
Analysis and Design of Multi Agent Knowledge Development Process

Cheah Wai Shiang, Leon Sterling

Department of Computer Science and Software Engineering, University of Melbourne, Victoria, Australia
{w.cheah@pgrad., leonss@}unimelb.edu.au}

Abstract

 Within multi agent systems (MAS), knowledge plays an

important role in agent communication, reasoning and

supporting interoperability. It is often considered as an

ontology which contains explicit domain knowledge to be

used by agents. Although there are many ontology

development or engineering methodologies, current

efforts to incorporate knowledge into MAS are too

focused on computational aspects or ad hoc. Working at

the computational model is too low level, and many

processes are left implicit to the developer. This paper

focuses on engineering the agent knowledge development

process. A set of activities is proposed to externalize

processes involved in managing agent domain knowledge,

preferring software engineering approaches to ad hoc

processes. The activities are classified into analysis and

design steps together forming a development model suite

(e.g. user model, motivation model, task model and

design model). With guidance, we have successfully

developed agents’ knowledge based on a real life

application in finding a potential advisor for a graduate

student. Finally, it enables the agent developer to use,

reuse and maintain the agent knowledge.

1. Introduction

Nowadays, incorporating domain knowledge into multi-

agent systems is ad hoc or too focused on computational

aspects. Agents can have knowledge by creating personal

webs of knowledge through text processing [15] (e.g.

WordNet, term disambiguation); agents teaching others

semantic concepts through supervised inductive learning

[1]; populating the agent domain knowledge with

mapping capability through various mapping algorithms

like heuristic approach, usage of natural language

processing (NLP) [6], usage of machine learning

approach [9], dialogue based approach [7], [16]

combination of dialog and text processing, [2],

combination of dialog and NLP [21], combination of

dialog and NLP. We argue that working at the

computational model is too low level and many processes

are implicit to the developer. Also, the development of

agent-knowledge application can be time and effort

consuming Selection of different algorithms to use is hard

and there exist issues like having longer periods to

produce training sets [7]; lacking domain specific terms

under WordNet [6]; accuracy of classification and

clustering techniques in semantic integration. Other

mechanisms to incorporate domain knowledge in multi

agent systems are ad hoc. For example, Ganzha proposed

a pragmatic approach in describing hotel domain to be

used by a multi-agent travel support system [19]; [22]

leaves the work of ontology development to the software

developer and concentrates on development of multi

agent systems according to the usage of ontology within

MAS. The ad hoc approach provides maximum

flexibility; however, experience gained from the resulting

application cannot be easily transferred [22].

 This paper focuses on engineering the agent knowledge

development process. A set of activities has been

proposed to externalize processes involved in managing

agent domain knowledge and avoiding ad hoc but more

software engineering aspects in working on developing

agent knowledge. The activities are classified into

analysis and design steps. With complete guidance, we

have successfully developed an agent knowledge base for

a real life application of finding a potential advisor.

Finally, it enables the agent developer to use, reuse and

maintain the agent knowledge. Our hypothesis is that

multi-agent knowledge consists of characteristics like

derivation of agent knowledge from multiple sources;

user centricity of agent knowledge; diversity of agent

knowledge; agent knowledge is in two forms (e.g. what I

understand, what I know) and agent knowledge is

reusable. The outcome of our research is to facilitate the

software developer or agent developer when dealing with

developing knowledge for multi-agent systems. Towards

this direction, finding the processes involved is our focus

rather than developing new algorithms.
 The paper is organized as follows. Section 2 consists of

our early experiment in working on computational model

towards autonomous knowledge creation by software

agents. Issues have been highlighted and the outcome of

this experiment contributed towards the main direction of

this research. Section 3 discusses current research on

knowledge related development mechanisms together

with a description of our proposed solution that derived

from feature extraction from existing development

methods. Section 4 provides a general description of our

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.74

402

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.74

402

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.74

402

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.74

402

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

proposed solution. Section 5 discusses design activities in

more detail. This includes a discussion of processes

involved together with a running example. Section 6

concludes the paper.

2. Preliminary Work

Before we discuss our proposed process oriented

approach for developing knowledge for multi-agent

systems, we elaborate our preliminary work on

knowledge processing based on a computational focus.

Our early work prototyped an “advisor finder system”.

The advisor finder mediates user queries to locate a

relevant advisor autonomously. Hence, the agent must

understand the advisor domain, and user related to

advisor domain. Processes and algorithms are required to

incorporate these domains into the agent system. The

agent needs to develop the domain knowledge and

populate the knowledge through reconciliation capability

of a range of universities and academics. The aim of this

preliminary work was to experience the processes

involved in developing the agent knowledge through

population of concepts and instances from semi structured

data like web sites, and having the agent manage the

diverse concepts autonomously. Everything was built

from scratch and on the fly by agent and to agent. The

task involved working on parsing component; syntactic

similarity measures through approximate string matching

and edit distance; knowledge extraction mechanisms (e.g.

segmentation) from the web; diversity handling; and

concurrent execution and coordination. The computation

procedures in our working scenario are listed in Figure 1.

