td>13.788 ± 0.012</td>
<td>1.280 ± 0.029</td>
<td>12.4440 ± 0.0039</td>
<td>0.1578 ± 0.0061</td>
<td>13.546 ± 0.012</td>
<td>1.4002 ± 0.0062</td>
<td>21.4/(24−2) = 0.97</td>
</tr>
<tr>
<td>S_4</td>
<td>14.022 ± 0.011</td>
<td>1.396 ± 0.033</td>
<td>12.6753 ± 0.0032</td>
<td>0.1243 ± 0.0058</td>
<td>13.617 ± 0.012</td>
<td>1.5170 ± 0.0077</td>
<td>24.4/(24−2) = 1.11</td>
</tr>
<tr>
<td>$S_2^{\alpha=0.9}$</td>
<td>13.605 ± 0.013</td>
<td>1.193 ± 0.023</td>
<td>12.2382 ± 0.0048</td>
<td>0.2034 ± 0.0077</td>
<td>13.649 ± 0.014</td>
<td>1.2151 ± 0.0065</td>
<td>19.6/(24−2) = 0.89</td>
</tr>
<tr>
<td>$S_4^{\alpha=0.9}$</td>
<td>13.568 ± 0.013</td>
<td>1.282 ± 0.027</td>
<td>12.2291 ± 0.0042</td>
<td>0.1890 ± 0.0074</td>
<td>13.542 ± 0.010</td>
<td>1.3492 ± 0.0065</td>
<td>19.1/(21−2) = 1.01</td>
</tr>
</tbody>
</table>

All the fitting results are summarized in Table 3 and Fig. 4. The reduced χ^2 in the last column of Table 3 indicates a good fit to the data in all cases and the ratio of data to best-fitting power law in the lower panels of Fig. 4 shows that the HOD model reproduces the double peak structure present in the data. We also note that the reduced χ^2 in the case of the HOD fits is uniformly lower than for the power-law fits indicating a better fit to the data for all subsamples.

Fig. 5 shows the 2D probability distributions in M_1 and α for the four different volume-limited subsamples. There is a strong trend of increasing M_1 with stellar mass and a weaker but still significant trend of increasing α with increasing stellar mass. This indicates that dark matter haloes that host a central galaxy with higher stellar mass have their first satellite on average at a larger dark matter halo mass. However the number of satellites increases more steeply with halo mass for samples with higher stellar mass.

This trend indicates that haloes of higher mass have greater relative efficiency at producing multiple satellites. Similar trends were found in subsamples of SDSS galaxies by Zehavi et al. (2005b). As a test for the sensitivity of the fitting results to the upper fitting limit we performed a fit to subsample S_1 with the fitting range $0.1 < r_p < 20 h^{-1} \text{ Mpc}$. All parameters agree within 1σ with the fit to the larger fitting range. We called this fit S_1^* and included it in Table 3.

Table 3 also includes derived parameters like the minimum dark matter halo mass, M_{min}, the satellite fraction, f_s, the effective dark matter halo mass, M_{eff}, and the effective galaxy bias, b_{eff}. The errors on these parameters are calculated as the 68 per cent confidence level of their 1D probability distribution. The effective dark matter halo mass seems to be almost constant for all samples while the minimum dark matter halo mass M_{min} increases with stellar mass. The satellite fraction f_s decreases with increasing stellar mass, indicating that galaxies with high stellar mass have a higher probability to be central galaxies. The increasing effective galaxy bias indicates that galaxies with higher stellar mass are more strongly clustered and hence reside in high-density regions of the Universe. The increasing effective galaxy bias is well described by the following form:

$$b(M_{\text{stellar}}) = (1.05 + M_{\text{stellar}}/M_*) (0.8/\sigma_0),$$

(25)

with $M_* = 1.18 \times 10^{10} h^{-2} M_{\odot}$. We compare this function to the measurements in Fig. 6. The absolute stellar masses are subject to significant uncertainties and different methods to derive stellar masses can come to very different conclusions. However, most stellar mass estimates are related by a simple constant offset, and relation (25) can be scaled accordingly. The equation above is only valid for the stellar mass range probed in this analysis ($M_{\text{stellar}} = 2.6–5.4 \times 10^{10} h^{-2} M_{\odot}$) since the underlying dynamics are most likely not captured in equation (25).

