
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Hussein, M., Han, J., Colman, A. & Yu, J.
Title: An approach to specifying and validating context-

aware adaptive behaviours of software systems
Conference name: 9th IEEE International Conference and Workshops

on the Engineering of Autonomic and Autonomous
Systems (IEEE EASe 2012)

Conference location: Novi Sad, Serbia
Conference dates: 11-13 April 2012

Place published: United States
Publisher: IEEE
Year: 2012
Pages: 1-10
URL: http://ieeexplore.ieee.org/
Copyright: Copyright © 2012.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

An Approach to Specifying and Validating Context-aware Adaptive Behaviours of
Software Systems

Mahmoud Hussein, Jun Han, Alan Colman, and Jian Yu
Faculty of Information and Communication Technologies, Swinburne University of Technology

PO Box 218, Hawthorn, 3122, Melbourne, Victoria, Australia
{mhussein, jhan, acolman, jianyu}@swin.edu.au

Abstract— Context-aware adaptive software systems need to
have models for their adaptive behaviour. These models
specify systems’ reactions to changes in their environments. In
large scale software systems with high variability, an explosion
in the number of the system’s sates (i.e. the system’s
configurations or behaviours) and the transitions between
them (i.e. the system adaptive behaviour) is introduced. As
such, specifying the system adaptive behaviour and assuring its
correctness are major challenges. In this paper, we introduce a
novel approach to specifying and validating the context-aware
adaptive behaviour of a software system. Our approach
explicitly represents the relationships between the context
changes and the system variations, so that the system adaptive
behaviour can be easily captured. We also classify the possible
system variations into dependent and independent variations
to reduce the possible system states and the transition between
them. To assure the adaptive behaviour correctness, the system
adaptive behaviour model is transformed to a Petri Net model
so that it can be validated to detect adaptation behaviour
errors such as inconsistency, redundancy, circularity, and
incompleteness. In addition, we demonstrate our approach
though specifying and validating the context-aware adaptive
behaviour of a route planning software system.

Keywords - Context-awareness, self-adaptivity, adaptive
behaviour modelling , validation, formal specification.

I. INTRODUCTION
There is an increasing demand for software systems that

dynamically adapt their behavior at run-time in response to
changes in their requirements, users’ preferences, operational
environments, and underlying infrastructure [1-2]. Changes
can also be induced by failures or unavailability of parts of a
software system itself [3]. In these circumstances, it is
necessary for a software system to change itself as necessary
to continue achieving or preserving its new and existing
goals. A challenge is how to specify, validate, and realize
such systems that evolve at runtime [1-5].

Context-aware adaptive software systems need to have a
mechanism that decides the system reactions in response to
context changes (i.e. the system adaptive behavior). This
mechanism needs to be built carefully, where the triggering
of incorrect adaptation actions or the correct one is not
triggered leads to undesired system behavior (i.e. the system
behaves improbably) [6-7]. The larger the number of
environment variables that need to be taken into account, the
more complex the system adaptive behavior will be. In
addition, multiple adaptation actions can be triggered
concurrently where the environment variables are shared
between the conditions that trigger the system adaptations.

Therefore, the specifying and validating the system adaptive
behavior are challenging tasks. Existing mechanisms to
decide on the required adaptation actions in response to
context changes can be classified into three categories: (1)
rule-based mechanism, where it takes the form of “IF
(condition, i.e. the context change), THEN (actions, i.e. the
required adaptation) [8-9]; (2) goal-based mechanism, where
the system goals are defined and are used to infer the state
the system should be in to cope with the environment
changes [6, 10]; (3) utility-based mechanism, where it
generalizes the goal-based mechanism by quantifying each
possible next state the system can be in with a value between
zero and one instead of classifying the states as desired next
state or not (i.e. 0 or 1classification) [11-12]. On the one
hand, rule-based approaches are expressive and easy to write,
but are prone to error (e.g. rules redundancy, conflict, etc.)
and need to be validated. On the other hand, the goal-based
and the utility-based mechanisms (i.e. state-based
approaches) are difficult to build and face the state explosion
problem in large scale systems, but they can be validated for
correctness [13]. As such, there is a need for an approach
that combines the expressiveness and easiness of the rule-
based mechanism and the formalism of the state-based
mechanism to enable the adaptive behavior validation.

In this paper, we introduce a novel approach to specifying
and validating the adaptive behavior of a software system. It
has the expressiveness and easiness of the rule-based
mechanism and the formality of the state-based approaches.
In addition, we provide a graphical representation of the
system adaptive behavior model that captures the
relationship between the context changes and the system
adaptation actions explicitly. Compared to existing work, our
approach has the following novel features. Firstly, our
approach represents the relationships between the context
changes and the system variations (i.e. the system
configurations and/or behaviours) explicitly, so that the
system adaptive behaviour can be easily captured. Secondly,
we classify the possible system variations into dependent and
independent variations to reduce the possible system states
and the transition between them, so that the state explosion
problem cannot happen easily. From the system
reconfiguration point of view, independent variations mean
that the change of a system component is not dependent on
the other components while dependent variations means the
change of a component is depend on another (e.g. the
replacement of a realization for a component that can be
added and removed). Finally, the designed system adaptive
behaviour model is transformed to a Petri Net model so that
it can be validated to detect the adaptive behaviour errors

such as (a) inconsistency, where conflicting adaptation
actions are fired concurrently (e.g. adding and removing the
same system component); (b) redundancy, where the same
adaptation action is fired twice in response to context
changes; (c) circularity, where the chain of fired adaptation
actions keep repeating (i.e. an endless loop in the decision
making mechanism); (d) incompleteness, where there is a
context situation that has no reaction from the system (i.e.
missing adaptive behaviour).

