
Achieving the Best Trade-Off

between Computation and Storage in

the Cloud

 – Cost Model, Benchmarking and Strategies for Datasets

Storage of Scientific Applications

by

Dong Yuan

B.Eng. (Shandong University)

M.Eng. (Shandong University)

A thesis submitted to

Faculty of Information and Communication Technologies

Swinburne University of Technology

for the degree of

Doctor of Philosophy

December 2011

i

To my parents and my wife

ii

Declaration

This thesis contains no material which has been accepted for the award

of any other degree or diploma, except where due reference is made in

the text of the thesis. To the best of my knowledge, this thesis contains

no material previously published or written by another person except

where due reference is made in the text of the thesis.

Dong Yuan

December 2011

iii

Acknowledgements

I sincerely express my deepest gratitude to my coordinate supervisor, Professor Yun

Yang, for his seasoned supervision and continuous encouragement throughout my

PhD study. His guidance, wisdom, enthusiasm have made me both more mature as a

person and more confident to be a good researcher. I feel fortunate to have him as

mentor and friend for the past three and a half years.

I thank Swinburne University of Technology and the Faculty of Information and

Communication Technologies for offering me a full Research Scholarship

throughout my doctoral program. I also thank the Research Committee of the

Faculty of Information and Communication Technologies for research publication

funding support and for providing me with financial support to attend conferences.

My thanks also go to my associate supervisors Dr. Jinjun Chen, to my review panel

members Professor Ryszard Kowalczyk, Dr. Robert Merkel, Dr. Wei Lai, and to

staff members, research students and research assistants at previous CITR/CS3 and

current SUCCESS for their help, suggestions, friendship and encouragement, in

particular, Dr. Xiao Liu, Minyi Li, Kaijun Ren, Qiang He, Ke Liu, Gaofeng Zhang,

Wenhao Li, Dahai Cao, Michael Jenson, Bryce Gibson, Saichander Reddy.

I am deeply grateful to my parents Ren Yuan and Lin Li for raising me up, teaching

me to be a good person, and supporting me to study abroad. Last but not least, I

thank my wife Miao Du, for her love, understanding, encouragement, sacrifice and

help. I know words can never be enough to explain how much her support has meant

to me, I will show her as time goes by.

iv

Abstract

Nowadays, scientific research increasingly relies on IT technologies, where large-

scale and high performance computing systems (e.g. clusters, grids and

supercomputers) are utilised by the communities of researchers to carry out their

applications. Scientific applications are usually computation and data intensive,

where complex computation tasks take a long time for execution and the generated

datasets are often terabytes or petabytes in size. Storing valuable generated

application datasets can save their regeneration cost when they are reused, not to

mention the waiting time caused by regeneration. However, the large size of the

scientific datasets is a big challenge for their storage.

In recent years, cloud computing is emerging as the latest distributed

computing paradigm which provides redundant, inexpensive and scalable resources

on demand to system requirements. It offers researchers a new way for deploying

computation and data intensive applications (e.g. scientific applications) without any

infrastructure investments. Large generated application datasets can be flexibly

stored or deleted (re-generate whenever needed) in the cloud, since theoretically

unlimited storage and computation resources can be obtained from commercial

cloud service providers.

With the pay-as-you-go model, the total application cost for generated

datasets in the cloud highly depends on the strategy of storing them, e.g. storing all

the generated application datasets in the cloud may result in a high storage cost since

some datasets may be seldom used but large in size; in contrast, if we delete all the

generated datasets and regenerate them every time when needed, the computation

cost may be very high too. Hence there is a trade-off between computation and

storage in the cloud. In order to reduce the overall application cost, a good strategy is

v

to find a balance to selectively store some popular datasets and regenerate the rest

when needed. This thesis focuses on cost-effective datasets storage of scientific

applications in the cloud, which is a leading-edge and challenging topic nowadays.

By investigating the niche issue of computation and storage trade-off, we 1) propose

a new cost model for datasets storage in the cloud; 2) develop novel benchmarking

approaches to find the minimum cost of storing the application data; 3) design

innovative runtime storage strategies to store the application data in the cloud.

We start with introducing a motivating example from astrophysics and

analyses the problems of computation and storage trade-off in the cloud. Based on

the requirements identified, we propose a novel concept of Data Dependency Graph

(DDG) and propose an effective datasets storage cost model in the cloud. DDG is

based on data provenance, which records the generation relationship of all the

datasets. With DDG, we know how to effectively regenerate datasets in the cloud and

can further calculate their generation costs. The total application cost for the

generated datasets includes both their generation cost and storage cost.

Based on the cost model, we develop novel algorithms which can calculate

the minimum cost for storing datasets in the cloud, i.e. the best trade-off between

computation and storage. This minimum cost is a benchmark for evaluating the cost-

effectiveness of different storage strategies in the cloud. For different situations, we

develop different benchmarking approaches with polynomial time complexity for a

seemingly NP-hard problem, where 1) the static on-demand approach is for the

situation that only occasional benchmarking is requested; 2) the dynamic on-the-fly

approach is suitable for the situation that more frequent benchmarking is requested at

runtime.

We develop novel cost-effective storage strategies for users to facilitate at

runtime of the cloud. Different from the minimum cost benchmarking approach,

sometimes users may have certain preferences on storing some particular datasets due

to various reasons rather than cost, e.g. guaranteeing immediate access to certain

datasets. Hence, users’ preferences should also be considered in a storage strategy.

Based on these considerations, we develop two cost-effective storage strategies for

different situations: 1) the cost rate based strategy is highly efficient with fairly

vi

reasonable cost-effectiveness, and 2) the local-optimisation based strategy is highly

cost-effective with very reasonable time complexity.

To the best of our knowledge, this thesis is the first comprehensive and

systematic work investigating the issue of computation and storage trade-off in the

cloud in order to reduce the overall application cost. By proposing innovative

concepts, theorems and algorithms, the major contribution of this thesis is that it

helps bring the cost down dramatically for both cloud users and service providers to

run computation and data intensive scientific applications in the cloud.

vii

The Author’s Publications

Books:

1. X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen, Y. Yang, The

Design of Cloud Workflow Systems. Springer, 97 pages, 2012. (ISBN: 978-1-

4614-1933-4)

Book Chapters:

2. D. Yuan, Y. Yang, X. Liu, J. Chen, Chapter 5. Computation and Storage

Trade-Off for Cost-Effectively Storing Scientific Datasets in the Cloud,

Handbook of Data Intensive Computing, Springer, pp.129-153, 2011.

3. X. Liu, D. Yuan, G. Zhang, J. Chen, Y. Yang, Chapter 13. SwinDeW-C: A

Peer-to-Peer Based Cloud Workflow System, Handbook of Cloud Computing,

Springer, pp. 309-332, 2010.

Journals:

4. D. Yuan, Y. Yang, X. Liu, J. Chen, On-demand Minimum Cost Benchmarking

for Intermediate Datasets Storage in Scientific Cloud Workflow Systems, Journal

of Parallel and Distributed Computing, Elsevier, vol. 71(2), pp. 316-332, 2011.

5. D. Yuan, Y. Yang, X. Liu, G. Zhang, J. Chen, A Data Dependency Based

Strategy for Intermediate Data Storage in Scientific Cloud Workflow Systems,

Concurrency and Computation: Practice and Experience, Wiley, published

online, Aug. 2010. (http://dx.doi.org/10.1002/cpe.1636)

http://dx.doi.org/10.1002/cpe.1636

viii

6. D. Yuan, Y. Yang, X. Liu, J. Chen, A Data Placement Strategy in Scientific

Cloud Workflows, Future Generation Computer Systems, Elsevier, vol. 26(8), pp.

1200-1214, 2010.

7. G. Zhang, Y. Yang, D. Yuan, J. Chen, A Trust-based Noise Injection Strategy

for Privacy Protection in Cloud Computing. Software: Practice and Experience,

Wiley, vol. 42(4), pp.431-445, 2012.

8. X. Liu, Z. Ni, D. Yuan, Y. Jiang, Z. Wu, J. Chen, Y. Yang, A Novel Statistical

Time-Series Pattern based Interval Forecasting Strategy for Activity Durations

in Workflow Systems, Journal of Systems and Software, Elsevier, vol. 84(3), pp.

354-376, 2011.

9. X. Liu, Z. Ni, Z. Wu, D. Yuan, J. Chen and Y. Yang, A Novel General

Framework for Automatic and Cost-Effective Handling of Recoverable

Temporal Violations in Scientific Workflow Systems, Journal of Systems and

Software, Elsevier, vol. 84(3), pp. 492-509, 2011.

10. Z. Wu, X. Liu. Z. Ni, D. Yuan, Y. Yang, A Market-Oriented Hierarchical

Scheduling Strategy in Cloud Workflow Systems, Journal of Supercomputing,

Springer, published online, Mar. 2011. (http://dx.doi.org/10.1007/s11227-011-

0578-4)

11. K. Liu, H. Jin, J. Chen, X. Liu, D. Yuan, Y. Yang, A Compromised-Time-Cost

Scheduling Algorithm in SwinDeW-C for Instance-Intensive Cost-Constrained

Workflows on Cloud Computing Platform, International Journal of High

Performance Computing Applications, Sage, vol. 24(4), pp. 445-456, 2010.

Conferences:

12. D. Yuan, Y. Yang, X. Liu, J. Chen, A Local-Optimisation based Strategy for

Cost-Effective Datasets Storage of Scientific Applications in the Cloud, in 4th

IEEE International Conference on Cloud Computing (Cloud2011), pp. 179-186,

Washington DC, USA, July 2011.

http://dx.doi.org/10.1007/s11227-011-0578-4
http://dx.doi.org/10.1007/s11227-011-0578-4

ix

13. D. Yuan, Y. Yang, X. Liu, J. Chen, A Cost-Effective Strategy for Intermediate

Data Storage in Scientific Cloud Workflow Systems, in 24th IEEE International

Parallel & Distributed Processing Symposium (IPDPS2010), pp. 1-12, Atlanta,

USA, Apr. 2010.

14. X. Liu, Y. Yang, D. Cao, D. Yuan, J. Chen, Managing Large Numbers of

Business Processes with Cloud Workflow Systems, in 10th Australasian

Symposium on Parallel and Distributed Computing (AusPDC 2012), Melbourne,

Australia, Jan. 2012 (to appear).

15. W. Li, Y. Yang and D. Yuan, A Novel Cost-effective Dynamic Data Replication

Strategy for Reliability in Cloud Data Centres. in International Conference on

Cloud and Green Computing (CGC2011), Sydney, Australia, Dec. 2011 (to

appear).

16. X. Liu, Y. Yang, D. Yuan, G. Zhang, W. Li and D. Cao, A Generic QoS

Framework for Cloud Workflow Systems. in International Conference on Cloud

and Green Computing (CGC2011), Sydney, Australia, Dec. 2011 (to appear).

17. K. Deng, K. Ren, J. Song and D. Yuan, A Weighted K-Means Clustering based

Coscheduling Strategy towards Efficient Execution of Scientific Workflows in

Collaborative Cloud Environments. in International Conference on Cloud and

Green Computing (CGC2011), Sydney, Australia, Dec. 2011 (to appear).

18. K. Deng, K. Ren, J. Song, D. Yuan, J. Chen, Graph-Cut Based Coscheduling

Strategy towards Efficient Execution of Scientific Workflows in Collaborative

Cloud Environments, in 12th IEEE/ACM International Conference on Grid

Computing (Grid 2011), pp. 34-41, Lyon, France, September 22-23, 2011.

19. X. Liu, Z. Ni, Z. Wu, D. Yuan, J. Chen, Y. Yang, An Effective Framework of

Light-Weight Handling for Three-Level Fine-Grained Recoverable Temporal

Violations in Scientific Workflows, in 16th IEEE International Conference on

Parallel and Distributed Systems (ICPADS2010), pages 43-50, Shanghai, China,

Dec. 2010.

x

20. X. Liu, J. Chen, Z. Wu, Z. Ni, D. Yuan, Y. Yang, Handling Recoverable

Temporal Violations in Scientific Workflow Systems: A Workflow Rescheduling

Based Strategy, in 10th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid2010), pp. 534-537, May 2010, Melbourne,

Victoria, Australia.

21. Y. Yang, K. Liu, J. Chen, X. Liu, D. Yuan and H. Jin, An Algorithm in

SwinDeW-C for Scheduling Transaction-Intensive Cost-Constrained Cloud

Workflows, in 4th IEEE International Conference on e-Science (e-Science2008),

pp. 374-375, Indianapolis, USA, Dec. 2008.

Journal submissions (under review):

22. D. Yuan, Y. Yang, X. Liu and J. Chen, Dynamic on-the-fly Minimum Cost

Benchmarking for Storing Scientific Datasets in the Cloud, submitted to IEEE

Transactions on Parallel and Distributed Systems, Oct. 2011.

xi

Table of Contents

CHAPTER 1 INTRODUCTION .. 1

1.1 Scientific Applications in the Cloud .. 1

1.2 Key Issues of this Research .. 3

1.3 Overview of this Thesis .. 5

CHAPTER 2 LITERATURE REVIEW ... 8

2.1 Data Management of Scientific Applications in Traditional Distributed

Systems ... 8

2.1.1 Data Management in Grid .. 9

2.1.2 Data Management in Grid Workflows ... 12

2.1.3 Data Management in Other Distributed Systems................................... 14

2.2 Cost-Effectiveness of Scientific Applications in the Cloud 15

2.2.1 Cost-Effectiveness of Deploying Scientific Applications in the Cloud. 15

2.2.2 Trade-Off between Computation and Storage in the Cloud 17

2.3 Data Provenance in Scientific Applications ... 18

2.4 Summary ... 18

CHAPTER 3 MOTIVATING EXAMPLE AND RESEARCH ISSUES............ 20

3.1 Motivating Example ... 20

3.2 Problem Analysis ... 23

3.2.1 Requirements and Challenges of Deploying Scientific Applications in

the Cloud .. 23

xii

3.2.2 Bandwidth Cost of Deploying Scientific Applications in the Cloud 25

3.3 Research Issues ... 26

3.3.1 Cost Model for Datasets Storage in the Cloud....................................... 27

3.3.2 Minimum Cost Benchmarking Approaches... 27

3.3.3 Cost-Effective Storage Strategies .. 28

3.4 Summary ... 29

CHAPTER 4 COST MODEL OF DATASETS STORAGE IN THE CLOUD . 30

4.1 Classification of Application Data in the Cloud 30

4.2 Data Provenance and Data Dependency Graph (DDG).......................... 31

4.3 Datasets Storage Cost Model in the Cloud ... 33

4.4 Summary ... 36

CHAPTER 5 MINIMUM COST BENCHMARKING APPROACHES 37

5.1 Static On-Demand Minimum Cost Benchmarking Approach 38

5.1.1 CTT-SP Algorithm for Linear DDG .. 39

5.1.2 Minimum Cost Benchmarking Algorithm for DDG with One Block ... 41

5.1.2.1 Constructing CTT for DDG with one block... 42

5.1.2.2 Setting weights to different types of edges .. 44

5.1.2.3 Steps of finding MCSS for DDG with one sub-branch in one block 47

5.1.3 Minimum Cost Benchmarking Algorithm for General DDG 49

5.1.3.1 General CTT-SP algorithm in different situations ... 50

5.1.3.2 Pseudo-code of general CTT-SP algorithm ... 52

5.2 Dynamic on-the-fly Minimum Cost Benchmarking Approach 56

5.2.1 PSS for a DDG_LS .. 57

5.2.1.1 Different MCSSs of a DDG_LS in a solution space .. 57

5.2.1.2 Range of MCSSs’ cost rates for a DDG_LS .. 58

5.2.1.3 Distribution of MCSSs in the PSS of a DDG_LS .. 61

5.2.2 Algorithms for Calculating PSS of a DDG_LS 64

xiii

5.2.3 PSS for a General DDG (or DDG Segment) ... 68

5.2.3.1 Three dimension PSS of DDG segment with two branches 69

5.2.3.2 High dimension PSS of a general DDG ... 72

5.2.4 Dynamic on-the-fly Minimum Cost Benchmarking 74

5.2.4.1 Minimum cost benchmarking by merging and saving PSSs in a hierarchy 74

5.2.4.2 Updating of the minimum cost benchmark on the fly .. 77

5.3 Summary ... 81

CHAPTER 6 COST-EFFECTIVE DATASETS STORAGE STRATEGIES .. 83

6.1 Data Accessing Delay and Users’ Preferences in Storage Strategies 84

6.2 Cost Rate Based Storage Strategy ... 85

6.2.1 Algorithms for the Strategy ... 85

6.2.1.1 Algorithm for deciding newly generated datasets’ storage status 86

6.2.1.2 Algorithm for deciding stored datasets’ storage status due to usage frequencies

change ... 87

6.2.1.3 Algorithm for deciding regenerated datasets’ storage status 88

6.2.2 Cost-Effectiveness Analysis .. 89

6.3 Local-Optimisation Based Storage Strategy .. 89

6.3.1 Algorithms and Rules for the Strategy... 89

6.3.1.1 Enhanced CTT-SP algorithm for linear DDG .. 90

6.3.1.2 Rules in the Strategy .. 92

6.3.2 Cost-Effectiveness Analysis .. 93

6.4 Summary ... 96

CHAPTER 7 EXPERIMENTS AND EVALUATIONS 97

7.1 Experiment Environment .. 97

7.2 Evaluation of Minimum Cost Benchmarking Approaches 98

7.2.1 Cost-Effectiveness Evaluation of the Minimum Cost Benchmark 98

7.2.2 Efficiency Evaluation of Two Benchmarking Approaches 101

xiv

7.3 Evaluation of Cost-Effective Storage Strategies 106

7.3.1 Cost-Effectiveness of Two Storage Strategies 106

7.3.2 Efficiency Evaluation of Two Storage Strategies 109

7.4 Case Study of Pulsar Searching Application110

7.4.1 Utilisation of Minimum Cost Benchmarking Approaches 111

7.4.2 Utilisation of Cost-Effective Storage Strategies 112

7.5 Summary ..114

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 116

8.1 Summary of This Thesis .. 116

8.2 Key Contributions of This Thesis ... 118

8.3 Future Work ... 119

BIBLIOGRAPHY ... 121

APPENDIX A PROOFS OF THEOREMS, LEMMAS AND COROLLARIES

 ... 131

APPENDIX B NOTATION INDEX .. 145

xv

List of Figures

Figure 1.1 Thesis structure .. 5

Figure 3.1 Pulsar searching workflow... 21

Figure 4.1 A simple Data Dependency Graph (DDG) .. 32

Figure 4.2 A dataset’s provSets in a DDG in different situations 35

Figure 5.1 An example of constructing CTT .. 40

Figure 5.2 Pseudo-code of linear CTT-SP algorithm for benchmarking 41

Figure 5.3 An example of constructing CTT for DDG with one block 42

Figure 5.4 CTTs for DDG with one block .. 49

Figure 5.5 Sub-branch with more than one stored adjacent predecessor 50

Figure 5.6 Sub-branch with branches .. 51

Figure 5.7 CTT for general DDG .. 51

Figure 5.8 Pseudo-code of general CTT-SP algorithm for benchmarking 53

Figure 5.9 A sub-branch in DDG .. 55

Figure 5.10 CTT for a DDG_LS ... 57

Figure 5.11 Different MCSSs for a DDG_LS ... 60

Figure 5.12 Pseudo code of finding S_All ... 61

Figure 5.13 Examples of partition lines in a solution space...................................... 63

Figure 5.14 Pseudo code of eliminating S_All .. 64

Figure 5.15 Example of Lemma 5.1 .. 65

Figure 5.16 Pseudo code of calculating PSS ... 67

xvi

Figure 5.17 Example of a PSS .. 68

Figure 5.18 DDG segment with two branches .. 69

Figure 5.19 Example of Lemma 5.2 .. 71

Figure 5.20 Example of Lemma 5.3 - Four MCSSs’ intersection in a three dimension

PSS, viewed from different angles .. 72

Figure 5.21 Example of merging two linear DDG segments 75

Figure 5.22 Pseudo code for merging PSSs .. 76

Figure 5.23 Saving all the PSSs of a DDG in a hierarchy .. 77

Figure 5.24 Pseudo code for calculating new minimum cost benchmark when new

datasets are generated .. 78

Figure 5.25 Updating the PSS hierarchy when the DDG is changed 79

Figure 5.26 Pseudo code for calculating new minimum cost benchmark when

datasets’ usage frequencies are changed ... 80

Figure 6.1 Algorithm for deciding newly generated datasets’ storage status 86

Figure 6.2 Algorithm for deciding stored datasets’ storage status 87

Figure 6.3 Algorithm for deciding regenerated datasets’ storage status 88

Figure 6.4 An example of constructing CTT by the enhance CTT-SP algorithm 91

Figure 6.5 Pseudo-code of enhanced CTT-SP algorithm .. 92

Figure 6.6 Dividing a DDG into sub linear DDGs .. 93

Figure 6.7 Two merging DDG_LSs .. 94

Figure 6.8 Two more scenarios of merging linear DDGs ... 96

Figure 7.1 SwinCloud Infrastructure ... 98

Figure 7.2 Cost-effectiveness evaluation by comparing with the generation cost

based strategy .. 100

Figure 7.3 Cost-effectiveness evaluation by comparing with the usage based strategy

 ... 100

Figure 7.4 Efficiency comparison of two benchmarking approaches 102

Figure 7.5 MCSSs in PSS ... 104

xvii

Figure 7.6 Impacts of DDG’s parameters on the performance of the dynamic on-the-

fly benchmarking approach ... 105

Figure 7.7 Comparison of the total cost for different storage strategies 107

Figure 7.8 Comparison of the cost rate for different storage strategies 107

Figure 7.9 Impact on cost-effectiveness of the storage strategies 108

Figure 7.10 Efficiency comparisons of different storage strategies 109

Figure 7.11 DDG of pulsar searching application... 110

Figure 7.12 PSSs of a DDG segment in the pulsar application............................... 111

Figure 7.13 DDG of the pulsar application with new datasets generation 112

Figure 7.14 Cost-effectiveness comparisons of different storage strategies for storing

pulsar case DDG.. 113

Figure A.1 A DDG_LS with start and end datasets .. 134

xviii

List of Tables

Table 2.1 A comparison of Data Grid ... 11

Table 7.1 Storage status of datasets in the pulsar application with different storage

strategies .. 114

1

Chapter 1

Introduction

This thesis investigates the trade-off between computation and storage in the cloud.

This is a brand new and significant issue for deploying applications with the pay-as-

you-go model in the cloud, especially computation and data intensive scientific

applications. The novel research reported in this thesis is for both cloud service

providers and users to reduce the cost of storing large generated application datasets

in the cloud. A suite consisting of a novel cost model, benchmarking approaches and

storage strategies is designed and developed with the supports of new concepts,

solid theorems and innovative algorithms. Experimental evaluation and case study

demonstrate that our work helps to bring the cost down dramatically for running the

computation and data intensive scientific applications in the cloud.

This chapter introduces the background and key issues of this research. It is

organised as follows. Section 1.1 gives a brief introduction to running scientific

applications in the cloud. Section 1.2 outlines the key issues of this research. Finally,

Section 1.3 presents an overview for the remainder of this thesis.

1.1 Scientific Applications in the Cloud

Running scientific applications usually needs not only high performance computing

resources but also massive storage [34]. In many scientific research fields, like

astronomy [33], high-energy physics [61] and bio-informatics [65], scientists need to

analyse a large amount of data either from existing data resources or collected from

2

physical devices. During these processes, a large amounts of new data might also be

generated as intermediate or final products [34]. Scientific applications are usually

data intensive [36, 61], where the generated datasets are often terabytes or even

petabytes in size. As reported by Szalay et al. in [74], science is in an exponential

world and the amount of scientific data will double every year over the next decade

and future. Producing scientific datasets involves a large number of computation

intensive tasks, e.g. with scientific workflows [35], hence taking a long time for

execution. These generated datasets contain important intermediate or final results of

the computation, and need to be stored as valuable resources. This is because: 1)

data can be reused - scientists may need to re-analyse the results or apply new

analyses on the existing datasets [16]; 2) data can be shared - for collaboration, the

computation results may be shared, hence the datasets are used by scientists from

different institutions [19]. Storing valuable generated application datasets can save

their regeneration cost when they are reused, not to mention the waiting time caused

by regeneration. However, the large size of the scientific datasets is a big challenge

for their storage. Hence, popular scientific applications are often deployed in grid or

HPC (High Performance Computing) systems [61] because they have high

performance computing resources and/or massive storage. However, building and

maintaining a grid or HPC system is extremely expensive and it cannot be easily

made available for scientists all over the world to utilise.

In recent years, cloud computing is emerging as a latest distributed

computing paradigm which provides redundant, inexpensive and scalable resources

on demand to system requirements [42]. Since late 2007 when the concept of cloud

computing was proposed [83], it has been utilised in many areas with certain success

[17, 45, 21, 62]. Meanwhile, cloud computing adopts a pay-as-you-go model where

users are charged according to the usage of cloud services such as computation,

storage and network1 services like conventional utilities in everyday life (e.g. water,

electricity, gas and telephony) [22]. Cloud computing systems offer a new way for

deploying computation and data intensive applications. As IaaS (Infrastructure as a

Service) is a very popular way to deliver computing resources in the cloud [1], the

1 In this thesis, we only investigate the trade-off between computation and storage, where network is

not incorporated. Please refer to Section 3.2.2 for detailed explanations.

3

heterogeneity of computing systems [93] of one service provider can be well

shielded by virtualisation technology. Hence, users can deploy their applications in

unified resources without any infrastructure investment, where excessive processing

power and storage can be obtained from commercial cloud service providers.

Furthermore, cloud computing systems offer a new paradigm that scientists from all

over the world can collaborate and conduct their research jointly. Cloud computing

systems are usually based on the Internet, scientists can upload their data and launch

their applications in the cloud from anywhere in the world via the Internet. As all the

data are managed in the cloud, it is easy to share data among scientists.

However, new challenges also arise when we deploy a scientific application

in the cloud. With the pay-as-you-go model, the resources need to be paid for use,

hence the total application cost for generated datasets in the cloud highly depends on

the strategy of storing them, e.g. storing all the generated application datasets in the

cloud may result in a high storage cost since some datasets may be seldom used but

large in size; in contrast, if we delete all the generated datasets and regenerate them

every time when needed, the computation cost may be very high too. Hence there

should be a trade-off between computation and storage for deploying applications,

which is an important yet challenging issue in the cloud. By investigating this issue,

this research proposes a new cost model, novel benchmarking approaches and

innovative storage strategies, which would help both cloud service providers and

users to reduce the application cost in the cloud.

1.2 Key Issues of this Research

In the cloud, the application cost highly depends on the strategy of storing the large

generated datasets due to the pay-as-you-go model. A good strategy is to find a

balance to selectively store some popular datasets and regenerate the rest when

needed, i.e. finding a trade-off between computation and storage. However, the

generated application datasets in the cloud often have dependencies, i.e. computation

task can operate on one or more datasets and generate new one(s). Whether storing

or deleting an application dataset impacts on not only the cost of the dataset itself,

4

but also other datasets in the cloud. To achieve the best trade-off and utilise it to

reduce the application cost, we need to investigate the following issues:

1) Cost model. Users need a new cost model that can represent the cost that they

actually spend on their applications in the cloud. Theoretically, users can get

unlimited resources from the commercial cloud service providers for both

computation and storage. Hence, for the large generated application datasets,

users can flexibly choose how many to store and how many to regenerate.

Different storage strategies lead to different consumptions of computation and

storage resources and finally lead to different total application costs. The new

cost model should be able to represent the cost of the applications in the cloud,

which is the trade-off between computation and storage.

2) Minimum cost benchmarking approaches. Based on the new cost model, we need

to find the best trade-off between computation and storage, which leads to the

theoretical minimum application cost in the cloud. This minimum cost serves as

important benchmark for evaluating the cost-effectiveness of storage strategies in

the cloud. For different applications and users, cloud service providers should be

able to provide benchmarking services according to their requirements. Hence

benchmarking algorithms need to be investigated, so that we develop different

benchmarking approaches to meet the requirements of different situations in the

cloud.

3) Cost-effective datasets storage strategies. By investigating the trade-off between

computation and storage, cost-effective storage strategies are needed for users to

use in their applications at runtime in the cloud. Different from benchmarking, in

practice, the minimum cost storage strategy may not be the best strategy for the

applications in the cloud. First, storage strategies must be efficient enough to be

facilitated at runtime in the cloud. Furthermore, users may have certain

preferences on storing some particular datasets (e.g. tolerance of the accessing

delay). Hence we need to design cost-effective storage strategies according to

different requirements.

5

1.3 Overview of this Thesis

In particular, this thesis includes new concepts, solid theorems and complex

algorithms, which form a suite of systematic and comprehensive solutions to deal

with the issue of computation and storage trade-off in the cloud and bring cost-

effectiveness to the applications for both users and cloud service providers. The

thesis structure is depicted in Figure 1.1.

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Motivating Example and

Research Issues

Chapter 4

Cost Model of Datasets Storage

in the Cloud

Chapter 5

Minimum Cost Benchmarking

Approaches

Chapter 6

Cost-Effective Datasets Storage

Strategies

Chapter 7

Experiments and Evaluations

Chapter 8

Conclusions and Future Work

Figure 1.1 Thesis structure

6

In Chapter 2, we introduce the related work to this research. We start from

introducing data management in some traditional scientific applications systems,

especially in grid systems, and then we move to the cloud. By introducing some

typical cloud systems for scientific application, we raise the issue of cost-

effectiveness in the cloud. Next, we introduce some works that also touch the issue of

computation and storage trade-off and analyse the differences to ours. At last, we

introduce some works about data provenance which are the important foundation for

our work.

In Chapter 3, we first introduce a motivating example which is a real world

scientific application from astrophysics for searching pulsar in the universe. Based on

this example we identify and analyse our research problems.

In Chapter 4, we first give a classification of the application data in the cloud

and propose an important concept of Data Dependency Graph (DDG). DDG is built

on data provenance which depicts the generation relationships of the datasets in the

cloud. Based on DDG, we propose a new cost model for datasets storage in the cloud.

In Chapter 5, we develop novel minimum cost benchmarking approaches with

algorithms for the best trade-off between computation and storage in the cloud. We

propose two approaches, i.e. static on-demand benchmarking and dynamic on-the-fly

benchmarking, to accommodate different application requirements in the cloud.

In Chapter 6, we develop innovative cost-effective storage strategies for user

to facilitate at runtime in the cloud. According to different user requirements, we

design different strategies accordingly, i.e. a highly efficient cost rate based strategy

and a highly cost-effective local-optimisation based strategy.

In Chapter 7, we demonstrate experiment results to evaluate our work

described in the entire thesis. First we introduce our cloud computing simulation

environment, i.e. SwinCloud. Then we conduct general random simulations to

evaluate the performance of our benchmarking approaches and storage strategies. At

last, we demonstrate a case study of the pulsar searching application, in which all the

research outcomes presented in this thesis are utilised.

7

Finally, in Chapter 8, we summarise the new ideas presented in this thesis, the

major contributions of this research, and consequent further research works.