We will discuss the implications of all these results in the next sections. First we will derive 6dFGS mock samples using different semi-analytic models. We will then compare the predictions from these semi-analytic models to our data followed by a comparison to other studies.

7 SEMI-ANALYTIC MOCK CATALOGUES

To compare our result with theory, we derive 6dFGS mock catalogues from two different semi-analytical models (Bower et al. 2006; Croton et al. 2006), both based on the Millennium Simulation (Springel et al. 2005) publicly available through the Millennium Simulation data base. Semi-analytic models are based on an underlying N-body simulation together with theoretically and observationally motivated descriptions of gas cooling, star formation and feedback processes.

The Millennium Simulation is a dark matter only N-body simulation which traces the hierarchical evolution of 2160^3 particles in a periodic box of $500^3 h^{-3} \text{ Mpc}^3$ from redshift $z = 127$ to 0. The underlying cosmological model follows WMAP1 cosmology (Spergel et al 2003) given by a matter density of $\Omega_m = \Omega_m + \Omega_b = 0.25$, a cosmological constant of $\Omega_{\Lambda} = 0.75$, a Hubble constant of $H_0 = 75 \text{ km s}^{-1} \text{ Mpc}^{-1}$, a spectral index of $n_s = 1$ and an rms of matter fluctuations in $8 h^{-1} \text{ Mpc}$ spheres of $\sigma_8 = 0.9$. The individual particle mass of the simulation is $8.6 \times 10^9 h^{-1} M_{\odot}$ and haloes and subhaloes are identified from the spatial distribution of dark matter particles using a standard friends-of-friends (fof) algorithm and the SUBFIND algorithm (Springel et al. 2001). All subhaloes are then linked together to construct the halo merger trees which represent the basic input of the semi-analytic models.

Here we are using the $z = 0$ output of the Millennium Simulation. To ensure that the stellar masses are calculated in a consistent and comparable way, we implement the following procedure to derive the 6dFGS mock catalogues.

(i) We apply the 6dFGS K-band apparent magnitude limits of $8.85 \leq K \leq 12.75$ to the full $500^3 h^{-3} \text{ Mpc}^3$ simulation box. We have to use the K band instead of the J band, which is actually used in this analysis, because none of the semi-analytic models provides J-band magnitudes. However, the 6dFGS J- and K-band samples

2 http://gavo.mpa-garching.mpg.de/MyMillennium/http://galaxy-catalogue.dur.ac.uk:8080/Millennium/
Figure 5. Two-dimensional probability distribution for $\log_{10}(M_1)$ and α for the HOD fits to the four 6dFGS volume-limited subsample (S_1–S_4). We include two fits for the largest sample S_2, where for $S_2^{\sigma_8=0.9}$ we change our standard assumption of $\sigma_8 = 0.8$ to $\sigma_8 = 0.9$. The parameters derived from the fits are summarized in Table 3. The best-fitting values are marker with black crosses.

Figure 6. The effective galaxy bias (see equation 22) as a function of log stellar mass for 6dFGS (blue data points). The increase in galaxy bias with stellar mass can be described by equation (25) which corresponds to the black line.

have significant overlap, meaning that almost all galaxies which have a K-band magnitude also have a J-band magnitude. We also account for sky- and magnitude incompleteness.

(ii) We re-calculate stellar masses for each galaxy using the technique described in Section 2.1 but with the corresponding K-band relations (Bell & De Jong 2001), instead of J band. The re-calculation of the stellar masses ensures that potential disagreement with our measurement is not caused by a different technique of deriving stellar masses or a different assumption about the IMF.

(iii) We apply the same redshift and stellar mass limits to the semi-analytic catalogues, which we used to produce the four volume-limited samples in the 6dFGS data set (see Table 1).

We found that all mock 6dFGS catalogues derived from these semi-analytic models contain fewer galaxies than the data sample (by about 40 per cent). This could be related to the slightly different cosmology used in these simulations, which should have its largest impact on large clusters, which are sampled in 6dFGS. We are not attempting to correct for such differences in the cosmological model. The aim of this part of our analysis is to test the current predictive power of semi-analytic models.