-Obtain concept segment

-Optimum finding by obtaining segment boundary based on heading

-Initiate concurrent execution
-From a segment, parsing instances from hypothesis (e.g. web) based

on line coding

-Perform approximate string matching(instances from hypothesis,
instances of concept)

-Obtain matched segment boundary

-Extract instances of the matched segment
-Perform syntactic similarity measurement through edit distance

-Loop to other hypothesis (e.g. other community member pages)

-At the ends of lists, perform noise filtering, delete noisy elements
-By now, the agents has confidence on the concept segment and can

use the segment name to perform the unmatched hypothesis

-Embed new instances together with segments

Figure 1: Computation Model for developing agent

knowledge

 Working at the computational level is challenging.

Besides concerns about the diversity of the web (e.g.

syntactic and semantic level), the accuracy of the

populated domain knowledge is a big concern. One of the

factors influencing accuracy is the threshold [7] used

within the matching or mapping algorithm. Lower

threshold will cause a huge number of populated

instances either relevant or irrelevant. Higher threshold

will produce higher accuracy but lose other relevant

knowledge elements. Apart from that, building the

relationship among the concept and sub-concept

autonomously is not trivial and even a developer can

justify the relationship manually. Meanwhile, from the

computational model, we have identified interesting

findings to model our working example. The outcome

from the model has inspired us to continue our effort

towards “process oriented or software oriented” agent

knowledge development which is the main discussion in

this paper.

3. Background

In this section, we describe our background study based

on our hypothesis in working on multi-agent knowledge

development as described in the introduction. Related

research to ours falls under the area of ontology

engineering (OE). From the study, we identified two

trends in OE, namely engineering conceptualization [24]

and engineering development process [12]. Our work is

towards the latter trend. Although there exist many

diverse methodologies, there is a lack of applicability

within application development compared to

CommonKADs. As a result, we believe that this is why

agent-ontology development still is ad hoc. Also, the

approach of incorporating knowledge into multi-agent

systems or the agent knowledge development process is

still unclear and non-understood. CommonKads [13] has

incorporated knowledge into agent systems but the level

of agency is undefined. Here, an agent is defined as

human or hardware and the focus of the knowledge is

problem solving or inference rule with little concern for

domain knowledge. Also, the influence on agency

towards the knowledge development does not have proper

consideration. MAS-CommonKADS [3] incorporated

problem solving knowledge into analysis and design of

multi-agent systems or produced a methodology for multi

agent system development. In this case, CommonKad

model suite has been applied to analyze software agents

with further extension to protocol engineering and

coordination mechanisms. It is not our focus to create

another new methodology for software agent. Dileo [8]

worked on integrating an ontology into the Multi agent

Software Engineering methodology (MaSE). In his work,

concepts were extracted from requirement analysis like

use cases and sequence diagrams to form a system

ontology. The steps are derived from IDEF5 and

Methontology. They define purpose and scope of the

ontology; collect data; construct an initial ontology; refine

and validate the ontology; and using the ontology in

MAS. Apart from forming analysis and design activities

in agent knowledge development, the significant

difference between our work and Dileo’s is in integration

403403403403

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

steps. Finally, our work fills the missing ontology

definition activities within MOMBAS methodology [22].

 Our proposed agent knowledge development process is

represented through the usage of features extracted from

the methodologies [11,13,14,17]. To reduce the

complexity of knowledge representation, we adopted the

lightweight ontology structure based on work from our

Agentlab [18]. Instead of working knowledge processing

autonomously, the agent developer has opportunity to

work on knowledge structure and elements through

documentation structure from CommonKads, UML and

tabular or profile representation like work from

Methontology. Meanwhile, the agent will work within the

organization or community. In dealing with community,

people with the same interest or knowledge will group

together to easily reach consensus during communication.

People will obtain their knowledge through experience

[20] and we further extend that people will explicitly

indicate the knowledge into a particular representation

(e.g. semi structural data like web). In this case, working

at distributed knowledge and community knowledge is

important here. Since this work is looking from software

engineering aspect, the analysis steps will be represented

through the documentation format from CommonKads

and UML.

