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Abstract 

Nowadays, scientific research increasingly relies on IT technologies, where large-

scale and high performance computing systems (e.g. clusters, grids and 

supercomputers) are utilised by the communities of researchers to carry out their 

applications. Scientific applications are usually computation and data intensive, 

where complex computation tasks take a long time for execution and the generated 

datasets are often terabytes or petabytes in size. Storing valuable generated 

application datasets can save their regeneration cost when they are reused, not to 

mention the waiting time caused by regeneration. However, the large size of the 

scientific datasets is a big challenge for their storage.  

In recent years, cloud computing is emerging as the latest distributed 

computing paradigm which provides redundant, inexpensive and scalable resources 

on demand to system requirements. It offers researchers a new way for deploying 

computation and data intensive applications (e.g. scientific applications) without any 

infrastructure investments. Large generated application datasets can be flexibly 

stored or deleted (re-generate whenever needed) in the cloud, since theoretically 

unlimited storage and computation resources can be obtained from commercial 

cloud service providers.  

With the pay-as-you-go model, the total application cost for generated 

datasets in the cloud highly depends on the strategy of storing them, e.g. storing all 

the generated application datasets in the cloud may result in a high storage cost since 

some datasets may be seldom used but large in size; in contrast, if we delete all the 

generated datasets and regenerate them every time when needed, the computation 

cost may be very high too. Hence there is a trade-off between computation and 

storage in the cloud. In order to reduce the overall application cost, a good strategy is 
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to find a balance to selectively store some popular datasets and regenerate the rest 

when needed. This thesis focuses on cost-effective datasets storage of scientific 

applications in the cloud, which is a leading-edge and challenging topic nowadays. 

By investigating the niche issue of computation and storage trade-off, we 1) propose 

a new cost model for datasets storage in the cloud; 2) develop novel benchmarking 

approaches to find the minimum cost of storing the application data; 3) design 

innovative runtime storage strategies to store the application data in the cloud.   

We start with introducing a motivating example from astrophysics and 

analyses the problems of computation and storage trade-off in the cloud. Based on 

the requirements identified, we propose a novel concept of Data Dependency Graph 

(DDG) and propose an effective datasets storage cost model in the cloud. DDG is 

based on data provenance, which records the generation relationship of all the 

datasets. With DDG, we know how to effectively regenerate datasets in the cloud and 

can further calculate their generation costs. The total application cost for the 

generated datasets includes both their generation cost and storage cost.  

Based on the cost model, we develop novel algorithms which can calculate 

the minimum cost for storing datasets in the cloud, i.e. the best trade-off between 

computation and storage. This minimum cost is a benchmark for evaluating the cost-

effectiveness of different storage strategies in the cloud. For different situations, we 

develop different benchmarking approaches with polynomial time complexity for a 

seemingly NP-hard problem, where 1) the static on-demand approach is for the 

situation that only occasional benchmarking is requested; 2) the dynamic on-the-fly 

approach is suitable for the situation that more frequent benchmarking is requested at 

runtime. 

We develop novel cost-effective storage strategies for users to facilitate at 

runtime of the cloud. Different from the minimum cost benchmarking approach, 

sometimes users may have certain preferences on storing some particular datasets due 

to various reasons rather than cost, e.g. guaranteeing immediate access to certain 

datasets. Hence, users’ preferences should also be considered in a storage strategy. 

Based on these considerations, we develop two cost-effective storage strategies for 

different situations: 1) the cost rate based strategy is highly efficient with fairly 
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reasonable cost-effectiveness, and 2) the local-optimisation based strategy is highly 

cost-effective with very reasonable time complexity.   

To the best of our knowledge, this thesis is the first comprehensive and 

systematic work investigating the issue of computation and storage trade-off in the 

cloud in order to reduce the overall application cost. By proposing innovative 

concepts, theorems and algorithms, the major contribution of this thesis is that it 

helps bring the cost down dramatically for both cloud users and service providers to 

run computation and data intensive scientific applications in the cloud.  
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Chapter 1  

Introduction 

This thesis investigates the trade-off between computation and storage in the cloud. 

This is a brand new and significant issue for deploying applications with the pay-as-

you-go model in the cloud, especially computation and data intensive scientific 

applications. The novel research reported in this thesis is for both cloud service 

providers and users to reduce the cost of storing large generated application datasets 

in the cloud. A suite consisting of a novel cost model, benchmarking approaches and 

storage strategies is designed and developed with the supports of new concepts, 

solid theorems and innovative algorithms. Experimental evaluation and case study 

demonstrate that our work helps to bring the cost down dramatically for running the 

computation and data intensive scientific applications in the cloud. 

This chapter introduces the background and key issues of this research. It is 

organised as follows. Section 1.1 gives a brief introduction to running scientific 

applications in the cloud. Section 1.2 outlines the key issues of this research. Finally, 

Section 1.3 presents an overview for the remainder of this thesis. 

1.1    Scientific Applications in the Cloud 

Running scientific applications usually needs not only high performance computing 

resources but also massive storage [34]. In many scientific research fields, like 

astronomy [33], high-energy physics [61] and bio-informatics [65], scientists need to 

analyse a large amount of data either from existing data resources or collected from 
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physical devices. During these processes, a large amounts of new data might also be 

generated as intermediate or final products [34]. Scientific applications are usually 

data intensive [36, 61], where the generated datasets are often terabytes or even 

petabytes in size. As reported by Szalay et al. in [74], science is in an exponential 

world and the amount of scientific data will double every year over the next decade 

and future. Producing scientific datasets involves a large number of computation 

intensive tasks, e.g. with scientific workflows [35], hence taking a long time for 

execution. These generated datasets contain important intermediate or final results of 

the computation, and need to be stored as valuable resources. This is because: 1) 

data can be reused - scientists may need to re-analyse the results or apply new 

analyses on the existing datasets [16]; 2) data can be shared - for collaboration, the 

computation results may be shared, hence the datasets are used by scientists from 

different institutions [19]. Storing valuable generated application datasets can save 

their regeneration cost when they are reused, not to mention the waiting time caused 

by regeneration. However, the large size of the scientific datasets is a big challenge 

for their storage. Hence, popular scientific applications are often deployed in grid or 

HPC (High Performance Computing) systems [61] because they have high 

performance computing resources and/or massive storage. However, building and 

maintaining a grid or HPC system is extremely expensive and it cannot be easily 

made available for scientists all over the world to utilise. 

In recent years, cloud computing is emerging as a latest distributed 

computing paradigm which provides redundant, inexpensive and scalable resources 

on demand to system requirements [42]. Since late 2007 when the concept of cloud 

computing was proposed [83], it has been utilised in many areas with certain success 

[17, 45, 21, 62]. Meanwhile, cloud computing adopts a pay-as-you-go model where 

users are charged according to the usage of cloud services such as computation, 

storage and network1 services like conventional utilities in everyday life (e.g. water, 

electricity, gas and telephony) [22]. Cloud computing systems offer a new way for 

deploying computation and data intensive applications. As IaaS (Infrastructure as a 

Service) is a very popular way to deliver computing resources in the cloud [1], the 

                                                           
1 In this thesis, we only investigate the trade-off between computation and storage, where network is 

not incorporated. Please refer to Section 3.2.2 for detailed explanations. 
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heterogeneity of computing systems [93] of one service provider can be well 

shielded by virtualisation technology. Hence, users can deploy their applications in 

unified resources without any infrastructure investment, where excessive processing 

power and storage can be obtained from commercial cloud service providers.  

Furthermore, cloud computing systems offer a new paradigm that scientists from all 

over the world can collaborate and conduct their research jointly. Cloud computing 

systems are usually based on the Internet, scientists can upload their data and launch 

their applications in the cloud from anywhere in the world via the Internet. As all the 

data are managed in the cloud, it is easy to share data among scientists. 

However, new challenges also arise when we deploy a scientific application 

in the cloud. With the pay-as-you-go model, the resources need to be paid for use, 

hence the total application cost for generated datasets in the cloud highly depends on 

the strategy of storing them, e.g. storing all the generated application datasets in the 

cloud may result in a high storage cost since some datasets may be seldom used but 

large in size; in contrast, if we delete all the generated datasets and regenerate them 

every time when needed, the computation cost may be very high too. Hence there 

should be a trade-off between computation and storage for deploying applications, 

which is an important yet challenging issue in the cloud. By investigating this issue, 

this research proposes a new cost model, novel benchmarking approaches and 

innovative storage strategies, which would help both cloud service providers and 

users to reduce the application cost in the cloud.  

1.2    Key Issues of this Research 

In the cloud, the application cost highly depends on the strategy of storing the large 

generated datasets due to the pay-as-you-go model. A good strategy is to find a 

balance to selectively store some popular datasets and regenerate the rest when 

needed, i.e. finding a trade-off between computation and storage. However, the 

generated application datasets in the cloud often have dependencies, i.e. computation 

task can operate on one or more datasets and generate new one(s). Whether storing 

or deleting an application dataset impacts on not only the cost of the dataset itself, 
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but also other datasets in the cloud. To achieve the best trade-off and utilise it to 

reduce the application cost, we need to investigate the following issues: 

1) Cost model. Users need a new cost model that can represent the cost that they 

actually spend on their applications in the cloud. Theoretically, users can get 

unlimited resources from the commercial cloud service providers for both 

computation and storage. Hence, for the large generated application datasets, 

users can flexibly choose how many to store and how many to regenerate. 

Different storage strategies lead to different consumptions of computation and 

storage resources and finally lead to different total application costs. The new 

cost model should be able to represent the cost of the applications in the cloud, 

which is the trade-off between computation and storage. 

2) Minimum cost benchmarking approaches. Based on the new cost model, we need 

to find the best trade-off between computation and storage, which leads to the 

theoretical minimum application cost in the cloud. This minimum cost serves as 

important benchmark for evaluating the cost-effectiveness of storage strategies in 

the cloud. For different applications and users, cloud service providers should be 

able to provide benchmarking services according to their requirements. Hence 

benchmarking algorithms need to be investigated, so that we develop different 

benchmarking approaches to meet the requirements of different situations in the 

cloud.  

3) Cost-effective datasets storage strategies. By investigating the trade-off between 

computation and storage, cost-effective storage strategies are needed for users to 

use in their applications at runtime in the cloud. Different from benchmarking, in 

practice, the minimum cost storage strategy may not be the best strategy for the 

applications in the cloud. First, storage strategies must be efficient enough to be 

facilitated at runtime in the cloud. Furthermore, users may have certain 

preferences on storing some particular datasets (e.g. tolerance of the accessing 

delay). Hence we need to design cost-effective storage strategies according to 

different requirements.  
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1.3    Overview of this Thesis 

In particular, this thesis includes new concepts, solid theorems and complex 

algorithms, which form a suite of systematic and comprehensive solutions to deal 

with the issue of computation and storage trade-off in the cloud and bring cost-

effectiveness to the applications for both users and cloud service providers. The 

thesis structure is depicted in Figure 1.1. 

Chapter 1 

Introduction

Chapter 2 

Literature Review

Chapter 3 

Motivating Example and 

Research Issues

Chapter 4

Cost Model of Datasets Storage 

in the Cloud

Chapter 5 

Minimum Cost Benchmarking 

Approaches

Chapter 6 

Cost-Effective Datasets Storage 

Strategies

Chapter 7 

Experiments and Evaluations

Chapter 8 

Conclusions and Future Work

 

Figure 1.1 Thesis structure 
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In Chapter 2, we introduce the related work to this research. We start from 

introducing data management in some traditional scientific applications systems, 

especially in grid systems, and then we move to the cloud. By introducing some 

typical cloud systems for scientific application, we raise the issue of cost-

effectiveness in the cloud. Next, we introduce some works that also touch the issue of 

computation and storage trade-off and analyse the differences to ours. At last, we 

introduce some works about data provenance which are the important foundation for 

our work.  

In Chapter 3, we first introduce a motivating example which is a real world 

scientific application from astrophysics for searching pulsar in the universe. Based on 

this example we identify and analyse our research problems.  

In Chapter 4, we first give a classification of the application data in the cloud 

and propose an important concept of Data Dependency Graph (DDG). DDG is built 

on data provenance which depicts the generation relationships of the datasets in the 

cloud. Based on DDG, we propose a new cost model for datasets storage in the cloud.  

In Chapter 5, we develop novel minimum cost benchmarking approaches with 

algorithms for the best trade-off between computation and storage in the cloud. We 

propose two approaches, i.e. static on-demand benchmarking and dynamic on-the-fly 

benchmarking, to accommodate different application requirements in the cloud.  

In Chapter 6, we develop innovative cost-effective storage strategies for user 

to facilitate at runtime in the cloud. According to different user requirements, we 

design different strategies accordingly, i.e. a highly efficient cost rate based strategy 

and a highly cost-effective local-optimisation based strategy.  

In Chapter 7, we demonstrate experiment results to evaluate our work 

described in the entire thesis. First we introduce our cloud computing simulation 

environment, i.e. SwinCloud. Then we conduct general random simulations to 

evaluate the performance of our benchmarking approaches and storage strategies. At 

last, we demonstrate a case study of the pulsar searching application, in which all the 

research outcomes presented in this thesis are utilised.  
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Finally, in Chapter 8, we summarise the new ideas presented in this thesis, the 

major contributions of this research, and consequent further research works. 

In order to improve the readability of this thesis, we put all proofs of theories, 

lemmas and corollaries in Appendix A and the notation index in Appendix B. 

 



8 

 

Chapter 2 

Literature Review 

This chapter reviews the existing literature related to this research. It is organised as 

follows. In Section 2.1, we summarise the data management work about scientific 

applications in the traditional distributed computing systems. In Section 2.2, we first 

review some existing work about deploying scientific applications in the cloud and 

raise the issue of cost-effectiveness, then we analyse some researches that have 

touched the issue of trade-off between computation and storage and point out the 

differences to our work. In Section 2.3, we introduce some work about data 

provenance which is the important foundation for our work. 

2.1    Data Management of Scientific Applications in Traditional 

Distributed Systems 

During the development of IT (Information Technology), e-science becomes more 

and more popular nowadays. Because scientific applications are often computation 

and data intensive, they are nowadays usually deployed in distributed systems to get 

the high performance computing resources and massive storage. Roughly speaking, 

one can make a distinction between two subgroups in the traditional distributed 

systems [11]: clusters (including the HPC system) and grids.  

Early studies are in cluster computing systems [9]. Since cluster computing 

is a relative homogenous environment that has a tightly-coupled structure, data 

management in clusters is usually straightforward. The applications data are 
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commonly stored according to the system’s capacity and moved within the cluster 

via fast Ethernet connection while the applications execute. 

Grid computing systems [40] are more heterogeneous than clusters. Given 

the similarity of grid and cloud [42], we mainly investigate the existing related work 

about grid computing system in this section. First we present some general data 

management technologies in grid. Then we investigate the data management in some 

grid workflow systems which are often utilised for running scientific applications. 

At last, we briefly introduce the data management technologies in some other 

distributed systems.   

2.1.1    Data Management in Grid  

Grid computing has many similarities with cloud computing [80, 83]. Both of them 

are heterogeneous computing environments for large scale applications. Data 

management technology in grid, Data Grid [28] in short, could be a valuable 

reference of cloud data management. Next, some important features of data grid are 

briefly summerised and some successful systems are also briefly introduced. 

Data Grid [78] primarily deals with providing services and infrastructure for 

distributed data-intensive applications that need to access, transfer, and modify 

massive datasets stored in distributed storage resources. Generally speaking, it 

should have the following capabilities: (a) ability to search through numerous 

available datasets for the required dataset and to discover suitable data resources for 

accessing the data, (b) ability to transfer large-size datasets between resources as fast 

as possible, (c) ability for users to manage multiple copies of their data, (d) ability to 

select suitable computational resources and process data on them and (e) ability to 

manage access permissions for the data. 

Grid technology was very popular in the late 1990s and early 2000s, because 

it is suitable for large scale computation and data intensive applications. Many data 

management systems were developed and gained great success. Some of the most 

successful ones are listed below and some of them have already been utilised in 

scientific applications.  
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Grid DataFarm [75] is a tightly-coupled architecture for storage in the grid 

environment. The architecture consists of nodes that have large disk space. Between 

the nodes there are interconnections via fast Ethernet. It also has a corresponding file 

system, process scheduler and parallel I/O APIs.  

GDMP [72] mainly focuses on replication in the grid environment, which 

has been utilised in High Energy Physics. It uses the GridFTP technology to achieve 

high speed data transfer and provides point-to-point replication capability.  

GridDB [58] builds an overlay based on relational database, and provides 

services for large scientific data analysis. It mainly focuses on the software 

architecture and query processing.  

SRB [15] organises data into different virtual collections independent of 

their physical locations. It could provide a unified view of data files in the 

distributed environment. It is used in the Kepler workflow system.  

RLS (P-RLS) [26, 23] maintains all the copies of data’s physical locations 

in the system, and provides data discovery services. Newly generated data could 

dynamically register in RLS, so that it could be discovered by the tasks. It has been 

used in Pegasus and Triana workflow systems.  

GSB [79] is designed to mediate access to distributed resources. It could 

map tasks to resources and monitor task execution. GSB is the foundation of data 

management in the Gridbus workflow system. 

DaltOn [51] is an infrastructure for Scientific Data Management. It supports 

the syntactic and semantic integration of data from multiple sources. 

A comparison of these data management systems is listed in Table 2.1. 

Although data grid has some similarities on data management of the cloud, 

they are essentially different. At the infrastructure level, grid systems are usually 

composed of several computing nodes built up with supercomputers, and the 

computing nodes are usually connected by fast Ethernet or dedicate networks, so that 

in data grid, efficient data management can be easily achieved with the high  
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performance hardware. Cloud systems are based on the Internet and normally 

composed of data centres built up with commodity hardware, where data 

management is more challenging. More importantly, at the application level, most 

clouds are commercial systems while the grids are not.  The wide utilisation of the 

pay-as-you-go model in the cloud makes the issue of cost-effectiveness more 

important than before. 

2.1.2    Data Management in Grid Workflows  

Scientific applications are typically very complex. They usually have a large number 

of tasks and need a long time for execution. Workflow technologies are important 

tools which can be facilitated to automate the executions of applications [34]. Many 

workflow management systems were developed in grid environments. Some of the 

most successful ones are listed below, as well as the features of their data 

management: 

Kepler [61] is a scientific workflow management system in the grid 

environment. It points out that control-flow orientation and data-flow orientation are 

the difference between business and scientific workflows. Kepler has its own actor-

oriented data modelling method that for large data in the grid environment. It has 

two Grid actors, called FileFetcher and FileStager, respectively. These actors make 

use of GridFTP [8] to retrieve files from, or move files to, remote locations on the 

Grid. In the runtime data management, Kepler adopts the SRB system [15].  

Pegasus [33] is a workflow management system which mainly focuses on 

data-intensive scientific applications. It has developed some data management 

algorithms in the grid environment and uses the RLS [26] system as data 

management at runtime. In Pegasus, data are asynchronously moved to the tasks on 

demand to reduce the waiting time of the execution and dynamically delete the data 

that the task no longer needs to reduce the use of storage. 

Gridbus [20] is grid toolkit. In this toolkit, the workflow system has several 

scheduling algorithms for the data-intensive applications in the grid environment 

based on a Grid Resource Broker [79]. The algorithms are designed based on 

different theories (GA, MDP, SCP, Heuristic), to adapt to different use cases.  
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Taverna [65] is a scientific workflow system for bioinformatics. It proposes 

a new process definition language, Sculf, which could model application data in a 

dataflow. It considers workflow as a graph of processors, each of which transfers a 

set of data inputs into a set of data outputs.  

MOTEUR [44] workflow system advances Taverna’s data model. It 

proposes a data composition strategy by defining some specific operations. 

ASKALON [84] is a workflow system designed for scheduling. It puts the 

computing overhead and data transfer overhead together to get a value “weight”. It 

does not discriminate the computing resource and data host. ASKALON also has its 

own process definition language called AGWL. 

Triana [31] is a workflow system which is based on a problem-solving 

environment that enables the data-intensive scientific application to execute. For the 

grid, it has an independent abstraction middleware layer, called the Grid Application 

Prototype (GAP), enables users to advertise, discover and communicate with Web 

and peer-to-peer (P2P) services. Triana also uses the RLS to manage data at runtime.  

GridFlow [54] is a workflow system which uses an agent-based system for 

grid resource management. It considers data transfer to computing resources and 

archive to storage resources as kinds of workflow tasks. But in this work, they do not 

discuss these data related workflow tasks. 

In summary, for data management, all the workflow systems mentioned 

above have concerned the modelling of workflow data at build-time. Workflow data 

modelling is a long-term research topic in academia with matured theories, including 

Workflow Data Patterns [69], Dataflow Programming Language [53]. For data 

management at workflow run-time, most of these workflow systems simply adopt 

data management technology in data grid. They do not consider the dependencies 

among the application data. Only Pegasus proposes some strategies for workflow 

data placement based on dependency [27, 71], but they have not designed specific 

algorithms to achieve them. As all these workflow systems are in grid computing 

environment, they neither utilise the pay-as-you-as model nor investigate the issue 

of cost-effectiveness in deploying the applications. 
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2.1.3   Data Management in Other Distributed Systems 

Many technologies are utilised for computation and data intensive scientific 

applications in distributed environments and have their own specialties. They could 

be importance references for our work. A brief overview is shown below [78]: 

Distributed Database [68]. A distributed database (DDB) is a logically 

organised collection of data stored at different sites of a computer network. Each site 

has a degree of autonomy, which is capable of executing a local application, and 

also participates in the execution of a global application. A distributed database can 

be formed either by taking an existing single site database and splitting it over 

different sites (top-down approach) or by federating existing database management 

systems so that they can be accessed through a uniform interface (bottom-up 

approach). However, distributed databases are mainly designed for storing the 

structured data, which is not suitable for managing large generated datasets (e.g. raw 

data save in files) in scientific applications.  

Content Delivery Network [38]. A Content Delivery Network (CDN) 

consists of a “collection of (non-origin) servers that attempt to offload work from 

origin servers by delivering content on their behalf”. That is, within a CDN, client 

requests are satisfied from other servers distributed around the Internet (also called 

edge servers) that cache the content originally stored at the source (origin) server. 

The primary aims of a CDN are, therefore, load balancing to reduce effects of 

sudden surges in requests, bandwidth conservation for objects such as media clips, 

and reducing the round-trip time to serve the content to the client. However, CDNs 

have not gained wide acceptance for data distribution because of the restricted 

model that they follow. 

Peer-to-Peer Network [66]. The primary aims of a P2P network are to ensure 

scalability and reliability by removing the centralised authority, and also to ensure 

redundancy, to share resources, and to ensure anonymity. Such networks have 

mainly focused on creating efficient strategies to locate particular files within a 

group of peers, to provide reliable transfers of such files in the face of high volatility, 

and to manage high load caused by the demand for highly popular files. Currently, 
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major P2P content sharing networks do not provide an integrated computation and 

data distribution environment. 

2.2    Cost-Effectiveness of Scientific Applications in the Cloud 

Nowadays, scientific applications are often deployed in grid systems [61] 

because they have high performance and massive storage. However, building a grid 

system is extremely expensive and it is normally not open to other scientists around 

the world. When cloud computing was on horizon [37, 80, 83], it is deemed as the 

next generation of IT platforms that can deliver computing as a kind of utility [22]. 

Taking advantage of the new features, cloud computing technology has been utilised 

in many areas as soon as it is proposed, such as Data Mining [45], Database 

Application [17], Parallel Computing [46], Content Delivery [18] and so on. 

2.2.1    Cost-Effectiveness of Deploying Scientific Applications in the 

Cloud 

Scientific applications have already been introduced to the cloud and research on 

deploying applications in the cloud has become popular [29, 55, 57, 88, 81]. Cloud 

computing system for scientific applications, i.e. science cloud, has already 

commenced, where some successful and representative ones are as follows. 

1. OpenNebula [5] project facilitates on-premise IaaS cloud computing, offering a 

complete and comprehensive solution for the management of virtualised data 

centres to enable private, public and hybrid clouds. 

2. Nimbus Platform [4] is an integrated set of tools that deliver the power and 

versatility of infrastructure clouds to users. Nimbus Platform allows users to 

combine Nimbus, OpenStack, Amazon, and other clouds. 

3. Eucalyptus [2] enables the creation of on-premise private clouds, with no 

requirements for retooling the organisation's existing IT  infrastructure or need 

to introduce specialised hardware. 
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Foster et al. made a comprehensive comparison of grid computing and cloud 

computing [42], where two important differences related to this thesis are as follows: 

1. Comparing to grid, cloud computing systems can provide the same high 

performance computing resources and massive storage required for scientific 

applications, but with a lower infrastructure construction cost among many other 

features. This is because cloud computing systems are composed of data centres 

which can be clusters of commodity hardware [83]. Hence, deploying scientific 

applications in the cloud could be more cost-effective than its grid counterpart. 

2. By utilising the virtualisation technology, cloud computing systems are more 

scalable and elastic. Because new hardware can be easily added to the data 

centres, service providers can deliver cloud services based on the pay-as-you-go 

model and users can dynamically scale up or down the computation and storage 

resources they use.  