The remainder of the paper is organized as follows. We
start by introducing a motivating scenario in section two. Our
approach to specifying and validating the adaptive behavior
of software systems is given in section three. In section four,
we demonstrate our approach and its tool support through
specifying and validating the context-aware adaptive
behavior of the route planning system. Section five analyzes
existing work with respect to our approach. Finally, we
conclude the paper in section six.

II. RESARCH MOTIVATION AND REQUIREMENTS ANALYSIS
The vehicle route planning software system helps the

driver to plan his journey by providing suitable routes from
the current location to a destination. Below are a few
scenarios where this system takes into account different
sources of context information in dynamically planning the
travel route.

The context information may include (a) the dynamic
traffic information available from road side units or a traffic
information service provider (through Wi-Fi, DSRC and/or
3G technologies), and (b) the driver preferences (such as
shortest or fastest or most carbon-efficient route) from his
mobile phone. However, vehicles come in different models
and with different enabling technologies. For example, some
vehicles do not have the ability to communicate with the
driver’s mobile phone to get his preferences. The traffic
information may or may not be available depending on the
communication technologies installed and the availability of
the road side units or traffic information provider. Therefore,
the vehicle route planning system should use different
variants (i.e. algorithms) to compute the possible routes
based on the available context information.

When the vehicle is running at high speed such as over
70 km/h, it is difficult for the driver to concentrate on both
the road and the displayed route map. In this situation, the
system should use voice instruction for the vehicle route to
reduce driver distraction. As such, the system should add the
voice instruction component when the vehicle is moving in
high speed and the driver is not using the voice instruction
option.

The above scenarios show a number of general
requirements. First, the system should adapt itself in
response to the context changes. For example, adding the
voice instruction component when the vehicle is moving at
high speed and ordering the displayed routes based on the
driver route preferences. As such, the system should have a
mechanism that decides the system reactions (adaptations) in
response to the context changes. Second, the system’s
environment has a large amount of information about the
driver, the vehicle, and the vehicle environment (e.g. the

nearby vehicles, the services providers, the road side units,
etc.), which affects the system operation and need to be taken
into account. When there are a large number of environment
variables that needs to be taken into account, the system
adaptive behavior becomes complex and its design becomes
a difficult and error-prone task. Therefore, there is a need for
an approach that can be used to (a) easily capture the large
number of environment variables and the system reactions to
change into them and (b) validate the adaptive behavior to
avoid the adaptation errors that can lead to an undesired
system state while it is in operation.

III. THE APPROACH
In this section, we first describe our approach to

specifying the system adaptive behaviour. Then, we describe
how we transform the modelled adaptive behaviour to a Petri
Net [14] model to enable its validation.

A. Specifying the System Adaptive Behavior
To model the system adaptive behaviour, we introduced a

component model (shown in Figure 1) [15-16]. It has three
types of ports (i.e. functionality, context, and adaptation
action) and an enabling condition. First, the adaptation
mechanism requires the environment states that are provided
by the context providers to make the adaptation decisions.
Consequently, we explicitly reflect the requirement and
provision of such context information in our component
model through the required and provided context information
ports. Second, the system adaptive behaviour model is used
to decide the required adaptation actions, and then it should
explicitly define these required adaptation actions. In
addition, actual adaptation actions need to be performed on
the relevant components that should specify explicitly what
adaptation actions they support. For example, the route
planner component has the ability to switch between
different route planning realizations. As such, our component
model has explicit required and provided adaptation action
ports as shown in Figure 1. Third, we add the enabling
condition element to our component model (see Figure 1) for
the adaptation condition definition (e.g. vehicle speed is
greater than 70 km/h). Finally, our component model
contains the traditional required and provided function ports
for representing the system core functionality.

Figure 1. Our context-aware adaptive systems component model

In Figure 2, we show an example of the system adaptive
behavior model using our component model. First, the whole
adaptive behavior model is represented as a composite
component (i.e. the change management), which has sub-
components to represent the system reactions to the context
changes. Each sub-component (e.g. R2) has the rule enabling
condition(s) (e.g. Attribute2 > 40), and the rule actions as
required adaptation action ports (e.g. Add Component2). In
addition, the context attributes in the rule conditions are

exposed as required context ports of the rule component to
obtain their values from the context providers (e.g. Attribute
2). Furthermore, this composite also has some provided
adaptation action ports to enable its own adaptation (e.g.
Remove R2) if required. The following are the three rules
represented in Figure 2:

R1: IF the component one state is active, THEN the
system removes the context entity two.

R2: IF the context attribute two value is greater than 40,
THEN the system adds component two.

R3: IF the context entity two is inactive, THEN the
system removes the adaptation rule two.

Figure 2. Specifying the system context-aware adaptive behaviour

Modelling the system adaptive behaviour using the above
mechanism has the following advantages. First, it is an easy
method to capture the relationship between the context
changes (i.e. the required context information and the
enabling condition on it) and the system adaptation/reaction
(i.e. the required adaptation action port). Second, the
context information processing and management is separated
from the system adaptive behaviour model and then the
system modelling complexity is reduced. Third, modelling
the system adaptive behaviour as condition-action rules
enables a fast system reaction during the runtime where the
system specific reactions are specified during the design
time. Finally, we do not need to enumerate all the system
states to build the adaptive behaviour model such as the goal-
based and utility-based mechanisms [13].

B. Validating the System Adaptive Behaviour
To validate the system adaptive behaviour using the

existing model checkers (e.g. Romeo tool [17]), we need to
(a) transform the specified adaptation rules to a state-based
model (e.g. Petri Net [14]) and (b) specify the properties that
need to be checked against the adaptive behaviour model
(i.e. the errors that need to be detected).