Semi-analytic models are often grouped into ‘Durham models’ and ‘Munich models’. The Bower et al. (2006) model belongs in the group of ‘Durham models’ while the Croton et al. (2006) model belongs in the group of ‘Munich models’.

7.1 Durham models

In the Durham models, merger trees are produced following Helly et al. (2003) which are independent of those generated by Springel et al. (2005). When the satellite galaxy falls below a certain distance to the central galaxy given by $R_{merge} = r_c + r_s$, where r_c and r_s are the half-mass radii of the central and satellite galaxy, respectively, the satellite and central galaxy are treated as one. The largest of the galaxies contained within this new combined dark matter halo is assumed to be the central galaxy (Benson et al. 2002), whilst all other galaxies within the halo are satellites. The dynamical friction and tidal stripping which are present in such a system are modelled analytically. These models are based on NFW density profiles
for the central halo as well as the satellite halo, while galaxies are modelled as a disc plus spheroid.

7.2 Munich models

The Munich models are based on the original merger trees by Springel et al (2005). One of the key differences between these merger trees and the ones used in the Durham models is that the Munich models explicitly follow dark matter haloes even after they are accreted on to larger systems, allowing the dynamics of satellite galaxies residing in the in-falling haloes to be followed until the dark matter substructure is destroyed. The galaxy is then assigned to the most bound particle of the subhalo at the last time the subhalo could be identified.

In the Munich models, a two-mode formalism is adopted for active galactic nuclei (AGN), wherein a high-energy or ‘quasar’ mode occurs subsequent to mergers, and a constant low-energy ‘radio’ mode suppresses cooling flows due to the interaction between the gas and the central black hole (Croton et al. 2006). In the quasar model, accretion of gas on to the black hole peaks at \(z \approx 3 \), while the radio mode reaches a plateau at \(z \approx 2 \). AGN feedback is assumed to be efficient only in massive haloes, with supernova feedback being more dominant in lower mass haloes.

The galaxies in the Croton et al. (2006) model can be of three different types: central galaxies (type 0), satellites of type 1 and satellites of type 2. Satellites of type 1 are associated with dark matter substructures, which usually refers to recently merged haloes. Satellites of type 2 are instead galaxies whose dark matter halo has completely merged with a bigger halo and are not associated with a substructure. We treat both type 2 and type 1 as satellite galaxies.

7.3 Testing semi-analytic models

In their original paper Bower et al. (2006) compare the \(K \)-band luminosity function, galaxy stellar mass function and cosmic star formation rate with high-redshift observations. They find that their model matches the observed mass and luminosity functions reasonably well up to \(z \approx 1 \). Kitzbichler & White (2007) compare the magnitude counts in the \(b_r \), \(r_i \), \(i \) and \(K \) bands, redshift distributions for \(K \)-band selected samples, \(b_r \)- and \(K \)-band luminosity functions and galaxy stellar mass function from Croton et al. (2006) and the very similar model by De Lucia & Blaizot (2007) with high-redshift measurements. They find that the agreement of these models with high-redshift observations is slightly worse than that found for the Durham models. In particular, they find that the Munich models tend to systematically overestimate the abundance of relatively massive galaxies at high redshift.

Snaith et al. (2011) compared four different semi-analytic models (Bower et al. 2006; Bertone et al. 2007; De Lucia & Blaizot 2007; Font et al. 2008), with observations and found that all models show a shallower, wider magnitude gap, between the brightest group galaxy and the second brightest, compared to observations.

de la Torre et al. (2010) compared measurements of VVDS with the model by De Lucia & Blaizot (2007). They found that the model reproduced the galaxy clustering at \(z > 0.8 \) as well as the magnitude counts in most bands. However the model failed in reproducing the clustering strength of red galaxies and the \(b_r - i \) colour distribution. The model tends to produce too many relatively bright red satellites galaxies, a fact that has been reported in other studies as well (overquenching problem; Weinmann et al. 2006; Kimm et al. 2008; Liu et al. 2010).