Based on the new features of cloud, comparing to the traditional distributed 

computing systems like cluster and grid, a cloud computing system has a cost 

benefit from various aspects [12]. Assunção et al. [13] demonstrate that cloud 

computing can extend the capacity of clusters with a cost benefit. With Amazon 

clouds’ cost model and BOINC volunteer computing middleware, the work in [56] 

analyses the cost benefit of cloud computing versus grid computing. The work by 

Deelman et al. [36] also applies Amazon clouds’ cost model and demonstrates that 

cloud computing offers a cost-effective way to deploy scientific applications. In 

[49], Hoffa et al. conduct simulations of running an astronomy scientific workflow in 

cloud and clusters, which shows cloud scientific workflows are cost-effective. 

Meanwhile, Tsakalozos et al. [77] point out that by flexible utilisation of cloud 

resources, service provider’s profit can also be maximised.  Especially, Cho et al. 

[30] further propose planning algorithms of how to transfer large bulks of scientific 

data to commercial clouds in order to run the applications.  

The above works mainly focus on the comparison of cloud computing 

systems and the traditional distributed computing paradigms, which show that 

applications running in the cloud have cost benefits, but they do not touch the issue 

of computation and storage trade-off in the cloud.   
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2.2.2    Trade-Off between Computation and Storage in the Cloud 

Based on the work introduced in Section 2.2.1, the research addressed in this thesis 

makes a significant step forward regarding the application cost in the cloud. We 

develop our approaches and strategies by investigating the issue of computation and 

storage trade-off in the cloud.  

This research is mainly inspired by the work in two research areas: cache 

management and scheduling. With smart caching mechanism [39, 50, 52], system 

performance can be greatly improved. The similarity is that both pre-store some data 

for future use, while the difference is that caching is to reducing data accessing delay 

but our work is to reduce the application cost in the cloud. Works in scheduling focus 

on reducing various costs for either applications [82] or systems [86], but they 

investigate this issue from the perspective of resource provisioning and utilisation, 

not from the trade-off between computation and storage. In [43], Garg et al. 

investigate the trade-off between time and cost in the cloud, where users can reduce 

the computation time by using expensive CPU instances with higher performance. 

This trade-off is different to ours which aims to reduce the application cost in the 

cloud.  

As the trade-off between computation and storage is an important issue, some 

researches have already embarked on this issue to a certain extent. Nectar system 

[48] is designed for automatic management of data and computation in data centres, 

where obsolete datasets are deleted and regenerated whenever reused in order to 

improve resource utilisation. In [36], Deelman et al. present that storing some 

popular intermediate data can save the cost in comparison to always regenerating 

them from the input data. In [7], Adams et al. propose a model to represent the trade-

off of computation cost and storage cost, but have not given any strategy to find this 

trade-off.  

In this thesis, for the first time, the issue of computation and storage trade-off 

for scientific datasets storage in the cloud is comprehensively and systematically 

investigated. We propose a new cost model to represent this trade-off, develop novel 

minimum cost benchmarking approaches to find the best trade-off [91, 89], and 



18 

 

design novel cost-effective datasets storage strategies based on this trade-off for 

users to store the application datasets [87, 92, 90].  

2.3    Data Provenance in Scientific Applications 

The research works on data provenance form an important foundation for our work. 

Data provenance is a kind of important metadata, in which the dependencies between 

application datasets are recorded [70]. The dependency depicts the generation 

relationship among the datasets. For scientific applications, data provenance is 

especially important because after the execution, some application datasets may be 

deleted, but sometimes the users have to regenerate them for either reuse or 

reanalysis [16]. Data provenance records the information of how the datasets were 

generated, which is very important for our research on the trade-off between 

computation and storage. 

Due to the importance of data provenance in scientific applications, many 

works about recording data provenance of the system have been conducted [14, 47]. 

For example, some of them are for scientific workflow systems [14]. Some popular 

scientific workflow systems, such as Kepler [61], have their own system to record 

provenance during workflow execution [10]. Recently, research on data provenance 

in cloud computing systems has also appeared [63]. More specifically, Osterweil et 

al. [67] present how to generate a data derivation graph for the execution of a 

scientific workflow, where one graph records the data provenance of one execution, 

and Foster et al. [41] propose the concept of Virtual Data in the Chimera system, 

which enables automatic regeneration of datasets when needed.  

2.4    Summary 

In this chapter, the literatures of recent studies related to data management of 

scientific applications are reviewed. We start from the grid systems, and then move 

to the cloud. By investigating typical grid and cloud systems, we analyse the cost-

effectiveness of deploying scientific applications in the cloud. Meanwhile, based on 
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the literature review, we demonstrate that the core research issue of this thesis, i.e. 

computation and storage trade-off, is a significant yet barely touched issue in the 

cloud. At last, we introduce some works about data provenance which is an important 

foundation for our work. 
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Chapter 3 

Motivating Example and Research 

Issues 

The research in this thesis is motivated by a real world scientific application. In this 

chapter, Section 3.1 introduces a motivating example of pulsar searching application 

from Astrophysics; Section 3.2 analyses the problems and challenges of deploying 

scientific applications in the cloud; Section 3.3 describes the specific research issues 

of this thesis in detail. 

3.1    Motivating Example 

Swinburne Astrophysics group has been conducting pulsar searching surveys using 

the observation data from Parkes Radio Telescope, which is one of the most famous 

radio telescopes in the world2. Pulsar searching is a typical scientific application. It 

contains complex and time consuming tasks and needs to process terabytes of data. 

Figure 3.1 depicts a high level structure of the pulsar searching workflow, which is 

currently running on Swinburne high performance supercomputing facility3. There 

are three major steps in the pulsar searching process: 

                                                           
2 http://www.parkes.atnf.csiro.au/ 
3 http://astronomy.swin.edu.au/supercomputing/ 

http://www.parkes.atnf.csiro.au/
http://astronomy.swin.edu.au/supercomputing/
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Figure 3.1 Pulsar searching workflow 

1. Raw signal data recording. In Parkes Radio Telescope, there are 13 embedded 

beam receivers, by which signals from the universe are received. At the 

beginning, raw signal data are recorded at a rate of 1GB per second by the 

ATNF4  Parkes Swinburne Recorder 5 . Depending on different areas in the 

universe that the scientists want to conduct the pulsar searching survey, the 

observation time is normally from 4 minutes to one hour. The raw signal data 

are pre-processed by a local cluster at Parkes in real time and archived in tapes 

for permanent storage and future analysis.  

2. Data preparation for pulsar seeking. The raw signal data recorded from the 

telescope have data from multiple beams interleaved, so at beginning of the 

workflow, different beam files are extracted from the raw data files and 

compressed. They are normally 1GB to 20GB each in size depending on the 

observation time. The scientists analyse the beam files to find the potentially 

contained pulsar signals. However, the signals are dispersed by the interstellar 

medium, where the scientists have to conduct a de-disperse step to counteract 

this effect. Since the potential dispersion source is unknown, a large number of 

de-dispersion files needs to be generated with different dispersion trials. For 

one dispersion trial of one beam file, the size of de-dispersion file is 

approximately 4.6MB to 80MB depending on the size of the input beam file 

(1GB to 20GB). In the current pulsar searching survey, 1200 is the minimum 

number of the dispersion trials, where this de-dispersion step takes 1 to 13 

hours to finish and generate around 5GB to 90GB of de-dispersion files. 

Furthermore, for binary pulsar searching, every de-dispersion file needs a 

                                                           
4 http://www.atnf.csiro.au/ 
5 http://astronomy.swin.edu.au/pulsar/?topic=apsr 

http://www.atnf.csiro.au/
http://astronomy.swin.edu.au/pulsar/?topic=apsr
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separate accelerate step for processing. This step generates the accelerated de-

dispersion files with the similar size in the de-disperse step. 

3. Pulsar seeking. Based on the generated de-dispersion files, different seeking 

algorithms can be applied to search pulsar candidates, such as FFT (Fast 

Fourier Transform) Seeking, FFA (Fast Fold Algorithm) Seeking, and Single 

Pulse Seeking. For example, the FFT Seeking algorithm takes 7 to 80 minutes 

to seek the 1200 de-dispersion files with different size (5GB to 90GB). A 

candidate list of pulsars is generated after the seeking step which is saved in a 

text file, normally 1KB in size. Furthermore, by comparing the candidates 

generated from different beam files in a same time session, interference may 

be detected and some candidates may be eliminated. With the final pulsar 

candidates, we need to go back to the de-dispersion files to find their feature 

signals and fold them to XML files. Each candidate is saved in a separated 

XML file about 25KB in size. This step takes up to one hour depending on the 

number of candidates found in this searching process. At last, the XML files 

are visually displayed to scientists for making decisions on whether a pulsar 

has been found or not. 

At present, all the generated datasets are deleted after having been used, and 

the scientists only store the raw beam data, which are extracted from the raw 

telescope data. Whenever there are needs of using the deleted datasets, the scientists 

will regenerate them based on the raw beam files. The generated datasets are not 

stored, mainly because the supercomputer is a shared facility that cannot offer 

sufficient storage capacity to hold the accumulated terabytes of data. However, some 

datasets are better to be stored. For example, the de-dispersion files can be more 

frequently used. Based on them, the scientists can apply different seeking algorithms 

to find potential pulsar candidates. For the large input beam files, the regeneration of 

the de-dispersion files will take more than 10 hours. It not only delays the scientists 

from conducting their experiments, but also requires a lot of computation resources. 

On the other hand, some datasets may need not to be stored. For example, the 

accelerated de-dispersion files, which are generated by the accelerate step, are not 

often used. The accelerate step is an optional step that is only for the binary pulsar 

searching. In light of this and given the large size of these datasets, they may be not 
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worth storing as it could be more cost effective to regenerate them from the de-

dispersion files whenever used. 

3.2    Problem Analysis  

Traditionally, scientific applications are normally deployed on the high performance 

computing facilities, such as clusters and grids. Scientific applications are often 

complex with huge datasets generated during their execution. How to store these 

datasets is often decided by the scientists who use the scientific applications. This is 

because the clusters and grids only serve for certain institutions. The scientists may 

store the datasets that are most valuable to them, based on the storage capacity of the 

system. However, for many scientific applications, the storage capacities are limited, 

such as the pulsar searching workflow introduced in Section 3.1. The scientists have 

to delete all the generated datasets because of the storage limitation. To store large 

scientific datasets, scientific communities have to set up data repositories [73] with 

large infrastructure investment. However, the storage bottleneck can be avoided in a 

cost-effective way if we deploy scientific applications in the cloud. 

3.2.1    Requirements and Challenges of Deploying Scientific Applications 

in the Cloud 

In a commercial cloud computing environment [1], theoretically, the system can offer 

unlimited storage resources. All the datasets generated by the scientific applications 

can be stored, if the users (e.g. scientists) are willing to pay for the required 

resources. However, new requirements and challenges also emerge for deploying 

scientific applications in the cloud, and whether to store the generated datasets or not 

is not an easy decision anymore. 

1. All the resources in the cloud carry certain costs, so either storing or 

generating a dataset, we have to pay for the resources used. The application 

datasets vary in size, and have different generation costs and usage 

frequencies. Some of them may often be used whilst some others may be not. 

On one extreme, it is most likely not cost effective to store all the generated 
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datasets in the cloud. On the other extreme, if we delete them all, regeneration 

of frequently used datasets most likely imposes a high computation cost. We 

need a mechanism to balance the regeneration cost and the storage cost of the 

application data, in order to reduce the total application cost for dataset 

storage. This is also the core issue of this thesis, i.e. the trade-off between 

computation and storage. 

2. The best trade-off between computation and storage cost may not be the best 

strategy for storing application data. When the deleted datasets are needed, the 

regeneration not only imposes computation cost, but also causes a time delay. 

Depending on the different time constraints of applications [25, 24], users’ 

tolerance of this computation may differ dramatically. Sometimes users may 

want the data to be available immediately, hence they would pay higher cost 

for storing some particular datasets; sometimes users do not care about waiting 

for it to become available, hence they may delete the seldom used dataset to 

reduce the overall application cost. Hence, we need to incorporate users’ 

preferences on data storage into this research.  

3. The scientists cannot predict the usage frequencies of the application data 

anymore. For a single research group, if the data resources of the applications 

are only used by their own scientists, the scientists may estimate the usage 

frequencies of the datasets and decide whether to store or delete them. 

However, the cloud is normally not developed for a single scientist or 

institution, rather, for scientists from different institutions to collaborate and 

share data resources. Scientists from all over the world can easily visit the 

cloud via Internet to launch their applications, and all the application data are 

managed in the cloud. This requires data management to be automatic. Hence, 

we need to investigate the trade-off between computation and storage for all 

the users that can reduce the overall application cost. More specifically, the 

datasets usage frequencies should be discovered and obtained from the system 

logs, rather than manually set by the users. However, forecasting accurate 

datasets usage frequencies is out of this research’s scope and we list it as our 

future work in Section 8.3. In this thesis, we assume that the datasets usage 

frequencies be already obtained from the system logs.  
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3.2.2    Bandwidth Cost of Deploying Scientific Applications in the Cloud 

Bandwidth is another common type of resource in the cloud. As cloud computing is 

such a fast growing market, more and more different cloud service providers will 

appear. In the future, we will be able to more flexibly select service providers to 

conduct our applications based on their pricing models. An intuitive idea is to 

incorporate different cloud service providers for applications, where we can store the 

data with one provider who has a lower price in storage resources, and choose 

another provider who has a lower price of computation resources to run the 

computation tasks. However, at present, normally it is not practical to run scientific 

applications across different cloud service providers because of the following 

reasons:  

1. The data in scientific applications are often very large in size. They are too 

large to be transferred efficiently via the Internet. Due to bandwidth 

limitations of the Internet, in today’s scientific projects, delivery of hard disks 

is a common practice to transfer application data, and it is also considered to 

be the most efficient way to transfer, say, terabytes of data [12]. Nowadays, 

express delivery companies can deliver the hard disks nation-wide by the end 

of the next day and world-wide in 2 or 3 days. In contrast, transferring one 

terabyte data via the Internet would take more than 10 days at a speed of 

1MB/s. To break the bandwidth limitation, some institutions set up dedicated 

optic fibres to transfer data. For example, Swinburne University of 

Technology has built a dedicated fibre to Parkes telescope station with gigabit 

bandwidth. However, it is mainly used for transferring gigabytes of data. To 

transfer terabytes, or petabytes, of data, scientists would still prefer to ship 

hard disks. Furthermore, building (dedicated) fibre connections is very 

expensive, and they are not yet widely used in the Internet. Hence, transferring 

scientific application data between different cloud service providers via the 

Internet is not efficient.  

2. Cloud service providers place high price on data transfer in and out their data 

centres. In contrast, data transfers within one cloud service provider’s data 

centres are usually free. For example, the data transfer price of Amazon cloud 
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service is: $0.12 per GB
6
 of data transferred out. Comparing to the storage 

price of $0.15 per GB per month
7
, the data transfer price is relatively high, so 

that finding a cheaper storage cloud service provider and transferring data may 

not be cost effective. In cloud service providers’ position, they charge high 

price on data transfer not only because of the bandwidth limitation, but also as 

a business strategy. As data are deemed as an important resource today, cloud 

service providers want users to keep all the application data in their storage 

cloud. For example, Amazon places a zero price on data transferred into its 

data centres, which means users could upload their data to Amazon’s cloud 

storage for free. However, the price of data transferred out of Amazon is not 

only not free, but also rather expensive. 

Due to the reasons above, we assume that the scientists only utilise cloud 

services from one service provider to deploy their applications. Furthermore, 

according to some researches [36, 49], the cost-effective way of doing science in the 

cloud is to upload all the application data to the cloud storage and run all the 

applications with the cloud services. So we assume that the scientists upload all the 

original data to the cloud to conduct their processing. Hence the cost of transferring 

data in and out of the cloud only depends on the applications themselves (i.e. how 

much original and result data the applications have), and has no impact on the usage 

of computation and storage resources for running the applications in the cloud.  

Hence, we do not incorporate data transfer cost in the trade-off between computation 

and storage at this stage. 

3.3    Research Issues 

In this section, we discuss the research issues tackled in this thesis based on the 

problems analysed in Section 3.2.  

                                                           
6 http://aws.amazon.com/ec2/pricing/ - The prices may fluctuate from time to time according to 

market factors.  
7 http://aws.amazon.com/s3/pricing/ - The prices may fluctuate from time to time according to market 

factors. 

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/s3/pricing/
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3.3.1    Cost Model for Datasets Storage in the Cloud 

In a commercial cloud, in theory, users can get unlimited resources for both 

computation and storage. However, they are responsible for the cost of the resources 

used due to the pay-as-you-go model. Hence, users need a new and appropriate cost 

model that can represent the cost that they actually incur on their applications in the 

cloud.  

For the large generated application datasets in the cloud, users can be given 

the choice to store them for future use or delete them for saving the storage cost. 

Different storage strategies lead to different consumptions of storage and 

computation resources and finally lead to different total application costs. 

Furthermore, because there are dependencies among the application datasets, i.e. 

computation task can operate on one or more datasets and generate new one(s), the 

storage status of a dataset is not only dependent on the generation cost and storage 

cost of itself, but also dependent on the storage status of its predecessors and 

successors. The new cost model should be able to represent the total cost of the 

applications based on the trade-off between computation and storage in the cloud, 

where data dependencies are taken into account. 

3.3.2    Minimum Cost Benchmarking Approaches  

Minimum cost benchmarking is to find the theoretical minimum application cost 

based on the cost model, which is also the best trade-off between computation and 

storage in the cloud. Due to the pay-as-you-go model in the cloud, cost is one of the 

most important factors that users care about. As a rapidly increasing number of 

datasets is generated and stored in the cloud, users need to evaluate the cost 

effectiveness of their storage strategies. Hence the service providers should be able 

and need to provide benchmarking services that can inform the minimum cost of 

storing the application datasets in the cloud.  

Calculating the minimum cost benchmark is a seemingly NP-hard problem, 

because there are complex dependencies among the datasets in the cloud. 

Furthermore, this application cost in the cloud is of a dynamic value. This is because 
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of the dynamic nature of the cloud computing system, i.e. 1) new datasets may be 

generated in the cloud at any time; and 2) the usage frequencies of the datasets may 

also change as time goes on. Hence, the minimum cost benchmark may change from 

time to time. In order to guarantee the quality of service (QoS) in the cloud, there 

should be different benchmarking approaches accommodating different situations. 

For example, in some applications, users may only need to know the benchmark 

before or occasionally during application execution. In this situation, benchmarking 

should be provided as a static service which can respond to users’ requests on-

demand. However, in some applications, users may have more frequent 

benchmarking requests at runtime. In this situation, benchmarking should be 

provided as a dynamic service which can respond to users’ requests on the fly.  

3.3.3    Cost-Effective Storage Strategies  

Based on the trade-off between computation and storage, cost-effective storage 

strategies need to be designed in this thesis. Different from benchmarking, in practice, 

the minimum cost storage strategy may not be the best strategy for the applications, 

because storage strategies are for users to use at runtime in the cloud and should take 

users’ preferences into consideration.  

Beside cost-effectiveness, storage strategies must be efficient enough to be 

facilitated at runtime in the cloud. For different applications, the requirements of 

efficiency may be different. On one hand, some applications may need highly 

efficient storage strategies with acceptable though not optimal cost-effectiveness. On 

the other hand, some applications may need highly cost-effective storage strategies 

with acceptable efficiency. According to different requirements, we need to design 

corresponding storage strategies.  

Furthermore, to reflect users’ preferences on the datasets storage, we need to 

incorporate related parameters into the strategies which 1) guarantee all the 

application datasets’ regenerations can fulfill users’ tolerance of data accessing delay, 

and 2) allow users to store some datasets according to their preferences.  
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3.4    Summary 

In this chapter, based on a real world pulsar searching scientific application from 

astrophysics, we analyse the requirements of data storage in scientific applications 

and how cloud computing systems can fulfill these requirements. Then we analyse 

the problems of deploying scientific applications in the cloud and define the scope of 

this research. Based on the analysis, we present the detailed research issues of this 

thesis: 1) cost model for datasets storage in the cloud; 2) minimum cost 

benchmarking approaches; and 3) practical datasets storage strategies.  
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Chapter 4 

Cost Model of Datasets Storage in the 

Cloud 

In this section, we present our new cost model of datasets storage in the cloud. 

Specifically, Section 4.1 introduces a classification of application data in the cloud 

and further expresses the scope of this research. Section 4.2 introduces data 

provenance and describes the concept of DDG (Data Dependency Graph) which is 

used to depict the data dependencies in the cloud. Based on Sections 4.1 and 4.2, in 

Section 4.3 we describe the new cost model and its important attributes in detail.  

This cost model has been utilised in our work presented in [87, 92, 90, 91, 89].  

4.1    Classification of Application Data in the Cloud 

In general, there are two types of data stored in the cloud storage, original data and 

generated data:  

1. Original data are the data uploaded by users, and in scientific applications 

they are usually the raw data collected from the devices in the experiments. In 

the cloud, they are the initial input of the applications for processing and 

analysis. The most important feature of these data is that if they are deleted, 

they cannot be regenerated by the system. 
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2. Generated data are the data produced in the cloud computing system while the 

applications run. They are the intermediate or final computation results of the 

application which can be used in the future. The most important feature of 

these data is that they can be regenerated by the system and more efficiently if 

we know their provenance. 

For original data, only the users can decide whether they should be stored or 

deleted, since they cannot be regenerated once deleted. Hence, our research only 

focuses on generated data in the cloud that the system can automatically decide their 

storage status for achieving the best trade-off between computation and storage. In 

this thesis, we refer generated data as dataset(s).  

4.2    Data Provenance and Data Dependency Graph (DDG) 

Scientific applications have many computation and data intensive tasks that generate 

many datasets of considerable size. There exist dependencies among these datasets, 

which depict the generation (in another word, derivation) relationships. For scientific 

applications, after the execution, some datasets may be deleted, but if so, sometimes 

they need to be regenerated for either reuse or reanalysis [16]. To regenerate a dataset 

in the cloud, we need to find its stored predecessors and start the computation from 

them. Hence the regeneration of a dataset includes not only the computation of the 

dataset itself, but also the regeneration of its deleted predecessors, if any. This makes 

minimising the total application cost a very complex problem.   

Data provenance is a kind of important metadata which records the 

dependencies among datasets [70], i.e. the information of how the datasets were 

generated. Data provenance is especially important for scientific applications in the 

cloud, because the regeneration of datasets from the original data may be very time 

consuming, and therefore carry a high cost. With data provenance information, the 

regeneration of the requested dataset could start from some stored (predecessor) 

datasets, hence more efficient and cost effective.  

Taking the advantage of data provenance, we can build a DDG. All the 

datasets once generated (or modified) in the cloud, whether stored or deleted, their 
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references are recorded in the DDG as different nodes. In DDG, every node denotes a 

dataset. Figure 4.1 shows a simple DDG, where every node in the graph denotes a 

dataset. Dataset d1 pointing to dataset d2 means that d1 is used to generate d2; and d2 

pointing to d3 and d5 means that d2 is used to generate d3 and d5 based on different 

operations; datasets d4 and d6 pointing to dataset d7 means that d4 and d6 are used 

together to generate d7.  

d1 d2

d3

d8d7

d6

d4

d5

 

Figure 4.1 A simple Data Dependency Graph (DDG) 

DDG is a directed acyclic graph (DAG). This is because DDG records the 

provenances of how datasets are derived in the system as time goes on. In other 

words, it depicts the generation relationships of datasets. When some of the deleted 

datasets need to be reused, in general, we need not regenerate them from the original 

data. With DDG, the system can find the predecessors of the requested dataset, so 

that they can be regenerated from their nearest stored predecessors. 

We denote a dataset di in DDG as DDGdi  , and to better describe the 

relationships of datasets in DDG, we define two symbols   and   : 

   denotes that two datasets have a generation relationship, where didj means 

that di is a predecessor dataset of dj in the DDG. For example, in the DDG 

depicted in Figure 4.1, we have d1  d2, d1  d4, d5  d7, d1  d7, etc. 

Furthermore,   is transitive, i.e.  

kikjjikji ddddddddd  . 

   denotes that two datasets do not have a generation relationship, where 

di dj means that di and dj are in different branches in DDG. For example, in 

the DDG depicted in Figure 4.1, we have d3 d5, d3 d6, etc. Furthermore,   

is commutative, i.e. i j j id d d d    . 
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4.3    Datasets Storage Cost Model in the Cloud 

In a commercial cloud computing environment, if the users want to deploy and run 

applications, they need to pay for the resources used. The resources are offered by 

cloud service providers, who have their cost models to charge the users on storage 

and computation. For example, one set of Amazon cloud services’ prices is as 

follows8: 

 $0.15 per Gigabyte per month for the storage resources; 

 $0.1 per CPU instance hour for the computation resources; 

In this thesis, in order to represent the trade-off between computation and 

storage, we define the total cost for running a scientific application in the cloud as 

follows:  

Cost = Computation + Storage, 

where the total cost of the application, Cost, is the sum of Computation, which is the 

total cost of computation resources used to regenerate datasets, and Storage, which 

is the total cost of storage resources used to store the datasets. As indicated in 

Section 4.1, our research only focuses on the generated data. The total application 

cost in this thesis does not include computation cost of the application itself and the 

storage cost of the original data. 

To calculate the total application cost in the cloud, we define some important 

attributes for the datasets in DDG. For dataset di, its attributes are denoted as: <xi , yi , 

fi , vi , provSeti , CostRi >, where 

 xi  denotes the generation cost of dataset di from its direct predecessors. To 

calculate this generation cost, we have to multiply the time of generating dataset 

di by the price of computation resources. Normally the generation time can be 

obtained from the system logs.  