Building the System Adaptive Behaviour State-based
Model: The first step to building a state-based model is to
enumerate its states, which corresponding to the possible
variations (i.e. configurations and behaviours) the system
can be in during the runtime. From the system re-
configurations point of view1 , the number of the system
states can be calculated as the product of the possible
variations of the system components. For example, if we
have a system that is consists of ten components where (1)
two components can be added and removed when required;
(2) two components have three variants and one of these
variants is selected based on the system requirements; (3) six
components are fixed which represent the system basic
functionalities. The number of possible variations of this

1 In the following, our discussion is more concerned with the
system reconfiguration as adaptation actions. The system behavior
and parameters changes can be treated in the same manner.

system will be 36 states (i.e. 2*2*3*3). Furthermore, if we
consider a component from the six fixed components has
three variants, then the total number of system states is
increased to be 108 states (i.e. 3*36). Therefore, the number
of the system states grows exponentially with the system
possible adaptations, so there is a need for a method to
reduce the number of these states.

In our approach, we reduced the number of the system
states (i.e. to avoid the state explosion problem) by
considering the system state as a combination of multiple
sub-states of the system components variations (i.e. not the
whole system configuration as one state). In addition, to take
into account the components dependencies, we classified the
possible system variations into two types: (1) independent
variations, where the change of a system component is not
dependent on the other components; (2) dependent
variations, where the change of component is depended into
the others. For example, the selection of a component
realization is dependent on the component availability (i.e. is
the component enabled or not). Then, for each dependent
variation group, a state model is constructed. Finally, state
models are constructed for each independent system
component variations (i.e. model of two states in case of
adding/removing a component or model of n states where n
is the number of the component possible realizations).

Figure 3 shows a system that has two components. Each
component has three variations (i.e. realizations one, two,
and three). In addition, the component two can be added and
removed as required. Following the traditional approach in
enumerating the possible system state, the system can have
12 states (i.e. the different combinations of applying the
system adaptation actions). In Figure 3, we show only four
variations (states) of the system. Variation one (i.e. state one)
has two active components, and the realization one for the
two components is selected. When the system removes the
component two, the result is configuration two (i.e. state
two). States three and four show the system when it keeps
the realization of component one as it is and changes the
realization of component two from one to two and then three.
The other eight system states are the same as these four
states except for the change of component one realization,
where there are four states when the component one
realization two is selected and the other four states when the
realization three is selected for component one.

Figure 3. Part of the possible system states using the traditional approach

In our approach, we do not consider the whole
configuration as state where we divide each state to sub-
states that is corresponding to the single component
adaptations. Therefore, we have three states for component

one (i.e. the component different realizations), and four
states for the component two additional and removal and the
selection for its realization where they are dependent on each
other as shown in Figure 4. The system state is a
combination of components one and two states. For example,
state one in Figure 3 is corresponding to the combination of
state one in Figure (4-A) and state two in Figure (4-B).

Figure 4. Possible system states using our approach

In addition to the reduction of the states from 12 to 7, the
transition between these states (the system adaptive
behaviour) is also reduced. There are 66 transitions with the
model of 12 states using the traditional approach while we
have 6 transitions within component one states model and 10
within the component two states model (i.e. a total of 16
transitions). In the following, we use the above approach to
generate the Petri Net model from the adaptation rules and
use it for detecting the adaptation behaviour errors.

The System Adaptive Behaviour Errors: In large scale
software systems where there are a large number of
adaptations, the system adaptive behaviour is subject to
errors such as inconsistency, redundancy, cycles, and
incompleteness. As such in the following we present (a) the
definition for each error type; (b) an example that shows how
it can happen with the example corresponding Petri-Net to
enable the error detection by Romeo tool [17].

Adaptation Behaviors Inconsistency: The inconsistency
means that the adaptation actions that need to be applied into
the system contradict each other. The possible system
adaptation actions are to add, remove, and replace a system
element. The inconsistency between these actions can
happen in the following situations. First, the required
adaptation actions are to add and remove the same system
element (Type1 error). Second, the required adaptation is to
change (i.e. replace) the system element twice (Type2 error).
For example, there are two replacements actions of the same
component in the adaptation script (e.g. replace component 1
with component 2 and replace component 1 by component
3). In the following, we present a set of adaptation rules
contains the above errors and how they can be detected.
1- Adaptation rules that have Type1 error:

R1: If the vehicle speed is greater than 40 km/h, then the
system adds the voice instruction component.

R2: If the vehicle speed is lower than 50 km/h, then the
system removes the voice instruction component.

In Figure 5, we transform the above rules to a Petri Net
model (shown in Figure 5-A), where the rules conditions
(e.g. VehicleSpeed_GreaterThan_40) are represented as
input places, and the rules adaptation actions as output
places (e.g. Add_VoiceInstructions). Each rule is captured

using the Petri Net transition (e.g. R1) that links the input
and output places, and then the evaluation of the rules
condition to true actives the rules action(s). The input place
that represents the rule condition can be shared between
multiple adaptation rules, and then we consider it as output
place too where the transition keeps the input place active to
be used in other adaptation rules. But the adaptation rules
can be activated again, and then we added the rule enabling
condition for making the rule evaluation to true once (e.g.
R1_Enabling). This way of transforming the adaptation rules
to Petri Net follows the description above. We put each
single adaptation action into an output place, and then the
whole system configuration (i.e. the system state) can be
inferred using multiple output places (i.e. the sub-states we
mentioned above for reducing the state space) and not as a
single place such as the traditional approach [6, 10].