4. Engineering Multi Agent Knowledge

Development

We have divided the agent knowledge development

process into analysis and design activities. Analysis

activities handle the agent knowledge at a high level of

abstraction. It is interesting to show that by borrowing the

agent concepts during the analysis, it enables explicit

indication of agent knowledge development in a

structured and clear manner. The developer or user will

analyze the domain knowledge through model sets. The

proposed model set corresponding to the analysis

activities are user model, motivation model, task model

and ontological model. The proposed analysis activities

for multi-agent adviser finder consist of activities like

knowledge source analysis, knowledge item analysis and

knowledge structure analysis. Meanwhile, the design

activities will handle the agent knowledge at the

applicable level. From our work, the design activities will

specify the components required in developing agent

knowledge through developing design models. It involves

designing specific mechanisms to organize the agent

knowledge, having profile based, structuring knowledge

deployment to agent like interaction design, with the aim

that thee agent knowledge is ready to use by the software

agent. Furthermore, it concerns the subsystems involved,

interconnected through data, control and other

dependencies.

 The generalization of the activities is based on our

proposed agent knowledge engineering principle. Given a

case study, identify the requirement for the application

based on the knowledge consideration. Extract the

knowledge characteristics of the application(s) and these

will turn into agent knowledge characteristics. Based on

the knowledge characteristics, invent a model and design

process that will facilitate the user and developer in agent

knowledge development or enable such knowledge to be

handled (reuse existing model or design a new one).

Structure the model based on the knowledge development

lifecycle (e.g. knowledge identification, knowledge

generation, knowledge evolution and knowledge

deployment). In order to provide a high level abstraction

of the agent knowledge development, we have associated

the agent concepts with the analyzing of agent

knowledge. The association procedure is described

below. Influenced by the ROADMAP methodology, we

first model the agent organization, followed by

interaction and service. First, the working procedure

involves identifying the knowledge source also known as

MAS organization knowledge or multi agent domain

knowledge through a user model. The user model will

model the agent involvement within the organization.

Then, we identify the knowledge items based on a

concept that user interaction is triggering from motivation

towards a task execution. In this case, user motivation

will be modelled within a motivation model to execute a

particular task that is modeled within the task model.

Together, these form an organization knowledge structure

for agent systems. Meanwhile, an interaction protocol is

used to model the task ontology. At the same time, the

user or developer constructs design components required

to facilitate the development of knowledge for MAS.

 In the rest of this section, we briefly describe the

analysis activities involved and proceed into detailed

description of design activities in the following section. A

more comprehensive description of the analysis activities

can be found in [5].

4.1 Analysis Activities

 The knowledge source analysis indicates the

knowledge that will occur within the MAS organization.

It identifies actor(s) involved to produce a knowledge

contributor model or user model. The model will capture

information like knowledge contributor, scope of

knowledge extraction, actor formation and actor

boundary. The knowledge item analysis involves

identifying knowledge items like concepts and instances

required within the agent knowledge. This can be done

through analysis of motivation items from the motivation

model and analysis of the ingredients from the task

model. The knowledge structure analysis involves

conceptual layout and knowledge elements. The

404404404404

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

conceptual layout and elements are derived through a set

of activities like identifying level of granularity,

populating the conceptual elements, instance analysis,

diversity analysis (with mapping requirements like

locating the algorithm used during mapping; identifying

the concepts used during mapping; mapping process;

enriching the mapped concepts) and finally refining and

verifying the knowledge elements.

5. Design Activity

In this section, we describe the design activity in detail

based on a running example of a multi-agent adviser

finder system. It is an agent mediator system that works

on the following scenario: Students have Government

scholarships available to study for a Ph.D overseas if they

are able to find an adviser at a reputable university. To

find an adviser, a substantial amount of knowledge is

needed which includes “advisor domain” like research

areas, research experience, professional activities, etc.

These are usually described differently at different

institutions.

The design activity starts with having software

components to locate the actors and obtain actors’

knowledge; manage knowledge repository arrangement;

organize the concept layout and elements; serving

reconciliation outcome and managing knowledge usage

within multi agent systems.

5.1. Design for obtaining organization knowledge

In this section, we describe the design aspect to facilitate

process in obtaining the organization knowledge. The

steps involved are listed below.

5.1.1 Addressing or directory design

The aim of directory design is to provide a platform for

locating the knowledge sources for further processing.

Once the actors have been modeled, the locations of the

knowledge sources or actors’ explicit knowledge need to

be traceable. This can be done through designing a

directory registration like works in UDDI, reference

ontology, directory facilitator. In this project, a simple

addressing object has been created to support the

directory design. The addressing object will store a list of

addresses, actor name and name of the community. A

more advanced directory registration can be derived from

previous work .