In order to improve the readability of this thesis, we put all proofs of theories,

lemmas and corollaries in Appendix A and the notation index in Appendix B.

8

Chapter 2

Literature Review

This chapter reviews the existing literature related to this research. It is organised as

follows. In Section 2.1, we summarise the data management work about scientific

applications in the traditional distributed computing systems. In Section 2.2, we first

review some existing work about deploying scientific applications in the cloud and

raise the issue of cost-effectiveness, then we analyse some researches that have

touched the issue of trade-off between computation and storage and point out the

differences to our work. In Section 2.3, we introduce some work about data

provenance which is the important foundation for our work.

2.1 Data Management of Scientific Applications in Traditional

Distributed Systems

During the development of IT (Information Technology), e-science becomes more

and more popular nowadays. Because scientific applications are often computation

and data intensive, they are nowadays usually deployed in distributed systems to get

the high performance computing resources and massive storage. Roughly speaking,

one can make a distinction between two subgroups in the traditional distributed

systems [11]: clusters (including the HPC system) and grids.

Early studies are in cluster computing systems [9]. Since cluster computing

is a relative homogenous environment that has a tightly-coupled structure, data

management in clusters is usually straightforward. The applications data are

9

commonly stored according to the system’s capacity and moved within the cluster

via fast Ethernet connection while the applications execute.

Grid computing systems [40] are more heterogeneous than clusters. Given

the similarity of grid and cloud [42], we mainly investigate the existing related work

about grid computing system in this section. First we present some general data

management technologies in grid. Then we investigate the data management in some

grid workflow systems which are often utilised for running scientific applications.

At last, we briefly introduce the data management technologies in some other

distributed systems.

2.1.1 Data Management in Grid

Grid computing has many similarities with cloud computing [80, 83]. Both of them

are heterogeneous computing environments for large scale applications. Data

management technology in grid, Data Grid [28] in short, could be a valuable

reference of cloud data management. Next, some important features of data grid are

briefly summerised and some successful systems are also briefly introduced.

Data Grid [78] primarily deals with providing services and infrastructure for

distributed data-intensive applications that need to access, transfer, and modify

massive datasets stored in distributed storage resources. Generally speaking, it

should have the following capabilities: (a) ability to search through numerous

available datasets for the required dataset and to discover suitable data resources for

accessing the data, (b) ability to transfer large-size datasets between resources as fast

as possible, (c) ability for users to manage multiple copies of their data, (d) ability to

select suitable computational resources and process data on them and (e) ability to

manage access permissions for the data.

Grid technology was very popular in the late 1990s and early 2000s, because

it is suitable for large scale computation and data intensive applications. Many data

management systems were developed and gained great success. Some of the most

successful ones are listed below and some of them have already been utilised in

scientific applications.

10

Grid DataFarm [75] is a tightly-coupled architecture for storage in the grid

environment. The architecture consists of nodes that have large disk space. Between

the nodes there are interconnections via fast Ethernet. It also has a corresponding file

system, process scheduler and parallel I/O APIs.

GDMP [72] mainly focuses on replication in the grid environment, which

has been utilised in High Energy Physics. It uses the GridFTP technology to achieve

high speed data transfer and provides point-to-point replication capability.

GridDB [58] builds an overlay based on relational database, and provides

services for large scientific data analysis. It mainly focuses on the software

architecture and query processing.

SRB [15] organises data into different virtual collections independent of

their physical locations. It could provide a unified view of data files in the

distributed environment. It is used in the Kepler workflow system.

RLS (P-RLS) [26, 23] maintains all the copies of data’s physical locations

in the system, and provides data discovery services. Newly generated data could

dynamically register in RLS, so that it could be discovered by the tasks. It has been

used in Pegasus and Triana workflow systems.

GSB [79] is designed to mediate access to distributed resources. It could

map tasks to resources and monitor task execution. GSB is the foundation of data

management in the Gridbus workflow system.

DaltOn [51] is an infrastructure for Scientific Data Management. It supports

the syntactic and semantic integration of data from multiple sources.

A comparison of these data management systems is listed in Table 2.1.

Although data grid has some similarities on data management of the cloud,

they are essentially different. At the infrastructure level, grid systems are usually

composed of several computing nodes built up with supercomputers, and the

computing nodes are usually connected by fast Ethernet or dedicate networks, so that

in data grid, efficient data management can be easily achieved with the high

11

D
a

ta

d
ep

en
d

e
n

cy

O
v

er
h

ea
d

 o
f

d
a

ta

m
a

n
a

g
em

en
t

D
istrib

u
tio

n

m
o

d
el

D
a

ta

p
a

rtitio
n

D
a

ta
 ty

p
e

S
tr

u
ctu

re

 m
o

d
el

T
a
b

le 2
.1

 A
 co

m
p

a
riso

n
 o

f D
a
ta

 G
rid

N
o

t co
n

sid
ered

I/O
 b

an
d

w
id

th

R
ep

licas

m
an

ag
ed

 th
ro

u
g

h

m
etad

ata catalo
g

u
e

A
rb

itrary

frag
m

en
t

 o
f an

y
 len

g
th

F
ile, F

rag
m

en
t

C
en

tralised

h
ierarch

y

T
ig

h
tly

-co
u

p
led

G
rid

 D
a

ta
fa

rm

N
o

t co
n

sid
ered

B
an

d
w

id
th

p
o

in
t-to

-p
o

in
t

rep
licatio

n

cap
ab

ilities

S
to

red
 as file an

d

d
ataset

F
ile, D

ataset

C
en

tralised

h
ierarch

y

L
o

o
sely

-co
u
p

led

G
D

M
P

S
tru

ctu
red

 d
ata

fo
rm

at

Q
u

ery
, b

an
d

w
id

th

D
istrib

u
te d

ata in

d
istrib

u
ted

d
atab

ase m
o

d
e

S
to

red
 in

 d
ifferen

t

d
atab

ases

T
ab

les, O
b

ject

C
en

tralised

h
ierarch

y

T
ig

h
tly

-co
u

p
led

G
rid

D
B

N
o

t co
n

sid
ered

N
o

t co
n

sid
ered

C
o

m
b

in
ed

 p
h

y
sical

sto
rag

e as lo
g

ical

sto
rag

e reso
u

rces

S
to

red
 as file an

d

d
ataset

C
o

n
tain

ers, D
atasets

D
ecen

tralised
 flat

In
term

ed
iate

S
R

B

N
o

t co
n

sid
ered

N
o

t co
n

sid
ered

F
lex

ib
le rep

licas

catalo
g

u
e in

d
ex

 fo
r

d
istrib

u
tio

n

S
to

red
 as files

F
ile, D

ataset

C
en

tralised

h
ierarch

y

L
o

o
sely

-co
u
p

led

R
L

S
/P

-R
L

S

N
o

t co
n

sid
ered

B
an

d
w

id
th

,

S
to

rag
e

U
se o

f G
lo

b
u

s

rep
lica catalo

g
u

e

S
to

red
 g

lo
b

al

 w
id

e

F
ile, D

ataset

C
en

tralised

H
ierarch

y

In
term

ed
iate

G
S

B

N
o

t co
n

sid
ered

N
o

t co
n

sid
ered

In
teg

ratio
n
 o

f

reso
u

rces in

In
tern

et

H
ig

h
er lev

er

d
ata in

teg
ratio

n

F
ile, D

ataset,

T
ab

le, O
b

ject

C
en

tralised

H
ierarch

y

In
term

ed
iate

D
a

ltO
n

12

performance hardware. Cloud systems are based on the Internet and normally

composed of data centres built up with commodity hardware, where data

management is more challenging. More importantly, at the application level, most

clouds are commercial systems while the grids are not. The wide utilisation of the

pay-as-you-go model in the cloud makes the issue of cost-effectiveness more

important than before.

2.1.2 Data Management in Grid Workflows

Scientific applications are typically very complex. They usually have a large number

of tasks and need a long time for execution. Workflow technologies are important

tools which can be facilitated to automate the executions of applications [34]. Many

workflow management systems were developed in grid environments. Some of the

most successful ones are listed below, as well as the features of their data

management:

Kepler [61] is a scientific workflow management system in the grid

environment. It points out that control-flow orientation and data-flow orientation are

the difference between business and scientific workflows. Kepler has its own actor-

oriented data modelling method that for large data in the grid environment. It has

two Grid actors, called FileFetcher and FileStager, respectively. These actors make

use of GridFTP [8] to retrieve files from, or move files to, remote locations on the

Grid. In the runtime data management, Kepler adopts the SRB system [15].

Pegasus [33] is a workflow management system which mainly focuses on

data-intensive scientific applications. It has developed some data management

algorithms in the grid environment and uses the RLS [26] system as data

management at runtime. In Pegasus, data are asynchronously moved to the tasks on

demand to reduce the waiting time of the execution and dynamically delete the data

that the task no longer needs to reduce the use of storage.

Gridbus [20] is grid toolkit. In this toolkit, the workflow system has several

scheduling algorithms for the data-intensive applications in the grid environment

based on a Grid Resource Broker [79]. The algorithms are designed based on

different theories (GA, MDP, SCP, Heuristic), to adapt to different use cases.

13

Taverna [65] is a scientific workflow system for bioinformatics. It proposes

a new process definition language, Sculf, which could model application data in a

dataflow. It considers workflow as a graph of processors, each of which transfers a

set of data inputs into a set of data outputs.

MOTEUR [44] workflow system advances Taverna’s data model. It

proposes a data composition strategy by defining some specific operations.

ASKALON [84] is a workflow system designed for scheduling. It puts the

computing overhead and data transfer overhead together to get a value “weight”. It

does not discriminate the computing resource and data host. ASKALON also has its

own process definition language called AGWL.

Triana [31] is a workflow system which is based on a problem-solving

environment that enables the data-intensive scientific application to execute. For the

grid, it has an independent abstraction middleware layer, called the Grid Application

Prototype (GAP), enables users to advertise, discover and communicate with Web

and peer-to-peer (P2P) services. Triana also uses the RLS to manage data at runtime.

GridFlow [54] is a workflow system which uses an agent-based system for

grid resource management. It considers data transfer to computing resources and

archive to storage resources as kinds of workflow tasks. But in this work, they do not

discuss these data related workflow tasks.

In summary, for data management, all the workflow systems mentioned

above have concerned the modelling of workflow data at build-time. Workflow data

modelling is a long-term research topic in academia with matured theories, including

Workflow Data Patterns [69], Dataflow Programming Language [53]. For data

management at workflow run-time, most of these workflow systems simply adopt

data management technology in data grid. They do not consider the dependencies

among the application data. Only Pegasus proposes some strategies for workflow

data placement based on dependency [27, 71], but they have not designed specific

algorithms to achieve them. As all these workflow systems are in grid computing

environment, they neither utilise the pay-as-you-as model nor investigate the issue

of cost-effectiveness in deploying the applications.

14

2.1.3 Data Management in Other Distributed Systems

Many technologies are utilised for computation and data intensive scientific

applications in distributed environments and have their own specialties. They could

be importance references for our work. A brief overview is shown below [78]:

Distributed Database [68]. A distributed database (DDB) is a logically

organised collection of data stored at different sites of a computer network. Each site

has a degree of autonomy, which is capable of executing a local application, and

also participates in the execution of a global application. A distributed database can

be formed either by taking an existing single site database and splitting it over

different sites (top-down approach) or by federating existing database management

systems so that they can be accessed through a uniform interface (bottom-up

approach). However, distributed databases are mainly designed for storing the

structured data, which is not suitable for managing large generated datasets (e.g. raw

data save in files) in scientific applications.

Content Delivery Network [38]. A Content Delivery Network (CDN)

consists of a “collection of (non-origin) servers that attempt to offload work from

origin servers by delivering content on their behalf”. That is, within a CDN, client

requests are satisfied from other servers distributed around the Internet (also called

edge servers) that cache the content originally stored at the source (origin) server.

The primary aims of a CDN are, therefore, load balancing to reduce effects of

sudden surges in requests, bandwidth conservation for objects such as media clips,

and reducing the round-trip time to serve the content to the client. However, CDNs

have not gained wide acceptance for data distribution because of the restricted

model that they follow.

Peer-to-Peer Network [66]. The primary aims of a P2P network are to ensure

scalability and reliability by removing the centralised authority, and also to ensure

redundancy, to share resources, and to ensure anonymity. Such networks have

mainly focused on creating efficient strategies to locate particular files within a

group of peers, to provide reliable transfers of such files in the face of high volatility,

and to manage high load caused by the demand for highly popular files. Currently,

15

major P2P content sharing networks do not provide an integrated computation and

data distribution environment.

2.2 Cost-Effectiveness of Scientific Applications in the Cloud

Nowadays, scientific applications are often deployed in grid systems [61]

because they have high performance and massive storage. However, building a grid

system is extremely expensive and it is normally not open to other scientists around

the world. When cloud computing was on horizon [37, 80, 83], it is deemed as the

next generation of IT platforms that can deliver computing as a kind of utility [22].

Taking advantage of the new features, cloud computing technology has been utilised

in many areas as soon as it is proposed, such as Data Mining [45], Database

Application [17], Parallel Computing [46], Content Delivery [18] and so on.

2.2.1 Cost-Effectiveness of Deploying Scientific Applications in the

Cloud

Scientific applications have already been introduced to the cloud and research on

deploying applications in the cloud has become popular [29, 55, 57, 88, 81]. Cloud

computing system for scientific applications, i.e. science cloud, has already

commenced, where some successful and representative ones are as follows.

1. OpenNebula [5] project facilitates on-premise IaaS cloud computing, offering a

complete and comprehensive solution for the management of virtualised data

centres to enable private, public and hybrid clouds.

2. Nimbus Platform [4] is an integrated set of tools that deliver the power and

versatility of infrastructure clouds to users. Nimbus Platform allows users to

combine Nimbus, OpenStack, Amazon, and other clouds.

3. Eucalyptus [2] enables the creation of on-premise private clouds, with no

requirements for retooling the organisation's existing IT infrastructure or need

to introduce specialised hardware.

16

Foster et al. made a comprehensive comparison of grid computing and cloud

computing [42], where two important differences related to this thesis are as follows:

1. Comparing to grid, cloud computing systems can provide the same high

performance computing resources and massive storage required for scientific

applications, but with a lower infrastructure construction cost among many other

features. This is because cloud computing systems are composed of data centres

which can be clusters of commodity hardware [83]. Hence, deploying scientific

applications in the cloud could be more cost-effective than its grid counterpart.

2. By utilising the virtualisation technology, cloud computing systems are more

scalable and elastic. Because new hardware can be easily added to the data

centres, service providers can deliver cloud services based on the pay-as-you-go

model and users can dynamically scale up or down the computation and storage

resources they use.

Based on the new features of cloud, comparing to the traditional distributed

computing systems like cluster and grid, a cloud computing system has a cost

benefit from various aspects [12]. Assunção et al. [13] demonstrate that cloud

computing can extend the capacity of clusters with a cost benefit. With Amazon

clouds’ cost model and BOINC volunteer computing middleware, the work in [56]

analyses the cost benefit of cloud computing versus grid computing. The work by

Deelman et al. [36] also applies Amazon clouds’ cost model and demonstrates that

cloud computing offers a cost-effective way to deploy scientific applications. In

[49], Hoffa et al. conduct simulations of running an astronomy scientific workflow in

cloud and clusters, which shows cloud scientific workflows are cost-effective.

Meanwhile, Tsakalozos et al. [77] point out that by flexible utilisation of cloud

resources, service provider’s profit can also be maximised. Especially, Cho et al.

[30] further propose planning algorithms of how to transfer large bulks of scientific

data to commercial clouds in order to run the applications.

The above works mainly focus on the comparison of cloud computing

systems and the traditional distributed computing paradigms, which show that

applications running in the cloud have cost benefits, but they do not touch the issue

of computation and storage trade-off in the cloud.

17

2.2.2 Trade-Off between Computation and Storage in the Cloud

Based on the work introduced in Section 2.2.1, the research addressed in this thesis

makes a significant step forward regarding the application cost in the cloud. We

develop our approaches and strategies by investigating the issue of computation and

storage trade-off in the cloud.

This research is mainly inspired by the work in two research areas: cache

management and scheduling. With smart caching mechanism [39, 50, 52], system

performance can be greatly improved. The similarity is that both pre-store some data

for future use, while the difference is that caching is to reducing data accessing delay

but our work is to reduce the application cost in the cloud. Works in scheduling focus

on reducing various costs for either applications [82] or systems [86], but they

investigate this issue from the perspective of resource provisioning and utilisation,

not from the trade-off between computation and storage. In [43], Garg et al.

investigate the trade-off between time and cost in the cloud, where users can reduce

the computation time by using expensive CPU instances with higher performance.

This trade-off is different to ours which aims to reduce the application cost in the

cloud.

As the trade-off between computation and storage is an important issue, some

researches have already embarked on this issue to a certain extent. Nectar system

[48] is designed for automatic management of data and computation in data centres,

where obsolete datasets are deleted and regenerated whenever reused in order to

improve resource utilisation. In [36], Deelman et al. present that storing some

popular intermediate data can save the cost in comparison to always regenerating

them from the input data. In [7], Adams et al. propose a model to represent the trade-

off of computation cost and storage cost, but have not given any strategy to find this

trade-off.

In this thesis, for the first time, the issue of computation and storage trade-off

for scientific datasets storage in the cloud is comprehensively and systematically

investigated. We propose a new cost model to represent this trade-off, develop novel

minimum cost benchmarking approaches to find the best trade-off [91, 89], and

18

design novel cost-effective datasets storage strategies based on this trade-off for

users to store the application datasets [87, 92, 90].

2.3 Data Provenance in Scientific Applications

The research works on data provenance form an important foundation for our work.

Data provenance is a kind of important metadata, in which the dependencies between

application datasets are recorded [70]. The dependency depicts the generation

relationship among the datasets. For scientific applications, data provenance is

especially important because after the execution, some application datasets may be

deleted, but sometimes the users have to regenerate them for either reuse or

reanalysis [16]. Data provenance records the information of how the datasets were

generated, which is very important for our research on the trade-off between

computation and storage.

Due to the importance of data provenance in scientific applications, many

works about recording data provenance of the system have been conducted [14, 47].

For example, some of them are for scientific workflow systems [14]. Some popular

scientific workflow systems, such as Kepler [61], have their own system to record

provenance during workflow execution [10]. Recently, research on data provenance

in cloud computing systems has also appeared [63]. More specifically, Osterweil et

al. [67] present how to generate a data derivation graph for the execution of a

scientific workflow, where one graph records the data provenance of one execution,

and Foster et al. [41] propose the concept of Virtual Data in the Chimera system,

which enables automatic regeneration of datasets when needed.

2.4 Summary

In this chapter, the literatures of recent studies related to data management of

scientific applications are reviewed. We start from the grid systems, and then move

to the cloud. By investigating typical grid and cloud systems, we analyse the cost-

effectiveness of deploying scientific applications in the cloud. Meanwhile, based on

19

the literature review, we demonstrate that the core research issue of this thesis, i.e.

computation and storage trade-off, is a significant yet barely touched issue in the

cloud. At last, we introduce some works about data provenance which is an important

foundation for our work.

20

Chapter 3

Motivating Example and Research

Issues

The research in this thesis is motivated by a real world scientific application. In this

chapter, Section 3.1 introduces a motivating example of pulsar searching application

from Astrophysics; Section 3.2 analyses the problems and challenges of deploying

scientific applications in the cloud; Section 3.3 describes the specific research issues

of this thesis in detail.

3.1 Motivating Example

Swinburne Astrophysics group has been conducting pulsar searching surveys using

the observation data from Parkes Radio Telescope, which is one of the most famous

radio telescopes in the world2. Pulsar searching is a typical scientific application. It

contains complex and time consuming tasks and needs to process terabytes of data.

Figure 3.1 depicts a high level structure of the pulsar searching workflow, which is

currently running on Swinburne high performance supercomputing facility3. There

are three major steps in the pulsar searching process:

2 http://www.parkes.atnf.csiro.au/
3 http://astronomy.swin.edu.au/supercomputing/

http://www.parkes.atnf.csiro.au/
http://astronomy.swin.edu.au/supercomputing/

21

Candidates

Candidates

Beam

Beam

De-disperse

Acceleate
Record

Raw
Data

Extract
Beam

Pulse
Seek

FFT
Seek

FFA
Seek

Get
Candidates

Elimanate
candidates

Fold to
XML

Extract
Beam

Get
Candidates

…

…...

…
..
.

…...

Make
decision

Trial Measure 1

Trial Measure 1200

Trial Measure 2

…...

Compress
Beam

…...

…
..
.

Figure 3.1 Pulsar searching workflow

1. Raw signal data recording. In Parkes Radio Telescope, there are 13 embedded

beam receivers, by which signals from the universe are received. At the

beginning, raw signal data are recorded at a rate of 1GB per second by the

ATNF4 Parkes Swinburne Recorder 5 . Depending on different areas in the

universe that the scientists want to conduct the pulsar searching survey, the

observation time is normally from 4 minutes to one hour. The raw signal data

are pre-processed by a local cluster at Parkes in real time and archived in tapes

for permanent storage and future analysis.

2. Data preparation for pulsar seeking. The raw signal data recorded from the

telescope have data from multiple beams interleaved, so at beginning of the

workflow, different beam files are extracted from the raw data files and

compressed. They are normally 1GB to 20GB each in size depending on the

observation time. The scientists analyse the beam files to find the potentially

contained pulsar signals. However, the signals are dispersed by the interstellar

medium, where the scientists have to conduct a de-disperse step to counteract

this effect. Since the potential dispersion source is unknown, a large number of

de-dispersion files needs to be generated with different dispersion trials. For

one dispersion trial of one beam file, the size of de-dispersion file is

approximately 4.6MB to 80MB depending on the size of the input beam file

(1GB to 20GB). In the current pulsar searching survey, 1200 is the minimum

number of the dispersion trials, where this de-dispersion step takes 1 to 13

hours to finish and generate around 5GB to 90GB of de-dispersion files.

Furthermore, for binary pulsar searching, every de-dispersion file needs a

4 http://www.atnf.csiro.au/
5 http://astronomy.swin.edu.au/pulsar/?topic=apsr

http://www.atnf.csiro.au/
http://astronomy.swin.edu.au/pulsar/?topic=apsr

22

separate accelerate step for processing. This step generates the accelerated de-

dispersion files with the similar size in the de-disperse step.

3. Pulsar seeking. Based on the generated de-dispersion files, different seeking

algorithms can be applied to search pulsar candidates, such as FFT (Fast

Fourier Transform) Seeking, FFA (Fast Fold Algorithm) Seeking, and Single

Pulse Seeking. For example, the FFT Seeking algorithm takes 7 to 80 minutes

to seek the 1200 de-dispersion files with different size (5GB to 90GB). A

candidate list of pulsars is generated after the seeking step which is saved in a

text file, normally 1KB in size. Furthermore, by comparing the candidates

generated from different beam files in a same time session, interference may

be detected and some candidates may be eliminated. With the final pulsar

candidates, we need to go back to the de-dispersion files to find their feature

signals and fold them to XML files. Each candidate is saved in a separated

XML file about 25KB in size. This step takes up to one hour depending on the

number of candidates found in this searching process. At last, the XML files

are visually displayed to scientists for making decisions on whether a pulsar

has been found or not.

At present, all the generated datasets are deleted after having been used, and

the scientists only store the raw beam data, which are extracted from the raw

telescope data. Whenever there are needs of using the deleted datasets, the scientists

will regenerate them based on the raw beam files. The generated datasets are not

stored, mainly because the supercomputer is a shared facility that cannot offer

sufficient storage capacity to hold the accumulated terabytes of data. However, some

datasets are better to be stored. For example, the de-dispersion files can be more

frequently used. Based on them, the scientists can apply different seeking algorithms

to find potential pulsar candidates. For the large input beam files, the regeneration of

the de-dispersion files will take more than 10 hours. It not only delays the scientists

from conducting their experiments, but also requires a lot of computation resources.

On the other hand, some datasets may need not to be stored. For example, the

accelerated de-dispersion files, which are generated by the accelerate step, are not

often used. The accelerate step is an optional step that is only for the binary pulsar

searching. In light of this and given the large size of these datasets, they may be not

23

worth storing as it could be more cost effective to regenerate them from the de-

dispersion files whenever used.

3.2 Problem Analysis

Traditionally, scientific applications are normally deployed on the high performance

computing facilities, such as clusters and grids. Scientific applications are often

complex with huge datasets generated during their execution. How to store these

datasets is often decided by the scientists who use the scientific applications. This is

because the clusters and grids only serve for certain institutions. The scientists may

store the datasets that are most valuable to them, based on the storage capacity of the

system. However, for many scientific applications, the storage capacities are limited,

such as the pulsar searching workflow introduced in Section 3.1. The scientists have

to delete all the generated datasets because of the storage limitation. To store large

scientific datasets, scientific communities have to set up data repositories [73] with

large infrastructure investment. However, the storage bottleneck can be avoided in a

cost-effective way if we deploy scientific applications in the cloud.

3.2.1 Requirements and Challenges of Deploying Scientific Applications

in the Cloud

In a commercial cloud computing environment [1], theoretically, the system can offer

unlimited storage resources. All the datasets generated by the scientific applications

can be stored, if the users (e.g. scientists) are willing to pay for the required

resources. However, new requirements and challenges also emerge for deploying

scientific applications in the cloud, and whether to store the generated datasets or not

is not an easy decision anymore.

1. All the resources in the cloud carry certain costs, so either storing or

generating a dataset, we have to pay for the resources used. The application

datasets vary in size, and have different generation costs and usage

frequencies. Some of them may often be used whilst some others may be not.

On one extreme, it is most likely not cost effective to store all the generated

24

datasets in the cloud. On the other extreme, if we delete them all, regeneration

of frequently used datasets most likely imposes a high computation cost. We

need a mechanism to balance the regeneration cost and the storage cost of the

application data, in order to reduce the total application cost for dataset

storage. This is also the core issue of this thesis, i.e. the trade-off between

computation and storage.

2. The best trade-off between computation and storage cost may not be the best

strategy for storing application data. When the deleted datasets are needed, the

regeneration not only imposes computation cost, but also causes a time delay.

Depending on the different time constraints of applications [25, 24], users’

tolerance of this computation may differ dramatically. Sometimes users may

want the data to be available immediately, hence they would pay higher cost

for storing some particular datasets; sometimes users do not care about waiting

for it to become available, hence they may delete the seldom used dataset to

reduce the overall application cost. Hence, we need to incorporate users’

preferences on data storage into this research.

3. The scientists cannot predict the usage frequencies of the application data

anymore. For a single research group, if the data resources of the applications

are only used by their own scientists, the scientists may estimate the usage

frequencies of the datasets and decide whether to store or delete them.

However, the cloud is normally not developed for a single scientist or

institution, rather, for scientists from different institutions to collaborate and

share data resources. Scientists from all over the world can easily visit the

cloud via Internet to launch their applications, and all the application data are

managed in the cloud. This requires data management to be automatic. Hence,

we need to investigate the trade-off between computation and storage for all

the users that can reduce the overall application cost. More specifically, the

datasets usage frequencies should be discovered and obtained from the system

logs, rather than manually set by the users. However, forecasting accurate

datasets usage frequencies is out of this research’s scope and we list it as our

future work in Section 8.3. In this thesis, we assume that the datasets usage

frequencies be already obtained from the system logs.

25

3.2.2 Bandwidth Cost of Deploying Scientific Applications in the Cloud

Bandwidth is another common type of resource in the cloud. As cloud computing is

such a fast growing market, more and more different cloud service providers will

appear. In the future, we will be able to more flexibly select service providers to

conduct our applications based on their pricing models. An intuitive idea is to

incorporate different cloud service providers for applications, where we can store the

data with one provider who has a lower price in storage resources, and choose

another provider who has a lower price of computation resources to run the

computation tasks. However, at present, normally it is not practical to run scientific

applications across different cloud service providers because of the following

reasons:

1. The data in scientific applications are often very large in size. They are too

large to be transferred efficiently via the Internet. Due to bandwidth

limitations of the Internet, in today’s scientific projects, delivery of hard disks

is a common practice to transfer application data, and it is also considered to

be the most efficient way to transfer, say, terabytes of data [12]. Nowadays,

express delivery companies can deliver the hard disks nation-wide by the end

of the next day and world-wide in 2 or 3 days. In contrast, transferring one

terabyte data via the Internet would take more than 10 days at a speed of

1MB/s. To break the bandwidth limitation, some institutions set up dedicated

optic fibres to transfer data. For example, Swinburne University of

Technology has built a dedicated fibre to Parkes telescope station with gigabit

bandwidth. However, it is mainly used for transferring gigabytes of data. To

transfer terabytes, or petabytes, of data, scientists would still prefer to ship

hard disks. Furthermore, building (dedicated) fibre connections is very

expensive, and they are not yet widely used in the Internet. Hence, transferring

scientific application data between different cloud service providers via the

Internet is not efficient.

2. Cloud service providers place high price on data transfer in and out their data

centres. In contrast, data transfers within one cloud service provider’s data

centres are usually free. For example, the data transfer price of Amazon cloud

26

service is: $0.12 per GB
6
 of data transferred out. Comparing to the storage

price of $0.15 per GB per month
7
, the data transfer price is relatively high, so

that finding a cheaper storage cloud service provider and transferring data may

not be cost effective. In cloud service providers’ position, they charge high

price on data transfer not only because of the bandwidth limitation, but also as

a business strategy. As data are deemed as an important resource today, cloud

service providers want users to keep all the application data in their storage

cloud. For example, Amazon places a zero price on data transferred into its

data centres, which means users could upload their data to Amazon’s cloud

storage for free. However, the price of data transferred out of Amazon is not

only not free, but also rather expensive.

Due to the reasons above, we assume that the scientists only utilise cloud

services from one service provider to deploy their applications. Furthermore,

according to some researches [36, 49], the cost-effective way of doing science in the

cloud is to upload all the application data to the cloud storage and run all the

applications with the cloud services. So we assume that the scientists upload all the

original data to the cloud to conduct their processing. Hence the cost of transferring

data in and out of the cloud only depends on the applications themselves (i.e. how

much original and result data the applications have), and has no impact on the usage

of computation and storage resources for running the applications in the cloud.

Hence, we do not incorporate data transfer cost in the trade-off between computation

and storage at this stage.

3.3 Research Issues

In this section, we discuss the research issues tackled in this thesis based on the

problems analysed in Section 3.2.

6 http://aws.amazon.com/ec2/pricing/ - The prices may fluctuate from time to time according to

market factors.
7 http://aws.amazon.com/s3/pricing/ - The prices may fluctuate from time to time according to market

factors.

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/s3/pricing/

27

3.3.1 Cost Model for Datasets Storage in the Cloud

In a commercial cloud, in theory, users can get unlimited resources for both

computation and storage. However, they are responsible for the cost of the resources

used due to the pay-as-you-go model. Hence, users need a new and appropriate cost

model that can represent the cost that they actually incur on their applications in the

cloud.

For the large generated application datasets in the cloud, users can be given

the choice to store them for future use or delete them for saving the storage cost.

Different storage strategies lead to different consumptions of storage and

computation resources and finally lead to different total application costs.