                                                           
8 The prices may fluctuate from time to time according to market factors.   
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 yi denotes the cost of storing dataset di in the system per time unit (i.e. storage 

cost rate). This storage cost rate can be calculated by multiplying the size of 

dataset di and the price of storage resources per time unit.  

 fi is a flag, which denotes the status whether this dataset is stored or deleted in 

the system. 

 vi denotes the usage frequency, which indicates how often di is used. In cloud 

computing systems, datasets may be shared by many users from the Internet. 

Hence vi cannot be defined by a single user and should be an estimated value 

from di’s usage history recorded in the system logs. 

 provSeti denotes the set of stored provenances that are needed when 

regenerating dataset di. In other words, it is the set of references of stored 

predecessor datasets that are adjacent to di in the DDG. If we want to regenerate 

di, we have to find its direct predecessors, which may also be deleted, so we 

have to further find the stored predecessors of di. provSeti is the set of the 

nearest stored predecessors of di in the DDG. Figure 4.2 shows the provSets of a 

dataset in different situations. Formally, we can describe dataset di’s ProvSeti as 

follows:  

   


 

 ""

""

deletedfdddDDGd

dddDDGd

ddstoredfDDGddprovSet

kikjk

ikjk

ijjjji







 

provSet is a very important attribute of a dataset in calculating its generation 

cost. When we want to regenerate a dataset in DDG, we have to start the 

computation from the dataset in its provSet. Hence, for dataset di, its generation 

cost is: 

{ }( )
k j i j k ii i kd d provSet d d dgenCost d x x                                   (4.1) 

This cost is a total cost of 1) the generation cost of dataset di from its direct 

predecessor datasets and 2) the generation costs of di’s deleted predecessors that 

need to be regenerated as well.  
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Figure 4.2 A dataset’s provSets in a DDG in different situations 

 CostRi  is di’s cost rate, which means the average cost per time unit of the 

dataset di in the system. If di is a stored dataset, then ii yCostR  . If di is a 

deleted dataset in the system, when we need to use di, we have to regenerate it. 

So we multiply the generation cost of di by its usage frequency and use this 

value as the cost rate of di in the system, i.e. iii vdgenCostCostR *)( . The 

storage statuses of the datasets have significant impacts on their cost rates. 

Formally, dataset di’s cost rate is:  

, " "

( ) , " "

i i

i

i i i

y f stored
CostR

genCost d v f deleted


 

 
                                        (4.2) 

Based on the definition of the attributes above, we can calculate the total cost 

rate of storing the datasets recorded in a DDG, which is  DDGd ii
RCost . This cost 

rate is the cost of computation and storage resources consumption in the cloud per 

time unit, which is also the cost of running the application in the cloud per time unit. 

Given a time duration t, the total application cost of storing the datasets recorded in 

a DDG is the integral of the cost rate in this duration as a function of time t, which is 

   t DDGd i dtRCostCostTotal
i

)(_                                                      (4.3) 

We further define the storage strategy of a DDG as S, where S is a set of 

datasets in the DDG denoted as DDGS  , which means storing the datasets in S in 

the cloud and deleting the rest. We denote the sum of cost rates of storing the 

datasets recorded in a DDG with the storage strategy S as SCR, formally: 

  
SDDGd ii

RCostSCR                                                                             (4.4) 
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Based on the definition above, different storage strategies lead to different 

cost rates (i.e. cost per time unit) for the application in the cloud. This cost rate is the 

total consumption of computation and storage resources in the cloud per time unit, 

hence represents the trade-off between computation and storage. Our work aims at 

minimising this cost rate so that we can help both service providers and users to 

reduce the application cost in the cloud. 

4.4    Summary 

In this chapter, we first introduce a classification of the application data in the cloud, 

i.e. original data and generated data, and further point out that our research only 

focuses on the generated data. Then we describe the concept of Data Dependency 

Graph (DDG), which is a very important for datasets storage in the cloud. At last, we 

present the cost model of datasets storage based on DDG, where the total application 

cost is the sum of the computation cost for regenerating datasets and the storage cost 

for storing datasets. Furthermore, we use a cost rate (i.e. total consumption of 

computation and storage resources in the cloud per time unit) to represent the trade-

off between computation and storage. By minimising this cost rate, our work 

presented later aims at cutting the application cost in the cloud. 
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Chapter 5  

Minimum Cost Benchmarking 

Approaches 

In this chapter, we present our minimum cost benchmarking approaches for the 

applications in the cloud. The benchmark is the theoretical minimum application cost 

in the cloud, which is also the best trade-off between computation and storage. As 

introduced in Section 4.3, we use a cost rate to represent this trade-off (i.e. SCR). 

Benchmarking is to find the minimum value of this cost rate (i.e. the SCR with the 

minimum cost storage strategy of the DDG). Due to the complex dependencies 

among the datasets in the cloud, the DDG is a Directed Acyclic Graph (DAG). 

Hence, calculating the minimum cost benchmark is a seemingly NP-hard problem 

based on the cost model introduced in Section 4.3. Furthermore, the application cost 

in the cloud is of a dynamic value. This is because of the dynamic nature of the cloud 

computing system, i.e. 1) new datasets may be generated in the cloud at any time; 

and 2) the usage frequencies of the datasets may also change as time goes on. Hence, 

the minimum cost benchmark may change from time to time. In this chapter, we 

present two benchmarking approaches: one static and one dynamic. 

Section 5.1 presents a novel static on-demand minimum cost benchmarking 

approach. This approach is suitable for the situation that no frequent benchmarking is 

requested. In this situation, the benchmarking should be provided as an on-demand 

service. Whenever a benchmarking request comes, the corresponding algorithms will 

be triggered to calculate the minimum cost benchmark, which is one time only 
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computation based on the current status of the application. This section is mainly 

based on our work presented in [91]. 

Section 5.2 presents a novel dynamic on-the-fly minimum cost benchmarking 

approach. This approach is suitable for the situation that more frequent benchmarking 

is requested at runtime. In this approach, by saving and utilising the pre-calculated 

results, whenever the application cost changes in the cloud, we can quickly calculate 

the new minimum cost benchmark. By keeping the benchmark dynamically updated, 

benchmarking requests can be instantly responded on the fly. This section is mainly 

based on our work presented in [89]. 

5.1    Static On-Demand Minimum Cost Benchmarking Approach 

In this section, we present our on-demand minimum cost benchmarking approach. 

Specifically, we describe the novel design of a Cost Transitive Tournament Shortest 

Path (CTT-SP) based algorithm that can find the Minimum Cost Storage Strategy 

(MCSS) for a given DDG. The basic idea of the CTT-SP algorithm is to construct a 

Cost Transitive Tournament (CTT) based on the DDG. In a CTT, we guarantee that 

the paths from the start dataset to the end dataset have a one-to-one mapping to the 

storage strategies of the DDG, and the length of every path equals to the total cost 

rate of the corresponding storage strategy. Then we can use the well-known Dijkstra 

shortest path algorithm (or Dijkstra algorithm for short) to find the Shortest Path (SP) 

in the CTT, which in fact represents the MCSS, and the cost rate of the MCSS (i.e. 

SCR) is the minimum cost benchmark.  

To describe the approach in detail, in Section 5.1.1 we start with the CTT-SP 

algorithm for the linear DDG, and then in Section 5.1.2 we expand it to the DDG 

with one block, next in Section 5.1.3 we present the general CTT-SP algorithm for 

on-demand benchmarking. The experiment results are presented in Chapter 7, jointly 

along with others. 
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5.1.1    CTT-SP Algorithm for Linear DDG 

Linear DDG means a DDG with no branches, where each dataset in the DDG only 

has one direct predecessor and successor except the first and last datasets. 

Given a linear DDG, which has datasets {d1, d2 … dn}. The CTT-SP 

algorithm has the following four steps: 

Step 1: We add two virtual datasets in the DDG, ds before d1 and de after dn, 

as the start and end datasets, and set xs = ys = 0 and xe = ye = 0.  

Step 2: We add new directed edges in the DDG to construct the transitive 

tournament. For every dataset in the DDG, we add edges that start from it and point 

to all its successors. Formally, for dataset di, it has out-edges to all the datasets in the 

set of  j j i jd d DDG d d   , and in-edges from all the datasets in the set of 

 k k k id d DDG d d   . Hence, for any two datasets di and dj in the DDG, we 

have an edge between them, denoted as  ji dde , . Formally,  

, ,i j i i jd d DDG d d e d d       

Step 3: We set weights to the edges. The reason we call the graph Cost 

Transitive Tournament is because the weights of its edges are composed of the cost 

rates of datasets. For an edge  ji dde , , we denote its weight as  ji dd , , 

which is defined as the sum of cost rates of dj and the datasets between di and dj, 

supposing that only di and dj are stored and the rest of datasets between di and dj are 

all deleted. Formally: 

 

{ }

{ }

,

( ) *

k k i k j

k k i k j

i j j kd d DDG d d d

j k kd d DDG d d d

d d CostR CostR

y genCost d v

    

   

   

 




                   (5.1) 

Since we are discussing the linear DDG, for the datasets between di and dj, di is the 

only dataset in their provSets. Hence we can further derive: 

  { } { }, *
k k i k j h h i h ki j j k h kd d DDG d d d d d DDG d d dd d y x x v               
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In Figure 5.1, we demonstrate a simple example of constructing CTT for a DDG that 

has three datasets (d1, d2, d3), where ds is the start dataset that only has out-edges and 

de is the end dataset that only has in-edges.  

y1

d1 d2 d3

(x1 , y1 ,v1) (x3 , y3 ,v3)(x2 , y2 ,v2)

x1v1+y2

d1 d2 d3ds de

x3v3

x2v2+y3

x2v2+(x2+x3)v3

x1v1+(x1+x2)v2+(x1+x2+x3)v3

x1v1+(x1+x2)v2+y3

y2 y3 0

DDG

CTT

Data dependency:

Cost edge:

Start 
Dataset

End 
Dataset

 

Figure 5.1 An example of constructing CTT 

Step 4: We find the shortest path of CTT. From the construction steps, we can 

clearly see that the CTT is an acyclic complete oriented graph. Hence we can use the 

Dijkstra algorithm to find the shortest path from ds to de. The Dijkstra algorithm is a 

classic greedy algorithm to find the shortest path in graph theory. We denote the 

shortest path from ds to de as Pmin<ds , de>. 

Theorem9 5.1: Given a linear DDG with datasets {d1, d2 … dn}, the length of 

Pmin<ds , de> of its CTT is the minimum cost rate for storing the datasets in the 

DDG, and the corresponding storage strategy is to store the datasets that 

Pmin<ds , de> traverses. 

Theorem 5.1 demonstrates that the linear CTT-SP algorithm finds the MCSS 

of linear DDGs, hence can be used for minimum cost benchmarking. Figure 5.2 

                                                           
9 As indicated at the end of Chapter 1, proofs of all the theorems, lemmas and corollaries are in 

Appendix A of this thesis. 
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shows the pseudo-code of the linear CTT-SP algorithm. To construct the CTT, we 

first create the cost edges (lines 1-3), and then calculate their weights (lines 4-11). 

Next, we use the Dijkstra algorithm to find the shortest path (line 12), and return the 

MCSS and the minimum cost benchmark (lines 13-15).  

Algorithm: Linear CTT-SP

Input: Start dataset ds;  End dataset de;

A linear DDG; //include ds and de

Output: S //MCSS of the DDG

SCR //Minimum cost benchmark

for ( every dataset di in DDG ) //Create CTT

      for ( every dataset dj, where                )

Create //Create an edge

weight = 0; 

for (every dataset dk, where                        ) //Calculate the weith of an edge

      genCost = 0;

      for (every dataset dh, where                        )

 genCost = genCost + xh ;

      //Accumulate generation cost rate

weight = weight + yj ;

Set //Set weight to an edge

Pmin = Dijkstra ( ds, de, CTT ); //Find the shortest path

S = set of datasets that Pmin traversed; //Except ds and de 

Return S, SCR;

ji dd 

 ji dde ,

 * ;k kweight weight x genCost v  

;, weightdd ji 

khi ddd 

jki ddd 

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.
  ;

i id DDG
S

SCR CostR 

 

Figure 5.2 Pseudo-code of linear CTT-SP algorithm for benchmarking 

From the pseudo-code in Figure 5.2, we can clearly see that for a linear DDG 

with n datasets, we have to add a magnitude of n2 edges to construct the CTT (line 3 

with two nested loops in lines 1-2), and for the longest edge, the time complexity of 

calculating its weight is also O(n2) (lines 5-11 with two nested loops), so a total of 

O(n4). Next, the Dijkstra algorithm (line 12) has the known time complexity of O(n2). 

Hence the linear CTT-SP algorithm has a worst case time complexity of O(n4).  

5.1.2    Minimum Cost Benchmarking Algorithm for DDG with One 

Block 

Linear DDG is a special case of general DDGs. In the real world, application datasets 

generated in the cloud may have complex relationships, such that different datasets 

may be generated from a single dataset by different operations, and different datasets 

may be used together to generate one dataset. In other words, DDG may have 
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branches, where the linear CTT-SP algorithm introduced in Section 5.1.1 cannot be 

directly applied. This is because current CTT can only be constructed on linear DDG, 

which means that the datasets in a DDG must be totally ordered. In this sub-section, 

we discuss how to find the MCSS of the DDG that has a sub-branch within one block 

for benchmarking.  

5.1.2.1    Constructing CTT for DDG with one block 

First we introduce the concept of “block” in DDG. Block is a set of sub-branches in 

the DDG that splits from a common dataset and merges into another common dataset. 

We denote the block as B. Figure 5.3 shows a DDG with a simple block B={d3, d4, d5, 

d6}, we will use it as the example to illustrate the construction of CTT in our new 

algorithm.  

d1 d2

d3

d8d7

d6

d4

d5

d1 d2

d3

d8d7d6

d4

d5ds de

DDG

CTT

Block

Main Branch

Sub-branch

 

Figure 5.3 An example of constructing CTT for DDG with one block 

To construct the CTT, we need the datasets in DDG to be totally ordered. 

Hence, for the DDG with one block, we only choose one branch to construct the CTT, 

as shown is Figure 5.3. We call the linear datasets which are chosen to construct the 



43 

 

CTT “main branch”, denoted as MB, and call the rest of datasets “sub-branch(es)”, 

denoted as SB. For example, in Figure 5.3’s DDG, MB={d1, d2, d5, d6, d7, d8} and 

SB={d3, d4}. Due to the existence of the block, the edges can be classified into four 

categories. The definition of this classification is as follows: 

 in-block edge: e<di , dj> is an in-block edge meaning that the edge starts from 

di , which is a dataset outside of the block, and points to dj, which is a dataset in 

the block, such as e<d2 , d5>, e<d1 , d6> in Figure 5.3. Formally, we define e<di , 

dj> as an in-block edge, where  

 k i k j kd DDG d d d d      . 

 out-block edge: e<di , dj> is an out-block edge meaning that the edge starts 

from di , which is a dataset in the block, and points to dj, which is a dataset 

outside of the block, such as e<d6 , d7>, e<d5 , d8> in Figure 5.3. Formally, we 

define e<di , dj> as an out-block edge, where 

 k i k k jd DDG d d d d      . 

 over-block edge: e<di , dj> is an over-block edge meaning that the edge crosses 

over the block, where di is a dataset preceding the block, dj is a dataset 

succeeding the block, such as e<d2 , d7>, e<d1 , d8> in Figure 5.3. Formally, we 

define e<di , dj> as an over-block edge, where 

 ,k h h k i h j i k jd d DDG d d d d d d d d          . 

 ordinary edge: e<di , dj> is an ordinary edge meaning that datasets between di 

and dj are totally ordered, such as e<ds , d2>, e<d5 , d6>, e<d7 , d8> in Figure 5.3. 

Formally, we define e<di , dj> as an ordinary edge, where  



 

k i k k j i k k j

h h k i h j i k j

d DDG d d d d d d d d

d DDG d d d d d d d d

   
   
   

          

         
. 
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5.1.2.2    Setting weights to different types of edges 

The essence of the CTT-SP algorithm is the rules for setting weights to the cost edges. 

In order to set weights to different types of edges in the DDG with one block, we 

need to introduce an important corollary of Theorem 5.1. 

Corollary 5.1: During the process of finding the shortest path, for every dataset df 

that is discovered by the Dijkstra algorithm, we have a path Pmin<ds , d f > from 

ds to df and a set of datasets Sf that Pmin<ds , d f > traverses. Sf is the MCSS of 

the sub DDG segment  i i s i fd d DDG d d d    . 

In the CTT-SP algorithm, the rules for setting weights to the edges guarantee 

that the paths from the start dataset ds to every dataset di in the CTT represent the 

storage strategies of the datasets  k k s k id d DDG d d d    , and Corollary 5.1 

further indicates that the shortest path represent the MCSS. As defined in Section 

5.1.1, the weight of the edge e<di , dj> is the sum of cost rates of dj and the datasets 

between di and dj, supposing that only di and dj are stored and the rest of datasets 

between di and dj are all deleted. In the DDG with one block, this rule is still 

applicable to the ordinary edges and in-block edges.  

However, if e<di , dj> is an out-block edge or over-block edge, formula (5.1) 

in Section 5.1.1 is not applicable for calculating its weight anymore, because of the 

following reasons.  

1) Due to the existence of the block, the datasets succeeding the block may 

have more than one datasets in their provSets. The generation of these datasets needs 

not only di, but also the stored provenance datasets from the other sub-branches of the 

block. For example, according to formula (5.1) in Section 5.1.1, the weight of the 

out-block edge e<d5 , d8> in Figure 5.3 is 

  5 8 8 6 6 7 7, ( )* ( )*d d y genCost d v genCost d v      ,  

where if we want to calculate genCost(d7), we also have to know the storage statuses 

of d3 and d4. The same problem also exists when calculating the weights of the over-
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block edges. Hence, to calculate the weights of out-block and over-block edges, we 

have to know the storage strategies of all the sub-branches in the block.  

2) The path from ds to dj cannot represent the storage strategy of all the 

datasets  k k s k jd d DDG d d d    . If we use the same method in Section 5.1.1 

to set the weight of e<di , dj>, the path that contains e<di , dj> in the CTT can only 

represent the storage strategy of datasets in the main branch, where the sub-branches 

are not represented. For example, in Figure 5.3, the path from ds to d8 that contains 

the out-block edge e<d5 , d8>, does not represent the storage statuses of datasets d3 

and d4, and the length of the path also does not contain the cost rates of d3 and d4, if 

we use the method in Section 5.1.1 to calculate the weights of the edges. Hence, to 

maintain the mapping between the paths and the storage strategies, the weights of 

out-block and over-block edges should contain the minimum cost rates of the datasets 

in the sub-branches of the block.  

Based on the reasons above, if e<di , dj> is an out-block edge or over-block 

edge, we define its weight as  

 

 

{ }

{ }

, ( )*
k k i k j

h h

i j j k kd d MB d d d

hd d SB
S

d d y genCost d v

CostR

    




   






                      (5.2) 

In formula (5.2),  { }h h hd d SB
S

CostR


  is the sum of cost rates of the datasets 

that are in the sub-branches of the block, where S' is the MCSS of the sub-branches. 

This formula guarantees that the length of the shortest path with an out-block edge or 

over-block edge still equals the minimum cost rate of the datasets, which is 

  min { },
k k s k js j kd d DDG d d d

S

P d d CostR   


    .  

Hence, to calculate the weights of out-block and over-block edges, we have to find 

the MCSS of the datasets that are in the sub-branches of the block. For example, the 

weight of the edge e<d5 , d8> in Figure 5.3 is 

           5 8 8 6 6 7 7 3 4, ( )* ( )*
S

d d y genCost d v genCost d v CostR CostR


       ,  
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where we have to find the MCSS of datasets d3 and d4 .  

However, for any sub-branch, the MCSS is dependant on the storage status 

of the datasets preceding and succeeding the block (i.e. stored adjacent predecessor 

and successor of the sub-branches).  

If e<di , dj> is an over-block edge, according to rules of setting weight, di and 

dj are stored datasets, and the datasets between di and dj in the main branch, 

 k k i k jd d MB d d d    , are deleted. Hence, di and dj are the stored adjacent 

predecessor and successor of the sub-branch. If the rest of datasets within the block 

form a linear DDG, we can use the linear CTT-SP algorithm introduced in Section 

5.1.1 to find its MCSS, where in the first step we have to use di and dj as the start 

and end datasets. For example, to calculate the weight of over-block edge e<d1 , d8> 

in Figure 5.3, we have to find the MCSS S' of sub-branch {d3, d4} by the linear CTT-

SP algorithm, given, d1 is the start dataset and d8 is the end dataset.  Otherwise, if the 

rest of datasets within the block do not form a linear DDG, we have to recursively 

call the CTT-SP algorithm to find the MCSS of sub-branches, which will be 

introduced in Section 5.1.3. Hence, the weight of an over-block edge can be 

calculated. 

If e<di , dj> is an out-block edge, we only know the stored adjacent successor 

of the sub-branches is dj . However, the MCSS of the sub-branches is also dependant 

on the stored adjacent predecessor, which is unknown for an out-block edge. Hence, 

given different stored adjacent predecessors, the weight of an out-block edge would 

be different. For example, to calculate the weight of out-block edge e<d5 , d8> in 

Figure 5.3, we need to find the MCSS S' of the sub-branch {d3, d4}, where we only 

know the stored adjacent successor d8. However, S' may be different depending on 

the storage statuses of d1 and d2. Hence, we have to create multiple CTTs for the 

DDG with a block, in order to calculate the weights of out-block edges in different 

situations, as detailed next. 
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5.1.2.3    Steps of finding MCSS for DDG with one sub-branch in one block 

In this sub-section, we extend the linear CTT-SP algorithm to find its MCSS for 

DDG with one sub-branch in the block. As discussed in Section 5.1.2.2, depending 

on different stored preceding datasets of the block, the weight of an out-block edge 

may be different. Hence multiple CTTs are needed to represent these different 

situations, and the MCSS is the shortest path among all the CTTs.  

To find the MCSS for a DDG with one sub-branch in the block, we need the 

following two theorems. 

Theorem 5.2: The selection of main branch in the DDG to construct CTT has no 

impact on finding the MCSS. 

Theorem 5.3: The Dijkstra algorithm is still applicable to find the MCSS of the 

DDG with one block. 

Based on these two theorems, we design the algorithm for finding the MCSS 

for the DDG with one block. The main steps are as follows. 

Step 1: Construct the initial CTT of the DDG. According to Theorem 5.2, we 

choose an arbitrary branch in the DDG as the main branch and add cost edges to 

construct the CTT. In the CTT, for the ordinary edges and in-block edges, we set 

their weights based on formula (5.1) in Section 5.1.1. For the over-block edges, we 

set their weights according to formula (5.2) by calling the linear CTT-SP algorithm to 

find the MCSS of the sub-branch, which is introduced in Section 5.1.2.2. For the out-

block edges, we initialise their weights as infinity. The initial CTT is shown in Figure 

5.4 (a). We create a CTT set and add the initial CTT to it. 

Step 2: Based on Theorem 5.3, start the Dijkstra algorithm to find the shortest 

path from ds to de, which applies to all CTTs in the CTT set. We use F to denote the 

set of datasets discovered by the Dijkstra algorithm. When a new edge e<di , dj> is 

discovered, we first add dj to F, and then check whether e<di , dj> is an in-block edge 
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or not. If not, we continue to find the next edge by the Dijkstra algorithm until de is 

reached which would terminate the algorithm. If e<di , dj> is an in-block edge, create 

a new CTT (see steps 2.1 - 2.3 next) because whenever an in-block edge is 

discovered, a stored adjacent predecessor of the sub-branch is identified, and this 

dataset will be used in calculating the weights of out-block edges. Then we continue 

the Dijkstra algorithm to find the next edge. 

Step 2.1: In the case where in-block edge e<di , dj> is discovered, 

based on the current CTT, create CTT(e<di , dj>) as shown in Figure 5.4 (b). 

First, we copy all the information of the current CTT to new CTT(e<di , dj>). 

Second, we update the weights of all the in-block edges in CTT(e<di , dj>) as 

infinity, except e<di , dj>. This guarantees that dataset di is the stored adjacent 

predecessor of the sub-branch in all the paths of CTT(e<di , dj>). Third, we 

update the weights of all the out-block edges in CTT(e<di , dj>) as described 

next.  

Step 2.2: Calculate the weight of an out-block edge e<dh , dk> in 

CTT(e<di , dj>). As discussed in Section 5.1.2.2, to calculate the weight of 

e<dh , dk> according to formula (5.2), we have to find the MCSS of the sub-

branch in the block. From Figure 5.4 (b) we can see that the sub-branch is 

{d'1, d'2, … d'm}, which is a linear DDG. We can find its MCSS by using the 

linear CTT-SP algorithm described in Section 5.1.1, given that di is the start 

dataset and dk is the end dataset. The CTT created for the sub-branch is 

depicted in Figure 5.4 (c).  

Step 2.3: Add new CTT(e<di , dj>) to the CTT set.  
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(a) Initial CTT for DDG

(b) CTT(e<di,dj>) for in-block edge e<di,dj>

(c) CTT created for the sub-branch

dkdi

 

Figure 5.4 CTTs for DDG with one block 

 

5.1.3    Minimum Cost Benchmarking Algorithm for General DDG 

In the real world applications, the structure of DDG could be complex, i.e. there may 

exist more than one block in a DDG. However, to find the MCSS of a general DDG, 

no matter how complex the DDG’s structure is, we can deduce the calculation 

process to the linear DDG situations by recursively calling the algorithm introduced 

in Section 5.1.2. In this sub-section we present the general CTT-SP algorithm for 

benchmarking. First we discuss different situations of the algorithm for a general 

DDG, and then we give the pseudo-code of finding the MCSS for general DDG.  
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5.1.3.1    General CTT-SP algorithm for different situations 

The complex structure of a DDG can be viewed as a combination of many blocks. 