8 DISCUSSION

8.1 Effective halo mass and satellite fraction

As is evident from Table 3, the 6dFGS galaxies sit in massive central dark matter haloes and most of our galaxies are central galaxies in these haloes with only a small fraction being satellite galaxies. Because of the way 6dFGS galaxies are selected, the large majority are red elliptical galaxies and hence our findings agree very well with previous studies, which also found that such galaxies are strongly clustered and therefore must reside in high-density regions.

First we will discuss the effective dark matter halo mass, which represents the effective group or cluster mass for the distribution of galaxies (not the mass of the individual haloes which host the galaxies). This quantity appears almost constant for our four different subsamples. The increasing central galaxy mass (\(M_{\text{max}} \)) with stellar mass is offset by the decreasing satellite fraction, resulting in a fairly constant \(M_{\text{eff}} \). While the HOD model allows us to derive only averaged parameters for each sample, semi-analytic models directly connect dark matter halo masses with single galaxies. Fig. 7 shows the distribution of central and satellite galaxies as a function of fof halo mass derived from the Bower et al. (2006) semi-analytic catalogue together with the 6dFGS selection criteria. The catalogue contains fewer satellites than central, but the satellites sit in very massive dark matter haloes and hence have a significant impact on \(M_{\text{eff}} \). This plot shows that most 6dFGS galaxies sit in \(10^{11} - 10^{12} h^{-1} M_{\odot} \) haloes, while the satellites sit in very massive groups and clusters of up to \(10^{15} h^{-1} M_{\odot} \). While the median would be around \(10^{12} h^{-1} M_{\odot} \), the effective mass \(M_{\text{eff}} \) from the HOD model is the mean of this distribution, which is pushed to very large values by the satellite fraction.

We calculated the effective halo mass \(M_{\text{eff}} = \langle M_{\text{halo}} \rangle \) for the four volume-limited subsamples derived from the two semi-analytic models and summarize these results in Table 4. While the effective halo mass appears constant in the case of the Bower et al. (2006) model, the Croton et al. (2006) model shows an increase with increasing stellar mass. These different behaviours for the two different semi-analytic models are most likely connected to the...
The HOD analysis of early data from SDSS by Zehavi et al. (2005b) showed the relation, $M_t \approx 23 M_{\text{min}}$, between the mass of haloes that on average host one additional satellite galaxy, M_t, and the minimum dark matter halo mass to host a central galaxy, M_{min}. This has been confirmed in subsequent studies ($M_t \approx 18 M_{\text{min}}$ in Zheng et al. 2007 and $M_t \approx 17 M_{\text{min}}$ Zehavi et al. 2011). This relation implies that on average a halo hosting two galaxies of the type studied in their analysis has a mass ≈ 23 times the mass of a halo hosting only one galaxy of the same type.

Zehavi et al. (2011) also found that this scaling factor is somewhat smaller at the high-luminosity end, corresponding to massive haloes that host rich groups or clusters. This latter trend likely reflects the relatively late formation of these massive haloes, which leaves less time for satellites to merge on to central galaxies and thus lowers the satellite fraction.

Theoretical studies of HODs in dark matter simulations (Kravtsov et al. 2004) and those predicted by smoothed particle hydrodynamics (SPH) and semi-analytic galaxy formation models (Zheng et al. 2005) reveal a similar relation with a scaling factor of ≈ 20. The large gap between M_t and M_{min} arises because in the low occupation regime, a more massive halo tends to host a more massive central galaxy, rather than multiple smaller galaxies (Berlind et al. 2003).

Abbas et al. (2010) did a similar study using data from the I-band selected VVDS and found the ratio M_t/M_{min} to be ≈ 40–50. The galaxies in this study are at much higher redshift ($z \approx 0.83$) compared to the SDSS galaxies. This result means that in order to begin hosting satellite galaxies, haloes sampled by the VVDS need to accrete a larger amount of mass compared to SDSS haloes.