Furthermore, because there are dependencies among the application datasets, i.e.

computation task can operate on one or more datasets and generate new one(s), the

storage status of a dataset is not only dependent on the generation cost and storage

cost of itself, but also dependent on the storage status of its predecessors and

successors. The new cost model should be able to represent the total cost of the

applications based on the trade-off between computation and storage in the cloud,

where data dependencies are taken into account.

3.3.2 Minimum Cost Benchmarking Approaches

Minimum cost benchmarking is to find the theoretical minimum application cost

based on the cost model, which is also the best trade-off between computation and

storage in the cloud. Due to the pay-as-you-go model in the cloud, cost is one of the

most important factors that users care about. As a rapidly increasing number of

datasets is generated and stored in the cloud, users need to evaluate the cost

effectiveness of their storage strategies. Hence the service providers should be able

and need to provide benchmarking services that can inform the minimum cost of

storing the application datasets in the cloud.

Calculating the minimum cost benchmark is a seemingly NP-hard problem,

because there are complex dependencies among the datasets in the cloud.

Furthermore, this application cost in the cloud is of a dynamic value. This is because

28

of the dynamic nature of the cloud computing system, i.e. 1) new datasets may be

generated in the cloud at any time; and 2) the usage frequencies of the datasets may

also change as time goes on. Hence, the minimum cost benchmark may change from

time to time. In order to guarantee the quality of service (QoS) in the cloud, there

should be different benchmarking approaches accommodating different situations.

For example, in some applications, users may only need to know the benchmark

before or occasionally during application execution. In this situation, benchmarking

should be provided as a static service which can respond to users’ requests on-

demand. However, in some applications, users may have more frequent

benchmarking requests at runtime. In this situation, benchmarking should be

provided as a dynamic service which can respond to users’ requests on the fly.

3.3.3 Cost-Effective Storage Strategies

Based on the trade-off between computation and storage, cost-effective storage

strategies need to be designed in this thesis. Different from benchmarking, in practice,

the minimum cost storage strategy may not be the best strategy for the applications,

because storage strategies are for users to use at runtime in the cloud and should take

users’ preferences into consideration.

Beside cost-effectiveness, storage strategies must be efficient enough to be

facilitated at runtime in the cloud. For different applications, the requirements of

efficiency may be different. On one hand, some applications may need highly

efficient storage strategies with acceptable though not optimal cost-effectiveness. On

the other hand, some applications may need highly cost-effective storage strategies

with acceptable efficiency. According to different requirements, we need to design

corresponding storage strategies.

Furthermore, to reflect users’ preferences on the datasets storage, we need to

incorporate related parameters into the strategies which 1) guarantee all the

application datasets’ regenerations can fulfill users’ tolerance of data accessing delay,

and 2) allow users to store some datasets according to their preferences.

29

3.4 Summary

In this chapter, based on a real world pulsar searching scientific application from

astrophysics, we analyse the requirements of data storage in scientific applications

and how cloud computing systems can fulfill these requirements. Then we analyse

the problems of deploying scientific applications in the cloud and define the scope of

this research. Based on the analysis, we present the detailed research issues of this

thesis: 1) cost model for datasets storage in the cloud; 2) minimum cost

benchmarking approaches; and 3) practical datasets storage strategies.

30

Chapter 4

Cost Model of Datasets Storage in the

Cloud

In this section, we present our new cost model of datasets storage in the cloud.

Specifically, Section 4.1 introduces a classification of application data in the cloud

and further expresses the scope of this research. Section 4.2 introduces data

provenance and describes the concept of DDG (Data Dependency Graph) which is

used to depict the data dependencies in the cloud. Based on Sections 4.1 and 4.2, in

Section 4.3 we describe the new cost model and its important attributes in detail.

This cost model has been utilised in our work presented in [87, 92, 90, 91, 89].

4.1 Classification of Application Data in the Cloud

In general, there are two types of data stored in the cloud storage, original data and

generated data:

1. Original data are the data uploaded by users, and in scientific applications

they are usually the raw data collected from the devices in the experiments. In

the cloud, they are the initial input of the applications for processing and

analysis. The most important feature of these data is that if they are deleted,

they cannot be regenerated by the system.

31

2. Generated data are the data produced in the cloud computing system while the

applications run. They are the intermediate or final computation results of the

application which can be used in the future. The most important feature of

these data is that they can be regenerated by the system and more efficiently if

we know their provenance.

For original data, only the users can decide whether they should be stored or

deleted, since they cannot be regenerated once deleted. Hence, our research only

focuses on generated data in the cloud that the system can automatically decide their

storage status for achieving the best trade-off between computation and storage. In

this thesis, we refer generated data as dataset(s).

4.2 Data Provenance and Data Dependency Graph (DDG)

Scientific applications have many computation and data intensive tasks that generate

many datasets of considerable size. There exist dependencies among these datasets,

which depict the generation (in another word, derivation) relationships. For scientific

applications, after the execution, some datasets may be deleted, but if so, sometimes

they need to be regenerated for either reuse or reanalysis [16]. To regenerate a dataset

in the cloud, we need to find its stored predecessors and start the computation from

them. Hence the regeneration of a dataset includes not only the computation of the

dataset itself, but also the regeneration of its deleted predecessors, if any. This makes

minimising the total application cost a very complex problem.

Data provenance is a kind of important metadata which records the

dependencies among datasets [70], i.e. the information of how the datasets were

generated. Data provenance is especially important for scientific applications in the

cloud, because the regeneration of datasets from the original data may be very time

consuming, and therefore carry a high cost. With data provenance information, the

regeneration of the requested dataset could start from some stored (predecessor)

datasets, hence more efficient and cost effective.

Taking the advantage of data provenance, we can build a DDG. All the

datasets once generated (or modified) in the cloud, whether stored or deleted, their

32

references are recorded in the DDG as different nodes. In DDG, every node denotes a

dataset. Figure 4.1 shows a simple DDG, where every node in the graph denotes a

dataset. Dataset d1 pointing to dataset d2 means that d1 is used to generate d2; and d2

pointing to d3 and d5 means that d2 is used to generate d3 and d5 based on different

operations; datasets d4 and d6 pointing to dataset d7 means that d4 and d6 are used

together to generate d7.

d1 d2

d3

d8d7

d6

d4

d5

Figure 4.1 A simple Data Dependency Graph (DDG)

DDG is a directed acyclic graph (DAG). This is because DDG records the

provenances of how datasets are derived in the system as time goes on. In other

words, it depicts the generation relationships of datasets. When some of the deleted

datasets need to be reused, in general, we need not regenerate them from the original

data. With DDG, the system can find the predecessors of the requested dataset, so

that they can be regenerated from their nearest stored predecessors.

We denote a dataset di in DDG as DDGdi  , and to better describe the

relationships of datasets in DDG, we define two symbols  and  :

  denotes that two datasets have a generation relationship, where didj means

that di is a predecessor dataset of dj in the DDG. For example, in the DDG

depicted in Figure 4.1, we have d1  d2, d1  d4, d5  d7, d1  d7, etc.

Furthermore,  is transitive, i.e.

kikjjikji ddddddddd  .

  denotes that two datasets do not have a generation relationship, where

di dj means that di and dj are in different branches in DDG. For example, in

the DDG depicted in Figure 4.1, we have d3 d5, d3 d6, etc. Furthermore, 

is commutative, i.e. i j j id d d d    .

33

4.3 Datasets Storage Cost Model in the Cloud

In a commercial cloud computing environment, if the users want to deploy and run

applications, they need to pay for the resources used. The resources are offered by

cloud service providers, who have their cost models to charge the users on storage

and computation. For example, one set of Amazon cloud services’ prices is as

follows8:

 $0.15 per Gigabyte per month for the storage resources;

 $0.1 per CPU instance hour for the computation resources;

In this thesis, in order to represent the trade-off between computation and

storage, we define the total cost for running a scientific application in the cloud as

follows:

Cost = Computation + Storage,

where the total cost of the application, Cost, is the sum of Computation, which is the

total cost of computation resources used to regenerate datasets, and Storage, which

is the total cost of storage resources used to store the datasets. As indicated in

Section 4.1, our research only focuses on the generated data. The total application

cost in this thesis does not include computation cost of the application itself and the

storage cost of the original data.

To calculate the total application cost in the cloud, we define some important

attributes for the datasets in DDG. For dataset di, its attributes are denoted as: <xi , yi ,

fi , vi , provSeti , CostRi >, where

 xi denotes the generation cost of dataset di from its direct predecessors. To

calculate this generation cost, we have to multiply the time of generating dataset

di by the price of computation resources. Normally the generation time can be

obtained from the system logs.

8 The prices may fluctuate from time to time according to market factors.

34

 yi denotes the cost of storing dataset di in the system per time unit (i.e. storage

cost rate). This storage cost rate can be calculated by multiplying the size of

dataset di and the price of storage resources per time unit.

 fi is a flag, which denotes the status whether this dataset is stored or deleted in

the system.

 vi denotes the usage frequency, which indicates how often di is used. In cloud

computing systems, datasets may be shared by many users from the Internet.

Hence vi cannot be defined by a single user and should be an estimated value

from di’s usage history recorded in the system logs.

 provSeti denotes the set of stored provenances that are needed when

regenerating dataset di. In other words, it is the set of references of stored

predecessor datasets that are adjacent to di in the DDG. If we want to regenerate

di, we have to find its direct predecessors, which may also be deleted, so we

have to further find the stored predecessors of di. provSeti is the set of the

nearest stored predecessors of di in the DDG. Figure 4.2 shows the provSets of a

dataset in different situations. Formally, we can describe dataset di’s ProvSeti as

follows:


 

 ""

""

deletedfdddDDGd

dddDDGd

ddstoredfDDGddprovSet

kikjk

ikjk

ijjjji







provSet is a very important attribute of a dataset in calculating its generation

cost. When we want to regenerate a dataset in DDG, we have to start the

computation from the dataset in its provSet. Hence, for dataset di, its generation

cost is:

{ }()
k j i j k ii i kd d provSet d d dgenCost d x x     (4.1)

This cost is a total cost of 1) the generation cost of dataset di from its direct

predecessor datasets and 2) the generation costs of di’s deleted predecessors that

need to be regenerated as well.

35

…...

…...

…...

…...

…...

…...

…...

dk
…...

Stored dataset Deleted dataset

provSetk

dj…...…...

provSetj

di

provSeti

…...
…...

…...

Figure 4.2 A dataset’s provSets in a DDG in different situations

 CostRi is di’s cost rate, which means the average cost per time unit of the

dataset di in the system. If di is a stored dataset, then ii yCostR  . If di is a

deleted dataset in the system, when we need to use di, we have to regenerate it.

So we multiply the generation cost of di by its usage frequency and use this

value as the cost rate of di in the system, i.e. iii vdgenCostCostR *)( . The

storage statuses of the datasets have significant impacts on their cost rates.

Formally, dataset di’s cost rate is:

, " "

() , " "

i i

i

i i i

y f stored
CostR

genCost d v f deleted


 

 
 (4.2)

Based on the definition of the attributes above, we can calculate the total cost

rate of storing the datasets recorded in a DDG, which is  DDGd ii
RCost . This cost

rate is the cost of computation and storage resources consumption in the cloud per

time unit, which is also the cost of running the application in the cloud per time unit.

Given a time duration t, the total application cost of storing the datasets recorded in

a DDG is the integral of the cost rate in this duration as a function of time t, which is

   t DDGd i dtRCostCostTotal
i

)(_ (4.3)

We further define the storage strategy of a DDG as S, where S is a set of

datasets in the DDG denoted as DDGS  , which means storing the datasets in S in

the cloud and deleting the rest. We denote the sum of cost rates of storing the

datasets recorded in a DDG with the storage strategy S as SCR, formally:

  
SDDGd ii

RCostSCR   (4.4)

36

Based on the definition above, different storage strategies lead to different

cost rates (i.e. cost per time unit) for the application in the cloud. This cost rate is the

total consumption of computation and storage resources in the cloud per time unit,

hence represents the trade-off between computation and storage. Our work aims at

minimising this cost rate so that we can help both service providers and users to

reduce the application cost in the cloud.

4.4 Summary

In this chapter, we first introduce a classification of the application data in the cloud,

i.e. original data and generated data, and further point out that our research only

focuses on the generated data. Then we describe the concept of Data Dependency

Graph (DDG), which is a very important for datasets storage in the cloud. At last, we

present the cost model of datasets storage based on DDG, where the total application

cost is the sum of the computation cost for regenerating datasets and the storage cost

for storing datasets. Furthermore, we use a cost rate (i.e. total consumption of

computation and storage resources in the cloud per time unit) to represent the trade-

off between computation and storage. By minimising this cost rate, our work

presented later aims at cutting the application cost in the cloud.

37

Chapter 5

Minimum Cost Benchmarking

Approaches

In this chapter, we present our minimum cost benchmarking approaches for the

applications in the cloud. The benchmark is the theoretical minimum application cost

in the cloud, which is also the best trade-off between computation and storage. As

introduced in Section 4.3, we use a cost rate to represent this trade-off (i.e. SCR).

Benchmarking is to find the minimum value of this cost rate (i.e. the SCR with the

minimum cost storage strategy of the DDG). Due to the complex dependencies

among the datasets in the cloud, the DDG is a Directed Acyclic Graph (DAG).

Hence, calculating the minimum cost benchmark is a seemingly NP-hard problem

based on the cost model introduced in Section 4.3. Furthermore, the application cost

in the cloud is of a dynamic value. This is because of the dynamic nature of the cloud

computing system, i.e. 1) new datasets may be generated in the cloud at any time;

and 2) the usage frequencies of the datasets may also change as time goes on. Hence,

the minimum cost benchmark may change from time to time. In this chapter, we

present two benchmarking approaches: one static and one dynamic.

Section 5.1 presents a novel static on-demand minimum cost benchmarking

approach. This approach is suitable for the situation that no frequent benchmarking is

requested. In this situation, the benchmarking should be provided as an on-demand

service. Whenever a benchmarking request comes, the corresponding algorithms will

be triggered to calculate the minimum cost benchmark, which is one time only

38

computation based on the current status of the application. This section is mainly

based on our work presented in [91].

Section 5.2 presents a novel dynamic on-the-fly minimum cost benchmarking

approach. This approach is suitable for the situation that more frequent benchmarking

is requested at runtime. In this approach, by saving and utilising the pre-calculated

results, whenever the application cost changes in the cloud, we can quickly calculate

the new minimum cost benchmark. By keeping the benchmark dynamically updated,

benchmarking requests can be instantly responded on the fly. This section is mainly

based on our work presented in [89].

5.1 Static On-Demand Minimum Cost Benchmarking Approach

In this section, we present our on-demand minimum cost benchmarking approach.

Specifically, we describe the novel design of a Cost Transitive Tournament Shortest

Path (CTT-SP) based algorithm that can find the Minimum Cost Storage Strategy

(MCSS) for a given DDG. The basic idea of the CTT-SP algorithm is to construct a

Cost Transitive Tournament (CTT) based on the DDG. In a CTT, we guarantee that

the paths from the start dataset to the end dataset have a one-to-one mapping to the

storage strategies of the DDG, and the length of every path equals to the total cost

rate of the corresponding storage strategy. Then we can use the well-known Dijkstra

shortest path algorithm (or Dijkstra algorithm for short) to find the Shortest Path (SP)

in the CTT, which in fact represents the MCSS, and the cost rate of the MCSS (i.e.

SCR) is the minimum cost benchmark.

To describe the approach in detail, in Section 5.1.1 we start with the CTT-SP

algorithm for the linear DDG, and then in Section 5.1.2 we expand it to the DDG

with one block, next in Section 5.1.3 we present the general CTT-SP algorithm for

on-demand benchmarking. The experiment results are presented in Chapter 7, jointly

along with others.

39

5.1.1 CTT-SP Algorithm for Linear DDG

Linear DDG means a DDG with no branches, where each dataset in the DDG only

has one direct predecessor and successor except the first and last datasets.

Given a linear DDG, which has datasets {d1, d2 … dn}. The CTT-SP

algorithm has the following four steps:

Step 1: We add two virtual datasets in the DDG, ds before d1 and de after dn,

as the start and end datasets, and set xs = ys = 0 and xe = ye = 0.

Step 2: We add new directed edges in the DDG to construct the transitive

tournament. For every dataset in the DDG, we add edges that start from it and point

to all its successors. Formally, for dataset di, it has out-edges to all the datasets in the

set of  j j i jd d DDG d d   , and in-edges from all the datasets in the set of

 k k k id d DDG d d   . Hence, for any two datasets di and dj in the DDG, we

have an edge between them, denoted as  ji dde , . Formally,

, ,i j i i jd d DDG d d e d d     

Step 3: We set weights to the edges. The reason we call the graph Cost

Transitive Tournament is because the weights of its edges are composed of the cost

rates of datasets. For an edge  ji dde , , we denote its weight as  ji dd , ,

which is defined as the sum of cost rates of dj and the datasets between di and dj,

supposing that only di and dj are stored and the rest of datasets between di and dj are

all deleted. Formally:

 

{ }

{ }

,

() *

k k i k j

k k i k j

i j j kd d DDG d d d

j k kd d DDG d d d

d d CostR CostR

y genCost d v

    

   

   

 




 (5.1)

Since we are discussing the linear DDG, for the datasets between di and dj, di is the

only dataset in their provSets. Hence we can further derive:

  { } { }, *
k k i k j h h i h ki j j k h kd d DDG d d d d d DDG d d dd d y x x v             

40

In Figure 5.1, we demonstrate a simple example of constructing CTT for a DDG that

has three datasets (d1, d2, d3), where ds is the start dataset that only has out-edges and

de is the end dataset that only has in-edges.

y1

d1 d2 d3

(x1 , y1 ,v1) (x3 , y3 ,v3)(x2 , y2 ,v2)

x1v1+y2

d1 d2 d3ds de

x3v3

x2v2+y3

x2v2+(x2+x3)v3

x1v1+(x1+x2)v2+(x1+x2+x3)v3

x1v1+(x1+x2)v2+y3

y2 y3 0

DDG

CTT

Data dependency:

Cost edge:

Start
Dataset

End
Dataset

Figure 5.1 An example of constructing CTT

Step 4: We find the shortest path of CTT. From the construction steps, we can

clearly see that the CTT is an acyclic complete oriented graph. Hence we can use the

Dijkstra algorithm to find the shortest path from ds to de. The Dijkstra algorithm is a

classic greedy algorithm to find the shortest path in graph theory. We denote the

shortest path from ds to de as Pmin<ds , de>.

Theorem9 5.1: Given a linear DDG with datasets {d1, d2 … dn}, the length of

Pmin<ds , de> of its CTT is the minimum cost rate for storing the datasets in the

DDG, and the corresponding storage strategy is to store the datasets that

Pmin<ds , de> traverses.

Theorem 5.1 demonstrates that the linear CTT-SP algorithm finds the MCSS

of linear DDGs, hence can be used for minimum cost benchmarking. Figure 5.2

9 As indicated at the end of Chapter 1, proofs of all the theorems, lemmas and corollaries are in

Appendix A of this thesis.

41

shows the pseudo-code of the linear CTT-SP algorithm. To construct the CTT, we

first create the cost edges (lines 1-3), and then calculate their weights (lines 4-11).

Next, we use the Dijkstra algorithm to find the shortest path (line 12), and return the

MCSS and the minimum cost benchmark (lines 13-15).

Algorithm: Linear CTT-SP

Input: Start dataset ds; End dataset de;

A linear DDG; //include ds and de

Output: S //MCSS of the DDG

SCR //Minimum cost benchmark

for (every dataset di in DDG) //Create CTT

 for (every dataset dj, where)

Create //Create an edge

weight = 0;

for (every dataset dk, where) //Calculate the weith of an edge

 genCost = 0;

 for (every dataset dh, where)

 genCost = genCost + xh ;

 //Accumulate generation cost rate

weight = weight + yj ;

Set //Set weight to an edge

Pmin = Dijkstra (ds, de, CTT); //Find the shortest path

S = set of datasets that Pmin traversed; //Except ds and de

Return S, SCR;

ji dd 

 ji dde ,

 * ;k kweight weight x genCost v  

;, weightdd ji 

khi ddd 

jki ddd 

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.
  ;

i id DDG
S

SCR CostR 

Figure 5.2 Pseudo-code of linear CTT-SP algorithm for benchmarking

From the pseudo-code in Figure 5.2, we can clearly see that for a linear DDG

with n datasets, we have to add a magnitude of n2 edges to construct the CTT (line 3

with two nested loops in lines 1-2), and for the longest edge, the time complexity of

calculating its weight is also O(n2) (lines 5-11 with two nested loops), so a total of

O(n4). Next, the Dijkstra algorithm (line 12) has the known time complexity of O(n2).

Hence the linear CTT-SP algorithm has a worst case time complexity of O(n4).

5.1.2 Minimum Cost Benchmarking Algorithm for DDG with One

Block

Linear DDG is a special case of general DDGs. In the real world, application datasets

generated in the cloud may have complex relationships, such that different datasets

may be generated from a single dataset by different operations, and different datasets

may be used together to generate one dataset. In other words, DDG may have

42

branches, where the linear CTT-SP algorithm introduced in Section 5.1.1 cannot be

directly applied. This is because current CTT can only be constructed on linear DDG,

which means that the datasets in a DDG must be totally ordered. In this sub-section,

we discuss how to find the MCSS of the DDG that has a sub-branch within one block

for benchmarking.

5.1.2.1 Constructing CTT for DDG with one block

First we introduce the concept of “block” in DDG. Block is a set of sub-branches in

the DDG that splits from a common dataset and merges into another common dataset.

We denote the block as B. Figure 5.3 shows a DDG with a simple block B={d3, d4, d5,

d6}, we will use it as the example to illustrate the construction of CTT in our new

algorithm.

d1 d2

d3

d8d7

d6

d4

d5

d1 d2

d3

d8d7d6

d4

d5ds de

DDG

CTT

Block

Main Branch

Sub-branch

Figure 5.3 An example of constructing CTT for DDG with one block

To construct the CTT, we need the datasets in DDG to be totally ordered.

Hence, for the DDG with one block, we only choose one branch to construct the CTT,

as shown is Figure 5.3. We call the linear datasets which are chosen to construct the

43

CTT “main branch”, denoted as MB, and call the rest of datasets “sub-branch(es)”,

denoted as SB. For example, in Figure 5.3’s DDG, MB={d1, d2, d5, d6, d7, d8} and

SB={d3, d4}. Due to the existence of the block, the edges can be classified into four

categories. The definition of this classification is as follows:

 in-block edge: e<di , dj> is an in-block edge meaning that the edge starts from

di , which is a dataset outside of the block, and points to dj, which is a dataset in

the block, such as e<d2 , d5>, e<d1 , d6> in Figure 5.3. Formally, we define e<di ,

dj> as an in-block edge, where

 k i k j kd DDG d d d d      .

 out-block edge: e<di , dj> is an out-block edge meaning that the edge starts

from di , which is a dataset in the block, and points to dj, which is a dataset

outside of the block, such as e<d6 , d7>, e<d5 , d8> in Figure 5.3. Formally, we

define e<di , dj> as an out-block edge, where

 k i k k jd DDG d d d d      .

 over-block edge: e<di , dj> is an over-block edge meaning that the edge crosses

over the block, where di is a dataset preceding the block, dj is a dataset

succeeding the block, such as e<d2 , d7>, e<d1 , d8> in Figure 5.3. Formally, we

define e<di , dj> as an over-block edge, where

 ,k h h k i h j i k jd d DDG d d d d d d d d          .

 ordinary edge: e<di , dj> is an ordinary edge meaning that datasets between di

and dj are totally ordered, such as e<ds , d2>, e<d5 , d6>, e<d7 , d8> in Figure 5.3.

Formally, we define e<di , dj> as an ordinary edge, where



 

k i k k j i k k j

h h k i h j i k j

d DDG d d d d d d d d

d DDG d d d d d d d d

   
   
   

          

         
.

44

5.1.2.2 Setting weights to different types of edges

The essence of the CTT-SP algorithm is the rules for setting weights to the cost edges.

In order to set weights to different types of edges in the DDG with one block, we

need to introduce an important corollary of Theorem 5.1.

Corollary 5.1: During the process of finding the shortest path, for every dataset df

that is discovered by the Dijkstra algorithm, we have a path Pmin<ds , d f > from

ds to df and a set of datasets Sf that Pmin<ds , d f > traverses. Sf is the MCSS of

the sub DDG segment  i i s i fd d DDG d d d    .

In the CTT-SP algorithm, the rules for setting weights to the edges guarantee

that the paths from the start dataset ds to every dataset di in the CTT represent the

storage strategies of the datasets  k k s k id d DDG d d d    , and Corollary 5.1

further indicates that the shortest path represent the MCSS. As defined in Section

5.1.1, the weight of the edge e<di , dj> is the sum of cost rates of dj and the datasets

between di and dj, supposing that only di and dj are stored and the rest of datasets

between di and dj are all deleted. In the DDG with one block, this rule is still

applicable to the ordinary edges and in-block edges.

However, if e<di , dj> is an out-block edge or over-block edge, formula (5.1)

in Section 5.1.1 is not applicable for calculating its weight anymore, because of the

following reasons.

1) Due to the existence of the block, the datasets succeeding the block may

have more than one datasets in their provSets. The generation of these datasets needs

not only di, but also the stored provenance datasets from the other sub-branches of the

block. For example, according to formula (5.1) in Section 5.1.1, the weight of the

out-block edge e<d5 , d8> in Figure 5.3 is

 5 8 8 6 6 7 7, ()* ()*d d y genCost d v genCost d v      ,

where if we want to calculate genCost(d7), we also have to know the storage statuses

of d3 and d4. The same problem also exists when calculating the weights of the over-

45

block edges. Hence, to calculate the weights of out-block and over-block edges, we

have to know the storage strategies of all the sub-branches in the block.

2) The path from ds to dj cannot represent the storage strategy of all the

datasets  k k s k jd d DDG d d d    . If we use the same method in Section 5.1.1

to set the weight of e<di , dj>, the path that contains e<di , dj> in the CTT can only

represent the storage strategy of datasets in the main branch, where the sub-branches

are not represented. For example, in Figure 5.3, the path from ds to d8 that contains

the out-block edge e<d5 , d8>, does not represent the storage statuses of datasets d3

and d4, and the length of the path also does not contain the cost rates of d3 and d4, if

we use the method in Section 5.1.1 to calculate the weights of the edges. Hence, to

maintain the mapping between the paths and the storage strategies, the weights of

out-block and over-block edges should contain the minimum cost rates of the datasets

in the sub-branches of the block.

Based on the reasons above, if e<di , dj> is an out-block edge or over-block

edge, we define its weight as

 

 

{ }

{ }

, ()*
k k i k j

h h

i j j k kd d MB d d d

hd d SB
S

d d y genCost d v

CostR

    




   






 (5.2)

In formula (5.2),  { }h h hd d SB
S

CostR


 is the sum of cost rates of the datasets

that are in the sub-branches of the block, where S' is the MCSS of the sub-branches.

This formula guarantees that the length of the shortest path with an out-block edge or

over-block edge still equals the minimum cost rate of the datasets, which is

  min { },
k k s k js j kd d DDG d d d

S

P d d CostR   


    .

Hence, to calculate the weights of out-block and over-block edges, we have to find

the MCSS of the datasets that are in the sub-branches of the block. For example, the

weight of the edge e<d5 , d8> in Figure 5.3 is

  5 8 8 6 6 7 7 3 4, ()* ()*
S

d d y genCost d v genCost d v CostR CostR


       ,

46

where we have to find the MCSS of datasets d3 and d4 .

However, for any sub-branch, the MCSS is dependant on the storage status

of the datasets preceding and succeeding the block (i.e. stored adjacent predecessor

and successor of the sub-branches).

If e<di , dj> is an over-block edge, according to rules of setting weight, di and

dj are stored datasets, and the datasets between di and dj in the main branch,

 k k i k jd d MB d d d    , are deleted. Hence, di and dj are the stored adjacent

predecessor and successor of the sub-branch. If the rest of datasets within the block

form a linear DDG, we can use the linear CTT-SP algorithm introduced in Section

5.1.1 to find its MCSS, where in the first step we have to use di and dj as the start

and end datasets. For example, to calculate the weight of over-block edge e<d1 , d8>

in Figure 5.3, we have to find the MCSS S' of sub-branch {d3, d4} by the linear CTT-

SP algorithm, given, d1 is the start dataset and d8 is the end dataset. Otherwise, if the

rest of datasets within the block do not form a linear DDG, we have to recursively

call the CTT-SP algorithm to find the MCSS of sub-branches, which will be

introduced in Section 5.1.3. Hence, the weight of an over-block edge can be

calculated.

If e<di , dj> is an out-block edge, we only know the stored adjacent successor

of the sub-branches is dj . However, the MCSS of the sub-branches is also dependant

on the stored adjacent predecessor, which is unknown for an out-block edge. Hence,

given different stored adjacent predecessors, the weight of an out-block edge would

be different. For example, to calculate the weight of out-block edge e<d5 , d8> in

Figure 5.3, we need to find the MCSS S' of the sub-branch {d3, d4}, where we only

know the stored adjacent successor d8. However, S' may be different depending on

the storage statuses of d1 and d2. Hence, we have to create multiple CTTs for the

DDG with a block, in order to calculate the weights of out-block edges in different

situations, as detailed next.

47

5.1.2.3 Steps of finding MCSS for DDG with one sub-branch in one block

In this sub-section, we extend the linear CTT-SP algorithm to find its MCSS for

DDG with one sub-branch in the block. As discussed in Section 5.1.2.2, depending

on different stored preceding datasets of the block, the weight of an out-block edge

may be different. Hence multiple CTTs are needed to represent these different

situations, and the MCSS is the shortest path among all the CTTs.

To find the MCSS for a DDG with one sub-branch in the block, we need the

following two theorems.

Theorem 5.2: The selection of main branch in the DDG to construct CTT has no

impact on finding the MCSS.

Theorem 5.3: The Dijkstra algorithm is still applicable to find the MCSS of the

DDG with one block.

Based on these two theorems, we design the algorithm for finding the MCSS

for the DDG with one block. The main steps are as follows.

Step 1: Construct the initial CTT of the DDG. According to Theorem 5.2, we

choose an arbitrary branch in the DDG as the main branch and add cost edges to

construct the CTT. In the CTT, for the ordinary edges and in-block edges, we set

their weights based on formula (5.1) in Section 5.1.1. For the over-block edges, we

set their weights according to formula (5.2) by calling the linear CTT-SP algorithm to

find the MCSS of the sub-branch, which is introduced in Section 5.1.2.2. For the out-

block edges, we initialise their weights as infinity. The initial CTT is shown in Figure

5.4 (a). We create a CTT set and add the initial CTT to it.

Step 2: Based on Theorem 5.3, start the Dijkstra algorithm to find the shortest

path from ds to de, which applies to all CTTs in the CTT set. We use F to denote the

set of datasets discovered by the Dijkstra algorithm. When a new edge e<di , dj> is

discovered, we first add dj to F, and then check whether e<di , dj> is an in-block edge

48

or not. If not, we continue to find the next edge by the Dijkstra algorithm until de is

reached which would terminate the algorithm. If e<di , dj> is an in-block edge, create

a new CTT (see steps 2.1 - 2.3 next) because whenever an in-block edge is

discovered, a stored adjacent predecessor of the sub-branch is identified, and this

dataset will be used in calculating the weights of out-block edges. Then we continue

the Dijkstra algorithm to find the next edge.