Following the algorithm steps introduced in Section 5.1.2.3, we choose an arbitrary 

branch from the start dataset ds to the end dataset de as the main branch to construct 

the initial CTT and create multiple CTTs for different in-block edges discovered by 

the Dijkstra algorithm. In the process of calculating the weights of out-block and 

over-block edges, there are two new situations for finding the MCSS of the sub-

branches. 

1) The sub-branches may have more than one stored adjacent predecessor. 

For example, e<di , dj> in Figure 5.5 is an out-block edge of block B1, and also an in-

block edge of block B2. In the algorithm, if edge e<di , dj> is found by the Dijkstra 

algorithm, we create a new CTT(e<di , dj>) from the current CTT, since e<di , dj> is 

an in-block edge of block B2. To calculate the weights of out-block edges in 

CTT(e<di , dj>), for example e<dh , dk> in Figure 5.5, we need to find the MCSS of 

the sub-branch {d1', d2', … dm'} of block B2. However, because e<di , dj> is also an 

out-block edge of B1 , di is not the only dataset in d1'’s provSet. To calculate the 

generation cost of d1', we need to find its stored provenance datasets from sub-branch 

Br1 of block B1. 

d1'

di .........

...

...............

......

...

Block B1 Block B2

ds de
dj dkdh ...

dm'd2'
Sub-branch Br1 Sub-branch Br2

 

Figure 5.5 Sub-branch with more than one stored adjacent predecessor 

2) The sub-branches are a general DDG which also has branches. In this 

situation, we need to recursively call the general CTT-SP algorithm to find its MCSS. 

For example, e<di , dj> in Figure 5.6 is an in-block edge of blocks B1 and B2 . If e<di , 

dj> is selected by the algorithm, we need to create a new CTT(e<di , dj>). To 

calculate the weight of e<dh , dk> in Figure 5.6, which is an out-block edge of both B1 

and B2 , we need to find the MCSS of the sub-branches Br1 and Br2. Hence we have 
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to recursively call the general CTT-SP algorithm for the DDG 1 2Br Br , given the 

start dataset di and the end dataset dk .  

Block B2

di ... deds ... ... ...

...

...

......

.........

Block B1

...... ……

dhdj dk...

Sub-branch Br1

Sub-branch Br2

 

Figure 5.6 Sub-branch with branches 

Hence, given a general DDG, its structure can be viewed as a combination of 

many blocks. By recursively calling the general CTT-SP algorithm for the sub-

branches, we can eventually find the MCSS of the whole DDG. Figure 5.7 shows an 

example of general DDG. To create CTT(e<di , dj>), we need to calculate the weights 

of all the out-block edges. For example, for an out-block edge e<dh , dk>, we need to 

further find the MCSS of the sub-branches 

 u u u k u j u hd d DDG d d d d d d        , as shadowed in Figure 5.7, given 

the start dataset di and the end dataset dk.  

di ... deds ... ... ...

...

...

......

.........

......
……

dhdj dk...

...

...

…………
Block

 

Figure 5.7 CTT for general DDG 
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5.1.3.2    Pseudo-code of general CTT-SP algorithm 

Figure 5.8 shows the pseudo-code of the general CTT-SP algorithm. At the beginning, 

we choose an arbitrary branch from ds to de as the main branch to construct the initial 

CTT (lines 1-21), where we need to recursively call the general CTT-SP algorithm in 

calculating the weights for over-block edges (lines 11-14). Then we start the Dijkstra 

algorithm (lines 22-50). Whenever an in-block edge is found, we construct a new 

CTT with the following steps. First, we create a copy of the current CTT, in which 

the in-block edge is found (line 31). Next, we update the weights of edges: lines 32 to 

34 are for updating the weights of in-block edges and lines 35 to 49 are for updating 

the weights of out-block edges. If the sub-branch is a linear DDG, we call the linear 

CTT-SP algorithm described in Figure 5.2, otherwise we recursively call the general 

CTT-SP algorithm (lines 39-42). At last, we add the new CTT to the CTTSet (line 50) 

and continue the Dijkstra algorithm to find the next edge. When the end dataset de is 

reached, the algorithm ends with the MCSS and the minimum cost benchmark 

returned (lines 51-53).  

From the pseudo-code in Figure 5.8, we can see that recursive calls (line 14 

and line 42) exist in the general CTT-SP algorithm, which makes the algorithm’s 

complexity highly dependant on the structure of DDG. Next, we analyse the worst 

case scenario of the algorithm and show that the time complexity is polynomial.  

In Figure 5.8, pseudo-code lines 1 to 21 are for constructing one CTT, i.e. 

initial CTT. From pseudo-code lines 24 to 50 of the general CTT-SP algorithm, many 

CTTs are created for the DDG during the deployment of the Dijkstra algorithm, 

which determine the algorithm’s computation complexity. The maximum number of 

the created CTTs is smaller than the number of datasets in the main branch, which is 

in the magnitude of n. Hence, if we denote the time complexity of the general CTT-

SP algorithm as Fl(n), we have the recursive equation as follows: 

 

4
0

3 2
1 ( 1)

( ) ( )

( ) ( ) , 0r r r

F n O n

F n n F n n r 

 


   

                                                     (5.3) 
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Algorithm: General_CTT-SP

Input: start dataset ds;  end dataset de;

a general DDG; //Include ds and de

Output: S; SCR; //MCSS of the DDG and the minimum cost benchmark

Get a main branch MB from DDG;

for ( every dataset di in MB ) //Create initial CTT

      for ( every dataset dj, where                                )

Create //Create an edge

if (                                                      ) //e is an out-block edge

      Set 

else //Calculate the weight of the edge

      weight = 0; 

      if (                                            ) //e is an over-block edge

//Get the sub-branches SB

if (SB is linear) //Find the minimum cost storage strategy of SB

      S’ = Linear_CTT-SP(di , dj , SB);

else

      S’ = General_CTT-SP(di , dj , SB);

weight = weight + 

      for (every dataset dk, where                                         ) //Datasets in main branch

            genCost = 0;

            for (every dataset dh, where                                         )

       genCost = genCost + xh ;

      //Sum of  generation cost rates

      Set //Set weight to the edge

CTTSet = {CTTini}; //Set of all the created CTTs

F = {Ø}; //Set of datasets discovered by Dijkstra algorithm

while ( de is not in F ) 

      for ( every CTT in CTTSet ) //Find the next edge for the shortest path

      Find the next edge by Dijkstra algorithm;

      Get the current shortest path in all the CTTs, which is with the edge

      Add dj to F;

      if (                                                      ) //e is an in-block edge

//Blocks that contains dj but not di

Create a copy of CTT' denoted as CTT(e<di , dj>); //Create a new CTT 

for ( every                 ) //Update the weights of the in-block edges

      for ( every                                           where                             )

      Set

for ( every                     ) //Update the weights of out-block edges

      for ( every                      where                                                 )

      weight = 0; 

               //Get the sub-branches 

if (SB is linear) //Find the minimum cost storage strategy of SB 

      S’ = Linear_CTT-SP(di , dk , SB);

else 

      S’ = General_CTT-SP(di , dk , SB);

      for (every dataset dl, where                                         ) //Datasets in main branch

                  genCost = 0;

                  for (every dataset do, where                                          )

       genCost = genCost + xo ;     

//Sum of generation cost rate

      Set //Set weight to the out-block edge

Add CTT(e<di , dj>) to CTTSet;

S = set of datasets that the shortest path from ds to de has traversed;

Return S, SCR; 

;,  ji dde

  ;k kweight weight x genCost v   

;, jji yweightdd 

;,  ji dd

TCTdde ji
 ,

ptpr BdBd 

;,  tr dd

 kh dde ,

 jitr ddedde ,,

  ;l lweight weight x genCost v   

  ;
SSBd ii

CostRweight


;, kkh yweightdd 

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

BSetBp 

BSetBp 

  ;
SSBd ii

CostR


j i jd MB d d  

k i k k jd DDG d d d d     

k i k jd MB d d d    

 ;k k i k jSB d d MB d d d    

k i k jd MB d d d   

h i h kd MB d d d   

b i b j bd DDG d d d d     

h p j h k pd B d d d B    

 ;p p i p k p j p hSB d d DDG d d d d d d d         

l h l kd MB d d d   

o h o ld MB d d d   

 ;p p i p j pBSet B B DDG d B d B     

 ;
i id DDGSCR CostR 

 

Figure 5.8 Pseudo-code of general CTT-SP algorithm for benchmarking 
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In equation (5.3), n is the number of datasets in the DDG, n(r-1) is the number 

of datasets in the sub-branches, and r is the maximum level of the recursive calls, 

especially F0(n) denotes the situation of linear DDG, where the linear CTT-SP 

algorithm needs to be called (i.e. pseudo-code in Figure 5.2).  

Intuitively, in equation (5.3), Fr(n) seems to have an exponential complexity 

(i.e. NP-hard) depending on the level of recursive calls. However, in our scenario, 

Fr(n) is polynomial because the recursive call is to find the MCSS of given sub-

branches in DDG which has a limited solution space. Hence, we can use the iterative 

method [64] to solve the recursive equation and derive the computation complexity 

of the general CTT-SP algorithm.  

If we assume that we have already found the MCSSs for all sub-branches 

which means without taking the impact of recursive calls into account, the general 

CTT-SP algorithm has a time complexity of O(n5), because there are five nested 

loops in the pseudo-code in Figure 5.8 (lines 24, 35, 36, 44, 46). Formally, we can 

transform equation (5.3) to the following: 

   

 

3 2
1 ( 1)

5
1 ( 1)

( ) (1) ( )

( ) ( )

r rec r r

rec r r

F n n O n f F n

O n f F n

 

 

   

 
                                                  (5.4) 

In equation (5.4), function frec denotes the complexity of recursive calls, i.e. 

calculating the minimum cost storage strategies of all sub-branches. Next, we analyse 

the complexity of recursive calls. 

For a sub-branch of a general DDG, given different start dataset and end 

dataset, its MCSS may be different. Figure 5.9 shows a sub-branch of DDG with w 

datasets. We assume d1’s direct predecessors and dw’s direct successors are all stored, 

then we can find a MCSS of the sub-branch. We denote the first stored dataset as du 

and the last stored dataset as dv in the strategy, which is shown in Figure 5.9. If d1’s 

adjacent stored predecessors are changed, the MCSS may be different as well. 

Because the generation cost of d1 is larger than storing the direct predecessors, the 

first stored dataset in the new strategy must be one of the datasets from d1 to du. 

Similarly, if dw’s adjacent stored successors are changed, the last stored dataset in the 
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new strategy must be one of the datasets from dv to dw. Hence, given different start 

and end datasets, a sub-branch of DDG has at most u*(w-v) different minimum cost 

storage strategies, which are in the magnitude of w2. Hence, we have the conclusion 

that for any sub-branches of DDG with w datasets, there are at most w2 different 

minimum cost storage strategies, given different start and end datasets. Hence, given 

any sub-branches in DDG at any level of recursive calls, say level h, we have the 

time complexity 2( )*hF w w  for finding all the possible minimum cost storage 

strategies. 

......d1 ...du ... dwdv

u w-v

......

A sub-branch in DDG

 

Figure 5.9 A sub-branch in DDG 

If we assume that there are m different sub-branches of recursive calls at level 

h that we have to find their minimum cost storage strategies, we have the complexity 

of recursive calls at this level as follows: 

 



m

i
ihihhhhrec nnFnFf

1

2
,, )())((                                                                 (5.5) 

With formula (5.5), we can further transform equation (5.4) and iteratively 

derive the time complexity of the general CTT-SP algorithm.  

Therefore, the entire iteration process from equation (5.3) is shown as follows: 

 

 

 

  

1

1

3 2
1 ( 1)

5
1 ( 1)

5 2
1 ( 1), ( 1),

1

5 3 2 2
( 1), 2 ( 2), ( 1), ( 1),

1

( ) * ( )

( ) ( ) / / (5.4)

( ) ( ) / / (5.5)

( ) ( ) / /

r

r

r r r

rec r r

m

r r i r i
i

m

r i r r i r i r i
i

F n n F n n

O n f F n from equation

O n F n n from formula

O n n F n n n recursion





 

 

  


    


 

 

  

    




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  

 

    

  

1

2

01

5 5 2
( 1), ( 1),

1

2
2 ( 2), ( 2),

1

5 5 2 2
( 1), ( 1), 0 0, 0,

1 1

5 5 2
, ,

1

( ) ( )

( ) / / (5.4) & (5.5)

( ) ( ) ... ( ) / /

( ) ( )

r

r

r

m

r i r i
i

m

r r i r i
i

mm

r i r i i i
i i

m

j i j i
i

O n O n n

F n n from equation formula

O n O n n F n n iteration

O n O n n







 


  


 
 



  

 

     

  





 

 
01

4 2 4
0, 0, 0

1 1

5 2

0

9

( ) / / ( ) ( )

* * ( )* / / ( )

( ) / / ,

max

j m

i i
j r i

j

i
i

O n n F n O n

r m O n n m m

O n r n m n

  



 
   

 

 

  

  

 

Hence, the worst case time complexity of the general CTT-SP algorithm is 

O(n9). 

Based on the complexity analysis, we can see that the general CTT-SP 

algorithm provides a benchmarking approach for a seemingly NP-hard problem with 

a polynomial solution.  

In Chapter 7, we will use experiment results to further demonstrate this on-

demand benchmarking approach. 

5.2    Dynamic on-the-fly Minimum Cost Benchmarking 

Approach 

In this section, we describe our novel on-the-fly minimum cost benchmarking 

approach in detail. The basic idea is that we divide the whole DDG into smaller 

linear DDG segments (DDG_LS) and create a Partitioned Solution Space (PSS) for 

every segment. PSS saves all the possible MCSSs of the DDG segment, which are 

calculated by the CTT-SP algorithm. The minimum cost benchmark of the whole 

DDG can be calculated by merging the PSSs. Whenever new datasets are generated 

and/or existing datasets’ usage frequencies are changed, the new benchmark can be 
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dynamically located on the fly from the pre-calculated PSSs with only calling the 

CTT-SP algorithm on the small local DDG segment for adjustment. Hence we can 

keep the minimum cost benchmark updated on the fly so that users’ benchmarking 

requests can be instantly responded. 

5.2.1    PSS for a DDG_LS  

PSS is the basis of our dynamic benchmarking approach. In this sub-section, we first 

explain the reason why there exists a solution space of MCSSs for a DDG_LS. Then 

we introduce some properties of the solution space and further investigate how the 

MCSSs are distributed in a PSS. 

5.2.1.1    Different MCSSs of a DDG_LS in a solution space 

Generally speaking, a DDG_LS would only have one MCSS for storing the datasets 

in it. However, due to different preceding and succeeding datasets’ storage statuses, 

there would be different corresponding MCSSs, one for each status. 

The CTT-SP algorithm can be utilised on not only independent DDGs but 

also DDG_LSs, where the difference is the selection of start and end datasets for 

constructing the CTT. For an independent DDG, we add two virtual datasets ds and de 

as start and end datasets to construct the CTT as shown in Figure 5.1. However, for 

the CTT of a DDG_LS, the start dataset ds is the nearest stored preceding dataset to 

the DDG_LS, and the end dataset de is the nearest stored succeeding dataset to the 

DDG_LS. Figure 5.10 shows an example of CTT for a DDG_LS. 

... de... ...… …ds ......

A Linear 

DDG 

Segment

Start 

Dataset

End 

DatasetDeleted 

Preceding 

Datasets

Deleted 

Succeeding 

Datasets

 

Figure 5.10 CTT for a DDG_LS 
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Hence, given different start and end datasets, the MCSS of a DDG_LS may 

be different. This is because 1) the deleted preceding datasets impact on the 

generation cost of datasets in the DDG_LS; 2) the generation of the deleted 

succeeding datasets need to use datasets in the DDG_LS. 

Next, we analyse how the preceding and succeeding datasets of the DDG_LS 

impact on its MCSS. 

Theorem 5.4: For a DDG_LS, only the generation cost of its deleted preceding 

datasets and the usage frequencies of its deleted succeeding datasets impact on 

its MCSS. 

Based on Theorem 5.4, for a DDG_LS {d1, d2, … dnl}, we introduce two 

definitions: 

   }{ 1dddDDGdi iisi
xX  is the sum of preceding datasets generation costs of a 

DDG_LS, where di is a deleted preceding dataset. 

   }{ ejlnj dddDDGdj jvV  is the sum of succeeding datasets usage frequencies 

of a DDG_LS, where dj is a deleted succeeding dataset. 

For different start and end datasets, the values of X and V are different, and 

the MCSS of the DDG_LS may also be different. In other words, given different X 

and V, there exist different MCSSs for storing the DDG_LS. We denote an MCSS as 

Si,j , where di and dj are the first and last stored datasets in the strategy, which could 

be any datasets in the DDG_LS. Conversely, any two datasets di and dj in the 

DDG_LS may be the first and last stored datasets of an MCSS. Hence, theoretically, 

the number of different MCSSs for a DDG_LS is in the magnitude of nl
2, where nl is 

the number of datasets in the DDG_LS. 

5.2.1.2    Range of MCSSs’ cost rates for a DDG_LS 

Different MCSSs have different cost rates (i.e. SCR defined in formula (4.4) in 

Section 4.3) for storing the DDG_LS. Because DDG_LS is a segment of the whole 

DDG, the total cost rate of storing it includes not only the cost rate of itself, but also 



59 

 

the cost rate of generating the deleted preceding and succeeding datasets. Hence, 

given any X and V, and the corresponding MCSS Si,j, we denote the total cost rate of 

storing the DDG_LS {d1, d2, … dnl} as TCRi,j, where 









ln

jk
kji

i

k
kji xVSCRvXTCR

1
,

1

1
,                                                       (5.6) 

In formula (5.6), SCRi,j is the cost rate of storing the DDG_LS with the 

storage strategy Si,j, assuming that the direct preceding and succeeding datasets of 

DDG_LS are stored.  Formally, 

 
jik SLSDDGd kji RCostSCR

,
_,                                                                  (5.7) 

An important difference between TCRi,j and SCRi,j is that TCRi,j is a variable 

for a storage strategy depending on the value of X and V (see formula (5.6)), whereas 

SCRi,j is a constant for a specific storage strategy (see formula (5.7)). 

For a DDG_LS, one extreme situation of (X=0, V=0) means that the start and 

end datasets are the direct preceding and succeeding datasets of the DDG_LS. Hence 

we can deem the DDG_LS as an independent DDG and directly call the CTT-SP 

algorithm to find its MCSS. In this situation, MCSS Su,v found is the minimum SCRu,v 

for storing the DDG_LS among other MCSSs, where TCRu,v = SCRu,v. We denote Su,v 

as Smin and SCRu,v as SCRmin. 

The other extreme situation is that the start and end datasets are very far from 

the current DDG_LS, i.e. X>y1/v1, V>ynl/xnl. Obviously, in this situation the first 

dataset d1 and the last dataset dnl in the DDG_LS should be stored. Hence we can 

deem d1 and dnl as the start and end datasets and call the CTT-SP algorithm for the 

datasets between d1 and dnl. The found strategy together with d1 and dnl form the 

MCSS of the DDG_LS in this situation denoted as S1, nl, where we also have  

TCR1, nl =SCR1, nl. We denote S1, nl as Smax and SCR1, nl as SCRmax. 

Theorem 5.5: Given a DDG_LS {d1, d2, … dnl}, SCRmin is the cost rate of MCSS Su,v 

with X=0, V=0, and SCRmax is the cost rate of MCSS S1, nl with X>y1/v1, 

V>ynl/xnl. Then we have SCRmin < SCRi,j < SCRmax , where SCRi,j is the cost rate 
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of MCSS Si,j with any given X and V. 

d1
... du dv ... dnl... ... .........

Smin (X=0,V=0)

…

X = ∑xi

… … …

V = ∑vj

Smax (X>y1/v1, V>ynl/xnl)

......

A Linear DDG Segment

…

…
…

…

…
…

Si,j 

SCRmax

SCRmin

SCRi,j

 

Figure 5.11 Different MCSSs for a DDG_LS 

Figure 5.11 shows the MCSSs for a DDG_LS whose SCR values are in the 

valid range indicated in Theorem 5.5. We can further find all these strategies and 

save them in a strategy set, denoted as S_All. Figure 5.12 shows the pseudo code of 

finding S_All. The essence of this algorithm is the utilisation of the CTT-SP 

algorithm. Given a DDG_LS {d1, d2, … dnl}, we first create the CTT for it (line 1). 

Then (line 2), we call the Dijkstra algorithm on the CTT to find the shortest path 

from ds to de which are the two virtual datasets added when creating the CTT. The 

corresponding MCSS Su,v is Smin with SCRmin, where du and dv are the first and last 

stored datasets in this MCSS. Similarly, we find Smax with SCRmax (line 3). Next, we 

initialise S_All and Smax (lines 4-5) and go through all the possible positions of the 

first and last stored datasets and find the corresponding MCSSs (lines 6-9). We 

eliminate the MCSSs with invalid SCR values according to Theorem 5.5 (line 10) 

and save the valid MCSSs in S_All (line 11). 

The time complexity of creating the CTT is O(nl
4) (line 1) according to the 

CTT-SP algorithm [91], where nl is the number of datasets in the DDG_LS. Next, the 

time complexity of finding all the possible MCSSs is nl
2 (as indicated earlier at the 

end of Section 5.2.1.1) (lines 6-7) multiplying the time complexity of the Dijkstra 

algorithm, which is O(nl
2) (line 9). Hence the total time complexity of finding S_All 

is O(nl
4). 
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Algorithm: Find S_All

Input: DDG_LS {d1, d2, … dnl}

Output: S_All

Create CTT for DDG_S ;

Smin = Su,v = Dijkstra_Path (CTT, ds, de);

Smax = S1,nl = Dijkstra_Path (CTT, d1, dnl);

Add Smin , Smax to S_All;

 

for ( i=1; i<=nl; i++ )

      for ( j=1; j<=nl; j++ )

if (                             )

      Si,j = Dijkstra_Path (CTT, di, dj);

      if (                                                      )       

      Add Si,j to S_All;

Return S_All; //Set of MCSSs with valid SCR

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

  ;
max

_max SSDDGd kk
RCostSCR  

jvui dddd 

  max_
,

SCRRCost
ji

k SSDDGd k  

 

Figure 5.12 Pseudo code of finding S_All 

As discussed above, given any X and V, there exists one MCSS for storing the 

DDG_LS in the set of S_All. Hence we create a coordinate of X and V to represent 

the solution space of all possible MCSSs for a DDG_LS. Furthermore we can 

calculate the distribution of the MCSSs in the solution space and call it PSS as 

described next. 

5.2.1.3    Distribution of MCSSs in the PSS of a DDG_LS 

We start with analysing the relationship of two MCSSs in the solution space. We 

assume that Si,j and Si',j' be two MCSSs in S_All of a DDG_LS {d1, d2, … dnl} and 

SCRi,j < SCRi',j'. The border of Si,j and Si',j' in the solution space is that given 

particular X and V, the total cost rates (TCR) of storing the DDG_LS with Si,j and Si',j' 

are equal. Hence we have 
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From this equation we can see that the border of Si,j and Si',j' in the solution 

space is a straight line. Given different relationships of di and di', dj and dj', there are 

four different situations. 

1) jjii dddd   , as shown in Figure 5.13 (a), formula (5.8) can be 

further simplified to: 
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2) jjii dddd   , as shown in Figure 5.13 (b), formula (5.8) can be 

further simplified to: 
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3) jjii dddd   , as shown in Figure 5.13 (c), formula (5.8) can be 

further simplified to: 
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4) jjii dddd   , as shown in Figure 5.13 (d), formula (5.8) can be 

further simplified to: 
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Because X and V are positive values, Si',j' can never be an eligible MCSS for 

the DDG_LS in the situation of Figure 5.13 (d). Hence we have a property of the 

MCSSs of a DDG_LS as follows: 
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Figure 5.13 Examples of partition lines in a solution space 

Hence, for any two MCSSs, we can find the partition line in the solution 

space which is one of the three formulas listed above, namely formulas (5.9), (5.10) 

or (5.11). According to property (5.12), we can further eliminate some MCSSs from 

S_All, which should not be in the solution space. We refer the eligible MCSSs in 

S_All as S_ini that is the initial input for calculating the solution space. From Figure 
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5.14, we can see that the time complexity of eliminating S_All is O(ns
2), where ns is 

the number of MCSSs in S_All.  

Algorithm: Eliminate S_All

Input: S_All

Output: S_ini

for ( every                       )

      for ( every                                                   )

if (                                )

      Eliminate Si',j' from S_All;

Return the eliminated S_All as S_ini ;

01.

02.

03.

04.

05.

AllSS ji _, 

jijiji SCRSCRAllSS   ,,, _

jjii dddd  

 

Figure 5.14 Pseudo code of eliminating S_All 

From the above discussion, we can see that the solution space of a DDG_LS 

is partitioned by lines into different areas, which forms the PSS. In the PSS, every 

area represents an MCSS and the partition lines are the borders. Next we describe our 

algorithms that can precisely calculate the PSS. 