Wake et al. (2011) also studied high-redshift galaxies ($1.1 < z < 1.9$) in the NEWFIRM Medium Band Survey (NMBS) and found the ratio M_t/M_{min} to be ≈ 4–10. This, together with the result by Abbas et al. (2010), shows that this relation is not as fundamental as originally thought, but strongly dependent on the type of haloes probed in each analysis.

Leauthaud et al. (2012) studied galaxy clustering in the Cosmic Evolution Survey (COSMOS) using threshold stellar mass samples. Using the equations discussed in Leauthaud et al. (2011) we can derive M_t and M_{min} from their HOD parametrization, which is included in Fig. 9.

Matsuoka et al. (2011) analysed $\sim 60,000$ massive ($\log_{10}(M_{\text{stellar}}/h^{-2} M_\odot) > 10.7$) galaxies from the UKIRT Infrared Deep Sky Survey (UKIDSS) and the SDSS II Supernova Survey. This analysis shows a very different clustering amplitude depending on whether the observed and theoretical number densities are matched up or not. This dependency makes a comparison of our results with their derived parameters very difficult. Nevertheless, the ratio M_t/M_{min} in their analysis does not depend significantly on their initial assumptions and hence we included their results in Fig. 9.3 Their results indicate a lower M_t/M_{min}, ratio at large M_t consistent with Zehavi et al. (2011) and Blake et al. (2008).

In our analysis we found a scaling relation of $M_t \approx 22 M_{\text{min}}$ (the exact values are $22.29 \pm 0.39, 21.81 \pm 0.30, 22.08 \pm 0.28$

3 We use their results in which they match the observed and theoretical number densities, since this agrees with our method.
Figure 9. The relation between M_1 and M_{min} for the four different volume-limited 6dFGS samples (blue data points), compared to Zehavi et al. (2005b) (black solid squares), Blake et al. (2008) (black open triangles), Zehavi et al. (2011) (black open squares), Abbas et al. (2010) (black solid triangles), Matsuoka et al. (2011) (black open points), Wake et al. (2011) (magenta open triangles) and Leauthaud et al. (2012) (magenta solid triangles). Zehavi et al. (2005b) do not report errors on their parameters and the 6dFGS errors are smaller than the data points. All studies which investigate HOD as a function of stellar mass are coloured (including our analysis), while luminosity defined studies are in black.

and 22.22 ± 0.25 for S_1-S_4, respectively. In Fig. 9 we compare our results with other stellar mass selected samples (coloured data points) and with luminosity threshold selected samples (black data points). The ratio M_1/M_{min} found in 6dFGS is in agreement with Zehavi et al. (2005b) and slightly larger than Zehavi et al. (2011). While Zehavi et al. (2005b, 2011) study the same type of galaxies, Zehavi et al. (2005b) uses an HOD parametrization very similar to ours, while Zehavi et al. (2011) uses a parametrization based on five free parameters, suggesting that the differences might be related to the parametrization.

8.3 Comparison to Mandelbaum et al. (2006)

An alternative method for probing the connection between stellar mass and halo mass is galaxy–galaxy weak lensing. Here we will compare our findings to Mandelbaum et al. (2006), who used weak lensing of $\sim 350,000$ galaxies from SDSS and looked at the dependence of the amplitude of the lensing signature as a function of galaxy type and stellar mass. They used stellar masses derived from the z-band magnitude and the ratio M/L_z from Kauffmann et al. (2003) with the assumption of a Kroupa (2001) IMF.

The HOD model employed in their analysis is given by

$$N_t(M) = N_c(M) + N_s(M),$$

with the central galaxy number given by equation (10) while the satellite galaxies number is modelled by a step-like function

$$N_s(M) = \begin{cases} \frac{kM}{M_{\text{min}}} & \text{if } M \geq 3M_{\text{min}}, \\ \frac{M}{3M_{\text{min}}} & \text{if } M_{\text{min}} \leq M < 3M_{\text{min}}, \\ 0 & \text{if } M < M_{\text{min}}. \end{cases}$$

The normalization constant k can be determined by matching the measured satellite fractions f_s^{ma} and is given in Appendix A. Here we have adjusted the nomenclature to the one used in our analysis. We also note that Mandelbaum et al. (2006) assumed $\sigma_8 = 0.9$, while we assumed $\sigma_8 = 0.8$ for most of our fits.