To validate the inconsistency between these two rules
using the generated Petri Net, we used Romeo tool [17]. On
the one hand, the inconsistency can be checked visually by
playing the token games and then looking for a state where
both rules one and two are evaluated to true. If we
considered the vehicle speed is equal to 45 (i.e. the initial
marking of the Petri Net in Figure 5-A), then the rules one
and two are activated in the same time (i.e. the final marking
of the Petri Net as shown in Figure 5-B). On the other hand,
to validate the rules formally, we represented the conflict
Type1 error property using Timed Computation Tree Logic
(TCTL) written in a format acceptable to Romeo tool [18] as
“EF[0,0]M(3)+M(6)>1” (shown in Figure 5-C). This formula
means that there exist a path where the marking of the Petri
Net places 3 (i.e. Add_ VoiceInstructions) and 6 (i.e.
Remove_VoiceInstructions) are greater than 1 (i.e. both
actions are active). The bottom of Figure 5-C shows that this
formula is evaluated to true when R1 and R2 are activated
(i.e. there is a conflict between rules 1 and 2, where their
adaptation actions contradict each other).

Figure 5. Petri Net for representing adaptation rules inconsistency

2- Adaptation rules that have Type2 error:
R3: If the rain level is heavy, then the system sets the

vehicle speed limit to 50 km/h.
R4: If the temperature is greater than 40, then the system

sets the vehicle speed limit to 90 km/h.
R5: If the driver preference is available, then the system

uses the route planning one.
R6: If the congestion information is available, then the

system uses the route planning two.
A Petri Net for rules three and four is shown in Figure 6-

A. When the rain level is heavy and the temperature value is
over 40 degrees, the two rules are evaluated to true and then

the two adaptation actions are fired. These two actions
overwrite each other, and become inconsistent. To validate
this inconsistency, the following TCTL formula can be used
“EF[0,0]M(p1)+M(p2)>1” which means the output places p1
and p2 are active in the same time(e.g. the places
Set_SpeedLimit_50 and Set_SpeedLimit_90 in Figure 6-A).
Similarly, the adaptation rules five and six are used to select
the suitable route planning algorithm. When both conditions
are true, the two adaptation actions are fired together as
shown in Figure 6-B and they are inconsistent adaptations.

Figure 6. Petri Nets for representing adaptation rules three through to six

Adaptation Behaviours Redundancy: The redundancy
appears when a rule is repeated, or one rule is a sub-part of
another. For example, two rules have the same condition(s),
and the adaptation action(s) of a rule is a part of the other
rule adaptation action(s) (i.e. Type3 error). This error is
detected by looking for an adaptation action that is repeated
twice in the required adaptation actions.
Adaptation rules that have Type3 error:

R1: If the vehicle speed is greater than 40 km/h, then the
system adds the voice instruction.

R2: If the vehicle speed is greater than 40 km/h, then the
system adds the voice instruction component and uses the
route planning algorithm one.

Figure 7 shows the Petri-Net state when the rules 1 and 2
are evaluated to true. The result is an adaptation script that
has Add_VoiceInstructions action appeared twice. This error
can be detected by checking the Petri Net using the
EF[0,0]M(3)>1 property. This means that “is output place
three activated twice (i.e. Add_ VoiceInstructions)”. The
result shows that the evaluation of the adaptation rules one
and two satisfy this property (i.e. the right part of Figure 7).

Figure 7. Adaptation rules that have the redundancy problem

 Adaptation Behaviours Cycles: In context-aware systems,
the context model changes initiate a system adaptation (e.g.
when the context model has the driver preferences entity
active, the route planning algorithm one is selected). In
addition, the functional system changes can lead to a context
model adaptation (e.g. in response to the driver selection to
use the route planning two, the context model is changed by
activating the congestion information context entity). As
such, the adaptation rules for changing the functional system
in response to context model changes and vice versa should
be written carefully to avoid the cycles. A cycle happens

when the adaptation rules evaluation leads to adaptation
actions that make the same chain of rules firing to be
performed again (i.e. Type4 error).
Adaptation rules that have Type4 error:

R1: If the driver preference is active, then the system
activates the route planning one.

R2: If the route planning one is active, then the system
activates the driver preference context entity.

Figure 8-A shows the Petri-Net where the rule one
condition is active. Then, after firing rules one and two
(Figure 8-B), the rule one condition is activated again and
this action is unwanted. Therefore, there is a cycle between
these two rules, and then the system keeps going back and
forth between them. Figure 8-C shows how this error is
detected by checking the model against EF[0,0]M(1)>1
formula. The checking of this property to true means that the
adaptation rules one and two are fired continuously.

Figure 8. Petri Net for representing adaptation rules that have cycles

Adaptation Behaviours Incompleteness: In large scale
systems, there are a large number of adaptation behaviours.
As a consequence, there is a possibility of missing adaptation
behaviours (i.e. Type5 error). These missing behaviours are
appeared when there is a context situation without having an
adaptation action to it or the rule conditions cannot be
evaluated to true (i.e. the rule cannot be fired). For example,
an adaptation rule is based on an and-condition (e.g. A and
B), but the condition A and B cannot be evaluated to true in
the same time.
Adaptation rules that have Type5 error:

R1: If the driver preference is active and the congestion
information is not active, then the system uses the route
planning one.

R2: If the congestion information is active and the driver
preference is not active, then the system uses the route
planning two.

Figure 9. Adaptation rules that have the incompleteness problem

In Figure 9, we show the Petri Net that represents rules
one and two and we show three different markings for the
net. First, the condition of rule one is true (Figure 9-A).
Second, the condition of rule two is true (Figure 9-B). Third
a part of the conditions of rules one and two is true (Figure
9-C). We defined the completeness as “EF[0,0]M(4)+M(8)
>0”, which means that at least one of the two rules is
evaluated to true. The initial marking of Figure 5-A and 5-B
satisfies this property where rule one or two is fired.
However, Figure 5-C do not satisfy this property, where
there is no rule is fired when both the congestion and driver
preferences are active (i.e. missing adaptation behaviour).