5.2.2    Algorithms for Calculating PSS of a DDG_LS 

In a solution space, the MCSS of a DDG_LS changes from Smin to Smax as long as X 

and V increase. Given MCSS set S_ini, we calculate the partition line of every two 

adjacent strategies from Smin to Smax, and gradually partition the solution space. 

Finally, we derive a PSS, which includes all the possible MCSSs of the DDG_LS. In 

order to calculate the PSS for a DDG_LS, we need to introduce the following lemma.  

Lemma 5.1: In the PSS of a DDG_LS, for three MCSSs, if any two of them are 

adjacent with each other, then the three partition lines between every two 

MCSSs intersect at one point. 

In the statement of Lemma 5.1, two MCSSs are adjacent meaning that the 

corresponding areas of the two MCSSs in the PSS are adjacent. Figure 5.15 shows an 

example of Lemma 5.1. We assume that Si,i' , Sj,j' and Sk,k' be three MCSSs, where 

SCRi,i' < SCRj,j' < SCRk,k' as shown in Figure 5.15 (a) and any two of Si,i' , Sj,j' , Sk,k' are 

adjacent as shown in Figure 5.15 (b). Based on the positions of first and last stored 

datasets, we calculate the three partition lines as follows: 



65 

 

L<Si,i' , Sj,j' >:  iijj

j

ih
h

i

jh
h SCRSCRVxXv 


























 ,,

1

1

 

L<Si,i' , Sk,k' >: iikk

k

ih
h

i

kh
h SCRSCRVxXv 


























 ,,

1

1

 

L<Sj,j' , Sk,k' >:  jjkk

k

jh
h

k

jh
h SCRSCRVxXv 


























  ,,

1

1

 

According to Lemma 5.1, these three lines intersect at one point in the PSS as 

demonstrated in Figure 5.15 (b).  
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L<Si,i' , Sk,k' >

L<Si,i' , Sj,j' >

(a) Three MCSSs of a DDG_LS (b) Partition lines of the MCSSs  

Figure 5.15 Example of Lemma 5.1 

Based on Lemma 5.1, we design the algorithm to calculate the PSS for a 

DDG_LS. The main steps in the pseudo code of this algorithm are shown in Figure 

5.16.  

As shown in Figure 5.16, the algorithm input is S_ini, which contains the 

possible MCSSs of a DDG_LS, and the output is the DDG_LS’s PSS, which is a set 

of partition lines with start and end points in the solution space. The basic idea of the 

algorithm is to add the MCSSs to the PSS one by one from Smin to Smax, which 

contains three main steps: 

Step 1: initialisation and preparation (lines 1-4). First, we order the MCSSs in 

S_ini by their SCRs and save them in an ascending array list [Smin , S1 … Smax]. Then 

we calculate the first partition line L<Smin , S1 > and its intercepts with the X and V 
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axes, denoted as X1 and V1. Next, we create two ordered array lists X[] and V[] to 

store the intercepts of the partition lines with the X and V axes respectively. When we 

add an MCSS to the PSS, X[] and V[] are used to find the first MCSS in the PSS that 

we start calculating the partition lines. Last, we initialise the PSS with X and V axes, 

and add L<Smin , S1 > to it. 

Step 2:  calculation of partition lines for an MCSS (lines 5-20). In this step, 

we start adding the MCSSs (i.e. [Smin , S1 … Smax] ) to the PSS one by one (line 5). To 

add MCSS Si to the PSS, first we need to find an adjacent MCSS to it in the PSS, 

based on which we start calculating the partition lines. To find an adjacent MCSS to 

Si , we only need to calculate partition line L<Smin , Si > and insert intercepts Xi and Vi 

to X[] and V[] (lines 6-7). Adjacent MCSS S' is the corresponding MCSS of the first 

intercept that is smaller than Xi in X[] or Vi in V[]. Next, we add Si to the PSS and 

start with calculating the partition line of Si and S' (line 10). As S' is an existing 

MCSS in the PSS which represents some areas in the solution space, partition line 

L<S', Si > intersects with the border of S' and new MCSS Si partially overlaps with 

existing MCSS S'. Hence, we find the borderlines of S' (line 11) and calculate the 

intersections of L<S', Si > (lines 12-13). We also need to save the intersections (lines 

14-17), where 1) set av_point saves all the intersections that will be used in the next 

step; 2) stack v_point saves the intersections, which indicate the next MCSS that Si 

partitions. Next, we add partition line L<S', Si > as well as the endpoints (i.e. the 

intersections just calculated) to the PSS (line 18), and then, by popping an 

intersection from v_point (line 19), we find the next MCSS to partition with Si which 

is also the third partition line to that intersection according to Lemma 5.1. This 

process continues until stack v_point is empty (line 20) which also means that we 

have calculated all the partition lines of Si with its adjacent MCSSs. 

Step 3: update of the PSS (lines 21-27). After we add a new MCSS into the 

PSS, some of the old MCSSs may be overlapped. We need to update the existing 

partition lines in the PSS. As all the intersections of the new joint MCSS’s partition 

lines are saved in av_point in step 2, we only need to go through av_point and update 

the partition lines’ endpoints (lines 21-25). To update the endpoints, first we need to 

find which endpoint of the partition line is overlapped by the new joint MCSS. The 

validEndpoint function (the pseudo code also shown in Figure 5.16) is called to find 
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Algorithm: Calculate PSS

Input: S_ini //the MCSSs set

Output: PSS //with partition lines

Order S_ini by SCRs and get S_ini[] =[Smin ,S1…Smax]; //Step 1

Calculate L<Smin ,S1>, intercept X1 , V1 ;

Insert X1 to X[], V1 to V[];

Add L<Smin ,S1>, X_axis, V_axis to PSS;

for (every Si in S_ini) //Step 2

      Calculate L<Smin ,Si>, intercept Xi, Vi ;

      Insert Xi to X[], Vi to V[], find S' ;

      Stack v_points = Φ, Set av_points = Φ ;

      do

Calculate L<S',Si>;

Find S'.LSet = {L<Su,Sv> | Su=S' or Sv=S'};

for (every L<Su,Sv> in S'.LSet)

      (x,v) = intersection of L<S',Si> and L<Su,Sv>;

      if ((x,v) is valid)

Add {L<Su,Sv>,L<S',Si>,(x,v)} to av_points;

      if ((x,v) is on X or V axis)

      Push {L<Su,Sv>, (x,v)} to v_points;

Add L<S',Si> to PSS with the endpoints;

S' = Get MCSS by poping v_point;

      while ( S' !=Φ )

      for (every element {L1 , L2 , (x,v)} in av_points) //Step 3

(x',v') = validEndpoint(L1 , L2);

Update L1 with the endpoints (x',v') and (x,v);

if (L1 is an axis)

      create Lnew in PSS with endpoints (x,v) and ∞ ;

      while (there exist intersections with less than 3 lines)

delete the lines; 

Return PSS      

Function: validEndpoint 

Input: L1 {(x1,v1), (x2,v2)}  // two endpoints of L1

L2 : A2*X + B2*V + C2 =0  // equation of L2

Output: (x, v) //the valid endpoint of L1

if (x1 ==∞ | v1 ==∞) Return (x2,v2);

else if (x2 ==∞ | v2 ==∞) Return (x1,v1);

V_L2 = A2*x1 + B2*v1 + C2 ;

if (L2 == type 1 | L2 == type 3)

      if (V_L2 < 0) Return (x1,v1);

      else Return (x2,v2);

else if (V_L2 < 0) Return (x2,v2);

      else Return (x1,v1);
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Figure 5.16 Pseudo code of calculating PSS 

the valid endpoint that should be kept in the PSS (line 22). Then, we can update the 

partition line by replacing the overlapped endpoint with the new intersection (line 23). 

Especially, to update the partition line on the X or V axis, we need to create a new 

line from the intersection to infinity because the axes cannot be overlapped (lines 24-

25). After updating all the partition lines with the new intersections, we need to check 
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all the intersections in the PSS. We delete the intersections and the corresponding 

partition lines that do not conform to Lemma 5.1 (lines 26-27). This is to eliminate 

the MCSSs that are totally overlapped by the new joint MCSS.   

From the pseudo code in Figure 5.16, we can see that the time complexity of 

the algorithm is O(ns
2nb) (lines 5-20), where ns is the number of MCSSs in the PSS, 

and nb is the number of a MCSS’s adjacent MCSSs. Obviously, nb is smaller than ns, 

hence the time complexity of calculating PSS of a DDG_LS is O(ns
3). 

S2
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S1
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X V
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V

X
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PSS

 

Figure 5.17 Example of a PSS 

Figure 5.17 illustrates an example of the PSS found by the algorithm in 

Figure 5.16. With the PSS, given any X and V, we can locate the corresponding 

MCSS with time complexity of O(ns), where classic algorithms can be found in 

analytic geometry [76], hence we do not give detailed introduction in this thesis. 

Furthermore, ns, the number of MCSSs in the PSS, is usually very small which we 

will demonstrate in Chapter 7 by experiment results. 

5.2.3    PSS for a General DDG (or DDG Segment) 

The PSS for DDG_LS is the basis of our approach. In order to achieve the dynamic 

minimum cost benchmarking, we also need to calculate the PSS for general DDGs 

(or DDG segments). The PSS of a general DDG (or DDG segment) can be a high 

dimension space, because the DDG may have branches where there may be more 

than one X and/or V values that determine the MCSS of the DDG. Although a 

general DDG’s PSS is different from the DDG_LS’s PSS, they have similar 

properties and can be calculated with similar algorithms. In this sub-section for the 
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ease of understanding, we first investigate the PSS of a DDG segment that only has 

two branches, and then extend it to a general DDG. 

5.2.3.1    Three dimension PSS of DDG segment with two branches 

Figure 5.18 illustrates an example of a DDG segment that has two branches. As we 

can see that because of two branches, the MCSS of the DDG segment is determined 

by three variables, which are X1, V2, V3. Hence the solution space of this DDG 

segment is a three dimension space where every MCSS occupies some space. 

Similar to the solution space of DDG_LS, we can find the border of two MCSSs, 

which is a partition plane in the three dimension solution space. For example, we 

assume that Sh,i,j and Sh',i',j' be two adjacent MCSSs in the solution space, where 

SCRh,i,j < SCRh',i',j' . The first and last stored datasets of these two strategies are in the 

positions as shown in Figure 5.18. The equation of the partition plane is 
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Figure 5.18 DDG segment with two branches 
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Similar to the DDG_LS, the equation of the partition plane also has different 

forms according to the positions of the start and end datasets of the two MCSSs. In 

general, for the DDG segment with two branches, given two MCSSs: 1) Sp with the 

first stored dataset dp1 and last stored datasets dp2 , dp3; 2) Sq with the first stored 

dataset dq1 and last stored datasets dq2 , dq3; and SCRp < SCRq. We have the standard 

form of the partition plane as following:  
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Similar to the DDG_LS, the DDG segment with two branches also has a PSS, 

in which the partition planes of the MCSSs intersect with each other and partition the 

solution space into different spaces. For any given values of X1, V2, V3, we can locate 

an MCSS in the PSS for storing the DDG segment, if we know the distribution of 

MCSSs in the PSS. The three dimension PSS has similar properties as the PSS of 

DDG_LS. In order to calculate the PSS, we introduce another two lemmas, which 

describe important properties of the intersection lines and points in the three 

dimension PSS.  

Lemma 5.2: In a three dimension PSS, for three MCSSs, if any two of them are 

adjacent with each other, then the three partition planes intersect in one line. 

Figure 5.19 illustrates an example of Lemma 5.2. In Figure 5.19 (a), Sa , Sb , Sc  

are three MCSSs of a DDG segment with two branches. We assume that SCRa < 

SCRb < SCRc and the start and end datasets of the three MCSSs have the following 

relationships: 111 abc ddd  , 222 cba ddd  , 333 cba ddd  . Then we have 

three partition planes of Sa , Sb , Sc  as follows: 
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As shown Figure 5.19 (b), P<Sa , Sb > is the partition plane of Sa and Sb; P<Sb , Sc > 

is the partition plane of Sb and Sc; P<Sa , Sc > is the partition plane of Sa and Sc. 

According to Lemma 5.2, the three partition planes intersect in one line  

L<Sa , Sb , Sc >. 

 

Figure 5.19 Example of Lemma 5.2 

Lemma 5.3: In a three dimension PSS, for four MCSSs, if any three of them 

intersect in a different line, then the four intersection lines intersect at one point. 
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Figure 5.20 illustrates an example of Lemma 5.9. In Figure 5.20, Sa , Sb , Sc, Se  

are four MCSSs in the PSS and the partition planes denote the borders of the 

occupied spaces by the MCSSs. We assume that LAB (the line passing point A and 

point B in Figure 5.20) be the intersection line of Sa , Sb , Sc; LAC be the intersection 

line of Sa , Sc , Se; LAD be the intersection line of Sa , Sb , Se; LAE be the intersection line 

of Sb , Sc , Se. According to Lemma 5.9, the four intersection lines intersect at point A. 

 

Figure 5.20 Example of Lemma 5.3 - Four MCSSs’ intersection in a three 

dimension PSS, viewed from different angles 

5.2.3.2    High dimension PSS of a general DDG 

After the two and three dimension illustration and description for helping 

understanding, we now discuss the general case. In a general DDG segment, there 

may exist multiple branches, hence there are more variables (i.e. more X and V 

dimensions) that impact the MCSS of the DDG segment. This makes the general 

DDG segment’s PSS a high dimension space, where the number of the dimensions is 

the total number of different X and V variables. In an n dimension PSS, every MCSS 

occupies some n dimension space, where we can calculate the border of every two 

MCSSs in the similar way as the three dimension PSS.   

For an n dimension PSS, we assume that there be m branches with preceding 

datasets (i.e. different X dimensions), hence n-m branches with succeeding datasets 

(i.e. different V dimensions). Given two MCSSs: 1) Sp with the first stored datasets 
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dp_1 , dp_2 ,… dp_m in the m different X dimension branches and the last stored datasets 

dp_(m+1) , dp_(m+2) ,… dp_n  in the n-m different V dimension branches; 2) Sq with the 

first stored datasets dq_1, dq_2,… dq_m in the m different X dimension branches and the 

last stored datasets dq_(m+1) , dq_(m+2) ,… dq_n  in the n-m different V dimension 

branches; and SCRp < SCRq. Then, the border of Sp and Sq in the n dimension space 

is: 
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From the equation above, we can see that the border of two MCSSs in an n 

dimensions PSS is an n-variable linear equation, which is an (n-1) dimension space 

itself. In order to calculate the PSS of a general DDG segment, we need to investigate 

the intersections of the MCSSs in the n dimension space. We generalise Lemmas 5.1-

5.3 to the n dimension PSS of a general DDG segment and propose Theorem 5.6 as 

follows. 

Theorem 5.6: In an n dimension PSS, for i MCSSs where  )1(,...,3,2  ni , if any 

(i-1) of the i MCSSs intersect in a different (n-i+2) dimension space, then the i 

MCSSs intersect in an (n-i+1) dimension space. 

Based on Theorem 5.6, given the initial MCSS set of a general DDG segment 

(i.e. S_ini), we can design an algorithm to calculate the PSS in the similar way as the 

algorithm for calculating the PSS for DDG_LS. In Section 5.2.4, we will introduce 

how to derive S_ini of a general DDG segment without calling the CTT-SP algorithm 

on it. For a PSS with nd dimensions, the border of MCSSs are nd-variable linear 

equations and we need to solve the nd-variable linear equations system to calculate an 

intersection point in the solution space which has a time complexity of O(nd
3). Hence 

the time complexity of calculating a general DDG segment’s PSS is nd
3 times of the 

complexity for calculating the DDG_LS’s PSS, which is O(ns
3nd

3). Similarly, 
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locating the MCSS in the high dimension PSS with given X and V values is also nd
3 

times complex than locating a MCSS in the two dimension PSS, which is O(nsnd
3).  

5.2.4    Dynamic on-the-fly Minimum Cost Benchmarking 

The reason that we calculate the PSS for DDG segment is for dynamic minimum 

cost benchmarking. The philosophy of our approach is that we merge the PSSs of 

the DDG_LSs to derive the PSS of the whole DDG and save all the calculated PSSs 

along this process. Taking advantage of the pre-calculated results (i.e. the saved 

PSSs), whenever the application cost changes, we only need to recalculate the local 

DDG_LS’s PSS and quickly derive the new minimum cost benchmark for the whole 

DDG. By dynamically keeping the minimum cost benchmark updated, 

benchmarking requests can be instantly responded on the fly.  

5.2.4.1    Minimum cost benchmarking by merging and saving PSSs in a 

hierarchy 

To calculate the minimum cost benchmark with our approach, we need to merge the 

DDG segments’ PSSs in order to get the PSS of the whole DDG, from which we can 

locate the MCSS. To merge the PSSs of two DDG segments, we need to introduce 

another theorem. 

Theorem 5.7: Given DDG segment {d1, d2, … dm} with PSS1 , DDG segment {dm+1, 

dm+2, … dn} with PSS2, and the merged DDG segment {d1, d2, … dm, dm+1, 

dm+2, … dn} with PSS. Then we have:  

1 2 1 1 2 2
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1 1
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 , 

where dj is the last stored dataset in the first DDG segment and di is the first 

stored dataset in the second DDG segment. 

Theorem 5.7 tells us that 1) the MCSSs in a larger DDG segment’s PSS (i.e. S) 

are combined by the MCSSs in its sub-DDG segments’ PSSs (i.e. S1 , S2), which 



75 

 

means that we can calculate the PSS of the larger DDG segment by merging the PSSs 

of its sub-DDG segments and do not need to call the CTT-SP algorithm on the larger 

DDG segment; 2) the cost rate of the MCSS in the larger DDG segment (i.e. SCR) is 

the sum of cost rates of its sub-DDG segments’ MCSSs (i.e. SCR1 , SCR2) and a 

parameter which is 

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compensation for the datasets in the connecting branches of the two sub-DDG 

segments, i.e. generation cost rate of datasets in DDG segment {dj+1, dj+2, … dm} for 

regenerating datasets in DDG segment {dm+1, dm+2, … di-1}. Figure 5.21 further 

illustrates an example of Theorem 5.7 to merge two linear DDG segments. 
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Figure 5.21 Example of merging two linear DDG segments 

Figure 5.22 shows the pseudo code of merging two PSSs. In this algorithm, 

we first find the MCSS candidate set for the merged PSS (i.e. S_All) by combining 

the MCSSs in the two sub-PSSs (lines 1-7). During this process we also calculate the 

SCR for every MCSS (line 5) and find the upper bound for SCRmax (lines 6-7). Next, 

we eliminate the invalid MCSSs from S_All, which includes two sub-steps: 1) 

deleting the MCSSs with invalid SCR values (lines 8-10); 2) calling the elimination 

algorithm (see Figure 5.14) to derive S_ini (line 11). Then we call the PSS 

calculation algorithm (see Figure 5.16) to calculate the PSS of the merged DDG 

segment (line 12). From the pseudo code, we can clearly see that the time complexity 

of merging two PSSs is the same as the calculation of the PSS, which is O(ns
3nd

3).  

To calculate the PSS of a general DDG in the cloud, we can calculate all the 

PSSs of its sub-DDG_LSs and gradually merge them to derive the PSS of the whole 

DDG. In order to achieve dynamic benchmarking, we need to save not only PSSs of 
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the DDG_LSs, but also PSSs calculated during the merging process. In our approach, 

we use a hierarchy data structure to save all the PSSs of a DDG, where an example of 

saving the PSS of a DDG with three sub-DDG_LSs is shown in Figure 5.23.  

Algorithm:   Merge PSSs

Input:         PSS1 of DDG segment {d1, d2, … dm} 

PSS2 of DDG segment{dm+1, dm+2, … dn}

Output:       PSS for the merged DDG segment

S_All = Ф, SCRmax = ∞ ;

for ( every MCSS S' in PSS1 ) 

      for ( every MCSS S'' in PSS2 )

Add                         to S_All;

if ( the first and last datasets in all the branches

            are all stored in S and SCR < SCRmax )

      SCRmax = SCR ; 

for ( every MCSS S in S_All )

      if ( SCR > SCRmax )

Delete S from S_All ; 

S_ini  = Eliminate S_All (S_All); //O(ns2)
PSS = Calculate PSS (S_ini); //O(ns3nd3)
Return PSS;
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Figure 5.22 Pseudo code for merging PSSs 

In the PSS hierarchy, the level indicates the number of DDG_LSs merged in 

the PSS of the DDG segments at that level. For example, in Figure 5.23, the 

DDG_LSs’ PSSs are saved at Level 1 of the hierarchy. Level 2 saves the PSSs of the 

DDG segments, which are connected by two DDG_LSs, e.g. PSS12 is the PSS of 

DDG segment combined by DDG_LS1 and DDG_LS2. Level 3 saves the PSS of the 

whole DDG, where we can see that the number of the hierarchy levels equals the 

number of DDG_LSs in the whole DDG.  Furthermore, there are links between the 

levels in the hierarchy. A link between two PSSs at Levels i and i+1 in the hierarchy 

means the corresponding DDG segment of the PSS at Level i+1 contains the DDG 

segment of the PSS at Level i, e.g. in Figure 5.23, there is a link between PSS1 and 

PSS12, because the DDG segment combined by DDG_LS1 and DDG_LS2 contains 

DDG_LS1.  
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Figure 5.23 Saving all the PSSs of a DDG in a hierarchy 

In the hierarchy, the highest level (e.g. Level 3 in Figure 5.23) saves the PSS 

of the whole DDG. From this PSS we can derive the MCSS and the corresponding 

SCR of the whole DDG, which is the minimum cost benchmark (i.e. SCR) that we 

can either proactively report or instantly respond to benchmarking requests. Next, we 

will introduce how to dynamically keep this benchmark updated. 

5.2.4.2    Updating of the minimum cost benchmark on the fly 

Cloud is a dynamic environment. As time goes on, new datasets are generated in the 

cloud and the existing datasets’ usage frequencies may also change. Hence the 

minimum cost benchmark of storing the datasets would also change accordingly. By 

taking the advantage of the PSS hierarchy, we can dynamically calculate the new 

minimum cost benchmark on the fly. There are two situations that we need to deal 

with: 

1) New datasets are generated in the cloud. 

The algorithm pseudo code of calculating the new minimum cost benchmark 

of this situation is shown in Figure 5.24. Assuming that the new datasets be in a 

DDG_LS (if not, we take its sub-DDG_LS), first we add it to the whole DDG and 

calculate its PSS, denoted as PSS_new (lines 1-3). Next, for every MCSS in PSS_new, 

we locate the corresponding MCSS from the original DDG’s PSS (lines 5-7) and 

calculate the cost rate of the whole DDG, i.e. SCR (line 8). Then, we find the 

minimum SCR as the new minimum cost benchmark for the whole DDG and the 

corresponding storage strategy as the new MCSS (lines 9-11). In this whole process, 
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we only need to calculate the PSS of the new DDG_LS, which is usually small in size, 

and the PSS of the original DDG has already been pre-calculated and saved in the 

hierarchy. Hence we can quickly update the minimum cost benchmark. For example, 

in Figure 5.25 (a), for the new DDG_LS4, we calculate PSS4 and connect it with the 

existing PSS123 in the hierarchy to derive the updated minimum cost benchmark and 

the MCSS of the whole DDG. 

Algorithm: Generate new datasets

Input: DDG_LS //New datasets

PSS //PSS of the whole DDG

Output: S //MCSS of the whole DDG

SCR //Updated minimum cost benchmark

S_All = Find S_All (DDG_LS);

S_ini = Eliminate S_All (S_All); //O(ns2)
PSS_new = Calculate PSS (S_ini); //O(ns3nd3)
SCR = ∞ ;  S = Ф ;

for (every Si,j in PSS_new)

      

      Stemp = PSS.Locate (0,...0,V);

         

      if (SCR > SCRmin)

SCR = SCRmin ;

Return S, SCR;
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Figure 5.24 Pseudo code for calculating new minimum cost benchmark when 

new datasets are generated 

After calculating the new minimum cost benchmark, we have to update the 

PSS hierarchy for the new DDG_LS. For every newly added PSS at Level i of the 

hierarchy (starting from Level 1 to the highest level), we find its connected DDG_LS 

in the whole DDG and connect them to form a new segment. We calculate the PSS of 

the new segment and add it to Level i+1 of the hierarchy as well as the corresponding 

links between the two levels. An example of updating the PSS hierarchy in this 

situation is shown in Figure 5.25 (a), where the shadowed PSSs are the new ones that 

we add to the hierarchy after adding PSS4. 
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Figure 5.25 Updating the PSS hierarchy when the DDG is changed 

2) Existing datasets’ usage frequencies are changed. 

In this situation, we first find the DDG_LS that contains the datasets whose 

usage frequencies are changed. As shown in the pseudo code in Figure 5.26, we also 

need to calculate the DDG_LS’s PSS at the beginning (lines 1-3). Then, we find the 

PSSs of the rest parts of the whole DDG except the changed DDG_LS and save them 

in a set, i.e. PSS_Set (line 4). Next, for every MCSS in the new PSS (line 6), we 

calculate the X and V values (line 7) to locate the corresponding MCSSs of the DDG 

segments that are connected to the changed DDG_LS from PSSs in PSS_Set (lines 8-

17). We also calculate the corresponding cost rate of the whole DDG, i.e. SCR (line 

18). Then, we find the minimum SCR as the updated minimum cost benchmark for 

the whole DDG and the corresponding storage strategy as the new MCSS (lines 19-

20). In this whole process, when calculating the PSS of the changed DDG_LS, we 

only update the weights of some edges in the existing CTT and do not need to create 

a new one. Furthermore, the PSSs of DDG segments in PSS_Set have already been 

pre-calculated and saved in the hierarchy. Hence we can quickly update the minimum 

cost benchmark. For example, in Figure 5.25 (b), we re-calculate PSS2 for changed 

DDG_LS2. To derive the updated minimum cost benchmark for the whole DDG, we 
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connect new PSS2 with PSS13 and PSS4 in PSS_Set, which are the rest parts of the 

whole DDG except DDG_LS2.  