From the equation above we can derive the effective halo mass using equation (23) together with the dark matter halo mass function.

We compare the reported satellite fraction, f_s^{ma}, of Mandelbaum et al. (2006) and the derived effective halo mass, M_{eff}, with our results in Figs 10 and 11. Fig. 10 shows that the galaxies sampled by Mandelbaum et al. (2006) follow the trend of early-type galaxies in these measurements, while the late
types have a slightly smaller effective halo mass. However, the errors in the case of the results by Mandelbaum et al. (2006) do not allow one to distinguish between the early- and late-type galaxies. Since effective halo mass and satellite fraction are strongly linked, we also compare the satellite fraction of Mandelbaum et al. (2006) with our results in Fig. 11. Both figures also include the fit to sample S_2 where we assumed $\sigma_8 = 0.9$, instead of the standard $\sigma_8 = 0.8$, since this agrees with the assumption in Mandelbaum et al. (2006). A larger σ_8 increases the effective halo mass by a small amount and hence does not impact this comparison significantly.

Overall we see very good agreement between our results and the results of Mandelbaum et al. (2006), which is reassuring since the two techniques are subject to different systematic uncertainties. We can also emphasize that the 6dFGS results are extremely precise compared to the lensing results.

8.4 Comparison to other studies

Meneux et al. (2007) study galaxy cluster mass dependence on stellar mass in the VVDS at redshift 0.5 < z < 1.2. The stellar masses in this sample cover the range $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 8.7$–10.7. To quantify the clustering, they use power-laws fits to the projected correlation function $w_p(r_p)$ and found an evolution in r_0 from 2.76 ± 0.17 h^{-1} Mpc at $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) > 8.7$ to $r_0 = 4.28 \pm 0.45 h^{-1}$ Mpc at $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) > 10.2$. The slope changes over the same range from $\gamma = 1.67 \pm 0.08$ to 2.28 ± 0.28. Comparing the results by Meneux et al. (2007) with Li et al. (2006) who used the clustering of 200 000 SDSS galaxies at $z = 0.15$ showed that the evolution of the amplitude and shape of the correlation function $w_p(r_p)$ with redshift is faster for low stellar mass objects than for high stellar mass objects. At low stellar mass, the amplitude of $w_p(r_p)$ increases by a factor ~2–3 from high to low redshift, while at the high stellar mass range $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 10.2$–10.7, the amplitude at $z \sim 0.85$ and ~0.15 are very similar, within the error bars. In 6dFGS we found a significantly larger clustering amplitude, ranging from $r_0 = 5.14 \pm 0.23 h^{-1}$ Mpc at $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 10.41$ to $r_0 = 6.21 \pm 0.17 h^{-1}$ Mpc at $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 10.73$, while our power-law index γ stays constant at $\gamma \approx 1.84$. This shows that the trend observed in Meneux et al. (2007) and Li et al. (2006) continues to the 6dFGS redshifts, even for high stellar mass galaxies.

9 CONCLUSIONS

We present in this paper an analysis of the clustering properties of four stellar mass selected volume-limited subsamples of galaxies from the 6dFGS. The stellar masses are calculated using the J-band magnitude and the $b_j - r_j$ colour following the technique by Bell & De Jong (2001). The average log stellar mass for the different subsamples ranges from $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 10.41$ to 10.73. Our analysis has the following main results.

(i) The projected correlation function, $w_p(r_p)$, for the two low stellar mass subsamples (S_1 and S_2) can be described by a power law with an acceptable χ^2, while the two high stellar mass subsamples (S_1^* and S_2^*) have a reduced χ^2 of 1.48 and 1.63, respectively. We also find patterns in the deviations between the best power-law fit and the data, which can naturally be explained within the halo model. This is in agreement with theoretical studies (Watson et al. 2011), predicting that the disagreement of $w_p(r_p)$ with a power-law fit should grow with clustering amplitude.