Step 2.1: In the case where in-block edge e<di , dj> is discovered,

based on the current CTT, create CTT(e<di , dj>) as shown in Figure 5.4 (b).

First, we copy all the information of the current CTT to new CTT(e<di , dj>).

Second, we update the weights of all the in-block edges in CTT(e<di , dj>) as

infinity, except e<di , dj>. This guarantees that dataset di is the stored adjacent

predecessor of the sub-branch in all the paths of CTT(e<di , dj>). Third, we

update the weights of all the out-block edges in CTT(e<di , dj>) as described

next.

Step 2.2: Calculate the weight of an out-block edge e<dh , dk> in

CTT(e<di , dj>). As discussed in Section 5.1.2.2, to calculate the weight of

e<dh , dk> according to formula (5.2), we have to find the MCSS of the sub-

branch in the block. From Figure 5.4 (b) we can see that the sub-branch is

{d'1, d'2, … d'm}, which is a linear DDG. We can find its MCSS by using the

linear CTT-SP algorithm described in Section 5.1.1, given that di is the start

dataset and dk is the end dataset. The CTT created for the sub-branch is

depicted in Figure 5.4 (c).

Step 2.3: Add new CTT(e<di , dj>) to the CTT set.

49

d'1 d'2 …… d'm

……

……

d1 d2 dndqdjdi… dp

d'1 d'2 …… d'm

… dh… ……… dk ……ds de

∞

Main Branch

Sub-branch

∞
∞

∞

∞

…

…
∞

d1 d2 dndqdjdi… dp

d'1 d'2 …… d'm

… dh… ……… dk ……ds de

Main Branch

Sub-branch

∞

∞
∞

∞
∞

…

…

∞

…

…

…

…

(a) Initial CTT for DDG

(b) CTT(e<di,dj>) for in-block edge e<di,dj>

(c) CTT created for the sub-branch

dkdi

Figure 5.4 CTTs for DDG with one block

5.1.3 Minimum Cost Benchmarking Algorithm for General DDG

In the real world applications, the structure of DDG could be complex, i.e. there may

exist more than one block in a DDG. However, to find the MCSS of a general DDG,

no matter how complex the DDG’s structure is, we can deduce the calculation

process to the linear DDG situations by recursively calling the algorithm introduced

in Section 5.1.2. In this sub-section we present the general CTT-SP algorithm for

benchmarking. First we discuss different situations of the algorithm for a general

DDG, and then we give the pseudo-code of finding the MCSS for general DDG.

50

5.1.3.1 General CTT-SP algorithm for different situations

The complex structure of a DDG can be viewed as a combination of many blocks.

Following the algorithm steps introduced in Section 5.1.2.3, we choose an arbitrary

branch from the start dataset ds to the end dataset de as the main branch to construct

the initial CTT and create multiple CTTs for different in-block edges discovered by

the Dijkstra algorithm. In the process of calculating the weights of out-block and

over-block edges, there are two new situations for finding the MCSS of the sub-

branches.

1) The sub-branches may have more than one stored adjacent predecessor.

For example, e<di , dj> in Figure 5.5 is an out-block edge of block B1, and also an in-

block edge of block B2. In the algorithm, if edge e<di , dj> is found by the Dijkstra

algorithm, we create a new CTT(e<di , dj>) from the current CTT, since e<di , dj> is

an in-block edge of block B2. To calculate the weights of out-block edges in

CTT(e<di , dj>), for example e<dh , dk> in Figure 5.5, we need to find the MCSS of

the sub-branch {d1', d2', … dm'} of block B2. However, because e<di , dj> is also an

out-block edge of B1 , di is not the only dataset in d1'’s provSet. To calculate the

generation cost of d1', we need to find its stored provenance datasets from sub-branch

Br1 of block B1.

d1'

di

...

...............

......

...

Block B1 Block B2

ds de
dj dkdh ...

dm'd2'
Sub-branch Br1 Sub-branch Br2

Figure 5.5 Sub-branch with more than one stored adjacent predecessor

2) The sub-branches are a general DDG which also has branches. In this

situation, we need to recursively call the general CTT-SP algorithm to find its MCSS.

For example, e<di , dj> in Figure 5.6 is an in-block edge of blocks B1 and B2 . If e<di ,

dj> is selected by the algorithm, we need to create a new CTT(e<di , dj>). To

calculate the weight of e<dh , dk> in Figure 5.6, which is an out-block edge of both B1

and B2 , we need to find the MCSS of the sub-branches Br1 and Br2. Hence we have

51

to recursively call the general CTT-SP algorithm for the DDG 1 2Br Br , given the

start dataset di and the end dataset dk .

Block B2

di ... deds

...

...

......

.........

Block B1

...... ……

dhdj dk...

Sub-branch Br1

Sub-branch Br2

Figure 5.6 Sub-branch with branches

Hence, given a general DDG, its structure can be viewed as a combination of

many blocks. By recursively calling the general CTT-SP algorithm for the sub-

branches, we can eventually find the MCSS of the whole DDG. Figure 5.7 shows an

example of general DDG. To create CTT(e<di , dj>), we need to calculate the weights

of all the out-block edges. For example, for an out-block edge e<dh , dk>, we need to

further find the MCSS of the sub-branches

 u u u k u j u hd d DDG d d d d d d        , as shadowed in Figure 5.7, given

the start dataset di and the end dataset dk.

di ... deds

...

...

......

.........

......
……

dhdj dk...

...

...

…………
Block

Figure 5.7 CTT for general DDG

52

5.1.3.2 Pseudo-code of general CTT-SP algorithm

Figure 5.8 shows the pseudo-code of the general CTT-SP algorithm. At the beginning,

we choose an arbitrary branch from ds to de as the main branch to construct the initial

CTT (lines 1-21), where we need to recursively call the general CTT-SP algorithm in

calculating the weights for over-block edges (lines 11-14). Then we start the Dijkstra

algorithm (lines 22-50). Whenever an in-block edge is found, we construct a new

CTT with the following steps. First, we create a copy of the current CTT, in which

the in-block edge is found (line 31). Next, we update the weights of edges: lines 32 to

34 are for updating the weights of in-block edges and lines 35 to 49 are for updating

the weights of out-block edges. If the sub-branch is a linear DDG, we call the linear

CTT-SP algorithm described in Figure 5.2, otherwise we recursively call the general

CTT-SP algorithm (lines 39-42). At last, we add the new CTT to the CTTSet (line 50)

and continue the Dijkstra algorithm to find the next edge. When the end dataset de is

reached, the algorithm ends with the MCSS and the minimum cost benchmark

returned (lines 51-53).

From the pseudo-code in Figure 5.8, we can see that recursive calls (line 14

and line 42) exist in the general CTT-SP algorithm, which makes the algorithm’s

complexity highly dependant on the structure of DDG. Next, we analyse the worst

case scenario of the algorithm and show that the time complexity is polynomial.

In Figure 5.8, pseudo-code lines 1 to 21 are for constructing one CTT, i.e.

initial CTT. From pseudo-code lines 24 to 50 of the general CTT-SP algorithm, many

CTTs are created for the DDG during the deployment of the Dijkstra algorithm,

which determine the algorithm’s computation complexity. The maximum number of

the created CTTs is smaller than the number of datasets in the main branch, which is

in the magnitude of n. Hence, if we denote the time complexity of the general CTT-

SP algorithm as Fl(n), we have the recursive equation as follows:

 

4
0

3 2
1 (1)

() ()

() () , 0r r r

F n O n

F n n F n n r 

 


   

 (5.3)

53

Algorithm: General_CTT-SP

Input: start dataset ds; end dataset de;

a general DDG; //Include ds and de

Output: S; SCR; //MCSS of the DDG and the minimum cost benchmark

Get a main branch MB from DDG;

for (every dataset di in MB) //Create initial CTT

 for (every dataset dj, where)

Create //Create an edge

if () //e is an out-block edge

 Set

else //Calculate the weight of the edge

 weight = 0;

 if () //e is an over-block edge

//Get the sub-branches SB

if (SB is linear) //Find the minimum cost storage strategy of SB

 S’ = Linear_CTT-SP(di , dj , SB);

else

 S’ = General_CTT-SP(di , dj , SB);

weight = weight +

 for (every dataset dk, where) //Datasets in main branch

 genCost = 0;

 for (every dataset dh, where)

 genCost = genCost + xh ;

 //Sum of generation cost rates

 Set //Set weight to the edge

CTTSet = {CTTini}; //Set of all the created CTTs

F = {Ø}; //Set of datasets discovered by Dijkstra algorithm

while (de is not in F)

 for (every CTT in CTTSet) //Find the next edge for the shortest path

 Find the next edge by Dijkstra algorithm;

 Get the current shortest path in all the CTTs, which is with the edge

 Add dj to F;

 if () //e is an in-block edge

//Blocks that contains dj but not di

Create a copy of CTT' denoted as CTT(e<di , dj>); //Create a new CTT

for (every) //Update the weights of the in-block edges

 for (every where)

 Set

for (every) //Update the weights of out-block edges

 for (every where)

 weight = 0;

 //Get the sub-branches

if (SB is linear) //Find the minimum cost storage strategy of SB

 S’ = Linear_CTT-SP(di , dk , SB);

else

 S’ = General_CTT-SP(di , dk , SB);

 for (every dataset dl, where) //Datasets in main branch

 genCost = 0;

 for (every dataset do, where)

 genCost = genCost + xo ;

//Sum of generation cost rate

 Set //Set weight to the out-block edge

Add CTT(e<di , dj>) to CTTSet;

S = set of datasets that the shortest path from ds to de has traversed;

Return S, SCR;

;,  ji dde

  ;k kweight weight x genCost v   

;, jji yweightdd 

;,  ji dd

TCTdde ji
 ,

ptpr BdBd 

;,  tr dd

 kh dde ,

 jitr ddedde ,,

  ;l lweight weight x genCost v   

  ;
SSBd ii

CostRweight


;, kkh yweightdd 

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

BSetBp 

BSetBp 

  ;
SSBd ii

CostR


j i jd MB d d  

k i k k jd DDG d d d d     

k i k jd MB d d d    

 ;k k i k jSB d d MB d d d    

k i k jd MB d d d   

h i h kd MB d d d   

b i b j bd DDG d d d d     

h p j h k pd B d d d B    

 ;p p i p k p j p hSB d d DDG d d d d d d d         

l h l kd MB d d d   

o h o ld MB d d d   

 ;p p i p j pBSet B B DDG d B d B     

 ;
i id DDGSCR CostR 

Figure 5.8 Pseudo-code of general CTT-SP algorithm for benchmarking

54

In equation (5.3), n is the number of datasets in the DDG, n(r-1) is the number

of datasets in the sub-branches, and r is the maximum level of the recursive calls,

especially F0(n) denotes the situation of linear DDG, where the linear CTT-SP

algorithm needs to be called (i.e. pseudo-code in Figure 5.2).

Intuitively, in equation (5.3), Fr(n) seems to have an exponential complexity

(i.e. NP-hard) depending on the level of recursive calls. However, in our scenario,

Fr(n) is polynomial because the recursive call is to find the MCSS of given sub-

branches in DDG which has a limited solution space. Hence, we can use the iterative

method [64] to solve the recursive equation and derive the computation complexity

of the general CTT-SP algorithm.

If we assume that we have already found the MCSSs for all sub-branches

which means without taking the impact of recursive calls into account, the general

CTT-SP algorithm has a time complexity of O(n5), because there are five nested

loops in the pseudo-code in Figure 5.8 (lines 24, 35, 36, 44, 46). Formally, we can

transform equation (5.3) to the following:

   

 

3 2
1 (1)

5
1 (1)

() (1) ()

() ()

r rec r r

rec r r

F n n O n f F n

O n f F n

 

 

   

 
 (5.4)

In equation (5.4), function frec denotes the complexity of recursive calls, i.e.

calculating the minimum cost storage strategies of all sub-branches. Next, we analyse

the complexity of recursive calls.

For a sub-branch of a general DDG, given different start dataset and end

dataset, its MCSS may be different. Figure 5.9 shows a sub-branch of DDG with w

datasets. We assume d1’s direct predecessors and dw’s direct successors are all stored,

then we can find a MCSS of the sub-branch. We denote the first stored dataset as du

and the last stored dataset as dv in the strategy, which is shown in Figure 5.9. If d1’s

adjacent stored predecessors are changed, the MCSS may be different as well.

Because the generation cost of d1 is larger than storing the direct predecessors, the

first stored dataset in the new strategy must be one of the datasets from d1 to du.

Similarly, if dw’s adjacent stored successors are changed, the last stored dataset in the

55

new strategy must be one of the datasets from dv to dw. Hence, given different start

and end datasets, a sub-branch of DDG has at most u*(w-v) different minimum cost

storage strategies, which are in the magnitude of w2. Hence, we have the conclusion

that for any sub-branches of DDG with w datasets, there are at most w2 different

minimum cost storage strategies, given different start and end datasets. Hence, given

any sub-branches in DDG at any level of recursive calls, say level h, we have the

time complexity 2()*hF w w for finding all the possible minimum cost storage

strategies.

......d1 ...du ... dwdv

u w-v

......

A sub-branch in DDG

Figure 5.9 A sub-branch in DDG

If we assume that there are m different sub-branches of recursive calls at level

h that we have to find their minimum cost storage strategies, we have the complexity

of recursive calls at this level as follows:

 



m

i
ihihhhhrec nnFnFf

1

2
,,)())(((5.5)

With formula (5.5), we can further transform equation (5.4) and iteratively

derive the time complexity of the general CTT-SP algorithm.

Therefore, the entire iteration process from equation (5.3) is shown as follows:

 

 

 

  

1

1

3 2
1 (1)

5
1 (1)

5 2
1 (1), (1),

1

5 3 2 2
(1), 2 (2), (1), (1),

1

() * ()

() () / / (5.4)

() () / / (5.5)

() () / /

r

r

r r r

rec r r

m

r r i r i
i

m

r i r r i r i r i
i

F n n F n n

O n f F n from equation

O n F n n from formula

O n n F n n n recursion





 

 

  


    


 

 

  

    





56

  

 

    

  

1

2

01

5 5 2
(1), (1),

1

2
2 (2), (2),

1

5 5 2 2
(1), (1), 0 0, 0,

1 1

5 5 2
, ,

1

() ()

() / / (5.4) & (5.5)

() () ... () / /

() ()

r

r

r

m

r i r i
i

m

r r i r i
i

mm

r i r i i i
i i

m

j i j i
i

O n O n n

F n n from equation formula

O n O n n F n n iteration

O n O n n







 


  


 
 



  

 

     

  





 

 
01

4 2 4
0, 0, 0

1 1

5 2

0

9

() / / () ()

* * ()* / / ()

() / / ,

max

j m

i i
j r i

j

i
i

O n n F n O n

r m O n n m m

O n r n m n

  



 
   

 

 

  

  

Hence, the worst case time complexity of the general CTT-SP algorithm is

O(n9).

Based on the complexity analysis, we can see that the general CTT-SP

algorithm provides a benchmarking approach for a seemingly NP-hard problem with

a polynomial solution.

In Chapter 7, we will use experiment results to further demonstrate this on-

demand benchmarking approach.

5.2 Dynamic on-the-fly Minimum Cost Benchmarking

Approach

In this section, we describe our novel on-the-fly minimum cost benchmarking

approach in detail. The basic idea is that we divide the whole DDG into smaller

linear DDG segments (DDG_LS) and create a Partitioned Solution Space (PSS) for

every segment. PSS saves all the possible MCSSs of the DDG segment, which are

calculated by the CTT-SP algorithm. The minimum cost benchmark of the whole

DDG can be calculated by merging the PSSs. Whenever new datasets are generated

and/or existing datasets’ usage frequencies are changed, the new benchmark can be

57

dynamically located on the fly from the pre-calculated PSSs with only calling the

CTT-SP algorithm on the small local DDG segment for adjustment. Hence we can

keep the minimum cost benchmark updated on the fly so that users’ benchmarking

requests can be instantly responded.

5.2.1 PSS for a DDG_LS

PSS is the basis of our dynamic benchmarking approach. In this sub-section, we first

explain the reason why there exists a solution space of MCSSs for a DDG_LS. Then

we introduce some properties of the solution space and further investigate how the

MCSSs are distributed in a PSS.

5.2.1.1 Different MCSSs of a DDG_LS in a solution space

Generally speaking, a DDG_LS would only have one MCSS for storing the datasets

in it. However, due to different preceding and succeeding datasets’ storage statuses,

there would be different corresponding MCSSs, one for each status.

The CTT-SP algorithm can be utilised on not only independent DDGs but

also DDG_LSs, where the difference is the selection of start and end datasets for

constructing the CTT. For an independent DDG, we add two virtual datasets ds and de

as start and end datasets to construct the CTT as shown in Figure 5.1. However, for

the CTT of a DDG_LS, the start dataset ds is the nearest stored preceding dataset to

the DDG_LS, and the end dataset de is the nearest stored succeeding dataset to the

DDG_LS. Figure 5.10 shows an example of CTT for a DDG_LS.

... de... ...… …ds

A Linear

DDG

Segment

Start

Dataset

End

DatasetDeleted

Preceding

Datasets

Deleted

Succeeding

Datasets

Figure 5.10 CTT for a DDG_LS

58

Hence, given different start and end datasets, the MCSS of a DDG_LS may

be different. This is because 1) the deleted preceding datasets impact on the

generation cost of datasets in the DDG_LS; 2) the generation of the deleted

succeeding datasets need to use datasets in the DDG_LS.

Next, we analyse how the preceding and succeeding datasets of the DDG_LS

impact on its MCSS.

Theorem 5.4: For a DDG_LS, only the generation cost of its deleted preceding

datasets and the usage frequencies of its deleted succeeding datasets impact on

its MCSS.

Based on Theorem 5.4, for a DDG_LS {d1, d2, … dnl}, we introduce two

definitions:

   }{ 1dddDDGdi iisi
xX is the sum of preceding datasets generation costs of a

DDG_LS, where di is a deleted preceding dataset.

   }{ ejlnj dddDDGdj jvV is the sum of succeeding datasets usage frequencies

of a DDG_LS, where dj is a deleted succeeding dataset.

For different start and end datasets, the values of X and V are different, and

the MCSS of the DDG_LS may also be different. In other words, given different X

and V, there exist different MCSSs for storing the DDG_LS. We denote an MCSS as

Si,j , where di and dj are the first and last stored datasets in the strategy, which could

be any datasets in the DDG_LS. Conversely, any two datasets di and dj in the

DDG_LS may be the first and last stored datasets of an MCSS. Hence, theoretically,

the number of different MCSSs for a DDG_LS is in the magnitude of nl
2, where nl is

the number of datasets in the DDG_LS.

5.2.1.2 Range of MCSSs’ cost rates for a DDG_LS

Different MCSSs have different cost rates (i.e. SCR defined in formula (4.4) in

Section 4.3) for storing the DDG_LS. Because DDG_LS is a segment of the whole

DDG, the total cost rate of storing it includes not only the cost rate of itself, but also

59

the cost rate of generating the deleted preceding and succeeding datasets. Hence,

given any X and V, and the corresponding MCSS Si,j, we denote the total cost rate of

storing the DDG_LS {d1, d2, … dnl} as TCRi,j, where









ln

jk
kji

i

k
kji xVSCRvXTCR

1
,

1

1
, (5.6)

In formula (5.6), SCRi,j is the cost rate of storing the DDG_LS with the

storage strategy Si,j, assuming that the direct preceding and succeeding datasets of

DDG_LS are stored. Formally,

 
jik SLSDDGd kji RCostSCR

,
_,   (5.7)

An important difference between TCRi,j and SCRi,j is that TCRi,j is a variable

for a storage strategy depending on the value of X and V (see formula (5.6)), whereas

SCRi,j is a constant for a specific storage strategy (see formula (5.7)).

For a DDG_LS, one extreme situation of (X=0, V=0) means that the start and

end datasets are the direct preceding and succeeding datasets of the DDG_LS. Hence

we can deem the DDG_LS as an independent DDG and directly call the CTT-SP

algorithm to find its MCSS. In this situation, MCSS Su,v found is the minimum SCRu,v

for storing the DDG_LS among other MCSSs, where TCRu,v = SCRu,v. We denote Su,v

as Smin and SCRu,v as SCRmin.

The other extreme situation is that the start and end datasets are very far from

the current DDG_LS, i.e. X>y1/v1, V>ynl/xnl. Obviously, in this situation the first

dataset d1 and the last dataset dnl in the DDG_LS should be stored. Hence we can

deem d1 and dnl as the start and end datasets and call the CTT-SP algorithm for the

datasets between d1 and dnl. The found strategy together with d1 and dnl form the

MCSS of the DDG_LS in this situation denoted as S1, nl, where we also have

TCR1, nl =SCR1, nl. We denote S1, nl as Smax and SCR1, nl as SCRmax.

Theorem 5.5: Given a DDG_LS {d1, d2, … dnl}, SCRmin is the cost rate of MCSS Su,v

with X=0, V=0, and SCRmax is the cost rate of MCSS S1, nl with X>y1/v1,

V>ynl/xnl. Then we have SCRmin < SCRi,j < SCRmax , where SCRi,j is the cost rate

60

of MCSS Si,j with any given X and V.

d1
... du dv ... dnl...

Smin (X=0,V=0)

…

X = ∑xi

… … …

V = ∑vj

Smax (X>y1/v1, V>ynl/xnl)

......

A Linear DDG Segment

…

…
…

…

…
…

Si,j

SCRmax

SCRmin

SCRi,j

Figure 5.11 Different MCSSs for a DDG_LS

Figure 5.11 shows the MCSSs for a DDG_LS whose SCR values are in the

valid range indicated in Theorem 5.5. We can further find all these strategies and

save them in a strategy set, denoted as S_All. Figure 5.12 shows the pseudo code of

finding S_All. The essence of this algorithm is the utilisation of the CTT-SP

algorithm. Given a DDG_LS {d1, d2, … dnl}, we first create the CTT for it (line 1).

Then (line 2), we call the Dijkstra algorithm on the CTT to find the shortest path

from ds to de which are the two virtual datasets added when creating the CTT. The

corresponding MCSS Su,v is Smin with SCRmin, where du and dv are the first and last

stored datasets in this MCSS. Similarly, we find Smax with SCRmax (line 3). Next, we

initialise S_All and Smax (lines 4-5) and go through all the possible positions of the

first and last stored datasets and find the corresponding MCSSs (lines 6-9). We

eliminate the MCSSs with invalid SCR values according to Theorem 5.5 (line 10)

and save the valid MCSSs in S_All (line 11).

The time complexity of creating the CTT is O(nl
4) (line 1) according to the

CTT-SP algorithm [91], where nl is the number of datasets in the DDG_LS. Next, the

time complexity of finding all the possible MCSSs is nl
2 (as indicated earlier at the

end of Section 5.2.1.1) (lines 6-7) multiplying the time complexity of the Dijkstra

algorithm, which is O(nl
2) (line 9). Hence the total time complexity of finding S_All

is O(nl
4).

61

Algorithm: Find S_All

Input: DDG_LS {d1, d2, … dnl}

Output: S_All

Create CTT for DDG_S ;

Smin = Su,v = Dijkstra_Path (CTT, ds, de);

Smax = S1,nl = Dijkstra_Path (CTT, d1, dnl);

Add Smin , Smax to S_All;

for (i=1; i<=nl; i++)

 for (j=1; j<=nl; j++)

if ()

 Si,j = Dijkstra_Path (CTT, di, dj);

 if ()

 Add Si,j to S_All;

Return S_All; //Set of MCSSs with valid SCR

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

  ;
max

_max SSDDGd kk
RCostSCR  

jvui dddd 

  max_
,

SCRRCost
ji

k SSDDGd k  

Figure 5.12 Pseudo code of finding S_All

As discussed above, given any X and V, there exists one MCSS for storing the

DDG_LS in the set of S_All. Hence we create a coordinate of X and V to represent

the solution space of all possible MCSSs for a DDG_LS. Furthermore we can

calculate the distribution of the MCSSs in the solution space and call it PSS as

described next.

5.2.1.3 Distribution of MCSSs in the PSS of a DDG_LS

We start with analysing the relationship of two MCSSs in the solution space. We

assume that Si,j and Si',j' be two MCSSs in S_All of a DDG_LS {d1, d2, … dnl} and

SCRi,j < SCRi',j'. The border of Si,j and Si',j' in the solution space is that given

particular X and V, the total cost rates (TCR) of storing the DDG_LS with Si,j and Si',j'

are equal. Hence we have

jiji TCRTCR  ,,















ll n

jk
kji

i

k
k

n

jk
kji

i

k
k xVSCRvXxVSCRvX

1
,

1

11
,

1

1

  0,,
11

1

1

1

1


















 











 jiji

n

jk
k

n

jk
k

i

k
k

i

k
k SCRSCRVxxXvv

ll

 (5.8)

62

From this equation we can see that the border of Si,j and Si',j' in the solution

space is a straight line. Given different relationships of di and di', dj and dj', there are

four different situations.

1) jjii dddd   , as shown in Figure 5.13 (a), formula (5.8) can be

further simplified to:

  0,,
1

1




























 jiji

j

jk
k

i

ik
k SCRSCRVxXv (5.9)

2) jjii dddd   , as shown in Figure 5.13 (b), formula (5.8) can be

further simplified to:

  0,,
1

1




























 jiji

j

jk
k

i

ik
k SCRSCRVxXv (5.10)

3) jjii dddd   , as shown in Figure 5.13 (c), formula (5.8) can be

further simplified to:

  0,,
1

1


























 jiji

j

jk
k

i

ik
k SCRSCRVxXv (5.11)

4) jjii dddd   , as shown in Figure 5.13 (d), formula (5.8) can be

further simplified to:

  0,,
1

1


























 jiji

j

jk
k

i

ik
k SCRSCRVxXv

Because X and V are positive values, Si',j' can never be an eligible MCSS for

the DDG_LS in the situation of Figure 5.13 (d). Hence we have a property of the

MCSSs of a DDG_LS as follows:

PSSS
dddd

SCRSCRAllSSS
ji

jjii

jijijiji











,

,,,,

)(

)()_,(
 (5.12)

63

X

V

Si,j

Si',j'

o

VX

didi' dj dj'

Si,j

Si',j'

X0

V0

A DDG_LS
TCRi,j<TCRi',j'

TCRi,j>TCRi',j'

L<Si,j , Si',j'>

X

V

Si,j

Si',j'

o

VX

di di' dj dj'

Si,j

Si',j'

V0A DDG_LS TCRi,j<TCRi',j'

TCRi,j>TCRi',j'

L<Si,j , Si',j'>

X

V

Si,j

Si',j'

o

VX

didi' djdj'

Si,j

Si',j'

X0

TCRi,j<TCRi',j'

TCRi,j>TCRi',j'

L<Si,j , Si',j'>

X

V

Si,j

Si',j'

o

VX

di di' djdj'

Si,j

Si',j'

X0

A DDG_LS

V0

L<Si,j , Si',j'>

TCRi,j<TCRi',j'

TCRi,j>TCRi',j'

A DDG_LS

(a)

(d)

(c)

(b)

jjii dddd  

jjii dddd  

jjii dddd  

jjii dddd  

Figure 5.13 Examples of partition lines in a solution space

Hence, for any two MCSSs, we can find the partition line in the solution

space which is one of the three formulas listed above, namely formulas (5.9), (5.10)

or (5.11). According to property (5.12), we can further eliminate some MCSSs from

S_All, which should not be in the solution space. We refer the eligible MCSSs in

S_All as S_ini that is the initial input for calculating the solution space. From Figure

64

5.14, we can see that the time complexity of eliminating S_All is O(ns
2), where ns is

the number of MCSSs in S_All.

Algorithm: Eliminate S_All

Input: S_All

Output: S_ini

for (every)

 for (every)

if ()

 Eliminate Si',j' from S_All;

Return the eliminated S_All as S_ini ;

01.

02.

03.

04.

05.

AllSS ji _, 

jijiji SCRSCRAllSS   ,,, _

jjii dddd  

Figure 5.14 Pseudo code of eliminating S_All

From the above discussion, we can see that the solution space of a DDG_LS

is partitioned by lines into different areas, which forms the PSS. In the PSS, every

area represents an MCSS and the partition lines are the borders. Next we describe our

algorithms that can precisely calculate the PSS.

5.2.2 Algorithms for Calculating PSS of a DDG_LS

In a solution space, the MCSS of a DDG_LS changes from Smin to Smax as long as X

and V increase. Given MCSS set S_ini, we calculate the partition line of every two

adjacent strategies from Smin to Smax, and gradually partition the solution space.

Finally, we derive a PSS, which includes all the possible MCSSs of the DDG_LS. In

order to calculate the PSS for a DDG_LS, we need to introduce the following lemma.

Lemma 5.1: In the PSS of a DDG_LS, for three MCSSs, if any two of them are

adjacent with each other, then the three partition lines between every two

MCSSs intersect at one point.

In the statement of Lemma 5.1, two MCSSs are adjacent meaning that the

corresponding areas of the two MCSSs in the PSS are adjacent. Figure 5.15 shows an

example of Lemma 5.1. We assume that Si,i' , Sj,j' and Sk,k' be three MCSSs, where

SCRi,i' < SCRj,j' < SCRk,k' as shown in Figure 5.15 (a) and any two of Si,i' , Sj,j' , Sk,k' are

adjacent as shown in Figure 5.15 (b). Based on the positions of first and last stored

datasets, we calculate the three partition lines as follows:

65

L<Si,i' , Sj,j' >: iijj

j

ih
h

i

jh
h SCRSCRVxXv 


























 ,,

1

1

L<Si,i' , Sk,k' >: iikk

k

ih
h

i

kh
h SCRSCRVxXv 


























 ,,

1

1

L<Sj,j' , Sk,k' >: jjkk

k

jh
h

k

jh
h SCRSCRVxXv 


























  ,,

1

1

According to Lemma 5.1, these three lines intersect at one point in the PSS as

demonstrated in Figure 5.15 (b).

Si,i' , SCRi,i'

Si,i'

o

X V

di

V

X

A DDG_LS
PSS

dkdj di' dk'dj'

Sk,k' , SCRk,k'

Sj,j' , SCRj,j'

kjiikj dddddd  

Sk,k'

Sj,j'

L<Sj,j' , Sk,k' >

L<Si,i' , Sk,k' >

L<Si,i' , Sj,j' >

(a) Three MCSSs of a DDG_LS (b) Partition lines of the MCSSs

Figure 5.15 Example of Lemma 5.1

Based on Lemma 5.1, we design the algorithm to calculate the PSS for a

DDG_LS. The main steps in the pseudo code of this algorithm are shown in Figure

5.16.