Algorithm: Change usage frequency

Input: DDG_LSi //With the changed dataset

The PSS hierarchy

Output: S //MCSS of the whole DDG

SCR //Updated minimum cost benchmark 

S_All = Find S_All (DDG_LSi);

S_ini = Eliminate S_All (S_All); //O(ns2)
PSS_new = Calculate PSS (S_ini); //O(ns3nd3)
PSS_Set = PSSs of the DDG segments connecting to DDG_LSi ;

SCR = ∞ ;  S = S' = Ф ;

for (every Si,j in PSS_new)

      

      for (every PSSh in PSS_Set)

if (PSSh is preceding to PSS_new)

      Stemp = PSSh .Locate (0,...0,V);

eles if (PSSh is succeeding to PSS_new)

      Stemp = PSSh .Locate (0,...0,X);

else  Stemp = PSSh .Locate (0,...0,X,V);

      if (SCR > SCRmin)

      SCR = SCRmin ;

Return S, SCR;
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Figure 5.26 Pseudo code for calculating new minimum cost benchmark when 

datasets’ usage frequencies are changed 

After calculating the new minimum cost benchmark, we also need to update 

the PSS hierarchy for the changed PSS. For every changed PSS at Level i of the 

hierarchy (starting from Level 1 to the highest level), we find the PSSs at Level i+1 

that are linked with it and update all these PSSs. An example of updating the PSS 

hierarchy in this situation is shown in Figure 5.25 (b), where the shadowed PSSs are 

the new ones that we need to update in the hierarchy after changing PSS2. 

In terms of efficiency, our approach can instantly respond to users’ 

benchmarking requests by keeping the minimum cost benchmark updated on the fly. 
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Whenever new datasets are generated and/or existing datasets’ usage frequencies are 

changed, our algorithm can quickly calculate the updated minimum cost benchmark 

in O(ns
3nd

3) (see Figure 5.24 and Figure 5.26), where all the parameters are for the 

local DDG_LS, which are usually very small. The total time complexity of our 

benchmarking approach includes updating the hierarchy, which is used to save the 

PSSs. We use m to denote the number of DDG_LS in the whole DDG. In the 

situation of new datasets generation, we need to add one new PSS to every level of 

the PSS hierarchy (see Figure 5.25 (a)), where the number of the levels equals to the 

number of DDG_LSs in the whole DDG, hence the time complexity is O(mns
3nd

3). In 

the situation of existing datasets’ usage frequencies changing, we have to recalculate 

more than one PSS (i.e. in the magnitude of m) in every level of the hierarchy (see 

Figure 5.25 (b)), hence the time complexity is O(m2ns
3nd

3).   

In Chapter 7, we will use experiment results to further demonstrate this 

dynamic on-the-fly benchmarking approach. 

5.3    Summary 

In this chapter, we propose two minimum cost benchmarking approaches for 

scientific applications in the cloud. Benchmarking is to calculate the minimum cost 

rate of storing the application datasets in the cloud, which achieves the best trade-off 

between computation and storage. This benchmark can be utilised to evaluate the 

cost-effectiveness of all datasets storage strategies. Our two novel benchmarking 

approaches are summarised as follows. 

The static on-demand benchmarking approach is suitable for the situation that 

only occasional benchmarking is requested. In this situation the benchmarking is a 

one-time only computation provided as an on-demand service. In this approach, the 

novel CTT-SP algorithm is designed, which solves a seemingly NP-hard problem in 

a polynomial time complexity. 

The dynamic on-the-fly benchmarking approach is suitable for the situation 

that more frequent benchmarking is requested at runtime. In this situation, the 

benchmarking service is delivered on the fly to instantly respond to the 
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benchmarking requests. In this approach, we thoroughly investigated the issue of 

computation and storage trade-off and proposed a novel concept of Partitioned 

Solution Space (PSS) to save the pre-calculated MCSSs. By utilising the pre-

calculated results, whenever the application cost changes in the cloud, we can quickly 

calculate the new minimum cost benchmark. By dynamically keeping the benchmark 

updated, benchmarking requests can be instantly responded on the fly. 
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Chapter 6  

Cost-Effective Datasets Storage 

Strategies 

Due to the pay-as-you-go model, we design cost-effective datasets storage strategies 

for users based on the trade-off between computation and storage in the cloud. 

Different from benchmarking, in practice, the minimum cost storage strategy 

(MCSS) may not be the ultimate goal for the applications, because storage strategies 

should be efficient for users to facilitate at runtime in the cloud and may need to take 

users’ tolerance of data accessing delay into consideration. This chapter is organised 

as follows.  

In Section 6.1, by investigating users’ requirements of data accessing delay 

and users’ preference of storing some particular datasets, we introduce two new 

attributes of the datasets in DDG accordingly [90]. With the new attributes and 

corresponding mechanisms, the storage strategies can 1) guarantee that all the 

application datasets’ regenerations fulfill users’ tolerance of data accessing delay, and 

2) allow users to store some datasets with a higher cost according to their preferences.  

In Section 6.2, we design an innovative cost rate based storage strategy. In 

this strategy, we directly compare generation cost rate and storage cost rate for every 

dataset to decide its storage status. The strategy can guarantee that the stored datasets 

in the system are all necessary, and can dynamically check whether the regenerated 

datasets need to be stored, and if so, adjust the storage strategy accordingly. This 
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strategy is highly efficient with fairly reasonable cost effectiveness. This section is 

mainly based on our work presented in [87, 92]. 

In Section 6.3, we design an innovative local-optimisation based storage 

strategy. In this strategy, we divide the DDG with large number of application 

datasets into small linear segments (DDG_LS). By partially utilising an enhanced 

linear CTT-SP algorithm, we can find the MCSS for the DDG_LS satisfying users’ 

requirements. Hence we achieve the localised optimisation in the storage strategy. 

This strategy is highly cost-effective with very reasonable runtime efficiency. This 

section is mainly based on our work presented in [90]. 

6.1    Data Accessing Delay and Users’ Preferences in Storage 

Strategies 

With the excessive computation and storage resources in the cloud, users can 

flexibly choose whether to store a dataset or not. If a generated application dataset 

has been deleted for saving the storage cost, we have to regenerate it whenever it 

needs to be reused. Regeneration causes not only the computation resources, but also 

a computation delay for accessing the data, i.e. waiting for the dataset to get ready. 

Furthermore, in some applications, users may have their own preferences to store 

some datasets even at a higher cost due to some reasons such as the need for 

immediate data access.  

In order to deal with these issues, we introduce another two attributes to the 

datasets in the DDG. For a dataset di, the new attributes are denoted as: < Ti , λi >, 

where  

 Ti is time duration that denotes users’ tolerance of dataset di’s accessing delay. 

Users have tolerance of delay when they want to access a dataset that needs 

regeneration. Ti is the time constrains of the datasets’ regeneration. In the 

storage strategy, the regeneration time of every deleted dataset cannot exceed its 

Ti. Especially, if Ti is smaller than the generation time of dataset di itself (i.e. 

i i cpu
T x Price , where Pricecpu is the price of computation resources used to 
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regenerate di in the cloud), then we have to store di, no matter how expensive 

di’s storage cost is.  

 λi represents users’ preference of storing dataset di, which is a value between 0 

and 1. In the storage strategy, we multiply dataset di’s storage cost rate (i.e. yi) 

by its λi, and use this modified value to compare with di’s generation cost rate 

(i.e. ( )i igenCost d v ) for deciding its storage status. The two extreme situations: 

λi=0 indicates no matter how large di’s storage cost is, it has to be stored; λi=1 

indicates the storage status of di only depends on its generation cost and storage 

cost in order to reduce the total system cost. 

These two attributes are generic for the datasets storage strategies. How to set 

their values depends on the requirements of specific applications. For example, some 

applications may have fixed time constraints, such as the weather forecast application 

[59]. In this situation, the value for Ti is set according to the starting time and 

finishing time (i.e. deadline) of the application. Furthermore, in some applications, 

users may want immediate access to a particular dataset. In this situation, the value 

for λi of this dataset needs to be set as zero. With these two attributes, we design two 

new runtime storage strategies for different situations in the cloud.  

6.2    Cost Rate Based Storage Strategy 

In this storage strategy, for every dataset in the cloud, we directly compare the 

generation cost rate and storage cost rate of the dataset itself to decide its storage 

status. This strategy is highly efficient. The details of algorithms and cost-

effectiveness analysis are described next in this section.  

6.2.1    Algorithms for the Strategy 

We design three algorithms to handle all three situations in the cloud to decide the 

proper storage status of the application datasets. We analyse the time complexity of 

the algorithms in this sub-section and further evaluate the efficiecny of this cost rate 

based strategy by experiments described in Section 7.3.2. 
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6.2.1.1    Algorithm for deciding newly generated datasets’ storage status 

We assume di be a newly generated dataset. The pseudo-code of this algorithm is 

shown in Figure 6.1.  

First we add its information to the DDG (line 1). We add edges pointing to di 

from its provenance datasets and initialise its attributes. As di is new which obviously 

does not have a usage history yet, we use the average value in the system as the initial 

value for di’s usage frequency.  

Next, we check whether di should be stored or not (lines 2-10). First, we 

check if the generation time of di can satisfy users’ tolerance of data accessing delay 

(line 2). If not, we store di (line 3). Then we only compare the generation cost rate of 

di with its storage cost rate multiplied by λi, which are ii vdgenCost )(  and iiy   

(line 5). If the generation cost rate is larger than the storage cost rate, we store di 

(line 6), otherwise we delete di (line 8). 

From pseudo-code in Figure 6.1, we can see that the worst case time 

complexity of the algorithm is O(na) (i.e. calculating ( )igenCost d  in line 2), where 

na is the largest number of a dataset’s deleted predecessors in the DDG. 

Algorithm: Decide storage status of a newly generated dataset

Input: Newly generated dataset di ;

DDG ;

Output: fi ; //Storage status of di 

add di’s information to DDG ;

if (                                           )

      fi = “stored” ; //decide to store di

else  

      if (                                        )

      fi = “stored” ; //decide to store di  

      else

      fi = “deleted” ; //decide to delete di  

Return fi ; //storage status of di 

( )i cpu igenCost d Price T

01.

02.

03.

04.

05.

06.

07.

08.

09.

( )i i i igenCost d v y   

 

Figure 6.1 Algorithm for deciding newly generated datasets’ storage status 
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6.2.1.2    Algorithm for deciding stored datasets’ storage status due to usage 

frequencies change 

We assume di be a stored dataset whose usage frequency is changed in the cloud. We 

need to recalculate its storage status. The pseudo-code of this algorithm is shown in 

Figure 6.2. 

First, we check whether the generation time of di can satisfy users’ tolerance 

of data accessing delay (line 1). If not, we keep it stored (line 2). Because di is stored 

originally, the deletion will increase the generation cost and time of its deleted 

successors. Hence we need to further check whether the generation time of di’s 

deleted successors can satisfy users’ tolerance of data accessing delay (lines 4-7). If 

not, we keep di stored (line 6). Then we compare di’s generation cost rate with 

storage cost rate in order to decide its storage status (lines 8-11). 

From pseudo-code in Figure 6.2, we can see that the worst case time 

complexity of the algorithm is O(nanb) (lines 4 and 5), where na is discussed in 

Section 6.2.1.1 and nb here is the largest number of a dataset’s deleted successors in 

the DDG. 

Algorithm: Decide storage status of a stored dataset

Input: Stored dataset di ;

 DDG ;

Output: fi ; //Storage status of di 

if (                                             ) 

      Return fi = “stored” ;

else 

      for (every deleted successor dk of di )      

if (                                                                      )

      Return fi = “stored” ; 

v += vk ;

      if (                                       )

Return fi = “stored” ;

      else 

Return fi = “deleted” ; 

( )i i igenCost d v y   

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

( )i cpu igenCost d Price T

 ( ) ( )i k cpu kgenCost d genCost d Price T 

 

Figure 6.2 Algorithm for deciding stored datasets’ storage status 
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6.2.1.3    Algorithm for deciding regenerated datasets’ storage status 

We assume that di be a deleted dataset in the cloud. When we regenerate it for reuse, 

we have to recalculate its storage status after the reuse. The pseudo-code of this 

algorithm is shown in Figure 6.3. 

Because di is originally a deleted dataset, the storage of di reduces the 

generation cost of its deleted successors. We need to take this cost reduction into 

consideration when calculating di’s generation cost rate (lines 1-2). Next, we 

compare di’s generation cost rate with storage cost rate in order to decide its storage 

status (lines 3-8). Especially, if di is stored, it will not need its stored predecessors (i.e. 

provSeti) for regeneration and its stored successors’ generation costs are also reduced, 

hence these stored predecessors and successors may not need to be stored anymore. 

We need to recalculate their storage statuses (lines 5-6). 

From pseudo-code in Figure 6.3, we can see that the worst case time 

complexity of the algorithm is O(nanbnc) (lines 5 and 6), where na and nb are 

discussed in Sections 6.2.1.1 and 6.2.1.2 respectively and nc here is the largest 

number of a dataset’s stored predecessors and successors in the DDG. The efficiency 

of running the strategy will be evaluated in Section 7.3.2. 

Algorithm: Decide storage status of a regenerated dataset

Input: Regenerated dataset di ;

DDG ;

Output: fi ; //Storage status of di 

for (every deleted successor dk of di )

      v += vk ;  

if (                                                 )

      fi = “stored” ;

      for (every stored predecessor and successor dj of di )

recalculate the storage status of dj ;

else 

      fi = “deleted” ;

Return fi  ;

( ) ( )i i i igenCost d v v y    

01.

02.

03.

04.

05.

06.

07.

08.

09.  

Figure 6.3 Algorithm for deciding regenerated datasets’ storage status 
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6.2.2    Cost-Effectiveness Analysis 

To analyse the cost-effectiveness of this cost rate based storage strategy, we need to 

introduce the following lemma and theorem. 

Lemma 6.1: The deletion of a stored dataset in the DDG does not affect the storage 

status of other stored datasets. 

Theorem 6.1: If a deleted dataset is stored, only its adjacent stored predecessors and 

successors in the DDG may need to be deleted to reduce the application cost. 

 Lemma 6.1 and Theorem 6.1 guarantee that the datasets stored by the 

algorithms in our cost rate based storage strategy are all necessary, which means that 

the deletion of any dataset will bring cost increase of the application in the cloud. 

The cost-effectiveness of this strategy will be further evaluated by experiments in 

Section 7.3.1.  

6.3    Local-Optimisation Based Storage Strategy 

In this storage strategy, we utilise the linear CTT-SP algorithm presented in Section 

5.1.1 and enhance it by incorporating the two new attributes < Ti , λi > addressed in 

Section 6.1, so that it can find the MCSS for linear DDG segments with satisfying 

users’ tolerance of computation delay and preference on storage. We use the 

enhanced CTT-SP algorithm on the linear segments in the large DDG, which 

achieves a localised optimisation. The details of algorithms and cost-effectiveness 

analysis are described next in this section. 

6.3.1    Algorithms and Rules for the Strategy 

First, we introduce the enhanced CTT-SP algorithm. Then, we describe the local-

optimisation based storage strategy with the rules of using the enhanced CTT-SP 

algorithms in different situations. 

 



90 

 

6.3.1.1    Enhanced CTT-SP algorithm for linear DDG 

The linear CTT-SP algorithm is described in Section 5.1.1. In the algorithm, we 

have: 

 jijiji ddeddDDGdd ,),( ,  

and the weight of the edge, i.e.  ji dd , , means “the sum of cost rates of dj and 

the datasets between di and dj, supposing that only di and dj be stored and rest of the 

datasets between di and dj all be deleted”.  

To incorporate the delay tolerance attribute T, in the enhanced linear CTT-SP 

algorithm, the edge  ji dde ,  has to further satisfy the condition:  














 k

cpu

k
jkikji T

Price

dgenCost
dddDDGddde

)(
)(, . 

With this condition, long cost edges may be eliminated from the CTT. It guarantees 

that in all storage strategies of the DDG found by the algorithm, for every deleted 

dataset di, its regeneration time is smaller than Ti. 

To incorporate the users’ preference attribute λ, in the enhanced linear CTT-

SP algorithm, we set the weight of a cost edge in CTT as  

    }{ )(,
jkikk dddDDGdd kkjjji vdgenCostydd   

In Figure 6.4, we demonstrate a simple example of constructing the CTT for a 

DDG that only has three datasets by the enhanced linear CTT-SP algorithm 

supposing that all the edges satisfy the computation delay tolerance. 
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y1*λ1

d1 d2 d3

(x1 , y1 ,v1) (x3 , y3 ,v3)(x2 , y2 ,v2)

x1v1+y2*λ2

d1 d2 d3ds de

x3v3

x2v2+y3*λ3

x2v2+(x2+x3)v3

x1v1+(x1+x2)v2+(x1+x2+x3)v3

x1v1+(x1+x2)v2+y3*λ3

y2*λ2 y3*λ3 0

DDG

CTT

Data dependency:

Cost edge:

Start 
Dataset

End 
Dataset

 

Figure 6.4 An example of constructing CTT by the enhance CTT-SP algorithm 

Based on the discussion above, we give the pseudo code of the enhanced 

linear CTT-SP algorithm in Figure 6.5. From the pseudo code, we can see that for a 

linear DDG with n datasets, we have to add a magnitude of n2 edges to construct the 

CTT (lines 1-2). In this enhanced linear CTT-SP algorithm, before actually creating 

an edge (line 9), we check whether this edge can satisfy the condition of users’ 

tolerance of regeneration time delay (lines 3-8). Next, we calculate the weight of the 

edges (lines 10-17), where we add the users’ preference attribute λ (line 16). For the 

longest edge, the complexity of calculating its weight is O(n2) (lines 11-15), so a total 

of O(n4). Next, the Dijkstra shortest path algorithm has the time complexity of O(n2) 

(line 18). Hence, the enhanced linear CTT-SP algorithm also has a worst case time 

complexity of O(n4), and by adding the two new attributes, the algorithm can find the 

MCSS of linear DDG that satisfies users’ tolerance of computation delay and 

preference on storage. 
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Algorithm: Enhanced Linear CTT-SP

Input: start dataset ds;  end dataset de;

a linear DDG; //Including ds and de

Output: S; //MCSS of the DDG

SCR; //Minimum cost benchmark

for ( every dataset di in DDG ) //Create CTT

      for ( every dataset dj, where                )

genCost = 0;

for (every dataset du, where                        )

      genCost = genCost + xu ;

if ( genCost/Pricecpu > Tj-1 )

      break for;

else

      Create //Create an edge

      weight = 0; 

      for (every dataset dk, where                        )

      genCost = 0;

      for (every dataset dh, where                        )

      genCost = genCost + xh ;

      

      weight = weight + yj*λj;

      Set //Set weight to an edge

Pmin<ds, de> = Dijkstra_Algorithm ( ds, de, CTT );

S = set of datasets that Pmin<ds, de> traversed;

  

Return S, SCR;

;,  ji dde

  ;* kk vgenCostxweightweight 

;, weightdd ji 

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

i jd d

i k jd d d 

i h kd d d 

i u jd d d 

  ;
i id DDG

S
SCR CostR 

 

Figure 6.5 Pseudo-code of enhanced CTT-SP algorithm 

6.3.1.2    Rules in the Strategy 

Based on the enhanced linear CTT-SP algorithm, we introduce our local-

optimisation based datasets storage strategy. The philosophy is to derive localised 

minimum costs instead of a global one with low time complexity for the strategy. 

The strategy contains the following four rules: 

1. Given a general DDG, the datasets to be stored first are 1) the ones that users 

have no tolerance of computation delay on them and 2) the ones that users 

choose to store.  

2. Then, the DDG is divided into separate sub DDGs by the stored datasets. For 

every sub DDG, if it is a linear one, we use the enhanced CTT-SP algorithm to 

find its storage strategy; otherwise, we find the datasets that have multiple 

direct predecessors or successors, and use these datasets as the partitioning 

points to divide it into sub linear DDG segments, as shown in Figure 6.6. Then 
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we use the enhanced linear CTT-SP algorithm to find their storage strategies. 

This is the essence of local optimisation. 

3. When new datasets are generated in the system, they will be treated as a new 

sub DDG and added to the old DDG. Correspondingly, its storage status will 

be calculated in the same way as the old DDG.  

4. When a dataset’s usage rate is changed (by either system administrator or 

users), we will re-calculate the storage status of the sub linear DDG that 

contains this dataset.  

...

...

...

...

Sub linear DDG1

Sub linear DDG3

Sub linear DDG2

Sub linear DDG4

Partitioning 

point dataset

Partitioning 

point dataset

 

Figure 6.6 Dividing a DDG into sub linear DDGs 

In the strategy introduced above, the computation time complexity is well 

controlled within O(m*nl
4) by dividing the general DDG into sub linear DDG 

segments, where m is the number of the sub linear DDGs and nl is the number of 

datasets in the sub linear DDG segments. Hence our strategy has a very reasonable 

computation complexity at runtime of the system which depends on the size of the 

sub linear DDGs. The efficiency of running the strategy will be evaluated in Section 

7.3.2. Meanwhile, by utilising the CTT-SP algorithm, we guarantee that every sub 

linear DDG segment in the general DDG is stored with its MCSS, hence achieves the 

local optimisation. 

6.3.2    Cost-Effectiveness Analysis 

To analyse the cost-effectiveness of the local-optimisation based storage strategy, 

we need the following theorem. 
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Theorem 6.2: Given a DDG and assume S be the MCSS of the DDG. If  Sd p   

and dp divides the DDG into: 

 

 










kpkk

pjjj

ddDDGddDDG

ddDDGddDDG

2

1

,  

then S1 and S2 are the MCSSs of DDG1 and DDG2 respectively, where 

11 DDGSS   and 22 DDGSS  . 

Based on Theorem 6.2, we analyse the difference between the cost rate of 

merging two linear DDG segments together by our strategy and the minimum cost 

rate (i.e. the benchmark addressed in Chapter 5).  

Assume that linear DDG1 with datasets {d1, d2 … du} be stored with the 

minimum cost strategy S1, which is calculated by the CTT-SP algorithm, and linear 

DDG2 with datasets {d'1, d'2 … d'v} is added after DDG1, as shown in Figure 6.7. We 

assume that S be the MCSS of the merged DDG. 

d'1 d'2 ...

DDG1

dud2 dk... ......

DDG2

d1 d'vdk+1

 

Figure 6.7 Two merging DDG_LSs 

According to the local-optimisation based strategy, we calculate the storage 

strategy S2 of DDG2 separately, also by the CTT-SP algorithm. There are two 

situations as follows: 

1) If the last dataset du in DDG1 is a stored dataset, the cost rate of the two 

merged DDGs in our strategy is the minimum cost rate, where 

     
SDDGDDGd iSDDGd iSDDGd i iii

RCostRCostRCost   
21

2
2

1
1  .  

This can be proved by directly utilisation of the definition of SCR (Formula (4.4) in 

Section 4.3). Hence, local-optimisation based strategy is the MCSS of the DDG in 

this situation.  
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2) If the last dataset du in DDG1 is a deleted dataset, as shown in Figure 6.7, 

the CTT-SP algorithm on DDG2 will start from dk, which is the last stored dataset in 

DDG1. Hence we have the MCSS 2S   of the set of datasets after dk, which is 

  2 1 2{ ( ) }i i k iDDG d d DDG DDG d d      . 

Because DDG1 is stored with the minimum cost strategy and dk is a stored dataset, 

from Theorem 6.2, we can get 1S   which is the MCSS of the set of datasets before dk, 

which is  

}{ 11 kiii ddDDGddGDD    

Hence, the difference of the cost rate between our strategy and the minimum cost 

strategy of the merged DDG is: 

     

 
Skk

SDDGDDGd iSGDDd ikSGDDd i

RCosty

RCostRCostyRCost
iii



   212211 
 

This is because 1S   and 2S   are the minimum cost strategies of 1GDD   and 2GDD  . 

Furthermore because dk is a deleted dataset according to the minimum cost strategy 

S of the merged DDG (if dk is a stored dataset, then 1 2S S S    according to 

Theorem 6.2), we can come to a conclusion that the difference of the cost rate 

between our strategy and the minimum cost strategy is less than 

  kkk vdgenCosty  )(   

For more complex scenarios of merging DDGs in our strategy, as indicated in 

Figure 6.8, we have similar conclusions. In Section 7.3.1, we will use experiment 

results to further demonstrate the cost-effectiveness of the local-optimisation based 

storage strategy.  
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d'1 d'2 ...

DDG1

dudjd2 ... ...

DDG2
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d'v

dj+1

d'1 d'2 ...

DDG1

dwdj

...

...