5.1.2 Knowledge extraction

As mentioned before, we assume that semi-structured

data like on the Web will contribute towards the detailed

allocation of actors’ knowledge. In this case, designing a

software component for semi-structured data extraction is

required. Although many mechanisms or tools have been

proposed for knowledge extraction from the web, this is

not our direction in working on increasing the recall and

precision through advanced algorithms. Based on our

early work in autonomous agent knowledge, it seems that

the web is too diverse and it is a challenge to have a

single algorithm. Also, it is hard to identify and extract

concepts, instances, and sub-concepts through the current

information retrieval tools. As a result, we are working on

a simple semi-automated tool to extract the data in order

to engineer the process in knowledge extraction and

understand the process involved in building the agent

knowledge from scratch. The input to the tool is explicit

knowledge (e.g. information on web or defined as

knowledge source) and the output is actors knowledge

represented in XML. To overcome the diversity of the

web, we have proposed a step-by-step and continuous

verification of the extracted knowledge items with

supported tool. The verification has been done based on

the outcome from the analysis activities [5]. The

description of the steps involved is given below.

Preprocessing. Preprocessing deals with conversion of

actor explicit knowledge. Without preprocessing, HTML

is just like a collection of data with different data

formation. We assume that the concept will be

represented with a heading (e.g. H1, H2 and etc.) and the

instances are underneath each concept. Since it is

subjective and difficult to explore the relationship from

semi-structured data, we focus on concept-instance

relationship. An HTML parser
1
 and XML beans

2
 are used

during the preprocessing. HTML parser consists of API

that can be used to interpret HTML tags and retrieve the

content within a particular tag. Given a URL, the HTML

parser has capability to parse HTML tag, HTML link,

HTML text and HTML remark. Each tag can be

considered as a tree structure (e.g. each tree element

consists of a start and end tag) and iteration is used to

retrieve a certain tag required by the developer. However,

the tree structure is getting complex with the current

HTML designs. To simplify the process from traversing

from tree elements to the others, we have utilized tag

numbers in concept extraction. The concept is

surrounding with a start tag number and an end tag

number. The start tag number is the number given when

the concept name has been identified. Meanwhile, the end

tag number is the number given when the next concept

name has been identified. This start and end numbers

form a block we call the boundary of a concept. For

example, given explicit knowledge of the academic, the

concept of contact falls under a numbering of 70-113

1http://htmlparser.sourceforge.net
2
http://xmlbeans.apache.org

405405405405

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

(forming a block). In addition, the item within the block

is interpreted as instances for the given concept.

Figure 2: Preprocessing from HTML

Figure 2 shows the output after preprocessing. The output

is generated by using XML beans and captures the

concepts structure for an academic. XML is used here as

it is platform independent and supports semantic

description for data. Besides, the structure is well-form

and well-defined. From Figure 2, concepts are extracted

from explicit knowledge of Rao, consisting of concepts

like contact, current research interests, students and

current activity. Verification is taken place during

preprocessing to remove unwanted concepst as well as

ambiguous concepts. Some of the unwanted concept like

+61 3 8344 1325, physical location, email, hobby, photo,

Out and about, getting the job done..., Chair of software

innovation and engineering, links, admin and so on. The

verification is based on the outcome from the task model.

Apart from that, verification also involves a tag number

check to prevent unwanted instances falling into

particular concepts during concept instantiation .

Concept extraction is a preliminary stage to form an

individual knowledge repository after the preprocessing.

The context knowledge derived from the task will

become a guideline to extract the relevant concepts in this

process. Although the task ingredient is far from

complete, having interaction with extracted knowledge

can enrich the knowledge of a software developer. For

example, finding a potential advisor, advisor here is a

representative from an institution and works within the

education context. The education context for an academic

is derived from concepts such as publication, supervision,

teaching, and administration. In this section, we do not

deal with raw data like HTML but structured knowledge

(e.g. XML forms) derived from preprocessing. A concept

extraction component has been developed for this stage.

The concept extraction component relies on XML Beans

for parsing the XML file. As mentioned before, the task

ingredient or education context has become a guideline

for the concept extraction. As a result, non-verification is

required in this stage due to one-to-one mapping between

the contextual knowledge and the extracted concepts. For

the moment, the software developer is required to

manually input the concepts for extraction through our

concept extraction component.

Concept instantiation component looks for instances

that fall underneath the concepts. It facilitates the instance

analysis as described previously. The input consists of

concepts that had been extracted in the previous stage and

dedicated outcomes derived from the preprocessing.

People may be curious why we don’t extract everything

during the preprocessing. One of the reasons is to reduce

the unnecessary filtering and time spent during the

preprocessing. The other reason is we need more precise

outcome through checked tag number. The processes

involve searching through the corresponding tag number

within a particular concept. Once obtained, the

component will extract the instances by using the HTML

parser. The instance verification is required to filter

unwanted extraction like space, duplicate instances and

unorganized instances.