As shown in Figure 5.16, the algorithm input is S_ini, which contains the

possible MCSSs of a DDG_LS, and the output is the DDG_LS’s PSS, which is a set

of partition lines with start and end points in the solution space. The basic idea of the

algorithm is to add the MCSSs to the PSS one by one from Smin to Smax, which

contains three main steps:

Step 1: initialisation and preparation (lines 1-4). First, we order the MCSSs in

S_ini by their SCRs and save them in an ascending array list [Smin , S1 … Smax]. Then

we calculate the first partition line L<Smin , S1 > and its intercepts with the X and V

66

axes, denoted as X1 and V1. Next, we create two ordered array lists X[] and V[] to

store the intercepts of the partition lines with the X and V axes respectively. When we

add an MCSS to the PSS, X[] and V[] are used to find the first MCSS in the PSS that

we start calculating the partition lines. Last, we initialise the PSS with X and V axes,

and add L<Smin , S1 > to it.

Step 2: calculation of partition lines for an MCSS (lines 5-20). In this step,

we start adding the MCSSs (i.e. [Smin , S1 … Smax]) to the PSS one by one (line 5). To

add MCSS Si to the PSS, first we need to find an adjacent MCSS to it in the PSS,

based on which we start calculating the partition lines. To find an adjacent MCSS to

Si , we only need to calculate partition line L<Smin , Si > and insert intercepts Xi and Vi

to X[] and V[] (lines 6-7). Adjacent MCSS S' is the corresponding MCSS of the first

intercept that is smaller than Xi in X[] or Vi in V[]. Next, we add Si to the PSS and

start with calculating the partition line of Si and S' (line 10). As S' is an existing

MCSS in the PSS which represents some areas in the solution space, partition line

L<S', Si > intersects with the border of S' and new MCSS Si partially overlaps with

existing MCSS S'. Hence, we find the borderlines of S' (line 11) and calculate the

intersections of L<S', Si > (lines 12-13). We also need to save the intersections (lines

14-17), where 1) set av_point saves all the intersections that will be used in the next

step; 2) stack v_point saves the intersections, which indicate the next MCSS that Si

partitions. Next, we add partition line L<S', Si > as well as the endpoints (i.e. the

intersections just calculated) to the PSS (line 18), and then, by popping an

intersection from v_point (line 19), we find the next MCSS to partition with Si which

is also the third partition line to that intersection according to Lemma 5.1. This

process continues until stack v_point is empty (line 20) which also means that we

have calculated all the partition lines of Si with its adjacent MCSSs.

Step 3: update of the PSS (lines 21-27). After we add a new MCSS into the

PSS, some of the old MCSSs may be overlapped. We need to update the existing

partition lines in the PSS. As all the intersections of the new joint MCSS’s partition

lines are saved in av_point in step 2, we only need to go through av_point and update

the partition lines’ endpoints (lines 21-25). To update the endpoints, first we need to

find which endpoint of the partition line is overlapped by the new joint MCSS. The

validEndpoint function (the pseudo code also shown in Figure 5.16) is called to find

67

Algorithm: Calculate PSS

Input: S_ini //the MCSSs set

Output: PSS //with partition lines

Order S_ini by SCRs and get S_ini[] =[Smin ,S1…Smax]; //Step 1

Calculate L<Smin ,S1>, intercept X1 , V1 ;

Insert X1 to X[], V1 to V[];

Add L<Smin ,S1>, X_axis, V_axis to PSS;

for (every Si in S_ini) //Step 2

 Calculate L<Smin ,Si>, intercept Xi, Vi ;

 Insert Xi to X[], Vi to V[], find S' ;

 Stack v_points = Φ, Set av_points = Φ ;

 do

Calculate L<S',Si>;

Find S'.LSet = {L<Su,Sv> | Su=S' or Sv=S'};

for (every L<Su,Sv> in S'.LSet)

 (x,v) = intersection of L<S',Si> and L<Su,Sv>;

 if ((x,v) is valid)

Add {L<Su,Sv>,L<S',Si>,(x,v)} to av_points;

 if ((x,v) is on X or V axis)

 Push {L<Su,Sv>, (x,v)} to v_points;

Add L<S',Si> to PSS with the endpoints;

S' = Get MCSS by poping v_point;

 while (S' !=Φ)

 for (every element {L1 , L2 , (x,v)} in av_points) //Step 3

(x',v') = validEndpoint(L1 , L2);

Update L1 with the endpoints (x',v') and (x,v);

if (L1 is an axis)

 create Lnew in PSS with endpoints (x,v) and ∞ ;

 while (there exist intersections with less than 3 lines)

delete the lines;

Return PSS

Function: validEndpoint

Input: L1 {(x1,v1), (x2,v2)} // two endpoints of L1

L2 : A2*X + B2*V + C2 =0 // equation of L2

Output: (x, v) //the valid endpoint of L1

if (x1 ==∞ | v1 ==∞) Return (x2,v2);

else if (x2 ==∞ | v2 ==∞) Return (x1,v1);

V_L2 = A2*x1 + B2*v1 + C2 ;

if (L2 == type 1 | L2 == type 3)

 if (V_L2 < 0) Return (x1,v1);

 else Return (x2,v2);

else if (V_L2 < 0) Return (x2,v2);

 else Return (x1,v1);

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

01.

02.

03.

04.

05.

06.

07.

08.

Figure 5.16 Pseudo code of calculating PSS

the valid endpoint that should be kept in the PSS (line 22). Then, we can update the

partition line by replacing the overlapped endpoint with the new intersection (line 23).

Especially, to update the partition line on the X or V axis, we need to create a new

line from the intersection to infinity because the axes cannot be overlapped (lines 24-

25). After updating all the partition lines with the new intersections, we need to check

68

all the intersections in the PSS. We delete the intersections and the corresponding

partition lines that do not conform to Lemma 5.1 (lines 26-27). This is to eliminate

the MCSSs that are totally overlapped by the new joint MCSS.

From the pseudo code in Figure 5.16, we can see that the time complexity of

the algorithm is O(ns
2nb) (lines 5-20), where ns is the number of MCSSs in the PSS,

and nb is the number of a MCSS’s adjacent MCSSs. Obviously, nb is smaller than ns,

hence the time complexity of calculating PSS of a DDG_LS is O(ns
3).

S2

S3

S1

S4

S1

o

S5

X V
S2

S3

S4

S5

V

X
A DDG_LS

PSS

Figure 5.17 Example of a PSS

Figure 5.17 illustrates an example of the PSS found by the algorithm in

Figure 5.16. With the PSS, given any X and V, we can locate the corresponding

MCSS with time complexity of O(ns), where classic algorithms can be found in

analytic geometry [76], hence we do not give detailed introduction in this thesis.

Furthermore, ns, the number of MCSSs in the PSS, is usually very small which we

will demonstrate in Chapter 7 by experiment results.

5.2.3 PSS for a General DDG (or DDG Segment)

The PSS for DDG_LS is the basis of our approach. In order to achieve the dynamic

minimum cost benchmarking, we also need to calculate the PSS for general DDGs

(or DDG segments). The PSS of a general DDG (or DDG segment) can be a high

dimension space, because the DDG may have branches where there may be more

than one X and/or V values that determine the MCSS of the DDG. Although a

general DDG’s PSS is different from the DDG_LS’s PSS, they have similar

properties and can be calculated with similar algorithms. In this sub-section for the

69

ease of understanding, we first investigate the PSS of a DDG segment that only has

two branches, and then extend it to a general DDG.

5.2.3.1 Three dimension PSS of DDG segment with two branches

Figure 5.18 illustrates an example of a DDG segment that has two branches. As we

can see that because of two branches, the MCSS of the DDG segment is determined

by three variables, which are X1, V2, V3. Hence the solution space of this DDG

segment is a three dimension space where every MCSS occupies some space.

Similar to the solution space of DDG_LS, we can find the border of two MCSSs,

which is a partition plane in the three dimension solution space. For example, we

assume that Sh,i,j and Sh',i',j' be two adjacent MCSSs in the solution space, where

SCRh,i,j < SCRh',i',j' . The first and last stored datasets of these two strategies are in the

positions as shown in Figure 5.18. The equation of the partition plane is

jiji

j

jk
k

i

ik
k

h

hk
k SCRSCRVxVxXv ,,3

1
2

1
1

1











































To simplify the presentation of the equation, we introduce two new notations:

1)
































ij

i

jk
k

ji

j

ik
kj

i
ddv

ddv

v

,

,

1

1

 and 2)





























ij

i

jk
k

ji

j

ik
kj

i
ddx

ddx

x

,

,

1

1

...dj'
...

......…X1 … … …

V3

di'dh' dh

dj......

di
...... V2

DDG_LS3

DDG_LS2DDG_LS1

A DDG segment with two branches

... ...

...

Sh,i,j and Sh',i',j' are

two MCSSs , where

SCRh,i,j < SCRh',i',j'

Sh,i,j

Sh',i',j'

Partition plane

Figure 5.18 DDG segment with two branches

70

Similar to the DDG_LS, the equation of the partition plane also has different

forms according to the positions of the start and end datasets of the two MCSSs. In

general, for the DDG segment with two branches, given two MCSSs: 1) Sp with the

first stored dataset dp1 and last stored datasets dp2 , dp3; 2) Sq with the first stored

dataset dq1 and last stored datasets dq2 , dq3; and SCRp < SCRq. We have the standard

form of the partition plane as following:

pq

q

p

q

p

q

p

SCRSCRVxBvVxBvXvBx 

























  332211

3

3

2

2

1

1















































33

33

33

22

22

22

1

1

11

1

0

1

1

0

1

,1

,0

,1

32

1

11

qp

qp

pq

qp

qp

pq

pq

qp

qp

dd

dd

dd

Bv

dd

dd

dd

Bv

dd

dd

dd

Bx

Similar to the DDG_LS, the DDG segment with two branches also has a PSS,

in which the partition planes of the MCSSs intersect with each other and partition the

solution space into different spaces. For any given values of X1, V2, V3, we can locate

an MCSS in the PSS for storing the DDG segment, if we know the distribution of

MCSSs in the PSS. The three dimension PSS has similar properties as the PSS of

DDG_LS. In order to calculate the PSS, we introduce another two lemmas, which

describe important properties of the intersection lines and points in the three

dimension PSS.

Lemma 5.2: In a three dimension PSS, for three MCSSs, if any two of them are

adjacent with each other, then the three partition planes intersect in one line.

Figure 5.19 illustrates an example of Lemma 5.2. In Figure 5.19 (a), Sa , Sb , Sc

are three MCSSs of a DDG segment with two branches. We assume that SCRa <

SCRb < SCRc and the start and end datasets of the three MCSSs have the following

relationships: 111 abc ddd  , 222 cba ddd  , 333 cba ddd  . Then we have

three partition planes of Sa , Sb , Sc as follows:

71

ab

b

a

b

a

b

a
ba SCRSCRVxVxXvSSP 


























  321

3

3

2

2

1

1

:,

bc

c

b

c

b

c

b
cb SCRSCRVxVxXvSSP 


























  321

3

3

2

2

1

1

:,

ac

c

a

c

a

c

a
ca SCRSCRVxVxXvSSP 


























  321

3

3

2

2

1

1

:,

As shown Figure 5.19 (b), P<Sa , Sb > is the partition plane of Sa and Sb; P<Sb , Sc >

is the partition plane of Sb and Sc; P<Sa , Sc > is the partition plane of Sa and Sc.

According to Lemma 5.2, the three partition planes intersect in one line

L<Sa , Sb , Sc >.

Figure 5.19 Example of Lemma 5.2

Lemma 5.3: In a three dimension PSS, for four MCSSs, if any three of them

intersect in a different line, then the four intersection lines intersect at one point.

72

Figure 5.20 illustrates an example of Lemma 5.9. In Figure 5.20, Sa , Sb , Sc, Se

are four MCSSs in the PSS and the partition planes denote the borders of the

occupied spaces by the MCSSs. We assume that LAB (the line passing point A and

point B in Figure 5.20) be the intersection line of Sa , Sb , Sc; LAC be the intersection

line of Sa , Sc , Se; LAD be the intersection line of Sa , Sb , Se; LAE be the intersection line

of Sb , Sc , Se. According to Lemma 5.9, the four intersection lines intersect at point A.

Figure 5.20 Example of Lemma 5.3 - Four MCSSs’ intersection in a three

dimension PSS, viewed from different angles

5.2.3.2 High dimension PSS of a general DDG

After the two and three dimension illustration and description for helping

understanding, we now discuss the general case. In a general DDG segment, there

may exist multiple branches, hence there are more variables (i.e. more X and V

dimensions) that impact the MCSS of the DDG segment. This makes the general

DDG segment’s PSS a high dimension space, where the number of the dimensions is

the total number of different X and V variables. In an n dimension PSS, every MCSS

occupies some n dimension space, where we can calculate the border of every two

MCSSs in the similar way as the three dimension PSS.

For an n dimension PSS, we assume that there be m branches with preceding

datasets (i.e. different X dimensions), hence n-m branches with succeeding datasets

(i.e. different V dimensions). Given two MCSSs: 1) Sp with the first stored datasets

73

dp_1 , dp_2 ,… dp_m in the m different X dimension branches and the last stored datasets

dp_(m+1) , dp_(m+2) ,… dp_n in the n-m different V dimension branches; 2) Sq with the

first stored datasets dq_1, dq_2,… dq_m in the m different X dimension branches and the

last stored datasets dq_(m+1) , dq_(m+2) ,… dq_n in the n-m different V dimension

branches; and SCRp < SCRq. Then, the border of Sp and Sq in the n dimension space

is:

 pq

n

mj
j

q

p
j

m

i
i

q

p
i SCRSCRVxBvXvBx

j

j

i

i




















































   

 11
































jj

jj

jj

i

i

ii

qp

qp

pq

j

piq

iqp

qp

i

dd

dd

dd

Bv

dd

dd

dd

Bx

1

0

1

,1

,0

,1

From the equation above, we can see that the border of two MCSSs in an n

dimensions PSS is an n-variable linear equation, which is an (n-1) dimension space

itself. In order to calculate the PSS of a general DDG segment, we need to investigate

the intersections of the MCSSs in the n dimension space. We generalise Lemmas 5.1-

5.3 to the n dimension PSS of a general DDG segment and propose Theorem 5.6 as

follows.

Theorem 5.6: In an n dimension PSS, for i MCSSs where  )1(,...,3,2  ni , if any

(i-1) of the i MCSSs intersect in a different (n-i+2) dimension space, then the i

MCSSs intersect in an (n-i+1) dimension space.

Based on Theorem 5.6, given the initial MCSS set of a general DDG segment

(i.e. S_ini), we can design an algorithm to calculate the PSS in the similar way as the

algorithm for calculating the PSS for DDG_LS. In Section 5.2.4, we will introduce

how to derive S_ini of a general DDG segment without calling the CTT-SP algorithm

on it. For a PSS with nd dimensions, the border of MCSSs are nd-variable linear

equations and we need to solve the nd-variable linear equations system to calculate an

intersection point in the solution space which has a time complexity of O(nd
3). Hence

the time complexity of calculating a general DDG segment’s PSS is nd
3 times of the

complexity for calculating the DDG_LS’s PSS, which is O(ns
3nd

3). Similarly,

74

locating the MCSS in the high dimension PSS with given X and V values is also nd
3

times complex than locating a MCSS in the two dimension PSS, which is O(nsnd
3).

5.2.4 Dynamic on-the-fly Minimum Cost Benchmarking

The reason that we calculate the PSS for DDG segment is for dynamic minimum

cost benchmarking. The philosophy of our approach is that we merge the PSSs of

the DDG_LSs to derive the PSS of the whole DDG and save all the calculated PSSs

along this process. Taking advantage of the pre-calculated results (i.e. the saved

PSSs), whenever the application cost changes, we only need to recalculate the local

DDG_LS’s PSS and quickly derive the new minimum cost benchmark for the whole

DDG. By dynamically keeping the minimum cost benchmark updated,

benchmarking requests can be instantly responded on the fly.

5.2.4.1 Minimum cost benchmarking by merging and saving PSSs in a

hierarchy

To calculate the minimum cost benchmark with our approach, we need to merge the

DDG segments’ PSSs in order to get the PSS of the whole DDG, from which we can

locate the MCSS. To merge the PSSs of two DDG segments, we need to introduce

another theorem.

Theorem 5.7: Given DDG segment {d1, d2, … dm} with PSS1 , DDG segment {dm+1,

dm+2, … dn} with PSS2, and the merged DDG segment {d1, d2, … dm, dm+1,

dm+2, … dn} with PSS. Then we have:

1 2 1 1 2 2

1

1 2
1 1

,

m i

k k
k j k m

S S S S PSS S PSS

S PSS
SCR SCR x v SCR



   

   


      
     

  
 

 ,

where dj is the last stored dataset in the first DDG segment and di is the first

stored dataset in the second DDG segment.

Theorem 5.7 tells us that 1) the MCSSs in a larger DDG segment’s PSS (i.e. S)

are combined by the MCSSs in its sub-DDG segments’ PSSs (i.e. S1 , S2), which

75

means that we can calculate the PSS of the larger DDG segment by merging the PSSs

of its sub-DDG segments and do not need to call the CTT-SP algorithm on the larger

DDG segment; 2) the cost rate of the MCSS in the larger DDG segment (i.e. SCR) is

the sum of cost rates of its sub-DDG segments’ MCSSs (i.e. SCR1 , SCR2) and a

parameter which is 




















1

11

i

mk
k

m

jk
k vx . This parameter indicates the cost rate

compensation for the datasets in the connecting branches of the two sub-DDG

segments, i.e. generation cost rate of datasets in DDG segment {dj+1, dj+2, … dm} for

regenerating datasets in DDG segment {dm+1, dm+2, … di-1}. Figure 5.21 further

illustrates an example of Theorem 5.7 to merge two linear DDG segments.

dj dm
... …di' dm+1...d1 di … dndj' ...…

S2 , SCR2

S , SCR

S1 , SCR1

DDG segment {d1, d2, … dm}

dj+1 di-1

DDG segment {dm+1, dm+2, … dn}






















1

11

i

mk
k

m

jk
k vx

Deleted Dataset Stored Dataset

Figure 5.21 Example of merging two linear DDG segments

Figure 5.22 shows the pseudo code of merging two PSSs. In this algorithm,

we first find the MCSS candidate set for the merged PSS (i.e. S_All) by combining

the MCSSs in the two sub-PSSs (lines 1-7). During this process we also calculate the

SCR for every MCSS (line 5) and find the upper bound for SCRmax (lines 6-7). Next,

we eliminate the invalid MCSSs from S_All, which includes two sub-steps: 1)

deleting the MCSSs with invalid SCR values (lines 8-10); 2) calling the elimination

algorithm (see Figure 5.14) to derive S_ini (line 11). Then we call the PSS

calculation algorithm (see Figure 5.16) to calculate the PSS of the merged DDG

segment (line 12). From the pseudo code, we can clearly see that the time complexity

of merging two PSSs is the same as the calculation of the PSS, which is O(ns
3nd

3).

To calculate the PSS of a general DDG in the cloud, we can calculate all the

PSSs of its sub-DDG_LSs and gradually merge them to derive the PSS of the whole

DDG. In order to achieve dynamic benchmarking, we need to save not only PSSs of

76

the DDG_LSs, but also PSSs calculated during the merging process. In our approach,

we use a hierarchy data structure to save all the PSSs of a DDG, where an example of

saving the PSS of a DDG with three sub-DDG_LSs is shown in Figure 5.23.

Algorithm: Merge PSSs

Input: PSS1 of DDG segment {d1, d2, … dm}

PSS2 of DDG segment{dm+1, dm+2, … dn}

Output: PSS for the merged DDG segment

S_All = Ф, SCRmax = ∞ ;

for (every MCSS S' in PSS1)

 for (every MCSS S'' in PSS2)

Add to S_All;

if (the first and last datasets in all the branches

 are all stored in S and SCR < SCRmax)

 SCRmax = SCR ;

for (every MCSS S in S_All)

 if (SCR > SCRmax)

Delete S from S_All ;

S_ini = Eliminate S_All (S_All); //O(ns2)
PSS = Calculate PSS (S_ini); //O(ns3nd3)
Return PSS;

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

SSS 

;
1

11

RSCvxRSCSCR
i

mk
k

m

jk
k

















 





Figure 5.22 Pseudo code for merging PSSs

In the PSS hierarchy, the level indicates the number of DDG_LSs merged in

the PSS of the DDG segments at that level. For example, in Figure 5.23, the

DDG_LSs’ PSSs are saved at Level 1 of the hierarchy. Level 2 saves the PSSs of the

DDG segments, which are connected by two DDG_LSs, e.g. PSS12 is the PSS of

DDG segment combined by DDG_LS1 and DDG_LS2. Level 3 saves the PSS of the

whole DDG, where we can see that the number of the hierarchy levels equals the

number of DDG_LSs in the whole DDG. Furthermore, there are links between the

levels in the hierarchy. A link between two PSSs at Levels i and i+1 in the hierarchy

means the corresponding DDG segment of the PSS at Level i+1 contains the DDG

segment of the PSS at Level i, e.g. in Figure 5.23, there is a link between PSS1 and

PSS12, because the DDG segment combined by DDG_LS1 and DDG_LS2 contains

DDG_LS1.

77

PSS1

PSS12

PSS3PSS2

PSS13

PSS123

...

DDG_LS3

DDG_LS2DDG_LS1

...

...

Dataset Linear DDG Segment Partitioned Solution Space

A DDG with three sub

linear segments

Level 1

Level 3

Level 2

Figure 5.23 Saving all the PSSs of a DDG in a hierarchy

In the hierarchy, the highest level (e.g. Level 3 in Figure 5.23) saves the PSS

of the whole DDG. From this PSS we can derive the MCSS and the corresponding

SCR of the whole DDG, which is the minimum cost benchmark (i.e. SCR) that we

can either proactively report or instantly respond to benchmarking requests. Next, we

will introduce how to dynamically keep this benchmark updated.

5.2.4.2 Updating of the minimum cost benchmark on the fly

Cloud is a dynamic environment. As time goes on, new datasets are generated in the

cloud and the existing datasets’ usage frequencies may also change. Hence the

minimum cost benchmark of storing the datasets would also change accordingly. By

taking the advantage of the PSS hierarchy, we can dynamically calculate the new

minimum cost benchmark on the fly. There are two situations that we need to deal

with:

1) New datasets are generated in the cloud.

The algorithm pseudo code of calculating the new minimum cost benchmark

of this situation is shown in Figure 5.24. Assuming that the new datasets be in a

DDG_LS (if not, we take its sub-DDG_LS), first we add it to the whole DDG and

calculate its PSS, denoted as PSS_new (lines 1-3). Next, for every MCSS in PSS_new,

we locate the corresponding MCSS from the original DDG’s PSS (lines 5-7) and

calculate the cost rate of the whole DDG, i.e. SCR (line 8). Then, we find the

minimum SCR as the new minimum cost benchmark for the whole DDG and the

corresponding storage strategy as the new MCSS (lines 9-11). In this whole process,

78

we only need to calculate the PSS of the new DDG_LS, which is usually small in size,

and the PSS of the original DDG has already been pre-calculated and saved in the

hierarchy. Hence we can quickly update the minimum cost benchmark. For example,

in Figure 5.25 (a), for the new DDG_LS4, we calculate PSS4 and connect it with the

existing PSS123 in the hierarchy to derive the updated minimum cost benchmark and

the MCSS of the whole DDG.

Algorithm: Generate new datasets

Input: DDG_LS //New datasets

PSS //PSS of the whole DDG

Output: S //MCSS of the whole DDG

SCR //Updated minimum cost benchmark

S_All = Find S_All (DDG_LS);

S_ini = Eliminate S_All (S_All); //O(ns2)
PSS_new = Calculate PSS (S_ini); //O(ns3nd3)
SCR = ∞ ; S = Ф ;

for (every Si,j in PSS_new)

 Stemp = PSS.Locate (0,...0,V);

 if (SCR > SCRmin)

SCR = SCRmin ;

Return S, SCR;

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

;,
1

min ji

n

jk
ktemp SCRVxSCRSCR 







 



;
1

1







i

k
kvV

;, jitemp SSS 

Figure 5.24 Pseudo code for calculating new minimum cost benchmark when

new datasets are generated

After calculating the new minimum cost benchmark, we have to update the

PSS hierarchy for the new DDG_LS. For every newly added PSS at Level i of the

hierarchy (starting from Level 1 to the highest level), we find its connected DDG_LS

in the whole DDG and connect them to form a new segment. We calculate the PSS of

the new segment and add it to Level i+1 of the hierarchy as well as the corresponding

links between the two levels. An example of updating the PSS hierarchy in this

situation is shown in Figure 5.25 (a), where the shadowed PSSs are the new ones that

we add to the hierarchy after adding PSS4.

79

DDG_LS3

DDG_LS1 DDG_LS2 DDG_LS4

PSS1

PSS12

PSS3PSS2

PSS13

PSS123

PSS4

PSS24

PSS124

PSS1234

DDG_LS3

DDG_LS1 DDG_LS2 DDG_LS4

New
segment

Changed
segment

PSS hierarchy

DDG DDG

PSS hierarchy

(a) Updating the PSS hierarchy

for adding a new segment to

the DDG.

(b) Updating the PSS hierarchy

for changing the PSS of a

segment in the DDG.

Level 4

Level 3

Level 2

Level 1 PSS1

PSS12

PSS3PSS2

PSS13

PSS123

PSS4

PSS24

PSS124

PSS1234

Figure 5.25 Updating the PSS hierarchy when the DDG is changed

2) Existing datasets’ usage frequencies are changed.

In this situation, we first find the DDG_LS that contains the datasets whose

usage frequencies are changed. As shown in the pseudo code in Figure 5.26, we also

need to calculate the DDG_LS’s PSS at the beginning (lines 1-3). Then, we find the

PSSs of the rest parts of the whole DDG except the changed DDG_LS and save them

in a set, i.e. PSS_Set (line 4). Next, for every MCSS in the new PSS (line 6), we

calculate the X and V values (line 7) to locate the corresponding MCSSs of the DDG

segments that are connected to the changed DDG_LS from PSSs in PSS_Set (lines 8-

17). We also calculate the corresponding cost rate of the whole DDG, i.e. SCR (line

18). Then, we find the minimum SCR as the updated minimum cost benchmark for

the whole DDG and the corresponding storage strategy as the new MCSS (lines 19-

20). In this whole process, when calculating the PSS of the changed DDG_LS, we

only update the weights of some edges in the existing CTT and do not need to create

a new one. Furthermore, the PSSs of DDG segments in PSS_Set have already been

pre-calculated and saved in the hierarchy. Hence we can quickly update the minimum

cost benchmark. For example, in Figure 5.25 (b), we re-calculate PSS2 for changed

DDG_LS2. To derive the updated minimum cost benchmark for the whole DDG, we

80

connect new PSS2 with PSS13 and PSS4 in PSS_Set, which are the rest parts of the

whole DDG except DDG_LS2.

Algorithm: Change usage frequency

Input: DDG_LSi //With the changed dataset

The PSS hierarchy

Output: S //MCSS of the whole DDG

SCR //Updated minimum cost benchmark

S_All = Find S_All (DDG_LSi);

S_ini = Eliminate S_All (S_All); //O(ns2)
PSS_new = Calculate PSS (S_ini); //O(ns3nd3)
PSS_Set = PSSs of the DDG segments connecting to DDG_LSi ;

SCR = ∞ ; S = S' = Ф ;

for (every Si,j in PSS_new)

 for (every PSSh in PSS_Set)

if (PSSh is preceding to PSS_new)

 Stemp = PSSh .Locate (0,...0,V);

eles if (PSSh is succeeding to PSS_new)

 Stemp = PSSh .Locate (0,...0,X);

else Stemp = PSSh .Locate (0,...0,X,V);

 if (SCR > SCRmin)

 SCR = SCRmin ;

Return S, SCR;

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

;
1

min VxSCRSCR
n

jk
ktemp 







 



;;
1

1

1









m

jk
k

i

k
k xXvV

;, jiSSS 

;,min jiSCRSCR 

;
1

1
min XvSCRSCR

i

k
ktemp 







 





;
1

1

1
min VxXvSCRSCR

n

jk
k

i

k
ktemp 

















 







;tempSSS 

Figure 5.26 Pseudo code for calculating new minimum cost benchmark when

datasets’ usage frequencies are changed

After calculating the new minimum cost benchmark, we also need to update

the PSS hierarchy for the changed PSS. For every changed PSS at Level i of the

hierarchy (starting from Level 1 to the highest level), we find the PSSs at Level i+1

that are linked with it and update all these PSSs. An example of updating the PSS

hierarchy in this situation is shown in Figure 5.25 (b), where the shadowed PSSs are

the new ones that we need to update in the hierarchy after changing PSS2.

In terms of efficiency, our approach can instantly respond to users’

benchmarking requests by keeping the minimum cost benchmark updated on the fly.

81

Whenever new datasets are generated and/or existing datasets’ usage frequencies are

changed, our algorithm can quickly calculate the updated minimum cost benchmark

in O(ns
3nd

3) (see Figure 5.24 and Figure 5.26), where all the parameters are for the

local DDG_LS, which are usually very small. The total time complexity of our

benchmarking approach includes updating the hierarchy, which is used to save the

PSSs. We use m to denote the number of DDG_LS in the whole DDG. In the

situation of new datasets generation, we need to add one new PSS to every level of

the PSS hierarchy (see Figure 5.25 (a)), where the number of the levels equals to the

number of DDG_LSs in the whole DDG, hence the time complexity is O(mns
3nd

3). In

the situation of existing datasets’ usage frequencies changing, we have to recalculate

more than one PSS (i.e. in the magnitude of m) in every level of the hierarchy (see

Figure 5.25 (b)), hence the time complexity is O(m2ns
3nd

3).

In Chapter 7, we will use experiment results to further demonstrate this

dynamic on-the-fly benchmarking approach.

5.3 Summary

In this chapter, we propose two minimum cost benchmarking approaches for

scientific applications in the cloud. Benchmarking is to calculate the minimum cost

rate of storing the application datasets in the cloud, which achieves the best trade-off

between computation and storage. This benchmark can be utilised to evaluate the

cost-effectiveness of all datasets storage strategies. Our two novel benchmarking

approaches are summarised as follows.

The static on-demand benchmarking approach is suitable for the situation that

only occasional benchmarking is requested. In this situation the benchmarking is a

one-time only computation provided as an on-demand service. In this approach, the

novel CTT-SP algorithm is designed, which solves a seemingly NP-hard problem in

a polynomial time complexity.

The dynamic on-the-fly benchmarking approach is suitable for the situation

that more frequent benchmarking is requested at runtime. In this situation, the

benchmarking service is delivered on the fly to instantly respond to the

82

benchmarking requests. In this approach, we thoroughly investigated the issue of

computation and storage trade-off and proposed a novel concept of Partitioned

Solution Space (PSS) to save the pre-calculated MCSSs. By utilising the pre-

calculated results, whenever the application cost changes in the cloud, we can quickly

calculate the new minimum cost benchmark. By dynamically keeping the benchmark

updated, benchmarking requests can be instantly responded on the fly.

83

Chapter 6

Cost-Effective Datasets Storage

Strategies

Due to the pay-as-you-go model, we design cost-effective datasets storage strategies

for users based on the trade-off between computation and storage in the cloud.

Different from benchmarking, in practice, the minimum cost storage strategy

(MCSS) may not be the ultimate goal for the applications, because storage strategies

should be efficient for users to facilitate at runtime in the cloud and may need to take

users’ tolerance of data accessing delay into consideration. This chapter is organised

as follows.