DDG2

d1
d'v

dj+1

dudi ...di+1

 

Figure 6.8 Two more scenarios of merging linear DDGs 

6.4    Summary 

In this chapter, we present two novel datasets storage strategies that can be 

facilitated at runtime in the cloud. Besides taking into consideration of users’ 

tolerance of computation delay and preference of storing some datasets at higher 

cost, the two strategies provide different levels of efficiency and cost-effectiveness 

to meet the requirements of different applications. Specifically, the cost rate based 

strategy is highly efficient with fairly reasonable cost-effectiveness, and the local-

optimisation based strategy is highly cost-effective with very reasonable efficiency.  
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Chapter 7  

Experiments and Evaluations 

In this chapter, we evaluate the proposed benchmarking approaches and storage 

strategies by experiments on our SwinCloud environment [60]. In Section 7.1, we 

introduce SwinCloud, which is a private cloud in Swinburne University of 

Technology. In Sections 7.2 and 7.3, we conduct general random experiments to 

evaluate the overall performance of our benchmarking approaches and storage 

strategies presented in Chapters 5 and 6 respectively. In Section 7.4, we describe a 

specific case study of the real world pulsar searching application which is the 

motivating example described in Section 3.1, in which our benchmarking 

approaches and storage strategies are illustrated.  

7.1    Experiment Environment 

SwinCloud is a cloud computing simulation environment. The architecture of 

SwinCloud is depicted in Figure 7.1. It is built on the computing facilities in 

Swinburne University of Technology and takes advantage of the existing SwinGrid 

systems [85]. For example, the Swinburne Astrophysics Supercomputer Node 

(http://astronomy.swin.edu.au/supercomputing/) comprises 145 Dell Power Edge 

1950, each with: 2 quad-core Clovertown processors at 2.33 GHz (each processor is 

64-bit low-volt Intel Xeon 5138), 16 GB RAM and 2 x 500 GB drives. We install 

VMWare [6] on SwinGrid, so that it can offer unified computing and storage 

resources. Utilising the unified resources, we set up data centres that can host 

http://astronomy.swin.edu.au/supercomputing/
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applications. In the data centres, Hadoop [3] is installed that can facilitate the Map-

Reduce [32] computing paradigm and distributed data management.  

Swinburne Computing Facilities 

Astrophysics 
Supercomputer

VMware

Cloud Simulation Environment

Data Centres with Hadoop

 GT4

 SuSE Linux

Swinburne 
CS3

…...

…...

 GT4

 CentOS Linux

Swinburne 
ESR

…...

…...

 GT4

 CentOS Linux

 

Figure 7.1 SwinCloud Infrastructure 

7.2    Evaluation of Minimum Cost Benchmarking Approaches 

In this section, we evaluate the minimum cost benchmarking approaches proposed in 

Chapter 5 by conducting general random simulations on SwinCloud. In Section 

7.2.1, we evaluate the cost-effectiveness of the minimum cost benchmark by 

comparing it with some intuitive storage strategies. In Section 7.2.2, we evaluate the 

efficiency of the two different benchmarking approaches. 

7.2.1    Cost-Effectiveness Evaluation of the Minimum Cost Benchmark 

To evaluate the cost-effectiveness of the minimum cost benchmark, we compare it 

with some representative and intuitive storage strategies, which are: 
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1. Store none dataset: delete all the generated datasets in the cloud, and regenerate 

them whenever needed. 

2. Store all datasets: store all the application datasets in the cloud. 

3. Generation cost based strategy: store the datasets that incur the highest 

generation costs. 

4. Usage based strategy: store the datasets that are most frequently used. 

For evaluation, we generate random DDGs and derive the minimum cost 

benchmark via the benchmarking approaches. We run the above four strategies on the 

DDG and compare the application costs with the minimum cost benchmark. From the 

large number of test cases in our experiment, we choose and present one as the 

representative in this sub-section.  

In this case, we use a DDG with 50 datasets, each with a random size ranging 

from 100GB to 1TB. The dataset generation time is also random, ranging from 1 

hour to 10 hours. The usage frequency is again random, ranging from once per day to 

once per 10 days. The prices of cloud services follow Amazon clouds’ cost model, i.e. 

$0.1 per CPU instance-hour for computation and $0.15 per gigabyte per month for 

storage. We run our benchmarking algorithm on this DDG to calculate the MCSS and 

the minimum cost benchmark, where 9 of the 50 datasets are chosen to be stored. We 

evaluate this minimum cost benchmark by comparing the total application cost of the 

other storage strategies introduced above.  

Figure 7.2 shows the comparison of the minimum cost benchmark with the 

generation cost based strategy. We compare the total application costs over 30 days 

of the strategies that store different percentages of datasets based on the generation 

cost, and the minimum cost benchmark. The two extreme strategies of storing all the 

datasets and deleting all the datasets are also included. In Figure 7.2, we can clearly 

see the cost effectiveness of different strategies comparing with the benchmark. In 

this case, storing top 10% generation cost datasets turns out to be the most cost-

effective strategy, which is still much higher (about 170%) than the minimum cost 

benchmark. 
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Figure 7.2 Cost-effectiveness evaluation by comparing with the generation cost 

based strategy 

 

Figure 7.3 Cost-effectiveness evaluation by comparing with the usage based 

strategy 

Then we compare the minimum cost benchmark with the usage based strategy. 

We still run simulations of strategies that storing different percentages of datasets 

based on their usage frequencies. Figure 7.3 shows the comparison of the total 

application costs over 30 days, where we can clearly see the cost effectiveness of 

different strategies comparing with the benchmark. Also, the strategy of storing top 

10% often used datasets turns out to be the most cost-effective one in this case. 

Comparing to Figure 7.2, although the usage based strategy is more cost-effective 

than generation cost based strategy, it is again still much higher (about 70%) than the 

minimum cost benchmark. 



101 

 

From the experiments above, we can see the cost-effectiveness of the 

minimum cost benchmark, which serves very well as the benchmark for evaluating 

any storage strategies.  

7.2.2    Efficiency Evaluation of Two Benchmarking Approaches 

In Chapter 5, we develop two different benchmarking approaches according to 

different users’ requirements, i.e. static on-demand approach and dynamic on-the-fly 

approach. In this sub-section, we evaluate the efficiency of these two approaches. 

In the simulation, the same random parameters in Section 7.2.1 are used to 

generate the DDG_LS with 50 datasets. The prices of cloud services again follow 

Amazon clouds’ cost model. To evaluate the two approaches, we start from one 

DDG_LS and gradually add new DDG_LSs to it (i.e. from m=1 to m=20). For the 

DDGs with different sizes, we calculate the updated benchmark of the whole DDG 

with both the static on-demand benchmarking approach and the dynamic on-the-fly 

benchmarking approach. Figure 7.4 shows the comparison of CPU time consumed by 

the two benchmarking approaches. 

From Figure 7.4 we can see that the on-demand benchmarking approach is 

not efficient to keep the minimum cost benchmark updated at runtime. The 

computation time increases dramatically as the datasets number increases. This is 

because whenever the cost is changed in the cloud, either because of the new datasets 

generation or the changes of existing datasets’ usage frequencies, we need to call the 

CTT-SP algorithm (see Section 5.1.3) for the whole DDG to calculate the new 

minimum cost benchmark. In contrast, for the dynamic benchmarking approach, as 

we can see from the zoom-in chart (bottom plane) in Figure 7.4, the time for 

calculating new minimum cost benchmark is in the magnitude of seconds in general, 

hence much more efficient. This is because we take advantage of the pre-calculated 

PSSs that are saved in the hierarchy (see Section 5.2.4) and only need to recalculate 

the PSS of the local DDG_LS to derive the new benchmark. Hence, the complexity 

of calculating the new benchmark is more or less independent of the size of the DDG.  
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Figure 7.4 Efficiency comparison of two benchmarking approaches 

More specifically, the zoom-in chart (bottom plane) in Figure 7.4 shows that 

the time for calculating new minimum cost benchmark in the situation of datasets’ 

usage frequencies changing is less than new datasets generation. This is because 

when new datasets are generated, we need to create a new CTT for them to calculate 

the new PSS, whereas when existing datasets’ usage frequencies change in a 

DDG_LS, we only need to update the weights of the changed edges in the existing 

CTT instead of creating a new one to recalculate the PSS. 

From Figure 7.4, we also note that after the calculation of new benchmark, 

the update of the PSS hierarchy takes some computation time. More specifically, the 

computation time of updating the PSS hierarchy for new datasets generation 

increases in a linear manner as the number of DDG_LS grows, because we need to 

add a new PSS to every level of the PSS hierarchy, where the number of the levels 

equals the number of segments in the whole DDG as presented in Section 5.2.4.2 

However, in the situation of datasets’ usage frequencies changing, the computation 

time increases faster. This is because the newly generated datasets only have 
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preceding datasets in the original DDG, while the corresponding DDG_LS of the 

datasets whose usage frequencies are changed has both preceding and succeeding 

datasets in the original DDG. According to the rules of updating the PSS hierarchy 

presented in Section 5.2.4.2 (see Figure 5.25), we have to recalculate more than one 

PSS in every level of the hierarchy in the datasets’ usage frequencies changing 

situation.  

Next, we conduct more specific experiments to analyse the impact on the 

efficiency of the benchmarking approaches. For the static on-demand approach, the 

efficiency depends on the number of datasets in the DDG, which is already illustrated 

in Figure 7.4. Hence, we mainly investigate the dynamic on-the-fly approach.  

PSS is the basis of the dynamic on-the-fly approach, where the efficiency of 

calculating PSSs plays a decisive role in the overall performance. As discussed in 

Section 5.2.3.2, the time complexity of calculating PSS is determined by the number 

of dimensions of the PSS and the number of MCSSs in the PSS. The number of 

dimensions of a PSS only depends on the structure of the DDG, whereas the number 

of MCSSs in a PSS may depend on more factors. Hence we mainly investigate the 

latter, i.e. which factors impact the MCSSs in PSS and how they impact the 

efficiency of calculating PSS. We also briefly analyse the impact of PSS’s 

dimensions on the efficiency at the end of this sub-section.  

Figure 7.5 contains the number of MCSSs in the PSSs generated by the 

experiments demonstrated in Figure 7.4, where Figure 7.5 (a) shows that as the size 

of DDG increases, the number of MCSSs in its PSS does not increase in general, and 

Figure 7.5 (b) further shows 8 MCSSs in the PSS of a DDG_LS with 50 datasets in 

detail. From the figure we can see that the number of MCSSs in the PSS is 1) not 

correlated to, and 2) much smaller than the number of datasets in the DDG_LSs. This 

important fact guarantees the efficiency of the on-the-fly benchmarking approach, 

which is based on the algorithm of calculating PSSs. 
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Figure 7.5 MCSSs in PSS  

Next, in the following experiments, we investigate the parameters of the DDG 

that impact the number of MCSSs in the PSS and their impacts on the efficiency of 

calculating the PSS. First, we investigate the datasets’ generation time. To 

demonstrate the impact, for every dataset in a DDG_LS, we multiply its generation 

time by a modification parameter (i.e. 0.5~2), which makes the generation time 

changing from half to double of its original value, with other parameters unchanged. 

With different modification parameters, we generate different modified DDG_LSs 

and calculate their PSSs. Figure 7.6 (a) demonstrates the number of MCSSs in the 

PSSs and corresponding CPU times of the calculation, where we can see that as the 

modification parameter increases (i.e. the generation time of datasets increase), the 

number of MCSSs in the PSS decreases. Furthermore, because of the fact that the 

smaller the datasets generation time is, the more datasets in the DDG_LS will be 

stored to reduce the total application cost. Therefore, we reach a conclusion that the 

more datasets in DDG_LS are stored, the fewer MCSSs are in the PSS. Figure 7.6 (a) 

also shows that as the number of MCSSs changes, the CPU time of calculating PSS 

does not change very much. Next, we investigate the datasets’ sizes and usage 
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frequencies to see their impacts on the PSS. With same experiments for Figure 7.6 (a), 

we get similar results which are shown in Figure 7.6 (b) and (c). Based on these 

experiments we can see that for randomly generated DDG_LSs with different 

parameters, the PSSs can be efficiently calculated where the change of the parameters 

has limited impact on the efficiency of our approach. 

 

Figure 7.6 Impacts of DDG’s parameters on the performance of the dynamic 

on-the-fly benchmarking approach 

Another factor that may impact on the efficiency of calculating PSS is the 

number of dimensions of the PSS. As discussed in Section 5.2.3.2, the impact on time 

complexity of the PSS dimension number is in the same magnitude as the MCSSs 

number in the PSS (i.e. O(nd
3)). Furthermore, in real applications the number of 

dimensions of the PSS (i.e. the branches in the DDG) is usually not very high. Hence 
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the efficiency impact is not significant on calculating the PSS. In Section 7.4, we will 

utilise our benchmarking approaches in a pulsar searching application that has a 

DDG_LS. 

7.3    Evaluation of Cost-Effective Storage Strategies 

In this section, we evaluate the two cost-effective storage strategies proposed in 

Chapter 6, i.e. the cost rate based strategy and the local-optimisation based strategy. 

In Section 7.3.1, we evaluate the cost-effectiveness of the two strategies by 

comparing to the minimum cost benchmark. In Section 7.3.2, we evaluate the 

efficiency of the two proposed storage strategies.  

7.3.1    Cost-Effectiveness of Two Storage Strategies 

To be consistent, we use the same DDG randomly generated with the parameters in 

Section 7.2.1 to conduct the experiment. We run the cost rate based strategy and 

local-optimisation based strategy on the DDG_LS with 50 datasets, and compare the 

application cost with the minimum cost benchmark and the intuitive storage 

strategies introduced in Section 7.2.1. To demonstrate the cost-effectiveness of the 

strategies comparing to the minimum cost benchmark, we do not consider users’ 

tolerance of computation delay and storage preference initially. Figure 7.7 illustrates 

the comparison of total application cost over 30 days.   

From Figure 7.7 we can see that the cost rate based strategy is more cost 

effective than the generation cost based strategy and usage based strategy on storing 

the DDG_LS. The local-optimisation based strategy stores the datasets with the same 

cost with the minimum cost benchmark. This is because we treat the DDG_LS as the 

entire segment and directly utilise the enhanced CTT-SP algorithm on it. Next we do 

more simulations on larger general DDGs to further demonstrate the cost-

effectiveness of the two proposed storage strategies.  
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Figure 7.7 Comparison of the total cost for different storage strategies 

We still use the same random parameters to generate the DDG_LS with 50 

datasets. In the same way as Section 7.2.2, we start from one DDG_LS and gradually 

add new DDG_LSs to it. Hence for the local-optimisation based strategy, every 

DDG_LS is a segment to utilise the enhanced CTT-SP algorithm. Different from the 

former simulations, we do not accumulate the total cost anymore; instead, we 

calculate the cost rate (average daily cost over 30 days) of storing all the datasets. 

This allows us to incorporate more simulation results in one figure for the better 

comparison purpose. The results are illustrated in Figure 7.8. 

 

Figure 7.8 Comparison of the cost rate for different storage strategies 

Figure 7.8 shows the increases of the cost rates of different strategies as the 

number of datasets grows in the DDG. The results are consistent with formal 
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experiments, where we can see the “store none” and “store all” strategies are very 

cost ineffective, since their cost rates grow fast as the datasets number grows. The 

cost rate based strategy is better than both the generation cost based strategy and 

usage based strategy. The local-optimisation based strategy is the most cost-effective 

datasets storage strategy, which is very close to the minimum cost benchmark. Hence 

the local-optimisation based strategy is highly cost effective. 

As discussed in Section 6.1, cost is not the only issue for storing application 

datasets in the cloud, and users may have a certain degree of tolerance for data 

accessing delay and have preference of storing some datasets with a higher cost. The 

storage of these datasets may well incur extra application cost, hence has some 

impact on the cost-effectiveness of the storage strategies. The more datasets users 

choose to store, the less datasets the storage strategy can apply to, hence the datasets 

storage strategy would become less cost effective. Next, we ran another set of 

simulations on a 200 datasets DDG with different percentages of the datasets that are 

stored in the cloud based on users’ preferences rather than cost. The rest of the 

parameter setting is the same as previous simulations. The results are shown in 

Figure 7.9.  

 

Figure 7.9 Impact on cost-effectiveness of the storage strategies 

From Figure 7.9 we can see that besides the two extreme strategies, i.e. store 

none dataset and store all datasets, all of the rest four strategies gradually become 

more cost ineffective as the percentage of users stored datasets increases. However, 
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the cost rate based strategy and local-optimisation based strategy proposed in this 

thesis are still more cost-effective than others. 

7.3.2    Efficiency Evaluation of Two Storage Strategies 

The storage strategies are designed for runtime utilisation in the cloud, hence they 

need to be efficient. In this sub-section, we evaluate the efficiency of the two 

proposed strategies by comparing their execution time to the original CTT-SP 

algorithm used for benchmarking.  

To be consistent, we still use the randomly generated DDG in Figure 7.8’s 

experiment for this simulation, i.e. the large general DDG combined by DDG_LSs 

with 50 datasets (nl=50). We run the cost rate based strategy and the local-

optimisation based strategy on the DDGs and compare their CPU time with the CTT-

SP algorithm used for benchmarking. For the local-optimisation based strategy, the 

computation time not only depends on the number of datasets in the DDG, but also 

the partition of the DDG. Hence, we incorporate another two sets of simulations with 

different partition methods of the DDG, i.e. 1) we use DDGs that only have 5 linear 

segments (m=5) and let the number of datasets in each segment grow; 2) we control 

the partition of the DDGs that every segment has at most 10 datasets (nl=10) and let 

the number of segments grow. The simulation results are shown in Figure 7.10. 

 

Figure 7.10 Efficiency comparisons of different storage strategies 
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In Figure 7.10, as the number of datasets increases, we can see that the 

original CTT-SP algorithm is not efficient, where it takes more than 200 seconds to 

find the MCSS for the DDG with 200 datasets. Hence it can only be used for on-

demand benchmarking. The cost rate based strategy is highly efficient. The local-

optimisation based strategy is not as efficient as the cost rate based strategy, 

especially when the number of datasets in the segment is very large.  

7.4    Case Study of Pulsar Searching Application 

As introduced in Section 3.1, pulsar searching is a typical scientific application in 

astrophysics. In this section, we demonstrate how the pulsar case utilises our 

benchmarking approaches and storage strategies on storing the generated application 

datasets. 

In the pulsar case, during the workflow’s execution on analysing ONE PIECE 

of the observation data, six datasets are generated. The DDG of these datasets is 

shown in Figure 7.11, as well as the sizes and generation times of these datasets. 

From Swinburne astrophysics research group, we understand that the “de-dispersion 

files” are the most useful generated dataset. Based on these files, many accelerating 

and seeking methods can be used to search pulsar candidates. Based on the scenario, 

we set the “de-dispersion files” to be used once every 4 days, and the rest of the 

datasets to be used once every 10 days. Furthermore, we also assume that the prices 

of cloud services follow Amazon clouds’ cost model. 
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Figure 7.11 DDG of pulsar searching application 
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7.4.1    Utilisation of Minimum Cost Benchmarking Approaches 

The utilisation of the static on-demand benchmarking approach is straight forward. 

We directly create the CTT on the DDG and find the MCSS, which is storing d2, d4, 

d6 and deleting d1, d3, d5. The minimum cost benchmark is $0.51 per day.  

Next we demonstrate the utilisation of the dynamic on-the-fly benchmarking 

approach. As described in Section 3.1, there are two phases in execution of the 

workflow to generate the DDG: Files Preparation and Seeking Candidates, where in 

each phase three datasets are generated as a DDG_LS. Figure 7.12 demonstrates the 

PSS calculation of the two DDG_LSs and the merging process for the PSS of the 

whole DDG segment.  
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Figure 7.12 PSSs of a DDG segment in the pulsar application 
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When datasets d1, d2, d3 are generated as DDG_LS1, we calculate PSS1. Next, 

when datasets d4, d5, d6 are generated as DDG_LS2, we first calculate its PSS, 

denoted as PSS2, then we locate the corresponding MCSS from PSS1 and form the 

MCSS of the whole DDG segment which stores datasets d2, d4, d6. Next we calculate 

the cost rate of the MCSS, which is again $0.51 per day for storing these six datasets. 

This cost rate is the minimum cost benchmark. After we derive the new benchmark, 

we need to merge PSS1 and PSS2 to derive the PSS of the whole DDG segment, 

which is saved in the hierarchy for further use. 

7.4.2    Utilisation of Cost-Effective Storage Strategies 

The storage strategies are utilised at runtime in the cloud. As time goes on, 

researchers may reuse the datasets and conduct new re-analysis on them, where new 

datasets are generated. Base on the scenario, we set that new datasets are generated 

on the 10th day and 20th day, indicated as sub DDG1 and sub DDG2 in Figure 7.13. 

We run the two proposed cost-effective storage strategies on the DDG and 

compare the total application cost with the same storage strategies previously 

presented and minimum cost benchmark. The simulation results are shown in Figure 

7.14. 
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Figure 7.13 DDG of the pulsar application with new datasets generation 



113 

 

From Figure 7.14 we can see that 1) the cost of the “store none dataset” 

strategy is a fluctuated line because in this strategy all the costs are computation cost 

of regenerating datasets. For the days that have fewer requests of the data, the cost is 

low, otherwise, the cost is high; 2) the cost of the “store all datasets” strategy is a 

polyline, because all the datasets are stored in the system that is charged at a fixed 

rate, and the inflection points only occur when new datasets are generated; 3-4) the 

costs of the generation cost based strategy and the usage based strategy are in the 

middle band, which are lower than the “store none dataset” and “store all datasets” 

storage strategies. The cost lines are slightly fluctuated because the datasets are 

partially stored; 5-6) the cost rate based strategy has a good performance and the 

most cost-effective datasets storage strategy is the local-optimisation based strategy 

which achieves storing the datasets with the minimum cost in this pulsar searching 

application. Table 7.1 shows how the datasets are stored with different strategies in 

detail. 

 

Figure 7.14 Cost-effectiveness comparisons of different storage strategies for 

storing pulsar case DDG 

Since the pulsar DDG shown in Figure 7.13 is not complicated, we can do 

some intuitive analyses on how to store the generated datasets. For the dataset of 

Accelerated De-dispersion Files, although its generation cost is quite high, 

comparing to its huge size, it is not worth storing them in the cloud. However, in the 

generation cost based strategy, these files are stored. For the final XML Files, they are 
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not very often used, but comparing to their high generation cost and small size, they 

should be stored. However, in the usage based strategy, these files are not stored. For 

the dataset of De-dispersion Files, by comparing its own generation cost rate and 

storage cost rate, the cost rate based strategy did not store it at the beginning, but 

store it after it is used in the regeneration of other datasets. In this case, the local-

optimisation based strategy is the most cost-effective datasets storage strategy for 

storing the datasets, which achieves the minimum cost storage strategy. 

Table 7.1 Storage status of datasets in the pulsar application with different 

storage strategies 

                Datasets 

  Strategies 

Extracted 

beam 

De-dispersion 

files 

Accelerated 

de-dispersion 

files 

Seek 

results 

Pulsar 

candidates 

XML 

files 

1) Store none dataset Deleted Deleted Deleted Deleted Deleted Deleted 

2) Store all datasets Stored Stored Stored Stored Stored Stored 

3) Generation cost 

based strategy 
Deleted Stored Stored Deleted Deleted Stored 

4) Usage based 

strategy 
Deleted Stored Deleted Deleted Deleted Deleted 

5) Cost rate based 

strategy 
Deleted 

Stored 

(deleted 

initially) 

Deleted Stored Deleted Stored 

6) Local-optimisation 

based strategy 
Deleted Stored  Deleted Stored Deleted Stored 

7) Minimum cost 

benchmark 
Deleted Stored  Deleted Stored Deleted Stored 

 

7.5    Summary 

In this Chapter, we demonstrate the experiment results that we conducted on our 

SwinCloud environment to evaluate the proposed minimum cost benchmarking 

approaches and cost-effective datasets storage strategies presented in this thesis.  

For the minimum cost benchmarking approaches, first, by comparing with 

some intuitive storage strategies, we demonstrate the cost-effectiveness of the 
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minimum cost benchmark, and then by comparing the runtime efficiency of the two 

proposed approaches, i.e. static on-demand approach and dynamic on-the-fly 

approach, we further demonstrate that two approaches are suitable for different 

applications with different requirements of benchmarking requests.  

For the cost-effective datasets storage strategies, we compare them with the 

minimum cost benchmark to evaluate their cost-effectiveness. Then we evaluate the 

efficiency of the strategies by comparing their execution time with the benchmarking 

approaches. The experiment results indicate that the two proposed strategies have 

different features, namely, the cost rate based strategy is highly efficient with fairly 

reasonable cost-effectiveness and the local-optimisation based strategy is highly cost-

effective with very reasonable efficiency. They can be utilised in different situations 

according to the requirements of the applications. 

At last, we present the case study conducted on the pulsar searching 

application in Astrophysics. By utilising our benchmarking approaches and storage 

strategies in this real world application, we successfully demonstrate the 

practicability of our research.     
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Chapter 8 

Conclusions and Future Work 

In this chapter, we summarise the whole thesis. Section 8.1 summarises the contents 

of the whole thesis. Section 8.2 outlines the main contributions of this thesis. Finally, 

Section 8.3 points out the future work. 

8.1    Summary of This Thesis 

The research objective described in this thesis is to investigate the issue of 

computation and storage trade-off in the cloud in order to help both users and 

service provider to bring the cost down dramatically when deploying the 

computation and data intensive scientific applications with the pay-as-you-go model. 

The thesis was organised as follows: 

 Chapter 1 introduced the scientific applications in the cloud, which is the 

background of this research. Chapter 1 also described the aims of this work, 

the key issues to be addressed in this thesis and the primary structure of this 

thesis. 