Global integration. The function of global integration is

to position the concepts within a standard ontology. The

global integration is another enrichment method to agent

knowledge through inheriting or referencing the

knowledge from domain expert like ACM computer

science classification, mathematical ontology, biology

and so on. It relates the extracted concepts into a more

formalized stage in which the standard ontology will act

as global reference and provide an annotation service for

concepts. The information from the global ontology is

derived from ingredient analysis from the task model [5].

For example, a concept of research interest may consist of

information sources from ACM classification list,

conference topic of interest and so on. Here, we have tried

to integrate the ACM classification list into our working

example for the concept of research interest. The

classification system consists of 122k, more than 200

classes and has at most four level of granularity forming a

single classification XML file. Due to the complexity in

traversing from concept to sub-concept, we have

constructed our local global ontology that is suitable for

our context with conditions of 5 main concepts software,

data, mathematic computing, information system and

computing methodology, reduced sub-concepts and 3

levels of granularity. The challenge for global integration

is to have an effective searching algorithm as well as the

diversity of concept representation by individual. In this

project, we have utilized SQL query to ease of searching

for the concepts. However, the current ontology has

failed to annotate the application at hand. This has risen

by [travel ontology] that we cannot find any ontology that

is suitable for what we want to do. Although it fails to

capture the overall knowledge level for an application, it

has added some value to agent knowledge.

406406406406

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

5.2. Knowledge storage design

The knowledge storage acts as repository to provide

storage at the knowledge level. Logically the knowledge

storage design is shown in Figure 3. The physical view of

the storage design is shown in Figure 4. In the knowledge

storage design, two important concepts have been

defined. There are “agent understands” and “agent

knows”. These concepts have been implicitly specified

within current mapping tools. Prompt, Chimara, S-Match,

Sambo focus on matching at the concept level; GLUE,

iMapper, Anemone focus on matching at the instances

level as well as the concept level. An agent must

understand the knowledge structure and have the

capability to interpret the knowledge structure. The

conceptual space is the agent knowledge model structure

and it defines “what an agent can understand”. It also

defines agent knowledge model formation in which

forming agent concepts, sub-concepts, attributes will

carry on. The individual knowledge repository consists of

knowledge from a particular individual, represented in

XML file. As a result, we will have groups of XML files

among the individuals. Since the individual is located

within a community, the group of individuals that have

the same location will form a larger repository. In this

case, each community will be represented as a folder.

Finally, all the community having a same interest will

form a cross organization viewpoint.

 The agent knowledge repository is a process to form

“what an agent knows” through knowledge structure

instantiation. The process involves forming the instances

for each of the concepts within the knowledge structure.

Each concept is hosted under a dedicated folder together

with the file name according to given concept name. For

example, under the agent knowledge repository for a

concept named “project”, it consists of 10 Xml files. In

this case, there exist 10 individuals that can provide the

knowledge required by the agent.

Figure 3: logical view design

Figure 4: Physical view design for knowledge storage.
agentKR- agent knowledge repository; individualKR-actor

knowledge repository; globalKR-global knowledge repository

5.3. Knowledge structure or conceptual design

The knowledge structure design or conceptual design

focusses on designing the layout for agent knowledge.

We believe that the knowledge layout will grow and

evolve from time to time due to the changes within the

organization or community within the organization. The

current ontology layout is too complex and difficult to

traverse by agents [18]. As a result, the structure must be

simple, lightweight and easy to traverse by agents. We

propose to use a simple taxonomy as knowledge layout.

Initially, the agent knowledge consists of concepts and

instances. Then it will continue to be refined until it forms

a complete structure of agent knowledge with expansion

capability. Figure 5 shows the agent knowledge structure

and Figure 6 shows the agent knowledge structure with

elements associated with the concept of “publication” as

indicated in Figure 5.

Figure 5: Agent Knowledge Structure

Figure 6: Agent Knowledge Structure and Element

407407407407

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

5.4 Knowledge reconciliation design- Populating

the Agent Knowledge

The knowledge reconciliation design works on the basic

idea surrounding maintenance and reusability of the

mapped concepts. From the previous study, we identified

that storage and maintenance of knowledge is needed to

enable the usability and reusability of agent knowledge.

We believe that this is not an exception during

reconciliation. Methontology [11] is the only ontology

methodology working in this direction. Here, a set of

tabular forms or tables will store the concepts, instances,

properties, axiom during the ontology development

process. The description provided for the knowledge

elements is clearly defined and presented in a well form.

 We proposed a set of profiles to locate the

reconciliation elements. The usage of profile is taking the

advantage of structural representation (e.g. XML) and is

also platform independent. During the diversity analysis,

the developer will initiate a concept and receive input

from individual knowledge repository to perform

matching between the knowledge elements within the

individual knowledge repository and the initial concept.