In Section 6.1, by investigating users’ requirements of data accessing delay

and users’ preference of storing some particular datasets, we introduce two new

attributes of the datasets in DDG accordingly [90]. With the new attributes and

corresponding mechanisms, the storage strategies can 1) guarantee that all the

application datasets’ regenerations fulfill users’ tolerance of data accessing delay, and

2) allow users to store some datasets with a higher cost according to their preferences.

In Section 6.2, we design an innovative cost rate based storage strategy. In

this strategy, we directly compare generation cost rate and storage cost rate for every

dataset to decide its storage status. The strategy can guarantee that the stored datasets

in the system are all necessary, and can dynamically check whether the regenerated

datasets need to be stored, and if so, adjust the storage strategy accordingly. This

84

strategy is highly efficient with fairly reasonable cost effectiveness. This section is

mainly based on our work presented in [87, 92].

In Section 6.3, we design an innovative local-optimisation based storage

strategy. In this strategy, we divide the DDG with large number of application

datasets into small linear segments (DDG_LS). By partially utilising an enhanced

linear CTT-SP algorithm, we can find the MCSS for the DDG_LS satisfying users’

requirements. Hence we achieve the localised optimisation in the storage strategy.

This strategy is highly cost-effective with very reasonable runtime efficiency. This

section is mainly based on our work presented in [90].

6.1 Data Accessing Delay and Users’ Preferences in Storage

Strategies

With the excessive computation and storage resources in the cloud, users can

flexibly choose whether to store a dataset or not. If a generated application dataset

has been deleted for saving the storage cost, we have to regenerate it whenever it

needs to be reused. Regeneration causes not only the computation resources, but also

a computation delay for accessing the data, i.e. waiting for the dataset to get ready.

Furthermore, in some applications, users may have their own preferences to store

some datasets even at a higher cost due to some reasons such as the need for

immediate data access.

In order to deal with these issues, we introduce another two attributes to the

datasets in the DDG. For a dataset di, the new attributes are denoted as: < Ti , λi >,

where

 Ti is time duration that denotes users’ tolerance of dataset di’s accessing delay.

Users have tolerance of delay when they want to access a dataset that needs

regeneration. Ti is the time constrains of the datasets’ regeneration. In the

storage strategy, the regeneration time of every deleted dataset cannot exceed its

Ti. Especially, if Ti is smaller than the generation time of dataset di itself (i.e.

i i cpu
T x Price , where Pricecpu is the price of computation resources used to

85

regenerate di in the cloud), then we have to store di, no matter how expensive

di’s storage cost is.

 λi represents users’ preference of storing dataset di, which is a value between 0

and 1. In the storage strategy, we multiply dataset di’s storage cost rate (i.e. yi)

by its λi, and use this modified value to compare with di’s generation cost rate

(i.e. ()i igenCost d v) for deciding its storage status. The two extreme situations:

λi=0 indicates no matter how large di’s storage cost is, it has to be stored; λi=1

indicates the storage status of di only depends on its generation cost and storage

cost in order to reduce the total system cost.

These two attributes are generic for the datasets storage strategies. How to set

their values depends on the requirements of specific applications. For example, some

applications may have fixed time constraints, such as the weather forecast application

[59]. In this situation, the value for Ti is set according to the starting time and

finishing time (i.e. deadline) of the application. Furthermore, in some applications,

users may want immediate access to a particular dataset. In this situation, the value

for λi of this dataset needs to be set as zero. With these two attributes, we design two

new runtime storage strategies for different situations in the cloud.

6.2 Cost Rate Based Storage Strategy

In this storage strategy, for every dataset in the cloud, we directly compare the

generation cost rate and storage cost rate of the dataset itself to decide its storage

status. This strategy is highly efficient. The details of algorithms and cost-

effectiveness analysis are described next in this section.

6.2.1 Algorithms for the Strategy

We design three algorithms to handle all three situations in the cloud to decide the

proper storage status of the application datasets. We analyse the time complexity of

the algorithms in this sub-section and further evaluate the efficiecny of this cost rate

based strategy by experiments described in Section 7.3.2.

86

6.2.1.1 Algorithm for deciding newly generated datasets’ storage status

We assume di be a newly generated dataset. The pseudo-code of this algorithm is

shown in Figure 6.1.

First we add its information to the DDG (line 1). We add edges pointing to di

from its provenance datasets and initialise its attributes. As di is new which obviously

does not have a usage history yet, we use the average value in the system as the initial

value for di’s usage frequency.

Next, we check whether di should be stored or not (lines 2-10). First, we

check if the generation time of di can satisfy users’ tolerance of data accessing delay

(line 2). If not, we store di (line 3). Then we only compare the generation cost rate of

di with its storage cost rate multiplied by λi, which are ii vdgenCost )(and iiy 

(line 5). If the generation cost rate is larger than the storage cost rate, we store di

(line 6), otherwise we delete di (line 8).

From pseudo-code in Figure 6.1, we can see that the worst case time

complexity of the algorithm is O(na) (i.e. calculating ()igenCost d in line 2), where

na is the largest number of a dataset’s deleted predecessors in the DDG.

Algorithm: Decide storage status of a newly generated dataset

Input: Newly generated dataset di ;

DDG ;

Output: fi ; //Storage status of di

add di’s information to DDG ;

if ()

 fi = “stored” ; //decide to store di

else

 if ()

 fi = “stored” ; //decide to store di

 else

 fi = “deleted” ; //decide to delete di

Return fi ; //storage status of di

()i cpu igenCost d Price T

01.

02.

03.

04.

05.

06.

07.

08.

09.

()i i i igenCost d v y   

Figure 6.1 Algorithm for deciding newly generated datasets’ storage status

87

6.2.1.2 Algorithm for deciding stored datasets’ storage status due to usage

frequencies change

We assume di be a stored dataset whose usage frequency is changed in the cloud. We

need to recalculate its storage status. The pseudo-code of this algorithm is shown in

Figure 6.2.

First, we check whether the generation time of di can satisfy users’ tolerance

of data accessing delay (line 1). If not, we keep it stored (line 2). Because di is stored

originally, the deletion will increase the generation cost and time of its deleted

successors. Hence we need to further check whether the generation time of di’s

deleted successors can satisfy users’ tolerance of data accessing delay (lines 4-7). If

not, we keep di stored (line 6). Then we compare di’s generation cost rate with

storage cost rate in order to decide its storage status (lines 8-11).

From pseudo-code in Figure 6.2, we can see that the worst case time

complexity of the algorithm is O(nanb) (lines 4 and 5), where na is discussed in

Section 6.2.1.1 and nb here is the largest number of a dataset’s deleted successors in

the DDG.

Algorithm: Decide storage status of a stored dataset

Input: Stored dataset di ;

 DDG ;

Output: fi ; //Storage status of di

if ()

 Return fi = “stored” ;

else

 for (every deleted successor dk of di)

if ()

 Return fi = “stored” ;

v += vk ;

 if ()

Return fi = “stored” ;

 else

Return fi = “deleted” ;

()i i igenCost d v y   

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

()i cpu igenCost d Price T

 () ()i k cpu kgenCost d genCost d Price T 

Figure 6.2 Algorithm for deciding stored datasets’ storage status

88

6.2.1.3 Algorithm for deciding regenerated datasets’ storage status

We assume that di be a deleted dataset in the cloud. When we regenerate it for reuse,

we have to recalculate its storage status after the reuse. The pseudo-code of this

algorithm is shown in Figure 6.3.

Because di is originally a deleted dataset, the storage of di reduces the

generation cost of its deleted successors. We need to take this cost reduction into

consideration when calculating di’s generation cost rate (lines 1-2). Next, we

compare di’s generation cost rate with storage cost rate in order to decide its storage

status (lines 3-8). Especially, if di is stored, it will not need its stored predecessors (i.e.

provSeti) for regeneration and its stored successors’ generation costs are also reduced,

hence these stored predecessors and successors may not need to be stored anymore.

We need to recalculate their storage statuses (lines 5-6).

From pseudo-code in Figure 6.3, we can see that the worst case time

complexity of the algorithm is O(nanbnc) (lines 5 and 6), where na and nb are

discussed in Sections 6.2.1.1 and 6.2.1.2 respectively and nc here is the largest

number of a dataset’s stored predecessors and successors in the DDG. The efficiency

of running the strategy will be evaluated in Section 7.3.2.

Algorithm: Decide storage status of a regenerated dataset

Input: Regenerated dataset di ;

DDG ;

Output: fi ; //Storage status of di

for (every deleted successor dk of di)

 v += vk ;

if ()

 fi = “stored” ;

 for (every stored predecessor and successor dj of di)

recalculate the storage status of dj ;

else

 fi = “deleted” ;

Return fi ;

() ()i i i igenCost d v v y    

01.

02.

03.

04.

05.

06.

07.

08.

09.

Figure 6.3 Algorithm for deciding regenerated datasets’ storage status

89

6.2.2 Cost-Effectiveness Analysis

To analyse the cost-effectiveness of this cost rate based storage strategy, we need to

introduce the following lemma and theorem.

Lemma 6.1: The deletion of a stored dataset in the DDG does not affect the storage

status of other stored datasets.

Theorem 6.1: If a deleted dataset is stored, only its adjacent stored predecessors and

successors in the DDG may need to be deleted to reduce the application cost.

 Lemma 6.1 and Theorem 6.1 guarantee that the datasets stored by the

algorithms in our cost rate based storage strategy are all necessary, which means that

the deletion of any dataset will bring cost increase of the application in the cloud.

The cost-effectiveness of this strategy will be further evaluated by experiments in

Section 7.3.1.

6.3 Local-Optimisation Based Storage Strategy

In this storage strategy, we utilise the linear CTT-SP algorithm presented in Section

5.1.1 and enhance it by incorporating the two new attributes < Ti , λi > addressed in

Section 6.1, so that it can find the MCSS for linear DDG segments with satisfying

users’ tolerance of computation delay and preference on storage. We use the

enhanced CTT-SP algorithm on the linear segments in the large DDG, which

achieves a localised optimisation. The details of algorithms and cost-effectiveness

analysis are described next in this section.

6.3.1 Algorithms and Rules for the Strategy

First, we introduce the enhanced CTT-SP algorithm. Then, we describe the local-

optimisation based storage strategy with the rules of using the enhanced CTT-SP

algorithms in different situations.

90

6.3.1.1 Enhanced CTT-SP algorithm for linear DDG

The linear CTT-SP algorithm is described in Section 5.1.1. In the algorithm, we

have:

 jijiji ddeddDDGdd ,),(,

and the weight of the edge, i.e.  ji dd , , means “the sum of cost rates of dj and

the datasets between di and dj, supposing that only di and dj be stored and rest of the

datasets between di and dj all be deleted”.

To incorporate the delay tolerance attribute T, in the enhanced linear CTT-SP

algorithm, the edge  ji dde , has to further satisfy the condition:














 k

cpu

k
jkikji T

Price

dgenCost
dddDDGddde

)(
)(, .

With this condition, long cost edges may be eliminated from the CTT. It guarantees

that in all storage strategies of the DDG found by the algorithm, for every deleted

dataset di, its regeneration time is smaller than Ti.

To incorporate the users’ preference attribute λ, in the enhanced linear CTT-

SP algorithm, we set the weight of a cost edge in CTT as

    }{)(,
jkikk dddDDGdd kkjjji vdgenCostydd 

In Figure 6.4, we demonstrate a simple example of constructing the CTT for a

DDG that only has three datasets by the enhanced linear CTT-SP algorithm

supposing that all the edges satisfy the computation delay tolerance.

91

y1*λ1

d1 d2 d3

(x1 , y1 ,v1) (x3 , y3 ,v3)(x2 , y2 ,v2)

x1v1+y2*λ2

d1 d2 d3ds de

x3v3

x2v2+y3*λ3

x2v2+(x2+x3)v3

x1v1+(x1+x2)v2+(x1+x2+x3)v3

x1v1+(x1+x2)v2+y3*λ3

y2*λ2 y3*λ3 0

DDG

CTT

Data dependency:

Cost edge:

Start
Dataset

End
Dataset

Figure 6.4 An example of constructing CTT by the enhance CTT-SP algorithm

Based on the discussion above, we give the pseudo code of the enhanced

linear CTT-SP algorithm in Figure 6.5. From the pseudo code, we can see that for a

linear DDG with n datasets, we have to add a magnitude of n2 edges to construct the

CTT (lines 1-2). In this enhanced linear CTT-SP algorithm, before actually creating

an edge (line 9), we check whether this edge can satisfy the condition of users’

tolerance of regeneration time delay (lines 3-8). Next, we calculate the weight of the

edges (lines 10-17), where we add the users’ preference attribute λ (line 16). For the

longest edge, the complexity of calculating its weight is O(n2) (lines 11-15), so a total

of O(n4). Next, the Dijkstra shortest path algorithm has the time complexity of O(n2)

(line 18). Hence, the enhanced linear CTT-SP algorithm also has a worst case time

complexity of O(n4), and by adding the two new attributes, the algorithm can find the

MCSS of linear DDG that satisfies users’ tolerance of computation delay and

preference on storage.

92

Algorithm: Enhanced Linear CTT-SP

Input: start dataset ds; end dataset de;

a linear DDG; //Including ds and de

Output: S; //MCSS of the DDG

SCR; //Minimum cost benchmark

for (every dataset di in DDG) //Create CTT

 for (every dataset dj, where)

genCost = 0;

for (every dataset du, where)

 genCost = genCost + xu ;

if (genCost/Pricecpu > Tj-1)

 break for;

else

 Create //Create an edge

 weight = 0;

 for (every dataset dk, where)

 genCost = 0;

 for (every dataset dh, where)

 genCost = genCost + xh ;

 weight = weight + yj*λj;

 Set //Set weight to an edge

Pmin<ds, de> = Dijkstra_Algorithm (ds, de, CTT);

S = set of datasets that Pmin<ds, de> traversed;

Return S, SCR;

;,  ji dde

  ;* kk vgenCostxweightweight 

;, weightdd ji 

01.

02.

03.

04.

05.

06.

07.

08.

09.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

i jd d

i k jd d d 

i h kd d d 

i u jd d d 

  ;
i id DDG

S
SCR CostR 

Figure 6.5 Pseudo-code of enhanced CTT-SP algorithm

6.3.1.2 Rules in the Strategy

Based on the enhanced linear CTT-SP algorithm, we introduce our local-

optimisation based datasets storage strategy. The philosophy is to derive localised

minimum costs instead of a global one with low time complexity for the strategy.

The strategy contains the following four rules:

1. Given a general DDG, the datasets to be stored first are 1) the ones that users

have no tolerance of computation delay on them and 2) the ones that users

choose to store.

2. Then, the DDG is divided into separate sub DDGs by the stored datasets. For

every sub DDG, if it is a linear one, we use the enhanced CTT-SP algorithm to

find its storage strategy; otherwise, we find the datasets that have multiple

direct predecessors or successors, and use these datasets as the partitioning

points to divide it into sub linear DDG segments, as shown in Figure 6.6. Then

93

we use the enhanced linear CTT-SP algorithm to find their storage strategies.

This is the essence of local optimisation.

3. When new datasets are generated in the system, they will be treated as a new

sub DDG and added to the old DDG. Correspondingly, its storage status will

be calculated in the same way as the old DDG.

4. When a dataset’s usage rate is changed (by either system administrator or

users), we will re-calculate the storage status of the sub linear DDG that

contains this dataset.

...

...

...

...

Sub linear DDG1

Sub linear DDG3

Sub linear DDG2

Sub linear DDG4

Partitioning

point dataset

Partitioning

point dataset

Figure 6.6 Dividing a DDG into sub linear DDGs

In the strategy introduced above, the computation time complexity is well

controlled within O(m*nl
4) by dividing the general DDG into sub linear DDG

segments, where m is the number of the sub linear DDGs and nl is the number of

datasets in the sub linear DDG segments. Hence our strategy has a very reasonable

computation complexity at runtime of the system which depends on the size of the

sub linear DDGs. The efficiency of running the strategy will be evaluated in Section

7.3.2. Meanwhile, by utilising the CTT-SP algorithm, we guarantee that every sub

linear DDG segment in the general DDG is stored with its MCSS, hence achieves the

local optimisation.

6.3.2 Cost-Effectiveness Analysis

To analyse the cost-effectiveness of the local-optimisation based storage strategy,

we need the following theorem.

94

Theorem 6.2: Given a DDG and assume S be the MCSS of the DDG. If Sd p 

and dp divides the DDG into:

 

 










kpkk

pjjj

ddDDGddDDG

ddDDGddDDG

2

1

,

then S1 and S2 are the MCSSs of DDG1 and DDG2 respectively, where

11 DDGSS  and 22 DDGSS  .

Based on Theorem 6.2, we analyse the difference between the cost rate of

merging two linear DDG segments together by our strategy and the minimum cost

rate (i.e. the benchmark addressed in Chapter 5).

Assume that linear DDG1 with datasets {d1, d2 … du} be stored with the

minimum cost strategy S1, which is calculated by the CTT-SP algorithm, and linear

DDG2 with datasets {d'1, d'2 … d'v} is added after DDG1, as shown in Figure 6.7. We

assume that S be the MCSS of the merged DDG.

d'1 d'2 ...

DDG1

dud2 dk...

DDG2

d1 d'vdk+1

Figure 6.7 Two merging DDG_LSs

According to the local-optimisation based strategy, we calculate the storage

strategy S2 of DDG2 separately, also by the CTT-SP algorithm. There are two

situations as follows:

1) If the last dataset du in DDG1 is a stored dataset, the cost rate of the two

merged DDGs in our strategy is the minimum cost rate, where

     
SDDGDDGd iSDDGd iSDDGd i iii

RCostRCostRCost   
21

2
2

1
1  .

This can be proved by directly utilisation of the definition of SCR (Formula (4.4) in

Section 4.3). Hence, local-optimisation based strategy is the MCSS of the DDG in

this situation.

95

2) If the last dataset du in DDG1 is a deleted dataset, as shown in Figure 6.7,

the CTT-SP algorithm on DDG2 will start from dk, which is the last stored dataset in

DDG1. Hence we have the MCSS 2S  of the set of datasets after dk, which is

 2 1 2{ () }i i k iDDG d d DDG DDG d d      .

Because DDG1 is stored with the minimum cost strategy and dk is a stored dataset,

from Theorem 6.2, we can get 1S  which is the MCSS of the set of datasets before dk,

which is

}{ 11 kiii ddDDGddGDD 

Hence, the difference of the cost rate between our strategy and the minimum cost

strategy of the merged DDG is:

     

 
Skk

SDDGDDGd iSGDDd ikSGDDd i

RCosty

RCostRCostyRCost
iii



   212211 

This is because 1S  and 2S  are the minimum cost strategies of 1GDD  and 2GDD  .

Furthermore because dk is a deleted dataset according to the minimum cost strategy

S of the merged DDG (if dk is a stored dataset, then 1 2S S S   according to

Theorem 6.2), we can come to a conclusion that the difference of the cost rate

between our strategy and the minimum cost strategy is less than

 kkk vdgenCosty )(

For more complex scenarios of merging DDGs in our strategy, as indicated in

Figure 6.8, we have similar conclusions. In Section 7.3.1, we will use experiment

results to further demonstrate the cost-effectiveness of the local-optimisation based

storage strategy.

96

d'1 d'2 ...

DDG1

dudjd2

DDG2

d1

d'v

dj+1

d'1 d'2 ...

DDG1

dwdj

...

...

DDG2

d1
d'v

dj+1

dudi ...di+1

Figure 6.8 Two more scenarios of merging linear DDGs

6.4 Summary

In this chapter, we present two novel datasets storage strategies that can be

facilitated at runtime in the cloud. Besides taking into consideration of users’

tolerance of computation delay and preference of storing some datasets at higher

cost, the two strategies provide different levels of efficiency and cost-effectiveness

to meet the requirements of different applications. Specifically, the cost rate based

strategy is highly efficient with fairly reasonable cost-effectiveness, and the local-

optimisation based strategy is highly cost-effective with very reasonable efficiency.

97

Chapter 7

Experiments and Evaluations

In this chapter, we evaluate the proposed benchmarking approaches and storage

strategies by experiments on our SwinCloud environment [60]. In Section 7.1, we

introduce SwinCloud, which is a private cloud in Swinburne University of

Technology. In Sections 7.2 and 7.3, we conduct general random experiments to

evaluate the overall performance of our benchmarking approaches and storage

strategies presented in Chapters 5 and 6 respectively. In Section 7.4, we describe a

specific case study of the real world pulsar searching application which is the

motivating example described in Section 3.1, in which our benchmarking

approaches and storage strategies are illustrated.

7.1 Experiment Environment

SwinCloud is a cloud computing simulation environment. The architecture of

SwinCloud is depicted in Figure 7.1. It is built on the computing facilities in

Swinburne University of Technology and takes advantage of the existing SwinGrid

systems [85]. For example, the Swinburne Astrophysics Supercomputer Node

(http://astronomy.swin.edu.au/supercomputing/) comprises 145 Dell Power Edge

1950, each with: 2 quad-core Clovertown processors at 2.33 GHz (each processor is

64-bit low-volt Intel Xeon 5138), 16 GB RAM and 2 x 500 GB drives. We install

VMWare [6] on SwinGrid, so that it can offer unified computing and storage

resources. Utilising the unified resources, we set up data centres that can host

http://astronomy.swin.edu.au/supercomputing/

98

applications. In the data centres, Hadoop [3] is installed that can facilitate the Map-

Reduce [32] computing paradigm and distributed data management.

Swinburne Computing Facilities

Astrophysics
Supercomputer

VMware

Cloud Simulation Environment

Data Centres with Hadoop

 GT4

 SuSE Linux

Swinburne
CS3

…...

…...

 GT4

 CentOS Linux

Swinburne
ESR

…...

…...

 GT4

 CentOS Linux

Figure 7.1 SwinCloud Infrastructure

7.2 Evaluation of Minimum Cost Benchmarking Approaches

In this section, we evaluate the minimum cost benchmarking approaches proposed in

Chapter 5 by conducting general random simulations on SwinCloud. In Section

7.2.1, we evaluate the cost-effectiveness of the minimum cost benchmark by

comparing it with some intuitive storage strategies. In Section 7.2.2, we evaluate the

efficiency of the two different benchmarking approaches.

7.2.1 Cost-Effectiveness Evaluation of the Minimum Cost Benchmark

To evaluate the cost-effectiveness of the minimum cost benchmark, we compare it

with some representative and intuitive storage strategies, which are:

99

1. Store none dataset: delete all the generated datasets in the cloud, and regenerate

them whenever needed.

2. Store all datasets: store all the application datasets in the cloud.

3. Generation cost based strategy: store the datasets that incur the highest

generation costs.

4. Usage based strategy: store the datasets that are most frequently used.

For evaluation, we generate random DDGs and derive the minimum cost

benchmark via the benchmarking approaches. We run the above four strategies on the

DDG and compare the application costs with the minimum cost benchmark. From the

large number of test cases in our experiment, we choose and present one as the

representative in this sub-section.

In this case, we use a DDG with 50 datasets, each with a random size ranging

from 100GB to 1TB. The dataset generation time is also random, ranging from 1

hour to 10 hours. The usage frequency is again random, ranging from once per day to

once per 10 days. The prices of cloud services follow Amazon clouds’ cost model, i.e.

$0.1 per CPU instance-hour for computation and $0.15 per gigabyte per month for

storage. We run our benchmarking algorithm on this DDG to calculate the MCSS and

the minimum cost benchmark, where 9 of the 50 datasets are chosen to be stored. We

evaluate this minimum cost benchmark by comparing the total application cost of the

other storage strategies introduced above.

Figure 7.2 shows the comparison of the minimum cost benchmark with the

generation cost based strategy. We compare the total application costs over 30 days

of the strategies that store different percentages of datasets based on the generation

cost, and the minimum cost benchmark. The two extreme strategies of storing all the

datasets and deleting all the datasets are also included. In Figure 7.2, we can clearly

see the cost effectiveness of different strategies comparing with the benchmark. In

this case, storing top 10% generation cost datasets turns out to be the most cost-

effective strategy, which is still much higher (about 170%) than the minimum cost

benchmark.

100

Figure 7.2 Cost-effectiveness evaluation by comparing with the generation cost

based strategy

Figure 7.3 Cost-effectiveness evaluation by comparing with the usage based

strategy

Then we compare the minimum cost benchmark with the usage based strategy.

We still run simulations of strategies that storing different percentages of datasets

based on their usage frequencies. Figure 7.3 shows the comparison of the total

application costs over 30 days, where we can clearly see the cost effectiveness of

different strategies comparing with the benchmark. Also, the strategy of storing top

10% often used datasets turns out to be the most cost-effective one in this case.

Comparing to Figure 7.2, although the usage based strategy is more cost-effective

than generation cost based strategy, it is again still much higher (about 70%) than the

minimum cost benchmark.

101

From the experiments above, we can see the cost-effectiveness of the

minimum cost benchmark, which serves very well as the benchmark for evaluating

any storage strategies.

7.2.2 Efficiency Evaluation of Two Benchmarking Approaches

In Chapter 5, we develop two different benchmarking approaches according to

different users’ requirements, i.e. static on-demand approach and dynamic on-the-fly

approach. In this sub-section, we evaluate the efficiency of these two approaches.

In the simulation, the same random parameters in Section 7.2.1 are used to

generate the DDG_LS with 50 datasets. The prices of cloud services again follow

Amazon clouds’ cost model. To evaluate the two approaches, we start from one

DDG_LS and gradually add new DDG_LSs to it (i.e. from m=1 to m=20). For the

DDGs with different sizes, we calculate the updated benchmark of the whole DDG

with both the static on-demand benchmarking approach and the dynamic on-the-fly

benchmarking approach. Figure 7.4 shows the comparison of CPU time consumed by

the two benchmarking approaches.

From Figure 7.4 we can see that the on-demand benchmarking approach is

not efficient to keep the minimum cost benchmark updated at runtime. The

computation time increases dramatically as the datasets number increases. This is

because whenever the cost is changed in the cloud, either because of the new datasets

generation or the changes of existing datasets’ usage frequencies, we need to call the

CTT-SP algorithm (see Section 5.1.3) for the whole DDG to calculate the new

minimum cost benchmark. In contrast, for the dynamic benchmarking approach, as

we can see from the zoom-in chart (bottom plane) in Figure 7.4, the time for

calculating new minimum cost benchmark is in the magnitude of seconds in general,

hence much more efficient. This is because we take advantage of the pre-calculated

PSSs that are saved in the hierarchy (see Section 5.2.4) and only need to recalculate

the PSS of the local DDG_LS to derive the new benchmark. Hence, the complexity

of calculating the new benchmark is more or less independent of the size of the DDG.

102

Figure 7.4 Efficiency comparison of two benchmarking approaches

More specifically, the zoom-in chart (bottom plane) in Figure 7.4 shows that

the time for calculating new minimum cost benchmark in the situation of datasets’

usage frequencies changing is less than new datasets generation. This is because

when new datasets are generated, we need to create a new CTT for them to calculate

the new PSS, whereas when existing datasets’ usage frequencies change in a

DDG_LS, we only need to update the weights of the changed edges in the existing

CTT instead of creating a new one to recalculate the PSS.

From Figure 7.4, we also note that after the calculation of new benchmark,

the update of the PSS hierarchy takes some computation time. More specifically, the

computation time of updating the PSS hierarchy for new datasets generation

increases in a linear manner as the number of DDG_LS grows, because we need to

add a new PSS to every level of the PSS hierarchy, where the number of the levels

equals the number of segments in the whole DDG as presented in Section 5.2.4.2

However, in the situation of datasets’ usage frequencies changing, the computation

time increases faster. This is because the newly generated datasets only have

103

preceding datasets in the original DDG, while the corresponding DDG_LS of the

datasets whose usage frequencies are changed has both preceding and succeeding

datasets in the original DDG. According to the rules of updating the PSS hierarchy

presented in Section 5.2.4.2 (see Figure 5.25), we have to recalculate more than one

PSS in every level of the hierarchy in the datasets’ usage frequencies changing

situation.

Next, we conduct more specific experiments to analyse the impact on the

efficiency of the benchmarking approaches. For the static on-demand approach, the

efficiency depends on the number of datasets in the DDG, which is already illustrated

in Figure 7.4. Hence, we mainly investigate the dynamic on-the-fly approach.

PSS is the basis of the dynamic on-the-fly approach, where the efficiency of

calculating PSSs plays a decisive role in the overall performance. As discussed in

Section 5.2.3.2, the time complexity of calculating PSS is determined by the number

of dimensions of the PSS and the number of MCSSs in the PSS. The number of

dimensions of a PSS only depends on the structure of the DDG, whereas the number

of MCSSs in a PSS may depend on more factors. Hence we mainly investigate the

latter, i.e. which factors impact the MCSSs in PSS and how they impact the

efficiency of calculating PSS. We also briefly analyse the impact of PSS’s

dimensions on the efficiency at the end of this sub-section.

Figure 7.5 contains the number of MCSSs in the PSSs generated by the

experiments demonstrated in Figure 7.4, where Figure 7.5 (a) shows that as the size

of DDG increases, the number of MCSSs in its PSS does not increase in general, and

Figure 7.5 (b) further shows 8 MCSSs in the PSS of a DDG_LS with 50 datasets in

detail. From the figure we can see that the number of MCSSs in the PSS is 1) not

correlated to, and 2) much smaller than the number of datasets in the DDG_LSs. This

important fact guarantees the efficiency of the on-the-fly benchmarking approach,

which is based on the algorithm of calculating PSSs.

104

Figure 7.5 MCSSs in PSS

Next, in the following experiments, we investigate the parameters of the DDG

that impact the number of MCSSs in the PSS and their impacts on the efficiency of

calculating the PSS. First, we investigate the datasets’ generation time. To

demonstrate the impact, for every dataset in a DDG_LS, we multiply its generation

time by a modification parameter (i.e. 0.5~2), which makes the generation time

changing from half to double of its original value, with other parameters unchanged.

With different modification parameters, we generate different modified DDG_LSs

and calculate their PSSs. Figure 7.6 (a) demonstrates the number of MCSSs in the

PSSs and corresponding CPU times of the calculation, where we can see that as the

modification parameter increases (i.e. the generation time of datasets increase), the

number of MCSSs in the PSS decreases. Furthermore, because of the fact that the

smaller the datasets generation time is, the more datasets in the DDG_LS will be

stored to reduce the total application cost. Therefore, we reach a conclusion that the

more datasets in DDG_LS are stored, the fewer MCSSs are in the PSS. Figure 7.6 (a)

also shows that as the number of MCSSs changes, the CPU time of calculating PSS

does not change very much. Next, we investigate the datasets’ sizes and usage

105

frequencies to see their impacts on the PSS. With same experiments for Figure 7.6 (a),

we get similar results which are shown in Figure 7.6 (b) and (c). Based on these

experiments we can see that for randomly generated DDG_LSs with different

parameters, the PSSs can be efficiently calculated where the change of the parameters

has limited impact on the efficiency of our approach.