(ii) We used an HOD parametrization with three free parameters (M_1, α, M_{min}), representing the typical halo mass, satellite power-law index and minimum host halo mass, respectively. The minimum halo mass is fixed by the galaxy number density for all out parameter fits. We performed fits to the projected correlation functions of the four different volume-limited subsamples. We tested alternative HOD parametrizations, but found that our data do not justify more free parameters. M_1 and α show increasing trends for increasing stellar mass, with $\log_{10}(M_1/h^{-1}M_\odot)$ ranging from 13.4 to 14 and α from 1.21 to 1.4. This means that galaxies with larger stellar mass populate larger dark matter haloes, which accrete satellites faster with increasing mass, compared to dark matter haloes populated by galaxies with lower stellar mass.

(iii) From the halo model, we can derive averaged parameters for the four samples such as the satellite fraction, effective dark matter halo mass and the effective galaxy bias. We found that the satellite fraction decreases with stellar mass from 21 per cent at $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 10.41$ to 12 per cent at $\log_{10}(M_{\text{stellar}}/h^{-2}M_\odot) = 10.73$. The effective dark matter halo mass stays constant at $\log_{10}(M_{\text{host}}/h^{-2}M_\odot) = 13.55$ for all four subsamples. The effective galaxy bias increases with stellar mass indicating that galaxies with higher stellar mass reside in denser environments. The increase in the effective galaxy bias can be described by $(1.05 + M_{\text{stellar}}/M_\odot)/(\sigma_8/0.8)$ with $M_\odot = 1.18 \times 10^{11}h^{-2}M_\odot$.

(iv) We use two semi-analytic models, based on the Millennium Simulation (Bower et al. 2006; Croton et al. 2006) to derive 6dFGS mock surveys. We compare the results of these semi-analytic models with our measurements. The Croton et al. (2006) model underpredicts the satellite fraction, while the Bower et al. (2006) model is in better agreement with our observations, although it slightly overpredicts the satellite fraction. Since the effective dark matter halo mass is strongly linked to the satellite fraction, the Bower et al. (2006) model prediction of M_{eff} is again in better agreement with our observations. 6dFGS allows a powerful test of semi-analytic models, because of (1) the robust stellar mass estimates and (2) the focus on ‘red satellites’, which semi-analytic models struggled to reproduce in the past. Our results can be used as a new constraint on semi-analytic models in the future.

(v) For the four volume-limited samples we find a constant scaling relation between M_1 and M_{min} of $M_1 \approx 22 M_{\text{min}}$, in agreement with studies of SDSS galaxies (Zheng et al. 2005b, 2011). This indicates that 6dFGS galaxies populate dark matter haloes in a similar way to SDSS galaxies. However, we see a wide spectrum of this ratio ranging from > 40 in Abbas et al. (2010) to < 10 in (Matsuoka et al. 2011; Wake et al. 2011) indicating that this ratio is not universal for all types of galaxies.

(vi) We compare our results with the results of Mandelbaum et al. (2006) from galaxy–galaxy weak lensing. We find overall good agreement which represents a valuable cross-check for these two different clustering measurements. Although our analysis depends on slightly more assumptions and covers a smaller range in stellar mass, the 6dFGS results are extremely precise compared to the lensing results.

ACKNOWLEDGMENTS

The authors thank Alex Merson for providing the random mock generator. We also acknowledge Rachel Mandelbaum, Darren Croton, Danail Obreschkow, Alan Duffy, Martin Meyer and Michael Brown for helpful discussions. Thanks also to the referee for detailed feedback which helped to improved the final version of this paper.
function \(\frac{dn(M)}{dM} \) is given by

\[
f_s^{\text{ma}} = \frac{\int_{0}^{\infty} dM \frac{dn(M)}{dM} N_s(M)}{\int_{0}^{\infty} dM \frac{dn(M)}{dM} [N_c(M) + N_s(M)]}
\]

which leads to

\[
k = \frac{f_s^{\text{ma}} \int_{M_{\text{min}}}^{\infty} dM \frac{dn(M)}{dM}}{(1 - f_s^{\text{ma}})H},
\]

where \(k \) has units of \(1/h^{-1}M_\odot \) and is constant for a given set of \(f_s^{\text{ma}} \) and \(M_{\text{min}} \).