We use the reconciled profile to store the initial concept.

The layout of the reconciled profile is shown in Figure 7.

The reconciled profile consists of a classification of

concepts with similar meaning but with different

representation. For example, from our working

environment (e.g. finding a potential advisor from 60 data

sets), we have identified that “service”, “previous work”,

“research papers”, “recent publication”, “current activity”

have similar instances. Although the concept

representation is different, the instances are the same.

This indicates how diverse people are in representing

their knowledge. Another example like “lecturing”,

“current teaching”, “course”, “teaching in year”,

“subject”, “classes”, “lectures”.

Figure 7: ReconciledProfile

 Having worked on the reconciled profile, this involves

processes to record the concepts that contributed by the

individual actor for purposes of tracking. We have

proposed two profiles towards this activity. They are K-

distribution profile and C-profile. For the moment, the C-

profile is based on tabular form. However, it is easily

transform into XML structure as listed below. The C-

profile is compulsory and K-distribution profile is

optional. Depending on the situation, sometimes only a

C-profile is needes, other times both may be needed.

 The C-profile or contributor profile is a profile that

records individuals that contribute towards a particular

concept within a particular community. For example, a

concept of research interests is contributed by individuals

within a community of MelbUni like Adrian, Alistair,

Harald, Udaya
3
. The C-profile is the smallest unit in

tracking concept locality. It provides a reference to the

individual knowledge repository during execution. Keep

in mind that the C-profile is not simply a directory but a

place for individuals to position itself to consensus.

Figure 8 (right) shows the C-profile for individuals under

MelbUni. Each community must have their individual C-

profile. We have constructed our C-profile by using

Microsoft Access for fast prototyping. The C-profile

consists of three sections, the member list, description list

and concept distribution list. The member list (in the

middle) has highlighted the individual that participated

within the community. It consists of reference points to

the corresponded knowledge repository. The description

list indicates the number of unique concepts that represent

under a particular context, here we defined as education

context. For example, C1 or category 1 is described as the

consensus reaching subjective to concept-interest

representation among the academics. Finally, the concept

distribution list indicates how the individual said they

know for a particular concept within a particular

consensus category.

 The K-distribution profile also known as knowledge

distribution profile indicates the community that

contributed towards a particular concept or knowledge

point that can be looked for, before further processing.

Figure 8 (left) shows the K-distribution profile. The

number of concepts is closely related to concept

reconciled profile. The K-distribution profile consists of

concept, community name and concept category (refer to

C-profile). From Figure 8 (left), we can interpret that the

concept of “research interests” reconciled group (e.g.

from concept reconciled profile) known among individual

from MelbUni, UTS, Curtin, Monash, RMIT and UNSW.

Steps towards creating a K-distribution profile are:

1. Having concept reconciled profile and C-profile

as input

2. Obtain reconciled concepts (group of concept

under a particular reconciliation) from

reconciled profile and perform mapping to C-

profile.

a. Mapping can be performed from

description list or,

3
 Note first names of Computer Science academics from

the University of Melbourne are used here.

408408408408

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

b. From concept distribution list

3. Once found, locate the concept category and fill

it into K-distribution profile. If the concept does

not exist, leave the column empty.

Figure 8: (left) Example of K-distribution profile and

(right) Concept Profile in XML form

5.5. Deployment Design

Work has been done by introducing MOMBAS

methodology in incorporating ontology into agent

oriented software engineering. Although MOMBAS [22]

has proposed a set of activities to integrate the ontology

into agent designs like internal design, interaction design,

organization design, the work is fall within our proposed

deployment section. No agent knowledge development

process has been introduced or incorporated into the work

in MOMBAS. Here, we will describe how the outcome

from the analysis and design activities will contribute

towards the incorporation of agent knowledge into agent

systems.

 As described in the user model [5], the MAS

organization consists of two types of actors. They are

actors who act as students and actors who act as

academics or potential advisors. Meanwhile, we also

modeled the interaction with policy like student has full

access to the concept structure, and partial right to access

the instances or knowledge element. By default, the

actors (e.g. academics) will share their knowledge freely

among each others. In order to cater the huge number of

actors involved (e.g. academics), we have adopted an

agent mediator architecture to work on the application.

Two proposed scenarios are shown in Figure 12 below.

The first scenario involves multi agent interaction, while

the second scenario involves human agent interaction as

shown in Figure 9. The second scenario is human and

agent interaction.

Figure 9: Multi agent system, Human and agent

interact through knowledge model (right).