Figure 7.6 Impacts of DDG’s parameters on the performance of the dynamic

on-the-fly benchmarking approach

Another factor that may impact on the efficiency of calculating PSS is the

number of dimensions of the PSS. As discussed in Section 5.2.3.2, the impact on time

complexity of the PSS dimension number is in the same magnitude as the MCSSs

number in the PSS (i.e. O(nd
3)). Furthermore, in real applications the number of

dimensions of the PSS (i.e. the branches in the DDG) is usually not very high. Hence

106

the efficiency impact is not significant on calculating the PSS. In Section 7.4, we will

utilise our benchmarking approaches in a pulsar searching application that has a

DDG_LS.

7.3 Evaluation of Cost-Effective Storage Strategies

In this section, we evaluate the two cost-effective storage strategies proposed in

Chapter 6, i.e. the cost rate based strategy and the local-optimisation based strategy.

In Section 7.3.1, we evaluate the cost-effectiveness of the two strategies by

comparing to the minimum cost benchmark. In Section 7.3.2, we evaluate the

efficiency of the two proposed storage strategies.

7.3.1 Cost-Effectiveness of Two Storage Strategies

To be consistent, we use the same DDG randomly generated with the parameters in

Section 7.2.1 to conduct the experiment. We run the cost rate based strategy and

local-optimisation based strategy on the DDG_LS with 50 datasets, and compare the

application cost with the minimum cost benchmark and the intuitive storage

strategies introduced in Section 7.2.1. To demonstrate the cost-effectiveness of the

strategies comparing to the minimum cost benchmark, we do not consider users’

tolerance of computation delay and storage preference initially. Figure 7.7 illustrates

the comparison of total application cost over 30 days.

From Figure 7.7 we can see that the cost rate based strategy is more cost

effective than the generation cost based strategy and usage based strategy on storing

the DDG_LS. The local-optimisation based strategy stores the datasets with the same

cost with the minimum cost benchmark. This is because we treat the DDG_LS as the

entire segment and directly utilise the enhanced CTT-SP algorithm on it. Next we do

more simulations on larger general DDGs to further demonstrate the cost-

effectiveness of the two proposed storage strategies.

107

Figure 7.7 Comparison of the total cost for different storage strategies

We still use the same random parameters to generate the DDG_LS with 50

datasets. In the same way as Section 7.2.2, we start from one DDG_LS and gradually

add new DDG_LSs to it. Hence for the local-optimisation based strategy, every

DDG_LS is a segment to utilise the enhanced CTT-SP algorithm. Different from the

former simulations, we do not accumulate the total cost anymore; instead, we

calculate the cost rate (average daily cost over 30 days) of storing all the datasets.

This allows us to incorporate more simulation results in one figure for the better

comparison purpose. The results are illustrated in Figure 7.8.

Figure 7.8 Comparison of the cost rate for different storage strategies

Figure 7.8 shows the increases of the cost rates of different strategies as the

number of datasets grows in the DDG. The results are consistent with formal

108

experiments, where we can see the “store none” and “store all” strategies are very

cost ineffective, since their cost rates grow fast as the datasets number grows. The

cost rate based strategy is better than both the generation cost based strategy and

usage based strategy. The local-optimisation based strategy is the most cost-effective

datasets storage strategy, which is very close to the minimum cost benchmark. Hence

the local-optimisation based strategy is highly cost effective.

As discussed in Section 6.1, cost is not the only issue for storing application

datasets in the cloud, and users may have a certain degree of tolerance for data

accessing delay and have preference of storing some datasets with a higher cost. The

storage of these datasets may well incur extra application cost, hence has some

impact on the cost-effectiveness of the storage strategies. The more datasets users

choose to store, the less datasets the storage strategy can apply to, hence the datasets

storage strategy would become less cost effective. Next, we ran another set of

simulations on a 200 datasets DDG with different percentages of the datasets that are

stored in the cloud based on users’ preferences rather than cost. The rest of the

parameter setting is the same as previous simulations. The results are shown in

Figure 7.9.

Figure 7.9 Impact on cost-effectiveness of the storage strategies

From Figure 7.9 we can see that besides the two extreme strategies, i.e. store

none dataset and store all datasets, all of the rest four strategies gradually become

more cost ineffective as the percentage of users stored datasets increases. However,

109

the cost rate based strategy and local-optimisation based strategy proposed in this

thesis are still more cost-effective than others.

7.3.2 Efficiency Evaluation of Two Storage Strategies

The storage strategies are designed for runtime utilisation in the cloud, hence they

need to be efficient. In this sub-section, we evaluate the efficiency of the two

proposed strategies by comparing their execution time to the original CTT-SP

algorithm used for benchmarking.

To be consistent, we still use the randomly generated DDG in Figure 7.8’s

experiment for this simulation, i.e. the large general DDG combined by DDG_LSs

with 50 datasets (nl=50). We run the cost rate based strategy and the local-

optimisation based strategy on the DDGs and compare their CPU time with the CTT-

SP algorithm used for benchmarking. For the local-optimisation based strategy, the

computation time not only depends on the number of datasets in the DDG, but also

the partition of the DDG. Hence, we incorporate another two sets of simulations with

different partition methods of the DDG, i.e. 1) we use DDGs that only have 5 linear

segments (m=5) and let the number of datasets in each segment grow; 2) we control

the partition of the DDGs that every segment has at most 10 datasets (nl=10) and let

the number of segments grow. The simulation results are shown in Figure 7.10.

Figure 7.10 Efficiency comparisons of different storage strategies

110

In Figure 7.10, as the number of datasets increases, we can see that the

original CTT-SP algorithm is not efficient, where it takes more than 200 seconds to

find the MCSS for the DDG with 200 datasets. Hence it can only be used for on-

demand benchmarking. The cost rate based strategy is highly efficient. The local-

optimisation based strategy is not as efficient as the cost rate based strategy,

especially when the number of datasets in the segment is very large.

7.4 Case Study of Pulsar Searching Application

As introduced in Section 3.1, pulsar searching is a typical scientific application in

astrophysics. In this section, we demonstrate how the pulsar case utilises our

benchmarking approaches and storage strategies on storing the generated application

datasets.

In the pulsar case, during the workflow’s execution on analysing ONE PIECE

of the observation data, six datasets are generated. The DDG of these datasets is

shown in Figure 7.11, as well as the sizes and generation times of these datasets.

From Swinburne astrophysics research group, we understand that the “de-dispersion

files” are the most useful generated dataset. Based on these files, many accelerating

and seeking methods can be used to search pulsar candidates. Based on the scenario,

we set the “de-dispersion files” to be used once every 4 days, and the rest of the

datasets to be used once every 10 days. Furthermore, we also assume that the prices

of cloud services follow Amazon clouds’ cost model.

Raw beam

data

Accelerated

De-

dispersion

files

De-

dispersion

files

Extracted &

compressed

beam
Seek

results files

Candidate

list XML files

Size:
Generation time:

20 GB
245 mins<1 min80 mins300 mins790 mins27 mins

25 KB1 KB16 MB90 GB90 GB

d1 d6d5d4d3d2

Figure 7.11 DDG of pulsar searching application

111

7.4.1 Utilisation of Minimum Cost Benchmarking Approaches

The utilisation of the static on-demand benchmarking approach is straight forward.

We directly create the CTT on the DDG and find the MCSS, which is storing d2, d4,

d6 and deleting d1, d3, d5. The minimum cost benchmark is $0.51 per day.

Next we demonstrate the utilisation of the dynamic on-the-fly benchmarking

approach. As described in Section 3.1, there are two phases in execution of the

workflow to generate the DDG: Files Preparation and Seeking Candidates, where in

each phase three datasets are generated as a DDG_LS. Figure 7.12 demonstrates the

PSS calculation of the two DDG_LSs and the merging process for the PSS of the

whole DDG segment.

X

V

o

S1

S4
S3

S2

0.0230

(0.2394, 0.0277)

0.9048

(0.9048, 0.0222)

(1/h)

($)

MCSS Stored Datasets

S1 d2

S2 d1, d2

S3 d3

S4 d1, d3

Partition lines:

L<S1,S2>: 0.0042X - 0.0038 = 0

L<S1,S3>: 0.01X - 0.5V + 0.0115 = 0

L<S1,S4>: 0.0042X + 0.5V - 0.0149 = 0

L<S2,S4>: 0.5V - 0.0111 = 0

L<S3,S4>: 0.0142X - 0.0034 = 0

Raw

beam

data

Accelerated
De-

dispersion
files

De-
dispersion

files

Extracted &
compressed

beam

Seek
results

files

Candidate

list
XML

files

Size:
Generation time:

20 GB
245 mins<1 min80 mins300 mins790 mins27 mins

25 KB1 KB16 MB90 GB90 GB

DDG_LS1

PSS1

d1 d6d5d4d3d2

Usage Frequency: d2 : 1 / 4day; d1 , d3 , d4 , d5 , d6 : 1 / 10day

DDG_LS2

X

V

o

(1/h)

($)

PSS2

Only one MCSS in

this PSS,

i.e. storing d4 and d6 .

Hence, there is no

partition line.

X

V

o

(1/h)

Merge

S2S1

0.9048

PSS MCSS Stored Datasets

S1 d2, d4 , d6

S2 d1, d2, d4 , d6

Partition lines:

L<S1,S2>: 0.0042X - 0.0038 = 0

($)

Figure 7.12 PSSs of a DDG segment in the pulsar application

112

When datasets d1, d2, d3 are generated as DDG_LS1, we calculate PSS1. Next,

when datasets d4, d5, d6 are generated as DDG_LS2, we first calculate its PSS,

denoted as PSS2, then we locate the corresponding MCSS from PSS1 and form the

MCSS of the whole DDG segment which stores datasets d2, d4, d6. Next we calculate

the cost rate of the MCSS, which is again $0.51 per day for storing these six datasets.

This cost rate is the minimum cost benchmark. After we derive the new benchmark,

we need to merge PSS1 and PSS2 to derive the PSS of the whole DDG segment,

which is saved in the hierarchy for further use.

7.4.2 Utilisation of Cost-Effective Storage Strategies

The storage strategies are utilised at runtime in the cloud. As time goes on,

researchers may reuse the datasets and conduct new re-analysis on them, where new

datasets are generated. Base on the scenario, we set that new datasets are generated

on the 10th day and 20th day, indicated as sub DDG1 and sub DDG2 in Figure 7.13.

We run the two proposed cost-effective storage strategies on the DDG and

compare the total application cost with the same storage strategies previously

presented and minimum cost benchmark. The simulation results are shown in Figure

7.14.

Raw beam

data

Accelerated

De-

dispersion

files

De-

dispersion

files

Extracted &

compressed

beam

Seek

results

files

Candidate

list XML files

Size:
Generation time:

20 GB

245 mins
1 mins

80 mins300 mins790 mins
27 mins

25 KB
1 KB

16 MB90 GB90 GB

Accelerated

De-

dispersion

files

Seek

results

files

Candidate

list XML files

Seek

results

files

Candidate

list
XML files

245 mins1 mins80 mins300 mins
25 KB1 KB16 MB90 GB

245 mins1 mins80 mins
25 KB1 KB16 MB

Sub DDG1

Sub DDG2

Figure 7.13 DDG of the pulsar application with new datasets generation

113

From Figure 7.14 we can see that 1) the cost of the “store none dataset”

strategy is a fluctuated line because in this strategy all the costs are computation cost

of regenerating datasets. For the days that have fewer requests of the data, the cost is

low, otherwise, the cost is high; 2) the cost of the “store all datasets” strategy is a

polyline, because all the datasets are stored in the system that is charged at a fixed

rate, and the inflection points only occur when new datasets are generated; 3-4) the

costs of the generation cost based strategy and the usage based strategy are in the

middle band, which are lower than the “store none dataset” and “store all datasets”

storage strategies. The cost lines are slightly fluctuated because the datasets are

partially stored; 5-6) the cost rate based strategy has a good performance and the

most cost-effective datasets storage strategy is the local-optimisation based strategy

which achieves storing the datasets with the minimum cost in this pulsar searching

application. Table 7.1 shows how the datasets are stored with different strategies in

detail.

Figure 7.14 Cost-effectiveness comparisons of different storage strategies for

storing pulsar case DDG

Since the pulsar DDG shown in Figure 7.13 is not complicated, we can do

some intuitive analyses on how to store the generated datasets. For the dataset of

Accelerated De-dispersion Files, although its generation cost is quite high,

comparing to its huge size, it is not worth storing them in the cloud. However, in the

generation cost based strategy, these files are stored. For the final XML Files, they are

114

not very often used, but comparing to their high generation cost and small size, they

should be stored. However, in the usage based strategy, these files are not stored. For

the dataset of De-dispersion Files, by comparing its own generation cost rate and

storage cost rate, the cost rate based strategy did not store it at the beginning, but

store it after it is used in the regeneration of other datasets. In this case, the local-

optimisation based strategy is the most cost-effective datasets storage strategy for

storing the datasets, which achieves the minimum cost storage strategy.

Table 7.1 Storage status of datasets in the pulsar application with different

storage strategies

 Datasets

 Strategies

Extracted

beam

De-dispersion

files

Accelerated

de-dispersion

files

Seek

results

Pulsar

candidates

XML

files

1) Store none dataset Deleted Deleted Deleted Deleted Deleted Deleted

2) Store all datasets Stored Stored Stored Stored Stored Stored

3) Generation cost

based strategy
Deleted Stored Stored Deleted Deleted Stored

4) Usage based

strategy
Deleted Stored Deleted Deleted Deleted Deleted

5) Cost rate based

strategy
Deleted

Stored

(deleted

initially)

Deleted Stored Deleted Stored

6) Local-optimisation

based strategy
Deleted Stored Deleted Stored Deleted Stored

7) Minimum cost

benchmark
Deleted Stored Deleted Stored Deleted Stored

7.5 Summary

In this Chapter, we demonstrate the experiment results that we conducted on our

SwinCloud environment to evaluate the proposed minimum cost benchmarking

approaches and cost-effective datasets storage strategies presented in this thesis.

For the minimum cost benchmarking approaches, first, by comparing with

some intuitive storage strategies, we demonstrate the cost-effectiveness of the

115

minimum cost benchmark, and then by comparing the runtime efficiency of the two

proposed approaches, i.e. static on-demand approach and dynamic on-the-fly

approach, we further demonstrate that two approaches are suitable for different

applications with different requirements of benchmarking requests.

For the cost-effective datasets storage strategies, we compare them with the

minimum cost benchmark to evaluate their cost-effectiveness. Then we evaluate the

efficiency of the strategies by comparing their execution time with the benchmarking

approaches. The experiment results indicate that the two proposed strategies have

different features, namely, the cost rate based strategy is highly efficient with fairly

reasonable cost-effectiveness and the local-optimisation based strategy is highly cost-

effective with very reasonable efficiency. They can be utilised in different situations

according to the requirements of the applications.

At last, we present the case study conducted on the pulsar searching

application in Astrophysics. By utilising our benchmarking approaches and storage

strategies in this real world application, we successfully demonstrate the

practicability of our research.

116

Chapter 8

Conclusions and Future Work

In this chapter, we summarise the whole thesis. Section 8.1 summarises the contents

of the whole thesis. Section 8.2 outlines the main contributions of this thesis. Finally,

Section 8.3 points out the future work.

8.1 Summary of This Thesis

The research objective described in this thesis is to investigate the issue of

computation and storage trade-off in the cloud in order to help both users and

service provider to bring the cost down dramatically when deploying the

computation and data intensive scientific applications with the pay-as-you-go model.

The thesis was organised as follows:

 Chapter 1 introduced the scientific applications in the cloud, which is the

background of this research. Chapter 1 also described the aims of this work,

the key issues to be addressed in this thesis and the primary structure of this

thesis.

 Chapter 2 overviewed the related literatures on scientific applications in grid

and cloud systems and analysed their limitations. Specifically, first, we

overviewed the data management of scientific applications in traditional

distributed systems, e.g. grid systems. Next, we reviewed some related work

on deploying scientific applications in the cloud and demonstrate the cost-

effectiveness of using the cloud. Furthermore, we pointed out that this

117

research is a step forward based on the existing work, which investigates

how to reduce the application cost in the cloud.

 Chapter 3 presented a motivating example of pulsar searching from

Astrophysics. Based on the example, we analysed the problems of deploying

scientific applications in the cloud and defined the scope of this research.

Based on the analysis, we present the detailed research issues of this thesis: 1)

cost model for datasets storage in the cloud; 2) minimum cost benchmarking

approaches; and 3) cost-effective datasets storage strategies.

 Chapter 4 described a new cost model for datasets storage in the cloud. First

we introduced a classification of the application data in the cloud, namely

original data and generated data, and proposed the important concept of Data

Dependency Graph (DDG). Then, we presented the cost model for datasets

storage based on DDG, where the total application cost defined in this thesis

is the sum of the computation cost for regenerating datasets and the storage

cost for generated datasets. The cost model represents the trade-off between

computation and storage, which was investigated in this thesis to reduce the

application cost in the cloud.

 Chapter 5 described two novel minimum cost benchmarking approaches.

This chapter is the core of this thesis, because benchmarking is to calculate

the minimum cost of storing the application datasets in the cloud, which

achieves the best trade-off between computation and storage. Most of the

important theorems and algorithms were presented in this chapter, based on

which we proposed two benchmarking approaches (i.e. static on-demand

approach and dynamic on-the-fly approach) according to the different

requirements of applications in the cloud.

 Chapter 6 described two innovative cost-effective datasets storage strategies.

By utilising the trade-off between computation and storage, two cost-

effective datasets storage strategies were designed according to the different

requirements of applications in the cloud, i.e. the cost rate based strategy

(highly efficient with fairly reasonable cost-effectiveness) and the local-

118

optimisation based strategy (highly cost-effective with very reasonable

efficiency).

 Chapter 7 described the experiments and evaluations of this research. First,

general random experiments demonstrated that the minimum cost

benchmarking approaches can very well evaluate the cost-effectiveness of

storage strategies and the proposed cost-effective storage strategies can also

be utilised in different situations according to different application

requirements in the cloud. Then, the case study on the specific pulsar

searching application further demonstrated the practicability of our

benchmarking approaches and storage strategies.

In summary, wrapping up all chapters, we can conclude that with the research

results in this thesis, i.e. cost model, benchmarking approaches and storage strategies,

the application cost in the cloud can be significantly reduced.

8.2 Key Contributions of This Thesis

The significance of this research is that we have investigated a brand new and niche

issue in cloud computing, i.e. the trade-off between computation and storage of data

in scientific applications. Because of the wide utilisation of the pay-as-you-go model,

application cost becomes an important issue concerned for deploying applications in

the cloud. This thesis provided a novel way to reduce the application cost via

achieving the best trade-off of computation and storage in the cloud.

In particular, the major contributions of this thesis are:

1. For the first time, the issue of computation and storage trade-off for scientific

datasets storage in the cloud is comprehensively and systematically

investigated. A brand new cost model for datasets storage is proposed based

on a novel concept of Data Dependency Graph (DDG). This cost model

represents the trade-off between computation and storage in the application

cost.

119

2. For the first time, a static on-demand minimum cost benchmarking approach is

proposed. In this approach, a novel Cost Transitive Tournament Shortest Path

(CTT-SP) based algorithm is designed to calculate the theoretical minimum

application cost of storing the generated datasets in the cloud. This algorithm

solves a seemingly NP-hard problem in polynomial time complexity, i.e.

O(n
9
).

3. For the first time, a dynamic on-the-fly minimum cost benchmarking approach

is proposed. With in-depth investigation of the trade-off between computation

and storage, a novel concept of Partitioned Solution Space (PSS) is proposed.

Based on PSS, we develop an innovative approach that can dynamically derive

the minimum cost benchmark on the fly at runtime in the cloud.

4. For the first time, a cost rate based datasets storage strategy is proposed. This

strategy is highly efficient with fairly reasonable cost-effectiveness, which

contains three new algorithms to handle all situations (i.e. for new datasets,

stored datasets and regenerated datasets) in the cloud to decide the proper

storage status of the application datasets.

5. For the first time, a local-optimisation based datasets storage strategy is

proposed. This strategy is highly cost-effective with very reasonable

efficiency, which contains an enhanced CTT-SP algorithm to decide the

proper storage status of the application datasets.

6. A case study is conducted on a real world scientific application, i.e. pulsar

seraching in Astrophysics. All proposed benchmarking approaches and storage

strategies are utilised in the case study, which demonstrates the practicability

of the research outcomes presented in this thesis.

8.3 Future Work

Based on the current work in this thesis, future work can be conducted from the

following aspects:

120

The current work in this thesis is based on Amazon clouds’ cost model and

assumes that all the application data be stored with a single cloud service provider.

However, sometimes large-scale applications have to run in a more distributed

manner since some application data may be distributed with fixed locations. In these

cases, data transfer is inevitable. In the future, we will incorporate the data transfer

cost into our minimum cost benchmarking and develop more complex cost models.

Furthermore, data placement strategies also need to be investigated in order to

reduce data transfer among data centres.

The current work in this thesis has an assumption that the datasets’ usage

frequencies are obtained from the system log. Models of forecasting dataset usage

frequency can be further studied, with which our benchmarking approaches and

storage strategies can be adapted more widely to different types of applications.

The datasets storage strategies proposed in this thesis are cost effective and

efficient, but not aimed at reaching the minimum cost. Hence more cost-effective

storage strategies can be further investigated in order to achieve the minimum cost

reflected by benchmarking.

121

Bibliography

[1] "Amazon Cloud Services", http://aws.amazon.com/.

[2] "Eucalyptus", http://open.eucalyptus.com/.

[3] "Hadoop", http://hadoop.apache.org/.

[4] "Nimbus", http://www.nimbusproject.org/.

[5] "OpenNebula", http://www.opennebula.org/.

[6] "VMware", http://www.vmware.com/.

[7] I. Adams, D. D. E. Long, E. L. Miller, S. Pasupathy, and M. W. Storer,

"Maximizing Efficiency by Trading Storage for Computation," in Workshop

on Hot Topics in Cloud Computing (HotCloud2009), San Diego, CA, pp. 1-5,

2009.

[8] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C.

Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data

management and transfer in high-performance computational grid

environments," Parallel Computing, vol. 28, pp. 749-771, 2002.

[9] G. Alonso, B. Reinwald, and C. Mohan, "Distributed data management in

workflow environments," in 7th International Workshop on Research Issues

in Data Engineering (RIDE1997) High Performance Database Management

for Large-Scale Applications, pp. 82-90, 1997.

[10] I. Altintas, O. Barney, and E. Jaeger-Frank, "Provenance Collection Support

in the Kepler Scientific Workflow System," in International Provenance and

Annotation Workshop, Chicago, Illinois, USA, pp. 118-132, 2006.

[11] S. Andrew and M. Van Steen, Distributed systems: principles and

paradigms, Prentice-Hall, 2007.

http://aws.amazon.com/
http://open.eucalyptus.com/
http://hadoop.apache.org/
http://www.nimbusproject.org/
http://www.opennebula.org/
http://www.vmware.com/

122

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, "A View of Cloud

Computing," Communication of the ACM, vol. 53, pp. 50-58, 2010.

[13] M. D. d. Assuncao, A. d. Costanzo, and R. Buyya, "Evaluating the Cost-

Benefit of Using Cloud Computing to Extend the Capacity of Clusters," in

18th ACM International Symposium on High Performance Distributed

Computing (HPDC2009), Garching, Germany, pp. 141-150, 2009.

[14] Z. Bao, S. Cohen-Boulakia, S. B. Davidson, A. Eyal, and S. Khanna,

"Differencing Provenance in Scientific Workflows," in 25th IEEE

International Conference on Data Engineering (ICDE2009), Shanghai,

China, pp. 808-819, 2009.

[15] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC Storage Resource

Broker," in IBM Centre for Advanced Studies Conference, Toronto, Canada

pp. 1-12, 1998.

[16] R. Bose and J. Frew, "Lineage Retrieval for Scientific Data Processing: A

Survey," ACM Computing Surveys, vol. 37, pp. 1-28, 2005.

[17] M. Brantner, D. Florescuy, D. Graf, D. Kossmann, and T. Kraska, "Building

a Database on S3," in SIGMOD, Vancouver, BC, Canada, pp. 251-263, 2008.

[18] J. Broberg and Z. Tari, "MetaCDN: Harnessing ‘Storage Clouds’ for High

Performance Content Delivery," in 6th International Conference on Service-

Oriented Computing (ICSoC2008), Sydney, Australia, pp. 730--731, 2008.

[19] A. Burton and A. Treloar, "Publish My Data: A Composition of Services

from ANDS and ARCS," in 5th IEEE International Conference on e-Science

(e-Science2009),, Oxford, UK, pp. 164-170, 2009.

[20] R. Buyya and S. Venugopal, "The Gridbus Toolkit for Service Oriented Grid

and Utility Computing: An Overview and Status Report," in IEEE

International Workshop on Grid Economics and Business Models, Seoul,

Korea, pp. 19-66, 2004.

[21] R. Buyya, C. S. Yeo, and S. Venugopal, "Market-Oriented Cloud Computing:

Vision, Hype, and Reality for Delivering IT Services as Computing Utilities,"

in 10th IEEE International Conference on High Performance Computing and

Communications (HPCC2008), Los Alamitos, CA, USA, pp. 5-13, 2008.

123

[22] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud

Computing and Emerging IT Platforms: Vision, Hype, and Reality for

Delivering Computing as the 5th Utility," Future Generation Computer

Systems, vol. 25, pp. 599-616, 2009.

[23] M. Cai, A. Chervenak, and M. Frank, "A Peer-to-Peer Replica Location

Service Based on A Distributed Hash Table," in ACM/IEEE Conference on

Supercomputing (SC2004), Pittsburgh, USA, 2004.

[24] J. Chen and Y. Yang, "Activity Completion Duration based Checkpoint

Selection for Dynamic Verification of Temporal Constraints in Grid

Workflow Systems," International Journal of High Performance Computing

Applications, vol. 22, pp. 319-329, 2008.

[25] J. Chen and Y. Yang, "Temporal Dependency based Checkpoint Selection for

Dynamic Verification of Temporal Constraints in Scientific Workflow

Systems," ACM Transactions on Software Engineering and Methodology,

vol. 20, 2011.

[26] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C.

Kesselman, P. Kunszt, M. Ripeanu, B. Schwartzkopf, H. Stockinger, K.

Stockinger, and B. Tierney, "Giggle: A Framework for Constructing Scalable

Replica Location Services," in ACM/IEEE conference on Supercomputing

(SC2002), Baltimore, Maryland, pp. 1-17, 2002.

[27] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi, G.

Mehta, and K. Vahi, "Data Placement for Scientific Applications in

Distributed Environments," in 8th Grid Computing Conference (Grid2007),

Austin, Texas, USA, pp. 267-274, 2007.

[28] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The

data grid: Towards an architecture for the distributed management and

analysis of large scientific datasets," Journal of Network and Computer

Applications, vol. 23, pp. 187-200, 2000.

[29] T. Chiba, T. Kielmann, M. d. Burger, and S. Matsuoka, "Dynamic Load-

Balanced Multicast for Data-Intensive Applications on Clouds," in

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid2010), Melbourne, Australia, pp. 5-14, 2010.

124

[30] B. Cho and I. Gupta, "New Algorithms for Planning Bulk Transfer via

Internet and Shipping Networks," in IEEE 30th International Conference on

Distributed Computing Systems (ICDCS2010), pp. 305-314, 2010.

[31] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields,

I. Taylor, and I. Wang, "Programming scientific and distributed workflow

with Triana services," Concurrency and Computation: Practice and

Experience, vol. 18, pp. 1021-1037, 2006.

[32] J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on

Large Clusters," Communications of the ACM, vol. 51, pp. 107-113, 2008.

[33] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,

K. Vahi, and M. Livny, "Pegasus: Mapping Scientific Workflows onto the

Grid," in European Across Grids Conference, Nicosia, Cyprus, pp. 11-20,

2004.

[34] E. Deelman and A. Chervenak, "Data Management Challenges of Data-

Intensive Scientific Workflows," in IEEE International Symposium on

Cluster Computing and the Grid (CCGrid2008), Lyon, France, pp. 687-692,

2008.

[35] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and e-

Science: An Overview of Workflow System Features and Capabilities,"

Future Generation Computer Systems, vol. 25, pp. 528-540, 2009.

[36] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, "The Cost of

Doing Science on the Cloud: the Montage Example," in ACM/IEEE

Conference on Supercomputing (SC2008), Austin, Texas, pp. 1-12, 2008.

[37] K. A. Delic and M. A. Walker, "Emergence of The Academic Computing

Clouds," ACM Ubiquity, vol. 9, pp. 1-4, August 5 - 11 2008.

[38] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl,

"Globally Distributed Content Delivery," IEEE Internet Computing, vol. 6,

pp. 50-58, 2002.

[39] X. Fan, J. Cao, and W. Wu, "Contention-Aware Data Caching in Wireless

Multi-hop ad hoc Networks," Journal of Parallel and Distributed Computing,

vol. 71, pp. 603-614, 2011.

[40] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing

Infrastructure, Morgan Kaufmann, 2004.

125

[41] I. Foster, J. Vockler, M. Wilde, and Z. Yong, "Chimera: A Virtual Data

System for Representing, Querying, and Automating Data Derivation," in

14th International Conference on Scientific and Statistical Database

Management, (SSDBM2002), Edinburgh, Scotland, UK, pp. 37-46, 2002.

[42] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid

Computing 360-Degree Compared," in Grid Computing Environments

Workshop (GCE2008), Austin, Texas, USA, pp. 1-10, 2008.

[43] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and Cost Trade-Off

Management for Scheduling Parallel Applications on Utility Grids," Future

Generation Computer Systems, vol. 26, pp. 1344-1355, 2010.

[44] T. Glatard, J. Montagnat, X. Pennec, D. Emsellem, and D. Lingrand,

"MOTEUR: A Data-Intensive Service-Based Workflow Manager," Research

Report I3S, pp. 1-39, 2006.

[45] R. Grossman and Y. Gu, "Data Mining Using High Performance Data

Clouds: Experimental Studies Using Sector and Sphere," in 14th ACM

SIGKDD pp. 920-927, 2008.

[46] R. L. Grossman, Y. Gu, M. Sabala, and W. Zhang, "Compute and storage

clouds using wide area high performance networks," Future Generation

Computer Systems, pp. 179–183, 2008.

[47] P. Groth and L. Moreau, "Recording Process Documentation for

Provenance," IEEE Transactions on Parallel and Distributed Systems, vol.

20, pp. 1246-1259, 2009.

[48] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,

"Nectar: Automatic Management of Data and Computation in Datacenters,"

in 9th Symposium on Operating Systems Design and Implementation

(OSDI2010), Vancouver, BC, Canada, pp. 1-14, 2010.

[49] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J.

Good, "On the Use of Cloud Computing for Scientific Workflows," in 4th

IEEE International Conference on e-Science (e-Science2008), Indianapolis,

Indiana, USA, pp. 640-645, 2008.

[50] Y. Huang, J. Cao, B. Jin, X. Tao, J. Lu, and Y. Feng, "Flexible Cache

Consistency Maintenance over Wireless Ad Hoc Networks," IEEE

126

Transactions on Parallel and Distributed Systems, vol. 21, pp. 1150-1161,

2010.