[Missing Rule] R3: If the congestion information is
active and the driver preference is active, then the system
uses the route planning three.

By repeating the above process (i.e. putting an initial
marking for the net and verifying the completeness
property), the missing system rules can be detected (e.g. an
adaptation rule that specifies the system reaction when both
the driver preference and the congestion information is not
active).

C. Specifying and Validating the System Adaptive
Behaviour using our Tool

To support the specification and validation of the context-
aware adaptive behaviour of a software system using our
approach, we extended our context-aware adaptive systems
development tool (CAST) [19]. This extension is to enable
the software engineer to model and validate the system
adaptive behaviour.

Specifying the system adaptive behaviour: The software
engineer uses our component model to specify the system
adaptive behaviour model. Then he feeds this model to our
tool. Using our tool GUI, an adaptation rule can be specified
as shown in Figure 10-A. This rule has a condition “Vehicle_
Speed > 40” and adaptation action “Add_VoiceInst”. This
rule XML description is shown in Figure 10-B (details about
our component model XML representation can be found in
[15]).

Figure 10. Specifying an adaptation rule using our tool

Validating the adaptive behaviour: Using our tool the
software engineer can visually test the adaptive behaviour of
the system (will be shown in the next section) and generate a
Petri Net model that corresponds to the rule-based model as
an XML file that is understandable by the Romeo tool. An
example of a generated XML file that corresponds to the rule
described in Figure 10 is shown in Figure 11. Figure 11-A
shows the places that are used to specify the rule condition

(i.e. place 1), action (i.e. place 3), and enabling (i.e. place 2).
The transition that links these places together is shown in
Figure 11-B. In Figure 11-C, the arcs that links the
input/output places with the transition are shown. The arc
between the input place and the transition has the type
"PlaceTransition", and the arc between output place and
transition has the type "TransitionPlace". Then, the Romeo
tool can be used to visually validate the net behaviour by
playing the tokens games or using the TCTL model checker
to validate this model formally according to the properties
specified in the previous sub-section.

Figure 11. The Petri Net model description as an XML

IV. CASE STUDY
In this section, we specify and validate the context aware

adaptive behaviour of the vehicle route planning system
described in Section 2. We present the adaptive behaviour
model in sub-section A, the visual validation of this model is
discussed in sub-section B, and then its formal validation by
Romeo tool is described in sub-section C.

A. The Context-aware Adaptive Behaviour of the
Vehicle Route Planning System
The system adaptive behaviour captures the relationship

between the context changes and the system reactions, and
then the modelling of the system adaptive behaviour is not
separate from the context and the functional system
modelling. As such, in Figure 12, we show the system model
that includes the context model, the functional system model,
and the adaptive behaviour model using our component
model. In this example, we designed the adaptive behaviour
to highlight the possible errors discussed in the previous
section. This model has the following elements.

The Context Model: The context model has three entities
(components): the vehicle information, the driver
preferences, and the traffic information as shown in Figure
12. These entities represent the environment information that
is needed by the route planning system to continue its
operation or for triggering the system adaptation. In addition,
the context composite component is able to add, remove, or
replace the context entities (e.g. remove the traffic
information entity). Furthermore, the providers for this
context information are: (a) the On-Board Diagnostic (OBD)
system for providing the vehicle speed; (b) the driver’s
mobile for providing his route preferences; (c) the traffic
information service provider and road side units for

providing the traffic congestion information; (d) the traffic
information and the driver preference context entities for
providing their availability.

Functional system model: It represents the system
functionality and has two components as shown in Figure 12.
First, the route planner provides the possible routes between
the current location and destination. These routes are
computed by different algorithms based on the available
context information. The route planner component has the
ability to switch among these different route planning
algorithms’ implementations. For example, route planner
two is used when the traffic information and the driver
preferences are both available. Second, the route planning
display presents to the driver the route computed by the route
planner onto a map together with the journey progress and
voice instructions. There are two variants for this
component: (a) only the map with journey progress
information over it using only the map component; (b) the
map with the journey progress and voice instructions for the
selected route using both the map and the voice instruction
components. This variation is achieved by adding and
removing the voice instruction component.

Figure 12. Context-aware adaptive vehicle routing planning system

The first component is realized in Figure 12 using three
different algorithms for the route planner. The default route
planning component takes the vehicle current location and
the destination and provides the possible routes without
taking into account any context information. The route
planning one component considers the driver route
preferences in calculating the routes. In addition, its state (i.e.
the component is selected and used by the system or not) is
provided by route planning one monitor. The component
route planning two provides the available routes based on
both the traffic congestion information and the driver route
preferences. Besides, there are realizations for displaying the
computed route onto a map and for providing the voice
instructions for the selected vehicle route for realizing the
second component.

The Adaptive Behaviour Model: The change management
composite component (see Figure 13) consists of a set of

rules that are used to determine the required adaptation
actions in response to the context changes. Our example has
many adaptation rules. We show only six adaptation rules
that contain the different adaptation behaviour errors
discussed above.
(1) When the driver uses route planning one, the system

needs to consider the driver route preference only, and then
the traffic information context entity needs to be disabled to
reduce the monitoring overhead. As such, the component
rule one (R1) in Figure 13 has the enabling condition “is the
driver uses route planning one (i.e. active)?” and the
required adaptation action “remove traffic information”
context entity.

Figure 13. Context-aware adaptive behaviour of the vehicle routing
planning system

(2) The traffic information provider can be disabled due
to the communication link problems during the vehicle
journey, and then we defined the adaptation rule two (R2).
This rule makes the system switches to using the route
planning one (i.e. the required adaptation action), when the
traffic information is not available (i.e. the rule enabling
condition).