 In multi agent interaction, a personal information agent

(PIA) has been dedicated to perform the task of finding a

potential advisor. The PIA uses motivation knowledge

derived through motivation analysis. Once activated, by

default the PIA would have complete knowledge for

performing the task required when it entered a working

environment. Logically, the PIA will inherit the

knowledge model in a particular working environment.

However, the knowledge it has is just a knowledge shell

without knowing instances. The inheritance mode

depends on what role an agent plays in the environment

as well as the policy restriction that have been modeled in

the user model. From client and service aspect, a client

agent will inherit with knowledge without instance.

Meanwhile, a service provider will inherit with complete

knowledge and instances. This will introduce reusability

of the knowledge model. The overall execution of the

agents are traversing the agent knowledge model,

obtaining annotation to dedicated agent knowledge

repository, comparing the returned knowledge items,

ranking it and presenting to user or providing response to

PIA. In human-agent interaction, the operation is still the

same but more dynamic and complex agent development

(e.g. degree of autonomy) is introduced. In the following

section, we will describe the internal architecture of the

mediator based on the Figure 9 (left) with student agent

as PIA and provider agent as mediator. This involves a

process in loading separate knowledge repository

representation based on the described scenario. Table 1

shows the deployment of agent knowledge within our

working example.

Provider Agent Personal Intelligent Agent

Load policy profile

Load agent knowledge structure
---connected reconciled Profile

---connected K-distribution Profile

---connected concept Profile
---connected individual knowledge

repository

---**connected agent knowledge
repository

Load policy profile

Load motivation script
---connected agent

knowledge structure

Table 1: Deployment Design

409409409409

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

 During the agents’ interaction, a received request (e.g.

motivation item or concept) will pass through several

checks from reconciled profile, K-distribution profile,

concept profile until further retrieving the relevant

instances that occur within a particular individual

knowledge repository. This is time consuming and

computationally intensive. As a result, annotated agent

knowledge structure to individual knowledge repository

is ineffective. We need more reusability mechanisms and

effective solution for handling agent request.

Preprocessing has been done to annotate a particular

concept with dedicated instances within the individual

knowledge repository as listed in the following steps.

Steps 1 to 8 represent execution involved in preparing the

agent knowledge repository or preprocessing period. Step

9 onward involves process for constructing agent

knowledge repository.

1)Give a particular motivation item as input

2)Check concept reconciliation and baseline profiles

3) Obtain reference on reconciled item

4) Check K-distribution profile (if exists, optional)

 4a) Obtain concept category path

5) Check on C-profile

6) Obtain member item

7) Traverse KM storage like community repository and

individual knowledge repository

7a) Obtain concept instance based on reconciled reference

8) Write the outcome into XML file, named with

identified individual

9) Processing to form agent knowledge repository

9a) Give agent knowledge model and motivation item as

input 9b) Traverse the agent knowledge model to find the

relevant concept 9c) Obtain the concept block (consisting

of concept and sub-concepts) 9d) Verify and embedded

the block structure into the XML file from Step 8. 9e)

Finalize agent knowledge repository

 From now on, instead of having references to K-

distribution profile, concept profile and individual

knowledge repository, loading the agent knowledge

structure will only require to annotate reconciled profile

and agent knowledge repository. Figure 10 below

represented the agent knowledge for provider agent. The

mediator agent uses the knowledge in further processing.

Figure 10: Agent knowledge structure and annotation

to agent knowledge element – Provider Agent

Putting it all together, the design model for handling the

agent mediator knowledge is shown in Figure 11.

6. Conclusions

The main objective of this research is working on agent

knowledge development mechanisms. Since knowledge

plays an important component in agent systems, we

believe that there should be an easy way to incorporate

the knowledge development into multi agent systems.

The mechanism should be clear, explicit and reusable by

others. It can turn into guidance, pattern and working on

high level of abstraction. Two working mechanisms have

been proposed and described. This can range from having

a computational model in dealing with autonomous agent

knowledge development (e.g. of AI approach) to software

engineering aspect through working on “process-

oriented” approach. In future, we would like to develop a

more structured way to develop agent knowledge.

Furthermore, the agent knowledge development process

will fertilize from activities like knowledge discovery,

knowledge generation, knowledge evolution and

knowledge deployment.

Acknowledgements

Thanks for useful discussions from members of the

Intelligent Agent Lab at the University of Melbourne. The

first author was supported by a Malaysian Government

scholarship. The research was partially supported by

ARC Linkage Grant LP0454027.

410410410410

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

Figure 11: Design Model of Agent Knowledge Development Process for Mediator Agent

7. References
[1] William A. B.(2004). Learning to share meaning in a multi

agent system, Journal of Autonomous Agents and Multi Agent

System, 8(4), pp. 165-193, 2004.