[51] S. Jablonski, O. Curé, M. A. Rehman, and B. Volz, "DaltOn: An

Infrastructure for Scientific Data Management," in 8th international

conference on Computational Science (ICCS2008), Kraków, Poland, pp. 520-

529, 2008.

[52] X. Jia, D. Li, H. Du, and J. Cao, "On Optimal Replication of Data Object at

Hierarchical and Transparent Web Proxies," IEEE Transactions on Parallel

and Distributed Systems, vol. 16, pp. 673-685, 2005.

[53] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, "Advances in dataflow

programming languages," ACM Computing Surveys, vol. 36, pp. 1-34, 2004.

[54] C. Junwei, S. A. Jarvis, S. Saini, and G. R. Nudd, "GridFlow: Workflow

Management for Grid Computing," in 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid2003), Tokyo,

Japan, pp. 198-205, 2003.

[55] G. Juve, E. Deelman, K. Vahi, and G. Mehta, "Data Sharing Options for

Scientific Workflows on Amazon EC2," in ACM/IEEE Conference on

Supercomputing (SC2010), New Orleans, Louisiana, USA, pp. 1-9, 2010.

[56] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Anderson, "Cost-

Benefit Analysis of Cloud Computing versus Desktop Grids," in 23th IEEE

International Parallel & Distributed Processing Symposium (IPDPS2009),

Rome, Italy, 2009.

[57] J. Li, M. Humphrey, D. Agarwal, K. Jackson, C. V. Ingen, and Y. Ryu,

"eScience in the Cloud: A MODIS Satellite Data Reprojection and Reduction

Pipeline in the Windows Azure Platform," in 24th IEEE International

Parallel & Distributed Processing Symposium (IPDPS2010), Atlanta,

Georgia, USA, 2010.

[58] D. T. Liu and M. J. Franklin, "GridDB: A Data-Centric Overlay for Scientific

Grids," in 30th VLDB Conference, Toronto, Canada, pp. 600-611, 2004.

[59] X. Liu, J. Chen, and Y. Yang, "A Probabilistic Strategy for Setting Temporal

Constraints in Scientific Workflows," in Proc. of the 6th International

Conference on Business Process Management (BPM2008), Milan, Italy, pp.

180-195, 2008.

127

[60] X. Liu, D. Yuan, G. Zhang, J. Chen, and Y. Yang, "SwinDeW-C: A Peer-to-

Peer Based Cloud Workflow System," in Handbook of Cloud Computing, B.

Furht and A. Escalante, Eds.: Springer, pp. 309-332, 2010.

[61] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, and E.

A. Lee, "Scientific Workflow Management and the Kepler System,"

Concurrency and Computation: Practice and Experience, pp. 1039–1065,

2005.

[62] C. Moretti, J. Bulosan, D. Thain, and P. J. Flynn, "All-Pairs: An Abstraction

for Data-Intensive Cloud Computing," in 22nd IEEE International Parallel &

Distributed Processing Symposium (IPDPS2008), Miami, Florida, USA,

2008.

[63] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer, "Provenance for the

Cloud," in 8th USENIX Conference on File and Storage Technology

(FAST2010), San Jose, CA, USA, pp. 197-210, 2010.

[64] P. Odifreddi, Classical Recursion Theory: The Theory of Functions and Sets

of Natural Numbers, pp. ii-xi, 1-668, Elsevier, 1992.

[65] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T.

Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li, "Taverna: A tool for

the composition and enactment of bioinformatics workflows,"

Bioinformatics, vol. 20, pp. 3045-3054, 2004.

[66] A. Oram, "Peer-to-Peer: Harnessing the Power of Disruptive Technologies,"

SIGMOD Record, vol. 32, pp. 57-58, 2003.

[67] L. J. Osterweil, L. A. Clarke, A. M. Ellison, R. Podorozhny, A. Wise, E.

Boose, and J. Hadley, "Experience in Using A Process Language to Define

Scientific Workflow and Generate Dataset Provenance," in 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering,

Atlanta, Georgia, pp. 319-329, 2008.

[68] M. T. Ozsu and P. Valduriez, Principles of distributed database systems,

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1991.

[69] N. Russell, A. ter Hofstede, D. Edmond, and W. van der Aalst, "Workflow

Data Patterns," in 24th International Conference on Conceptual Modeling

(ER2005), Klagenfurt, Austria, pp. 353–368, 2005.

128

[70] Y. L. Simmhan, B. Plale, and D. Gannon, "A survey of data provenance in e-

science," SIGMOD Rec., vol. 34, pp. 31-36, 2005.

[71] G. Singh, K. Vahi, A. Ramakrishnan, G. Mehta, E. Deelman, H. Zhao, R.

Sakellariou, K. Blackburn, D. Brown, S. Fairhurst, D. Meyers, G. B.

Berriman, J. Good, and D. S. Katz, "Optimizing Workflow Data Footprint,"

Scientific Programming, vol. 15, pp. 249-268, 2007.

[72] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, and B. Tierney,

"File and Object Replication in Data Grids " Cluster Computing, vol. 5, pp.

305-314, 2002.

[73] E. Stolte, C. v. Praun, G. Alonso, and T. Gross, "Scientific data repositories:

designing for a moving target," in ACM SIGMOD International Conference

on Management of Data, San Diego, California, pp. 349-360, 2003.

[74] A. S. Szalay and J. Gray, "Science in an Exponential World," Nature, vol.

440, pp. 23-24, 2006.

[75] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, "Grid

Datafarm Architecture for Petascale Data Intensive Computing," in 2nd

IEEE/ACM International Symposium on Cluster Computing and the

(CCGrid2002), Berlin, Germany, pp. 102–110, 2002.

[76] G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry (9th

Edition), Addison Wesley, 1995.

[77] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A.

Delis, "Flexible Use of Cloud Resources Through Profit Maximization and

Price Discrimination," in IEEE 27th International Conference on Data

Engineering (ICDE2011), Hanover Germany, pp. 75-86, 2011.

[78] S. Venugopal, R. Buyya, and K. Ramamohanarao, "A Taxonomy of Data

Grids for Distributed Data Sharing, Management, and Processing," ACM

Computing Surveys, vol. 38, pp. 1-53, 2006.

[79] S. Venugopal, R. Buyya, and L. Winton, "A Grid Service Broker for

Scheduling Distributed Data-Oriented Applications on Global Grids," in 2nd

Workshop on Middleware in Grid Computing, Toronto, Canada, pp. 75-80,

2004.

129

[80] M. A. Vouk, "Cloud Computing – Issues, Research and Implementations," in

30th International Conference on Information Technology Interfaces, Cavtat,

Croatia, pp. 31-40, 2008.

[81] L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl,

"Scientific Cloud Computing: Early Definition and Experience," in 10th

IEEE International Conference on High Performance Computing and

Communications, (HPCC2008), Dalin, China, pp. 825-830, 2008.

[82] D. Warneke and O. Kao, "Exploiting Dynamic Resource Allocation for

Efficient Parallel Data Processing in the Cloud," IEEE Transactions on

Parallel and Distributed Systems, vol. 22, pp. 985-997, 2011.

[83] A. Weiss, "Computing in the Cloud," ACM Networker, vol. 11, pp. 18-25,

2007.

[84] M. Wieczorek, R. Prodan, and T. Fahringer, "Scheduling of Scientific

Workflows in the ASKALON Grid Environment," SIGMOD Record, vol. 34,

pp. 56-62, 2005.

[85] Y. Yang, K. Liu, J. Chen, J. Lignier, and H. Jin, "Peer-to-Peer Based Grid

Workflow Runtime Environment of SwinDeW-G," in IEEE International

Conference on e-Science and Grid Computing (e-Science2007), Bangalore,

India, pp. 51-58, 2007.

[86] L. Young Choon and A. Y. Zomaya, "Energy Conscious Scheduling for

Distributed Computing Systems under Different Operating Conditions,"

IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp. 1374-

1381, 2011.

[87] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Cost-Effective Strategy for

Intermediate Data Storage in Scientific Cloud Workflows," in 24th IEEE

International Parallel & Distributed Processing Symposium (IPDPS2010),

Atlanta, Georgia, USA, 2010.

[88] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Data Placement Strategy in

Scientific Cloud Workflows," Future Generation Computer Systems, vol. 26,

pp. 1200-1214, 2010.

[89] D. Yuan, Y. Yang, X. Liu, and J. Chen, "Dynamic on-the-fly Minimum Cost

Benchmarking for Storing Scientific Datasets in the Cloud," IEEE

130

Transactions on Parallel and Distributed Systems, vol. Submitted, under

review, 2011.

[90] D. Yuan, Y. Yang, X. Liu, and J. Chen, "A Local-Optimisation based

Strategy for Cost-Effective Datasets Storage of Scientific Applications in the

Cloud," in Proc. of 4th IEEE International Conference on Cloud Computing

(Cloud2011), Washington DC, USA, pp. 179-186, 2011.

[91] D. Yuan, Y. Yang, X. Liu, and J. Chen, "On-demand Minimum Cost

Benchmarking for Intermediate Datasets Storage in Scientific Cloud

Workflow Systems," Journal of Parallel and Distributed Computing, vol. 71,

pp. 316-332, 2011.

[92] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, "A Data Dependency

Based Strategy for Intermediate Data Storage in Scientific Cloud Workflow

Systems," Concurrency and Computation: Practice and Experience, vol. in

press, pp. 1-21, 2010. (http://dx.doi.org/10.1002/cpe.1636)

[93] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, "Improving

MapReduce Performance in Heterogeneous Environments," in 8th USENIX

Symposium on Operating Systems Design and Implementation (OSDI2008),

San Diego, CA, USA, pp. 29-42, 2008.

131

Appendix A

Proofs of Theorems, Lemmas and

Corollaries

Theorem 5.1: Given a linear DDG with datasets {d1, d2 … dn}, the length of

Pmin<ds , de> of its CTT is the minimum cost rate for storing the datasets in the

DDG, and the corresponding storage strategy is to store the datasets that

Pmin<ds , de> traverses.

Proof of Theorem 5.1:

First, there is a one-to-one mapping between the storage strategies of the DDG and

the paths from ds to de in the CTT. Given any storage strategy of the DDG, we can

find an order of these stored datasets, since the DDG is linear. Then we can find the

exact path in the CTT that has traversed all these stored datasets. Similarly, given

any path from ds to de in the CTT, we can find the datasets it has traversed, which is

a storage strategy. Second, based on the setting of weights to the edges, the length of

a path from ds to de in the CTT equals to the total cost rate of the corresponding

storage strategy. Third, Pmin<ds , de> is the shortest path from ds to de as found by the

Dijkstra algorithm.

Theorem 5.1 holds.

Corollary 5.1: During the process of finding the shortest path, for every dataset df

that is discovered by the Dijkstra algorithm, we have a path Pmin<ds , d f > from

132

ds to df and a set of datasets Sf that Pmin<ds , d f > traverses. Sf is the MCSS of

the sub DDG segment  i i s i fd d DDG d d d    .

Proof of Corollary 5.1:

Corollary 5.1 is proved by apagoge.

Suppose that there exists a storage strategy ff SS  and fS  is the MCSS of

the sub-DDG segment  i i s i fd d DDG d d d    . Then we can get a path

P'min<ds , d f > from ds to df, which traverses the datasets in fS  . Then we have:

 

 

min

min

,

,

i s i f
f

i s i f
f

s f id DDG d d d
S

i s fd DDG d d d
S

P d d CostR

CostR P d d

   


   

   

   





This is contradictory to the known condition “Pmin<ds , d f > is the shortest

path from ds to df”. Hence, Sf is the MCSS of the sub-DDG segment

 i i s i fd d DDG d d d    .

Corollary 5.1 holds.

Theorem 5.2: The selection of main branch in the DDG to construct CTT has no

impact on finding the MCSS.

Proof of Theorem 5.2:

Assume that strategy S be the MCSS of a DDG; the DDG have two sub-branches Br1

and Br2 in a block; strategies S1 and S2 contain the sets of stored datasets of Br1 and

Br2 in S.

If we select the main branch with the sub-branch Br1, S can be mapped to a

path in one of the created CTTs. According to Theorem 5.1, the paths in CTT have

one-to-one mapping to the storage strategies, hence we can find a path P<ds , de> that

traverses the stored datasets in the main branch according to S. If S1 = Ø, there is an

133

over-block edge in the path P<ds , de>, which contains the MCSS of Br2 according to

formula (5.2), where P<ds , de> is in the initial CTT. If S1 ≠ Ø, there is an in-block

edge and an out-block edge in P<ds , de>, denoted as e<di , dj> and e<dh , dk>. The

weight of e<dh , dk> contains the MCSS of Br2 according to formula (5.2), hence

P<ds , de> is in CTT(e<di , dj>). Similar to Theorem 5.1, we can further prove that the

length of P<ds , de> equals the total cost rate of the storage strategy S.

Similarly, if we select the main branch with the sub-branch Br2, S can also be

mapped to a path in one of the created CTTs, where the length of the path equals to

the total cost rate of the MCSS.

Therefore, no matter which branch we select as main branch to construct CTT,

the MCSS always exists in one of the created CTTs. This means that the selection of

main branch has no impact on finding the MCSS.

Theorem 5.2 holds.

Theorem 5.3: The Dijkstra shortest path algorithm is still applicable to find the

MCSS of the DDG with one block.

Proof of Theorem 5.3:

In the CTTs created for the DDG with one block, every path from ds to de contains an

out-block edge or over-block edge. According to formula (5.2), the minimum cost

rate of the sub-branch is contained in the weights of out-block and over-block edges.

Hence, every path from ds to de in the CTT contains the MCSS of the sub-branch.

Furthermore, the CTTs are created based on the main branch of the DDG, similar to

the proof of Theorem 5.1, the shortest path Pmin<ds , de> found by the Dijkstra

algorithm contains the MCSS of the main branch. This means that Pmin<ds , de>

represents the MCSS of the whole DDG.

Theorem 5.3 holds.

134

Theorem 5.4: For a DDG_LS, only the generation cost of its deleted preceding

datasets and the usage frequencies of its deleted succeeding datasets impact on

its MCSS.

Proof of Theorem 5.4:

We assume that a DDG_LS {d1, d2, … dnl} have j deleted preceding datasets and k

deleted succeeding datasets, which is shown in Figure A.1.

d1 da... …ds d'j db
...d'1

A linear DDG segment
Start

Dataset

... ... dnl … d''kd''1 de

End

Dataset

...

Figure A.1 A DDG_LS with start and end datasets

In Figure A.1, we can see that the deleted preceding datasets impact on the

weights of all the edges from ds to the DDG_LS. According to the CTT-SP algorithm,

for any dataset da in the DDG_LS, the weight of edge from ds to da is

 

   

{ }

1

1 1

1

1 1 1 1 1

1 1

, ()

() ()

i i s i as a a i id d DDG d d d

j a

a i i i i
i i

j ji a i

h i h h ia
i h i h h

j i

a h i
i h

d d y genCost d v

y genCost d v genCost d v

y x v x x v

y x v

    



 



    

 

    

     

     
            

      

  
       

  



 

    

 
1 1

1 1 1 1

j a a i

h i h i
h i i h

x v x v
 

   

  
    

  
   

From the composition of  as dd , , we can see that

  
 




















j

i
i

i

h
h vx

1 1

 is a fixed value for all the edges starting from ds to any datasets

in the DDG_LS, because it does not contain variable a. Hence it has no impact

on finding the MCSS.

135

 a

a

i
i

i

h
h yvx 
















 


 

1

1 1

 is a value that is independent of the deleted preceding

datasets.

 The value of 





1

11

a

i
i

j

h
h vx depends on both the deleted preceding datasets (i.e.





j

h
hx

1

) and the datasets in the DDG_LS (i.e. 




1

1

a

i
iv), where 




j

h
hx

1

 is the generation

cost of the deleted preceding datasets.

Hence, we can come to the conclusion that only the generation costs of the

deleted preceding datasets impacts on the MCSS of the DDG_LS.

Similarly, for an edge from any datasets db in the DDG_LS pointing to de,

the weight  eb dd , is

1 1 1 1 1 1

,
l ln ni k k i

b e e h i h i h i
i b h b h b i i h

d d y x v x v x v
        

      
                

      
      .

Therefore, only the usage frequencies of the deleted succeeding datasets, i.e.





k

i
iv

1

, impacts on the MCSS of the DDG_LS.

Theorem 5.4 holds.

Theorem 5.5: Given a DDG_LS {d1, d2, … dnl}, SCRmin is the cost rate of MCSS Su,v

with X=0, V=0, and SCRmax is the cost rate of MCSS S1, nl with X>y1/v1,

V>ynl/xnl. Then we have SCRmin < SCRi,j < SCRmax , where SCRi,j is the cost rate

of MCSS Si,j with any given X and V.

Proof of Theorem 5.5:

First, SCRmin < SCRi,j is obviously true because of the direct utilisation of the CTT-

SP algorithm. Next, we prove SCRi,j < SCRmax by apagoge.

136

We assume , maxi jSCR SCR , then we have

1

, ,
1 1

1 1

max max max
1 1

l

l

l

ni

i j k i j k
k k j

n

k k
k k n

TCR X v SCR V x

X v SCR V x SCR TCR



  



  

    

      

 

 

This is contradictory to the known condition that Si,j is the MCSS of the

given X and V.

Theorem 5.5 holds.

Lemmas 5.1 – 5.3 and Theorem 5.6 can be proved in a same way, which is via

the linear equation theory in Linear Algebra.

Lemma 5.1: In the PSS of a DDG_LS, for three MCSSs, if any two of them are

adjacent with each other, then the three partition lines between every two

MCSSs intersect at one point.

Proof of Lemma 5.1:

For the three lines in Figure 5.15, we can write their equations in the coefficient

matrix format, i.e. Ax=b, as follows:

 
 
 
































































































jjkk

iikk

iijj

k

jh
h

k

jh
h

k

ih
h

i

kh
h

j

ih
h

i

jh
h

SCRSCR

SCRSCR

SCRSCR

b
V

X
x

xv

xv

xv

A

,,

,,

,,

1

1

1

1

1

1

,,

Because of ikj ddd  and kji ddd   , we have 













111 i

jh
h

i

kh
h

k

jh
h vvv

137

and 













k

jh
h

k

ih
h

j

ih
h xxx

111
, hence in matrix A there are only two linear

independent vectors, hence the equation system Ax=b has a unique solution.

Hence, the three lines (i.e. L<Si,i' , Sj,j' >, L<Si,i' , Sk,k' > and L<Sj,j' , Sk,k' >)

intersect at one point.

Lemma 5.1 holds.

Lemma 5.2: In a three dimension PSS, for three MCSSs, if any two of them are

adjacent with each other, then the three partition planes intersect in one line.

Proof of Lemma 5.2:

Similar to the proof of Lemma 5.7, we can write the partition planes’ equations in

Figure 5.19 in the coefficient matrix format as follows:

 

 

 











































































ac

bc

ab

c

a

c

a

c

a

c

b

c

b

c

b

b

a

b

a

b

a

SCRSCR

SCRSCR

SCRSCR

b

V

V

X

x

xxv

xxv

xxv

A ,,

3

2

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

Because of 111 abc ddd  , 222 cba ddd  and 333 cba ddd  , we

have  
1

1

1

1

1

1

c

a

c

b

b

a

vvv ,  
2

2

2

2

2

2

c

a

c

b

b

a

xxx and  
3

3

3

3

3

3

c

a

c

b

b

a

xxx , hence in matrix A there

are only two linear independent vectors.

According to the property of 3-variable linear equations, the solution space

of the equation system Ax=b is a line.

Hence, the three lines (i.e. P<Sa , Sb >, P<Sb , Sc > and P<Sa , Sc >) intersect

in one line.

Lemma 5.2 holds.

138

Lemma 5.3: In a three dimension PSS, for four MCSSs, if any three of them

intersect in a different line, then the four intersection lines intersect at one point.

Proof of Lemma 5.3:

For four MCSSs in a three dimension PSS, the maximum number of linear

independent vectors in the partition plane equations’ coefficient matrix is three. We

still take Figure 5.19’s DDG segment as example. We assume that Se be the forth

MCSS, where SCRa < SCRb < SCRc < SCRe; 1111 abce dddd  ,

2222 ecba dddd  , and 3333 ecba dddd  . We have partition plane

equations of the four MCSSs as follows:

ce

e

c

e

c

e

c
ec

be

e

b

e

b

e

b
eb

bc

c

b

c

b

c

b
cb

ae

e

a

e

a

e

a
ea

ac

c

a

c

a

c

a
ca

ab

b

a

b

a

b

a
ba

SCRSCRVxVxXvSSP

SCRSCRVxVxXvSSP

SCRSCRVxVxXvSSP

SCRSCRVxVxXvSSP

SCRSCRVxVxXvSSP

SCRSCRVxVxXvSSP





















































































































































































321

321

321

321

321

321

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

3

3

2

2

1

1

:,

:,

:,

:,

:,

:,

We can clearly see that the linear independent vectors in the equations’

coefficient matrix are 









3

3

2

2

1

1

,,
b

a

b

a

b

a

xxv , 









3

3

2

2

1

1

,,
c

b

c

b

c

b

xxv , 









3

3

2

2

1

1

,,
e

c

e

c

e

c

xxv .

Furthermore, because any three of the four MCSSs intersect in one line, we

know that the number of linear independent vectors in the partition plane equations’

coefficient matrix is greater than or equal to two.

If the four MCSSs’ partition plane equations only have two linear

independent vectors, then the planes would intersect in a same line according to the

139

property of linear equations. This is contradictory to the known condition that any

three of the four MCSSs intersect in a different line. Hence the four MCSSs’

partition planes’ equations have three linear independent vectors.

According to the property of three variables linear equations, the equation

system of the four MCSSs’ partition planes has unique solution. Hence the four

MCSSs intersect at one point.

Lemma 5.3 holds.

Theorem 5.6: In an n dimension PSS, for i MCSSs where  )1(,...,3,2  ni , if any

(i-1) of the i MCSSs intersect in a different (n-i+2) dimension space, then the i

MCSSs intersect in an (n-i+1) dimension space.

Proof of Theorem 5.6

Based on the proofs of Lemma 5.1 – 5.3, Theorem 5.6 can be proved in the same

way.

In the n dimension PSS, the border of two MCSSs is an n-variable linear

equation. For a system of n-variable linear equations, if its solution is an m

dimension space, then there are (n-m) linear independent vectors in the equations

system’s coefficient matrix.

Because any (i-1) of the i MCSSs intersect in an (n-i+2) dimension space,

the (i-1) MCSSs’ equation system has (i-2) linear independent vectors. Furthermore,

because different (i-1) MCSSs have different (n-i+2) dimension spaces, the i

MCSSs’ equation system has (i-1) linear independent vectors, which can be proved

similarly as Lemma 5.3. Hence the i MCSSs intersect in an (n-i+1) dimension space.

Theorem 5.6 holds.

140

Theorem 5.7: Given DDG segment {d1, d2, … dm} with PSS1 , DDG segment {dm+1,

dm+2, … dn} with PSS2, and the merged DDG segment {d1, d2, … dm, dm+1,

dm+2, … dn} with PSS. Then we have:

1 2 1 1 2 2

1

1 2
1 1

,

m i

k k
k j k m

S S S S PSS S PSS

S PSS
SCR SCR x v SCR



   

   


      
     

  
 

 ,

where dj is the last stored dataset in the first DDG segment and di is the first

stored dataset in the second DDG segment.

Proof of Theorem 5.7:

As stated in Theorem 5.7, in the merged DDG segment under storage strategy S, the

regenerations of datasets in DDG segment {dm+1, dm+2, … di-1} need to start from dj,

which includes the generation cost datasets in DDG segment {dj+1, dj+2, … dm}.

Hence,

 2

1

11
1 SCRvxSCRSCR

i

mk
k

m

jk
k 
















 





can be proved by direct utilisation of the definition of SCR, where






















1

11

i

mk
k

m

jk
k vx is the generation cost rate compensation of datasets in DDG

segment {dj+1, dj+2, … dm} for regenerating datasets in DDG segment {dm+1,

dm+2, … di-1}.

Next, we prove

 221121 , PSSSPSSSSSSPSSS 

by apagoge.

We assume 11 PSSS  .

Then we write the total cost rate of the merged DDG segment with MCSS S:

141

     



q

h
kh

p

h
kh xVSCRvXTCR

11

,

where p and q are the numbers of branches in the merged DDG segment that have

preceding datasets and succeeding datasets. Then we have

   

   

   

   

1 1

2 2

1 1

1

1 2
1 1 1 1

1

1
1 1 1 1

2
1 1

p q

h k h k
h h

p qm i

h k k k h k
h k j k m h

p q m i

h k h k k k
h h k j k m

p q

h k h k
h h

TCR X v SCR V x

X v SCR x v SCR V x

X v SCR V x x v

X v SCR V x

 



     



     

 

    

   
         

  

   
        

  

    

   

     

     

   

,

where p1 and q1 are the numbers of branches in the DDG segment {d1, d2, … dm}

that have preceding datasets and succeeding datasets except the connecting branch;

p2 and q2 are the numbers of branches in the DDG segment {dm+1, dm+2, … dn} that

have preceding datasets and succeeding datasets except the connecting branch. Next,

we have

     



22

1
2

1
1

q

h
kh

p

h
kh xVSCRvXTCRTCR

Since 11 PSSS  , given the X values [X1, X2,…, Xp1], V values [V1, V2,…, Vq1]

and V = 




1

1

i

mk
kv , we can find another MCSS S'1, where TCR1' < TCR1 . Hence, we

have

142

   

   

   

   

 

2 2

2 2

1 1

2 2

1 2
1 1

1 2
1 1

1

1
1 1 1 1

2
1 1

1

p q

h k h k
h h

p q

h k h k
h h

p q m i

h k h k k k
h h k j k m

p q

h k h k
h h

p

h k h k
h

TCR TCR X v SCR V x

TCR X v SCR V x

X v SCR V x x v

X v SCR V x

X v SCR V x

 

 



     

 



     

     

   
          

  

    

     

   

   

     

   

   
1

q

h

TCR


 

This is contradictory to the known condition that S is the MCSS of the

merged DDG Segment.

Hence 11 PSSS  .

Similarly, we can prove 22 PSSS  .

 Theorem 5.7 holds.

Lemma 6.1: The deletion of a stored dataset in the DDG does not affect the storage

status of other stored datasets.

Proof of Lemma 6.1:

Suppose that di be a stored datasets to be deleted, dp be a stored predecessor of di

and df be a stored successor of di. If di is deleted, 1) more datasets’ regenerations

need to use dp, i.e. the deleted successors of di, hence dp still needs to be stored; 2)

the regeneration of df needs to start from dp and regenerate the deleted predecessors

of di, hence the generation cost of df is increased and df still needs to be stored.

 Lemma 6.1 holds.

143

Theorem 6.1: If a deleted dataset is stored, only its adjacent stored predecessors and

successors in the DDG may need to be deleted to reduce the application cost.

Proof of Theorem 6.1:

Suppose that di be a deleted datasets to be stored, dp be a stored predecessor of di

and df be a stored successor of di. If di is stored, 1) fewer datasets’ regenerations

need to use dp, i.e. regenerations of the deleted successors of di can start from di,

hence dp may needs to be deleted; 2) the regeneration of df can start from di instead

of dp, hence the generation cost of df is decreased and df may need to be deleted.

According to Lemma 6.1, the deletion of dp and df do not affect other stored

datasets’ storage status.

 Theorem 6.1 holds.

Theorem 6.2: Given a DDG and assumed S be the MCSS of the DDG. If Sd p 

and dp divides the DDG into:

 

 










kpkk

pjjj

ddDDGddDDG

ddDDGddDDG

2

1

,

then S1 and S2 are the MCSSs of DDG1 and DDG2 respectively, where

11 DDGSS  and 22 DDGSS  .

Proof of Theorem 6.2:

We prove this theorem by apagoge.

1) Suppose there be a storage strategy 11 SS  and 1S  be the MCSS of DDG1.

Then we have:

144

   

   

   

     

1 1
1 1

1 2
1 2

1 2
1 2

1 2
1 2

i i

i i

i i

i i i

i id DDG d DDG
S S

i p id DDG d DDG
S S

i p id DDG d DDG
S S

i p i id DDG d DDG d DDG
S S S

CostR CostR

CostR y CostR

CostR y CostR

CostR y CostR CostR

 

 

 

  



  

  

   

 

 

 

  

Then    
SDDGd iSDDGd i ii

RCostRCost    , 1 2{ }pS S d S    .

Hence we get a new storage strategy S  of the DDG which has a smaller cost rate

than S. This is contradicting to the known condition “S is the MCSS of the DDG”.

Hence S1 is the MCSS of DDG1.

2) Similarly, it can be proved that S2 is the MCSS of DDG2.

 Theorem 6.2 holds.

145

Appendix B

Notation Index

B A block in a DDG

Br A branch in a block

CostRi Cost rate of dataset di in the DDG

CTT Cost Transitive Tournament

CTT-SP Cost Transitive Tournament based Shortest Path

di A dataset, where the subscript i is the index number

DDG Data Dependency Graph

DDG_LS Linear DDG Segment

e<di , dj> The edge from di to dj in the CTT

fi
A flag which denotes the status whether dataset di is

stored or deleted

genCost(di) Generation cost of dataset di

146

L<S1 , S2>
Partition line between MCSSs S1 and S2 in a two

dimension PSS

MB Main branch of a DDG

MCSS Minimum Cost Storage Strategy

P<S1 , S2>
Partition plane between MCSS S1 and S2 in a three

dimension PSS

Pmin<di , dj> The shortest path from di to dj in the CTT

Pricecpu The price of computation resources in the cloud

provSeti
Set of stored provenance datasets that are needed for

regenerating di

PSS Partitioned Solution Space

S
A storage strategy which is a set of datasets in the

corresponding DDG (or DDG segment)

Si
A storage strategy of a DDG (or DDG segment), where

the subscript i is the index number

Si,…,j

A storage strategy, where the subscripts i,…,j denote the

indices of the first and last stored datasets in the DDG

segment

Smax The MCSS that has the maximum SCR in the PSS

Smin The MCSS that has the minimum SCR in the PSS

S_All
Set of MCSSs of a DDG segment with SCR values in the

valid range

147

SB Sub-branch(es) of a DDG

S_ini Set of MCSSs for the initial input of calculating PSS

SCR Sum of cost rates of datasets in a DDG (or DDG segment)

SCRi The SCR with storage strategy Si

SCRi,…,j The SCR with storage strategy Si,…,j

Ti
The time duration which denotes user’s tolerance of

dataset accessing di’s delay

TCR Total Cost Rate of a DDG segment in the whole DDG

TCRi The TCR with storage strategy Si

TCRi,…,j The TCR with storage strategy Si,…,j

vi Usage frequency of dataset di

V
Sum of deleted succeeding datasets usage frequencies of

a DDG_LS

xi Generation cost of dataset di from its direct predecessors

X
Sum of deleted preceding datasets generation costs of a

DDG_LS

yi Storage cost rate dataset di

 ji dd , The weight of edge e<di , dj>

λi
User’s preference of storing dataset di with a higher

storage cost

148


Denotation of two datasets having a generation

relationship


Denotation of two datasets not having a generation

relationship