(3) The availability of the driver route preferences
enables the selection of the route planning one. Therefore,
the component rule three (R3 in Figure 13) defines the
availability of route preference as the rule enabling condition
and the use of route planning one as the required adaptation
action.

(4) The route planning algorithm two is used when both
the driver route preference and the traffic information are
available. To represent this case, we define the adaptation
rule four (R4) which have the availability of this context
information as the condition to use the route planning
algorithm two.

 (5) In Figure 13, we define R5 as a component that
evaluates to true when the vehicle speed is greater than 70
km/h (i.e. the rule enabling condition), and has the addition
(i.e. enabling) of the voice instruction component as the
required adaptation action to reduce the driver distraction.

(6) When the driver is driving in low speed, the voice
instruction may be annoying, and then it should be removed.
In Figure 13, R6 evaluates to true when the vehicle speed is
lower than 80 km/h, and has the removal of the voice
instruction component as the required adaptation action.

B. Validating the Adaptive Behaviour Visually
The system adaptive behaviour can be visually validated

by choosing “Run the System Adaptive Behaviour Test”
from the tool’s menu in our CAST tool. To enable this
feature, we generate the system implementations and a code
that makes an instance of these implementations and a GUI

that is linked with this instance. This GUI visualizes the
context providers, the context model, and the functional
system. Using this GUI, the software engineer can change
the context situation by providing specific context values in
the displayed textboxes. Then, by pressing the “Adapt to the
Context Information changes” button, the system
implementation instance is adapted to the context changes
and its state is displayed into the GUI.

Figure 14. Testing the system adaptive behaviour visually

 Figure 14 shows an example, where the software
engineer changes the driver route preference availability
value and the route planning one state to be “active”. This
context situation activates the adaptation rules one and three:
(a) the context model is changed by removing the traffic
information context entity and (b) the functional system is
adapted by selecting the route planning algorithm one. By
repeating this process, (a) missing adaptation rules can be
detected, if a context situation has no reaction from the
system; (b) incorrect adaptation rules can be detected, if
context changes lead to unexpected system reactions.

C. Validating the Adaptive Behavior Formally
For enabling the adaptive behaviour validation using the

Romeo tool as discussed in section 3, we linked our tool with
the Romeo tool. This link is made through generating (a) the
Petri Net model as an XML file and (b) the properties that
need to be checked as TCTL file (i.e. the input files format of
the Romeo tool). Then, we use the model checker
implemented inside the Romeo tool for checking the
adaptive behaviour, and then we get the verification results
and display them in our tool in a user friendly manner. In
addition, we enable the specification of the Petri Net initial
marking using our tool through a GUI that visualized the
context providers as shown in Figure 15-A. The specified
context values are used for evaluating the adaptation rules
condition, and then the condition that is evaluated to true its
net input place is activated (i.e. have one token). When the
software engineer press the validation button, the Petri Net
model is generated, the model checker is called, and then the
validation result is display as in Figure 15-B.

For example, when the vehicle speed is equal to 75
(Figure 15-A), the adaptation rules five and six are evaluated
to true in the same time. The adaptation actions in this case
are adding and removing the voice instruction component,

and then a conflict is detected between the rules evaluated to
true (i.e. R5 and R6) as shown in Figure 15-B.

Figure 15. Validating the adaptive behaviour using Romeo tool

By repeating the above process several times, we have
detected the following errors in the specified adaptive
behaviour:

Type1 error: The adaptation rules five and six actions can
be triggered simultaneously when the vehicle speed value is
between 70 and 80 km/h. Therefore, a conflicting action can
happen (i.e. add and remove voice instruction component).

Type2 error: The driver route preferences and the traffic
information context entities can be active at the same time.
As a consequence, the adaptation rules three and four are
triggered together which means there are two replacements
for the route planning algorithm in the same context
situation.

Type3 error: The designed adaptive behaviour is free
from redundancy error, where there is no duplication in the
adaptation rules.

Type4 error: Rule one is to change the context model in
response to the functional system change (i.e. remove the
traffic information when the route planning one is active). In
addition, when the traffic information is not available (i.e.
the context change), the route planning one is selected (i.e.
functional system changes). These two rules have cycles,
where the activation of one rule makes the other active. This
leads to an infinite loop between them.

Type5 error: When all context information is not
available, the system should use the default route planner.
However, the specified adaptive behaviour does not have this
rule (i.e. missing adaptive behaviour). In addition, there are
other missing adaptation behaviours, where we only show a
simplified example to highlight the possible error.

V. RELATED WORKS
In this paper, we have proposed an approach to

specifying and validating the context-aware adaptive
behaviour of a software system. In the following, we
compare existing approaches to our approach with regard to
the specification and validation of the adaptive behaviour.

The system adaptive behaviour specification: There
are three different approaches to specifying the system
adaptive behaviour [13]. Firstly, the rule-based mechanism
defines the system adaptive behaviour as a set of condition-
action rules [8, 20-23]. These rules are used to define the
required adaptation actions (i.e. the rule action) in response
to the context changes (i.e. the rule condition). The
condition-action rules (a) are easy to write (i.e. expressive);
(b) do not need to define the possible system states (i.e. the
possible system’s configurations and behaviours) beforehand

such as the state-based mechanisms; (c) give a fast system
reaction to context changes, where the needed system
reactions are already defined. However, defining the specific
system reactions to the context changes during the design
time may be difficult in large scale systems with a large
number of adaptation behaviours. In addition, the adaptation
rules are subject to errors such as inconsistency (e.g.
applying two contradicting rules leads to inconsistent system
state), incompleteness (i.e. missing adaptive behaviours), etc.
Existing approaches do not provide a way to tackle the above
two issues [8, 20-23].