[2] Bailin S. C., Truszkowski W. (2003). Ontology Negotiation:

How Agents Can really get to know each other, Proc. First

International Workshop on Radical Agent Concepts, McLean,

VA, USA, pp. 320-324, 2003.

[3] Henderson-Sellers B., Giorgini P.(2005). Agent oriented

methodologies, In Agent-Oriented Methodologies, (eeds. P.

Giorgini and B, Henderson-Sellers), pp. 46-79 ,2005.

[4] Henderson-Sellers B., Tran Q. N., Debenham J.(2005). An

etymological and metadamodel based evaluation of the terms

"goal and task on agent oriented methodologies," Journal of

Object Technology, 4(2), pp. 131-150, 2005.

[5] Wai-Shiang C., Sterling L. (2007). A Dedicated Model in

developing agent system with reconciliation capability, Proc.

9th International Conf. of Information, Integration and Web

based Application and Service Jakarta, pp. 33-45, 2007.

[6] Fossati D., Ghidoni G., Eugenio B. D., Cruz I., Xiao H.,

Subba R., (2006). The Problem of ontology alignment on the

web: a first report Proc, Workshop on Web as Corpus, Proc.

11th Conference of the European Association of Computational

Linguistics. Trento, Italy.

[7] Diggelen, J. V. (2006). Achieving Semantic Interoperability

in Multi-agent Systems-A Dialogue-based Approach. PhD

thesis, University Utrecht.

[8] Dileo J., Jacobs T. DeLoach S.(2002). Integrating ontologies

into Multiagent Systems Engineering, Proc.Fourth International

Conf. on Agent Oriented Information Systems, 59.

[9] Doan A., Madhavan J., Dhamankar R., Domingos P., Halevy

A., (2000). Learning to Match ontologies on the semantic web,

VLDB, 12(4), pp. 303-319, 2000.

[10] Djuric D., Devedzic V., Gasevic D.(2007). Adopting

Software Engineering Trends in AI, IEEE Intelligent Systems,

22(1), pp. 59-66, 2007.

[11] Lopez M. F., Gomez-Perez A., Sierra J.P.(1999). Building

a Chemical Ontology Using Methontology and the ontology

design environment, IEEE Intelligent Systems, 14(1), pp. 37-46,

1999.

[12] López, M. F. (1999). Overview of the methodologies for

building ontologies, Proc.Workshop on ontologies and problem

solving methods (KRR5), IJCAI-95 .

[13] Schreiber G., Wielinga B., Hoog R., Akkermans H., Velde

W. V.(1994). CommonKADS:A Comprehensive Methodology

for KBS Development, IEEE Expert:Intelligent Systems and

Their Applications, 9(6), pp. 28-37, 1994.

[14] Kotis K., Vouros G. A.(2006). Human Centered Ontology

Engineering: the HCOME methodology, International Journal of

Knowledge and Information Systems, 10(1), pp. 109-131, 2006.

[15] Kotis K. (2005). Using Simple ontologies to build personal

webs of knowledge, Proc. 25th International Conference of the

British Computer Society. Cambridge, UK.

[16] Laera L., Tamma L. V., Euzenat J., Bench-Capon T., Payne

T. (2006). Arguing over ontology alignments, Proc.

International Workshop on Ontology Matching, Athens, GA.

[17] Duen-Ren L., I-Chin W., Kuen-Shieh Y. (2005). Task

based K-support system: disseminating and sharing task-

relevant knowledge, Journal of expert systems with applications,

pp. 408-423, 2005.

[18] Hristozova M., Sterling L.. (2002). An eXtreme method for

developing lightweight ontologies, Proc.,Workshop on

ontologies in agent systems, AAMAS 2002.
[19] Ganzha M., Gawinecki M., Paprzycki M., Gasiorowski R.,

Pisarek S., Hyska W. (2006). Utilizing semantic web and

software agents in a travel support system, In Semantic Web

Technologies and eBusiness: Idea Publishing Group, pp. 325-

359, 2006.

[20] Laclavik M., Babik M., Balogh Z., Hluchy L. (2006).

AgentOWL:Semantic Knowledge Model and Agent

Architecture, Computers and Artificial Intelligence, 25(5),

pp.419-437, 2006.

[21] Orgun B., Dras M., Cassidy S., Nayak A.(2005).

DASMAS-Dialogue based Automation of Semantic

interoperability in Multi-Agent Systems. Australian Ontology

Workshop, 58, pp. 75-82, 2005.

[22] Tran Q. N., Low G. C. (2006). A methodological

framework for ontology centric oriented software engineering,

Journal of Computer Systems, Science and Engineering , 21(2).

411411411411

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:31:35 UTC from IEEE Xplore. Restrictions apply.