 Chapter 2 overviewed the related literatures on scientific applications in grid 

and cloud systems and analysed their limitations. Specifically, first, we 

overviewed the data management of scientific applications in traditional 

distributed systems, e.g. grid systems. Next, we reviewed some related work 

on deploying scientific applications in the cloud and demonstrate the cost-

effectiveness of using the cloud. Furthermore, we pointed out that this 
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research is a step forward based on the existing work, which investigates 

how to reduce the application cost in the cloud. 

 Chapter 3 presented a motivating example of pulsar searching from 

Astrophysics. Based on the example, we analysed the problems of deploying 

scientific applications in the cloud and defined the scope of this research. 

Based on the analysis, we present the detailed research issues of this thesis: 1) 

cost model for datasets storage in the cloud; 2) minimum cost benchmarking 

approaches; and 3) cost-effective datasets storage strategies. 

 Chapter 4 described a new cost model for datasets storage in the cloud. First 

we introduced a classification of the application data in the cloud, namely 

original data and generated data, and proposed the important concept of Data 

Dependency Graph (DDG). Then, we presented the cost model for datasets 

storage based on DDG, where the total application cost defined in this thesis 

is the sum of the computation cost for regenerating datasets and the storage 

cost for generated datasets. The cost model represents the trade-off between 

computation and storage, which was investigated in this thesis to reduce the 

application cost in the cloud. 

 Chapter 5 described two novel minimum cost benchmarking approaches. 

This chapter is the core of this thesis, because benchmarking is to calculate 

the minimum cost of storing the application datasets in the cloud, which 

achieves the best trade-off between computation and storage. Most of the 

important theorems and algorithms were presented in this chapter, based on 

which we proposed two benchmarking approaches (i.e. static on-demand 

approach and dynamic on-the-fly approach) according to the different 

requirements of applications in the cloud. 

 Chapter 6 described two innovative cost-effective datasets storage strategies. 

By utilising the trade-off between computation and storage, two cost-

effective datasets storage strategies were designed according to the different 

requirements of applications in the cloud, i.e. the cost rate based strategy 

(highly efficient with fairly reasonable cost-effectiveness) and the local-
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optimisation based strategy (highly cost-effective with very reasonable 

efficiency). 

 Chapter 7 described the experiments and evaluations of this research. First, 

general random experiments demonstrated that the minimum cost 

benchmarking approaches can very well evaluate the cost-effectiveness of 

storage strategies and the proposed cost-effective storage strategies can also 

be utilised in different situations according to different application 

requirements in the cloud. Then, the case study on the specific pulsar 

searching application further demonstrated the practicability of our 

benchmarking approaches and storage strategies.  

In summary, wrapping up all chapters, we can conclude that with the research 

results in this thesis, i.e. cost model, benchmarking approaches and storage strategies, 

the application cost in the cloud can be significantly reduced. 

8.2    Key Contributions of This Thesis 

The significance of this research is that we have investigated a brand new and niche 

issue in cloud computing, i.e. the trade-off between computation and storage of data 

in scientific applications. Because of the wide utilisation of the pay-as-you-go model, 

application cost becomes an important issue concerned for deploying applications in 

the cloud. This thesis provided a novel way to reduce the application cost via 

achieving the best trade-off of computation and storage in the cloud. 

In particular, the major contributions of this thesis are: 

1. For the first time, the issue of computation and storage trade-off for scientific 

datasets storage in the cloud is comprehensively and systematically 

investigated. A brand new cost model for datasets storage is proposed based 

on a novel concept of Data Dependency Graph (DDG). This cost model 

represents the trade-off between computation and storage in the application 

cost. 
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2. For the first time, a static on-demand minimum cost benchmarking approach is 

proposed. In this approach, a novel Cost Transitive Tournament Shortest Path 

(CTT-SP) based algorithm is designed to calculate the theoretical minimum 

application cost of storing the generated datasets in the cloud. This algorithm 

solves a seemingly NP-hard problem in polynomial time complexity, i.e. 

O(n
9
). 

3. For the first time, a dynamic on-the-fly minimum cost benchmarking approach 

is proposed. With in-depth investigation of the trade-off between computation 

and storage, a novel concept of Partitioned Solution Space (PSS) is proposed. 

Based on PSS, we develop an innovative approach that can dynamically derive 

the minimum cost benchmark on the fly at runtime in the cloud.  

4. For the first time, a cost rate based datasets storage strategy is proposed. This 

strategy is highly efficient with fairly reasonable cost-effectiveness, which 

contains three new algorithms to handle all situations (i.e. for new datasets, 

stored datasets and regenerated datasets) in the cloud to decide the proper 

storage status of the application datasets. 

5. For the first time, a local-optimisation based datasets storage strategy is 

proposed. This strategy is highly cost-effective with very reasonable 

efficiency, which contains an enhanced CTT-SP algorithm to decide the 

proper storage status of the application datasets. 

6. A case study is conducted on a real world scientific application, i.e. pulsar 

seraching in Astrophysics. All proposed benchmarking approaches and storage 

strategies are utilised in the case study, which demonstrates the practicability 

of the research outcomes presented in this thesis. 

8.3    Future Work 

Based on the current work in this thesis, future work can be conducted from the 

following aspects: 
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The current work in this thesis is based on Amazon clouds’ cost model and 

assumes that all the application data be stored with a single cloud service provider. 

However, sometimes large-scale applications have to run in a more distributed 

manner since some application data may be distributed with fixed locations. In these 

cases, data transfer is inevitable. In the future, we will incorporate the data transfer 

cost into our minimum cost benchmarking and develop more complex cost models. 

Furthermore, data placement strategies also need to be investigated in order to 

reduce data transfer among data centres. 

The current work in this thesis has an assumption that the datasets’ usage 

frequencies are obtained from the system log. Models of forecasting dataset usage 

frequency can be further studied, with which our benchmarking approaches and 

storage strategies can be adapted more widely to different types of applications. 

The datasets storage strategies proposed in this thesis are cost effective and 

efficient, but not aimed at reaching the minimum cost. Hence more cost-effective 

storage strategies can be further investigated in order to achieve the minimum cost 

reflected by benchmarking.  
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Appendix A 

Proofs of Theorems, Lemmas and 

Corollaries 

Theorem 5.1: Given a linear DDG with datasets {d1, d2 … dn}, the length of 

Pmin<ds , de> of its CTT is the minimum cost rate for storing the datasets in the 

DDG, and the corresponding storage strategy is to store the datasets that 

Pmin<ds , de> traverses. 

Proof of Theorem 5.1:  

First, there is a one-to-one mapping between the storage strategies of the DDG and 

the paths from ds to de in the CTT. Given any storage strategy of the DDG, we can 

find an order of these stored datasets, since the DDG is linear. Then we can find the 

exact path in the CTT that has traversed all these stored datasets. Similarly, given 

any path from ds to de in the CTT, we can find the datasets it has traversed, which is 

a storage strategy. Second, based on the setting of weights to the edges, the length of 

a path from ds to de in the CTT equals to the total cost rate of the corresponding 

storage strategy. Third, Pmin<ds , de> is the shortest path from ds to de as found by the 

Dijkstra algorithm.  

Theorem 5.1 holds. 

Corollary 5.1: During the process of finding the shortest path, for every dataset df 

that is discovered by the Dijkstra algorithm, we have a path Pmin<ds , d f > from 
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ds to df and a set of datasets Sf that Pmin<ds , d f > traverses. Sf is the MCSS of 

the sub DDG segment  i i s i fd d DDG d d d    . 

Proof of Corollary 5.1:  

Corollary 5.1 is proved by apagoge.  

Suppose that there exists a storage strategy ff SS   and fS   is the MCSS of 

the sub-DDG segment  i i s i fd d DDG d d d    . Then we can get a path 

P'min<ds , d f > from ds to df, which traverses the datasets in fS  . Then we have: 

  

 

 

min

min

,

,

i s i f
f

i s i f
f

s f id DDG d d d
S

i s fd DDG d d d
S

P d d CostR

CostR P d d

   


   

   

   




 

This is contradictory to the known condition “Pmin<ds , d f > is the shortest 

path from ds to df”. Hence, Sf is the MCSS of the sub-DDG segment 

 i i s i fd d DDG d d d    .  

Corollary 5.1 holds. 

Theorem 5.2: The selection of main branch in the DDG to construct CTT has no 

impact on finding the MCSS. 

Proof of Theorem 5.2:  

Assume that strategy S be the MCSS of a DDG; the DDG have two sub-branches Br1 

and Br2 in a block; strategies S1 and S2 contain the sets of stored datasets of Br1 and 

Br2 in S.  

If we select the main branch with the sub-branch Br1, S can be mapped to a 

path in one of the created CTTs. According to Theorem 5.1, the paths in CTT have 

one-to-one mapping to the storage strategies, hence we can find a path P<ds , de> that 

traverses the stored datasets in the main branch according to S. If S1 = Ø, there is an 
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over-block edge in the path P<ds , de>, which contains the MCSS of Br2 according to 

formula (5.2), where P<ds , de> is in the initial CTT. If S1 ≠ Ø, there is an in-block 

edge and an out-block edge in P<ds , de>, denoted as e<di , dj> and e<dh , dk>. The 

weight of e<dh , dk> contains the MCSS of Br2 according to formula (5.2), hence 

P<ds , de> is in CTT(e<di , dj>). Similar to Theorem 5.1, we can further prove that the 

length of P<ds , de> equals the total cost rate of the storage strategy S.  

Similarly, if we select the main branch with the sub-branch Br2, S can also be 

mapped to a path in one of the created CTTs, where the length of the path equals to 

the total cost rate of the MCSS.  

Therefore, no matter which branch we select as main branch to construct CTT, 

the MCSS always exists in one of the created CTTs. This means that the selection of 

main branch has no impact on finding the MCSS.  

Theorem 5.2 holds. 

Theorem 5.3: The Dijkstra shortest path algorithm is still applicable to find the 

MCSS of the DDG with one block. 

Proof of Theorem 5.3: 

In the CTTs created for the DDG with one block, every path from ds to de contains an 

out-block edge or over-block edge. According to formula (5.2), the minimum cost 

rate of the sub-branch is contained in the weights of out-block and over-block edges. 

Hence, every path from ds to de in the CTT contains the MCSS of the sub-branch. 

Furthermore, the CTTs are created based on the main branch of the DDG, similar to 

the proof of Theorem 5.1, the shortest path Pmin<ds , de> found by the Dijkstra 

algorithm contains the MCSS of the main branch. This means that Pmin<ds , de> 

represents the MCSS of the whole DDG.  

Theorem 5.3 holds. 
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Theorem 5.4: For a DDG_LS, only the generation cost of its deleted preceding 

datasets and the usage frequencies of its deleted succeeding datasets impact on 

its MCSS. 

Proof of Theorem 5.4: 

We assume that a DDG_LS {d1, d2, … dnl} have j deleted preceding datasets and k 

deleted succeeding datasets, which is shown in Figure A.1.  

d1 da... …ds d'j db
...d'1

A linear DDG segment
Start 

Dataset

... ... dnl … d''kd''1 de

End 

Dataset

...  

Figure A.1 A DDG_LS with start and end datasets 

In Figure A.1, we can see that the deleted preceding datasets impact on the 

weights of all the edges from ds to the DDG_LS. According to the CTT-SP algorithm, 

for any dataset da in the DDG_LS, the weight of edge from ds to da is  

 

   

{ }

1

1 1

1

1 1 1 1 1

1 1

, ( )

( ) ( )

i i s i as a a i id d DDG d d d

j a

a i i i i
i i

j ji a i

h i h h ia
i h i h h

j i

a h i
i h

d d y genCost d v

y genCost d v genCost d v

y x v x x v

y x v

    



 



    

 

    

     

     
            

      

  
       

  



 

    

 
1 1

1 1 1 1

j a a i

h i h i
h i i h

x v x v
 

   

  
    

  
   

 

From the composition of  as dd , , we can see that 

  
 




















j

i
i

i

h
h vx

1 1

 is a fixed value for all the edges starting from ds to any datasets 

in the DDG_LS, because it does not contain variable a. Hence it has no impact 

on finding the MCSS.  
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 a

a

i
i

i

h
h yvx 
















 


 

1

1 1

 is a value that is independent of the deleted preceding 

datasets. 

 The value of 





1

11

a

i
i

j

h
h vx  depends on both the deleted preceding datasets (i.e. 





j

h
hx

1

) and the datasets in the DDG_LS (i.e. 




1

1

a

i
iv ), where 




j

h
hx

1

 is the generation 

cost of the deleted preceding datasets. 

Hence, we can come to the conclusion that only the generation costs of the 

deleted preceding datasets impacts on the MCSS of the DDG_LS. 

Similarly, for an edge from any datasets db in the DDG_LS pointing to de, 

the weight  eb dd ,  is 

1 1 1 1 1 1

,
l ln ni k k i

b e e h i h i h i
i b h b h b i i h

d d y x v x v x v
        

      
                

      
      . 

Therefore, only the usage frequencies of the deleted succeeding datasets, i.e. 





k

i
iv

1

, impacts on the MCSS of the DDG_LS. 

Theorem 5.4 holds. 

Theorem 5.5: Given a DDG_LS {d1, d2, … dnl}, SCRmin is the cost rate of MCSS Su,v 

with X=0, V=0, and SCRmax is the cost rate of MCSS S1, nl with X>y1/v1, 

V>ynl/xnl. Then we have SCRmin < SCRi,j < SCRmax , where SCRi,j is the cost rate 

of MCSS Si,j with any given X and V. 

Proof of Theorem 5.5:  

First, SCRmin < SCRi,j is obviously true because of the direct utilisation of the CTT-

SP algorithm. Next, we prove SCRi,j < SCRmax by apagoge. 
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We assume , maxi jSCR SCR , then we have 

1

, ,
1 1

1 1

max max max
1 1

l

l

l

ni

i j k i j k
k k j

n

k k
k k n

TCR X v SCR V x

X v SCR V x SCR TCR



  



  

    

      

 

 

 

This is contradictory to the known condition that Si,j is the MCSS of the 

given X and V. 

Theorem 5.5 holds. 

 

Lemmas 5.1 – 5.3 and Theorem 5.6 can be proved in a same way, which is via 

the linear equation theory in Linear Algebra.  

Lemma 5.1: In the PSS of a DDG_LS, for three MCSSs, if any two of them are 

adjacent with each other, then the three partition lines between every two 

MCSSs intersect at one point. 

Proof of Lemma 5.1: 

For the three lines in Figure 5.15, we can write their equations in the coefficient 

matrix format, i.e. Ax=b, as follows: 
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Because of ikj ddd   and kji ddd   , we have 











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111 i

jh
h
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kh
h
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h vvv  
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and 













k

jh
h

k

ih
h

j

ih
h xxx

111
, hence in matrix A there are only two linear 

independent vectors, hence the equation system Ax=b has a unique solution. 

Hence, the three lines (i.e. L<Si,i' , Sj,j' >, L<Si,i' , Sk,k' > and L<Sj,j' , Sk,k' >) 

intersect at one point. 

Lemma 5.1 holds. 

Lemma 5.2: In a three dimension PSS, for three MCSSs, if any two of them are 

adjacent with each other, then the three partition planes intersect in one line. 

Proof of Lemma 5.2: 

Similar to the proof of Lemma 5.7, we can write the partition planes’ equations in 

Figure 5.19 in the coefficient matrix format as follows: 
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Because of 111 abc ddd  , 222 cba ddd  and 333 cba ddd  , we 

have  
1

1

1

1

1

1

c

a

c

b

b

a

vvv ,  
2

2

2

2

2

2

c

a

c

b

b

a

xxx  and  
3

3

3

3

3

3

c

a

c

b

b

a

xxx , hence in matrix A there 

are only two linear independent vectors. 

According to the property of 3-variable linear equations, the solution space 

of the equation system Ax=b is a line. 

Hence, the three lines (i.e. P<Sa , Sb >, P<Sb , Sc > and P<Sa , Sc >) intersect 

in one line. 

Lemma 5.2 holds. 



138 

 

Lemma 5.3: In a three dimension PSS, for four MCSSs, if any three of them 

intersect in a different line, then the four intersection lines intersect at one point. 

Proof of Lemma 5.3: 

For four MCSSs in a three dimension PSS, the maximum number of linear 

independent vectors in the partition plane equations’ coefficient matrix is three. We 

still take Figure 5.19’s DDG segment as example. We assume that Se be the forth 

MCSS, where SCRa < SCRb < SCRc < SCRe; 1111 abce dddd  , 

2222 ecba dddd  , and 3333 ecba dddd  . We have partition plane 

equations of the four MCSSs as follows: 
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We can clearly see that the linear independent vectors in the equations’ 

coefficient matrix are 

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Furthermore, because any three of the four MCSSs intersect in one line, we 

know that the number of linear independent vectors in the partition plane equations’ 

coefficient matrix is greater than or equal to two.  

If the four MCSSs’ partition plane equations only have two linear 

independent vectors, then the planes would intersect in a same line according to the 
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property of linear equations. This is contradictory to the known condition that any 

three of the four MCSSs intersect in a different line. Hence the four MCSSs’ 

partition planes’ equations have three linear independent vectors. 

According to the property of three variables linear equations, the equation 

system of the four MCSSs’ partition planes has unique solution. Hence the four 

MCSSs intersect at one point. 

Lemma 5.3 holds. 

Theorem 5.6: In an n dimension PSS, for i MCSSs where  )1(,...,3,2  ni , if any 

(i-1) of the i MCSSs intersect in a different (n-i+2) dimension space, then the i 

MCSSs intersect in an (n-i+1) dimension space. 

Proof of Theorem 5.6 

Based on the proofs of Lemma 5.1 – 5.3, Theorem 5.6 can be proved in the same 

way. 

In the n dimension PSS, the border of two MCSSs is an n-variable linear 

equation. For a system of n-variable linear equations, if its solution is an m 

dimension space, then there are (n-m) linear independent vectors in the equations 

system’s coefficient matrix.   

Because any (i-1) of the i MCSSs intersect in an (n-i+2) dimension space, 

the (i-1) MCSSs’ equation system has (i-2) linear independent vectors. Furthermore, 

because different (i-1) MCSSs have different (n-i+2) dimension spaces, the i 

MCSSs’ equation system has (i-1) linear independent vectors, which can be proved 

similarly as Lemma 5.3. Hence the i MCSSs intersect in an (n-i+1) dimension space. 

Theorem 5.6 holds. 
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Theorem 5.7: Given DDG segment {d1, d2, … dm} with PSS1 , DDG segment {dm+1, 

dm+2, … dn} with PSS2, and the merged DDG segment {d1, d2, … dm, dm+1, 

dm+2, … dn} with PSS. Then we have:  

1 2 1 1 2 2

1

1 2
1 1

,

m i

k k
k j k m

S S S S PSS S PSS
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  
 

 , 

where dj is the last stored dataset in the first DDG segment and di is the first 

stored dataset in the second DDG segment. 

Proof of Theorem 5.7:  

As stated in Theorem 5.7, in the merged DDG segment under storage strategy S, the 

regenerations of datasets in DDG segment {dm+1, dm+2, … di-1} need to start from dj, 

which includes the generation cost datasets in DDG segment {dj+1, dj+2, … dm}. 

Hence, 

  2
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can be proved by direct utilisation of the definition of SCR, where 

















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



1

11

i

mk
k

m

jk
k vx  is the generation cost rate compensation of datasets in DDG 

segment {dj+1, dj+2, … dm} for regenerating datasets in DDG segment {dm+1, 

dm+2, … di-1}. 

Next, we prove  

     221121 , PSSSPSSSSSSPSSS   

by apagoge. 

We assume 11 PSSS  .  

Then we write the total cost rate of the merged DDG segment with MCSS S:  
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, 

where p and q are the numbers of branches in the merged DDG segment that have 

preceding datasets and succeeding datasets. Then we have 
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, 

where p1 and q1 are the numbers of branches in the DDG segment {d1, d2, … dm} 

that have preceding datasets and succeeding datasets except the connecting branch; 

p2 and q2 are the numbers of branches in the DDG segment {dm+1, dm+2, … dn} that 

have preceding datasets and succeeding datasets except the connecting branch. Next, 

we have 

     
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22
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Since 11 PSSS  , given the X values [X1, X2,…, Xp1], V values [V1, V2,…, Vq1] 

and V = 




1

1

i

mk
kv , we can find another MCSS S'1, where TCR1' < TCR1 . Hence, we 

have 
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This is contradictory to the known condition that S is the MCSS of the 

merged DDG Segment.  

Hence 11 PSSS  . 

Similarly, we can prove 22 PSSS  . 

 Theorem 5.7 holds. 

Lemma 6.1: The deletion of a stored dataset in the DDG does not affect the storage 

status of other stored datasets. 

Proof of Lemma 6.1:  

Suppose that di be a stored datasets to be deleted, dp be a stored predecessor of di 

and df be a stored successor of di. If di is deleted, 1) more datasets’ regenerations 

need to use dp, i.e. the deleted successors of di, hence dp still needs to be stored; 2) 

the regeneration of df needs to start from dp and regenerate the deleted predecessors 

of di, hence the generation cost of df is increased and df still needs to be stored.  

 Lemma 6.1 holds. 
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Theorem 6.1: If a deleted dataset is stored, only its adjacent stored predecessors and 

successors in the DDG may need to be deleted to reduce the application cost. 

Proof of Theorem 6.1:  

Suppose that di be a deleted datasets to be stored, dp be a stored predecessor of di 

and df be a stored successor of di. If di is stored, 1) fewer datasets’ regenerations 

need to use dp, i.e. regenerations of the deleted successors of di can start from di, 

hence dp may needs to be deleted; 2) the regeneration of df can start from di instead 

of dp, hence the generation cost of df is decreased and df may need to be deleted. 

According to Lemma 6.1, the deletion of dp and df do not affect other stored 

datasets’ storage status. 

 Theorem 6.1 holds. 

Theorem 6.2: Given a DDG and assumed S be the MCSS of the DDG. If  Sd p   

and dp divides the DDG into: 

 

 










kpkk

pjjj

ddDDGddDDG

ddDDGddDDG

2

1

,  

then S1 and S2 are the MCSSs of DDG1 and DDG2 respectively, where 

11 DDGSS   and 22 DDGSS  . 

Proof of Theorem 6.2:  

We prove this theorem by apagoge. 

1) Suppose there be a storage strategy 11 SS   and 1S   be the MCSS of DDG1. 

Then we have: 
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Then    
SDDGd iSDDGd i ii

RCostRCost    , 1 2{ }pS S d S    .  

Hence we get a new storage strategy S   of the DDG which has a smaller cost rate 

than S. This is contradicting to the known condition “S is the MCSS of the DDG”. 

Hence S1 is the MCSS of DDG1. 

2) Similarly, it can be proved that S2 is the MCSS of DDG2.  

 Theorem 6.2 holds. 
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Appendix B 

Notation Index 

B A block in a DDG 

Br A branch in a block 

CostRi Cost rate of dataset di in the DDG 

CTT Cost Transitive Tournament 

CTT-SP Cost Transitive Tournament based Shortest Path 

di A dataset, where the subscript i is the index number 

DDG Data Dependency Graph 

DDG_LS Linear DDG Segment 

e<di , dj> The edge from di to dj in the CTT 

fi 
A flag which denotes the status whether dataset di is 

stored or deleted 

genCost(di) Generation cost of dataset di 
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L<S1 , S2> 
Partition line between MCSSs S1 and S2 in a two 

dimension PSS 

MB Main branch of a DDG 

MCSS Minimum Cost Storage Strategy 

P<S1 , S2> 
Partition plane between MCSS S1 and S2 in a three 

dimension PSS 

Pmin<di , dj> The shortest path from di to dj in the CTT 

Pricecpu The price of computation resources in the cloud 

provSeti 
Set of stored provenance datasets that are needed for 

regenerating di 

PSS Partitioned Solution Space 

S 
A storage strategy which is a set of datasets in the 

corresponding DDG (or DDG segment) 

Si 
A storage strategy of a DDG (or DDG segment), where 

the subscript i is the index number 

Si,…,j 

A storage strategy, where the subscripts i,…,j denote the 

indices of the first and last stored datasets in the DDG 

segment 

Smax The MCSS that has the maximum SCR in the PSS 

Smin The MCSS that has the minimum SCR in the PSS 

S_All 
Set of MCSSs of a DDG segment with SCR values in the 

valid range 
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SB Sub-branch(es) of a DDG 

S_ini Set of MCSSs for the initial input of calculating PSS 

SCR Sum of cost rates of datasets in a DDG (or DDG segment) 

SCRi The SCR with storage strategy Si 

SCRi,…,j The SCR with storage strategy Si,…,j 

Ti 
The time duration which denotes user’s tolerance of 

dataset accessing di’s delay 

TCR Total Cost Rate of a DDG segment in the whole DDG 

TCRi The TCR with storage strategy Si 

TCRi,…,j The TCR with storage strategy Si,…,j 

vi Usage frequency of dataset di 

V 
Sum of deleted succeeding datasets usage frequencies of 

a DDG_LS 

xi Generation cost of dataset di from its direct predecessors 

X 
Sum of deleted preceding datasets generation costs of a 

DDG_LS 

yi Storage cost rate dataset di 

 ji dd ,  The weight of edge e<di , dj> 

λi 
User’s preference of storing dataset di with a higher 

storage cost 



148 

 

  
Denotation of two datasets having a generation 

relationship 

  
Denotation of two datasets not having a generation 

relationship 

 

 