Secondly, the goal-based mechanism specifies the
possible system’s configurations/behaviours as states. These
states are used to build a state-based model for the system’s
adaptive behaviour (e.g. Petri Nets [6], or Labelled
Transition Systems [24]), where the transitions between
these states are enabled by the context changes. In this
approach, the specific system adaptation actions are specified
at runtime by computing the difference between the system
current state (i.e. configuration or behaviour) and the desired
state. In addition, having a state-based model for the system
adaptive behaviour enables its validation, and missing
adaptation behaviours can be detected by looking for the
missing transitions between the system states. However,
when the number of the context variables (i.e. the context
changes that the system adaptive behaviour model is based
on) becomes large, the state explosion problem occurs. Even
if the model does not have the state explosion problem, the
enumeration of all the possible system states is difficult and
may be impossible. In addition, compared to writing the
condition-action rules, the building of state-based models is
difficult. Furthermore, computing the required adaptation
actions at runtime causes an overhead to the system, which
affects the system performance, in particular systems that run
on low power devices.

Thirdly, the utility-based mechanism captures the system
adaptive behaviour as a set of utility functions. These utility
functions are used to evaluate the system variants in response
to the context changes. Then, the variant that has the best
utility is chosen as the system next state [11-12, 25]. Similar
to the goal-based approach, the specific system adaptation
actions are computed at runtime by computing the difference
between the system current state and the desired state. In
response to context change, the goal-based technique
classifies the possible next states to desired or not desired
state (i.e. 0 or 1 classification), but the utility-based approach
quantify each possible next state with a number between 0
and 1 based on the next state suitability to cope with the
context changes (i.e. generalization of the goal-based
approach). However, when there are a large number of
context variables that are used to define the utility functions,
the design of the utility functions is complex. In addition,
this approach has problems similar to the goal-based
approach such as: (a) the need to enumerate all the possible
system states at design time; (b) the runtime overhead where
the utility functions are computed at runtime.

Several approaches have been proposed for specifying
the system adaptive behaviour, but these techniques still
have some limitations as discussed above. We introduced an

approach that has the expressiveness of a rule-based
mechanism (i.e. the easiness in writing condition-action
rules), and the formality of the state-based mechanisms (i.e.
the generated Petri Net model) to enable the adaptive
behaviour validation. Therefore, it removes the limitation of
existing approaches. In addition, to solve the state explosion
problem, we classified the system possible variations to
dependent and independent variations. This classification
reduces the system state space and the transition between
themselves as described in section three. Furthermore, the
existing approaches capture the context model implicitly
with the system adaptive behaviour model which increases
the system model complexity. In our approach we separate
the system’s context model from its adaptive behaviour
model and capture their relationship explicitly. As such, our
approach captures the system adaptive behaviour easily
while reducing the system modelling complexity.

The system adaptive behaviour validation: The goal-
based approaches for specifying the system adaptive
behaviour enable the system adaptive behaviour validation,
where they have a state-based model that can be validated.
However, these approaches do not take into account the
detection of errors that can happen during the adaptive
behaviour specification and need to be detected [6, 24, 26].
In addition, some of the adaptive systems frameworks
support the functional system validation with regard to
properties it should preserve and/or achieve, but they do not
pay much attention to the system adaptive behaviour
validation [6, 8, 10].

Similar to our work, an approach has been proposed to
validate the context-aware adaptive behaviour of the mobile
applications [7]. In this approach, they are concerned with
the system parameter adaptation and not the system’s
structure, and then they do not consider the inconsistency
type one error identified above. In addition, they assume the
context model is fixed, but the context model can be changed
during the runtime as shown in our case study. The
changeability of the context model enables the cycles to
happen in the system adaptive behaviour (see section three)
that is not considered in their approach and need to be
detected. Another assumption of their approach is that the
provided adaptive behaviour model is complete, and then
they do not consider the completeness check. Finally, they
consider the system state as the system whole configuration
and/or behaviour, and then they face the state explosion
problem as discussed above.

I. CONLUSIONS AND FUTURE WORKS
In this paper, we have proposed an approach to

specifying and validating the context-aware adaptive
behavior of a software system. We have considered the
context model and the system adaptive behavior model
separately, so that their relationship can be easily captured.
To enable the system adaptive behavior model specification,
we have introduced a component model that explicitly
supports the definition of the system’s context and
management actions (i.e. the adaptation rules conditions and
actions). In addition, to validate the system adaptive
behavior, we identified a set of errors that can happen when

specifying the system adaptive behavior and we transformed
the specified adaptive behavior model to Petri Net. Then, we
used Romeo tool to perform the validation with regard to the
errors identified. Furthermore, we have extended our CAST
tool for automating the process of specifying and validating
the system adaptive behavior. We also demonstrated our
approach through specifying and validating the context-
aware adaptive behavior of the vehicle route planning
system.

Compared to existing approaches, our approach has the
following key contributions. First, our approach represents
the relationships between the context changes and the system
variations explicitly, so that the system adaptive behaviour is
easily captured with less system modelling complexity.
Second, we classify the possible system variations into
dependent and independent variations for reducing the
possible system states and the transition between them (i.e.
making the state explosion problem not easily reached).
Finally, the designed system adaptive behaviour model is
transformed to Petri Nets so that it is validated for detecting
the adaptation behaviours errors such as inconsistency,
redundancy, circularity, and incompleteness.

There are several future directions for this research.
Firstly, in this paper, we have considered the validation of
the system adaptive behaviour during the design time. We
will extend our approach to (a) make the system able to add a
new adaptive behaviour at runtime to cope with the
unanticipated context changes and (b) enable the runtime
validation of the system adaptive behaviour when a new
adaptive behaviour is added. Secondly, not only the system
adaptive behaviour needs to be validated but also the
functional system itself, and then we will investigate the
design time and runtime validations of the functional system.
Finally, we have identified a set of errors that can occur
when specifying the system adaptive behaviour model. A
more investigation will be performed to identify other
possible errors if any.

ACKNOWLEDGMENT
This research was partly supported by the Australia’s

Cooperative Research Centre for Advanced Automotive
Technology (AutoCRC) (www.autocrc.com).

REFERENCES
[1] M. Salehie and L. Tahvildari, "Self-adaptive software: Landscape and

research challenges," ACM Trans. Auton. Adapt. Syst., vol. 4, pp. 1-42,
2009.

[2] B. H. Cheng, et al., "Software Engineering for Self-Adaptive Systems:
A Research Roadmap," in Software Engineering for Self-Adaptive
Systems, ed: Springer-Verlag, 2009, pp. 1-26.

[3] J. Kramer and J. Magee, "Self-managed systems: an architectural
challenge," Future of Software Engineering, 2007. FOSE'07, pp. 259-
268, 2007.

[4] S. Dobson, et al., "Fulfilling the vision of autonomic computing,"
Computer, vol. 43, pp. 35-41, 2010.

[5] M. Huebscher and J. McCann, "A survey of autonomic computing—
degrees, models, and applications," ACM Computing Surveys (CSUR),
vol. 40, p. 7, 2008.

[6] J. Zhang and B. H. C. Cheng, "Model-based development of
dynamically adaptive software," presented at the Proceedings of the

28th international conference on Software engineering, Shanghai,
China, 2006.

[7] M. Sama, et al., "Model-based fault detection in context-aware
adaptive applications," presented at the Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software
engineering, Atlanta, Georgia, 2008.

[8] B. Morin, et al., "Taming Dynamically Adaptive Systems using models
and aspects," presented at the Proceedings of the 31st International
Conference on Software Engineering, 2009.

[9] S. S. Andrade and R. J. de Araujo Macedo, "A non-intrusive
component-based approach for deploying unanticipated self-
management behaviour," in Software Engineering for Adaptive and
Self-Managing Systems, 2009. SEAMS '09. ICSE Workshop on, 2009,
pp. 152-161.

[10] W. Heaven, et al., "A Case Study in Goal-Driven Architectural
Adaptation," in Software Engineering for Self-Adaptive Systems, ed:
Springer-Verlag, 2009, pp. 109-127.

[11] R. Rouvoy, et al., "MUSIC: Middleware Support for Self-Adaptation
in Ubiquitous and Service-Oriented Environments," in Software
Engineering for Self-Adaptive Systems. vol. 5525, B. Cheng, et al.,
Eds., ed: Springer Berlin / Heidelberg, 2009, pp. 164-182.

[12] J. Floch, et al., "Using Architecture Models for Runtime Adaptability,"
IEEE Softw., vol. 23, pp. 62-70, 2006.

[13] Mahmoud Hussein, Jun Han, and A. Colman, "Context-Aware
Adaptive Software Systems: A System-Context Relationships Oriented
Survey," Technical Report #C3-516_01, Swinburne University of
Technology, 2010.

[14] J. Peterson, "Petri nets," ACM Computing Surveys (CSUR), vol. 9, pp.
223-252, 1977.

[15] H. Mahmoud, H. Jun, and C. Alan, "An Approach to Model-Based
Development of Context-Aware Adaptive Systems," in
InternationalConference on Computer Software and Applications,
Munich, Germany, 2011, pp. 205-214.

[16] H. Mahmoud, et al., "An Architecture-based Approach to Developing
Context-aware Adaptive Software Systems," presented at the 19th
IEEE International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS 2012), Novi Sad, Serbia, 2012.

[17] D. Lime, et al., "Romeo: A parametric model-checker for petri nets
with stopwatches," Tools and Algorithms for the Construction and
Analysis of Systems, pp. 54-57, 2009.

[18] T. Hafer and W. Thomas, "Computation tree logic CTL* and path
quantifiers in the monadic theory of the binary tree," Automata,
Languages and Programming, pp. 269-279, 1987.

[19] http://www.ict.swin.edu.au/personal/mhussein/CAST.htm, 2010.
[20] Q. Z. Sheng and B. Benatallah, "ContextUML: A UML-Based

Modeling Language for Model-Driven Development of Context-Aware
Web Services Development," presented at the Proceedings of the
International Conference on Mobile Business, 2005.

[21] T. Gu, H. K. Pung, and D. Q. Zhang, "A service-oriented middleware
for building context-aware services," J. Netw. Comput. Appl., vol. 28,
pp. 1-18, 2005.

[22] K. Henricksen and J. Indulska, "A Software Engineering Framework
for Context-Aware Pervasive Computing," presented at the
Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications (PerCom'04), 2004.

[23] A. Mukhija and M. Glinz, "The casa approach to autonomic
applications," in Proceedings of the 5th IEEE Workshop on
Applications and Services in Wireless Networks (ASWN 2005), Paris,
France 2005.

[24] D. Sykes, et al., "From goals to components: a combined approach to
self-management," presented at the Proceedings of the 2008
international workshop on Software engineering for adaptive and self-
managing systems, Leipzig, Germany, 2008.

[25] D. Garlan, et al., "Rainbow: architecture-based self-adaptation with
reusable infrastructure," Computer, vol. 37, pp. 46-54, 2004.

[26] Y. Zhao, et al., "Model Checking of Adaptive Programs with Mode-
extended Linear Temporal Logic," in 2011 8th IEEE International
Conference and Workshops on Engineering of Autonomic and
Autonomous Systems (EASe), 2011, pp. 40-48.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

