
SOLVING LINEARLY CONSTRAINED 
NONLINEAR PROGRAMMING PROBLEMS 

BY NEWTON" METHOD 

F a k m e h  Chotb 

Serial No. 30, 1986 

Faculty of Business 
Staff Papers 

SWINBURNE INSTITUTE OF TECHNOLOGY 
A division of Swinburne Ltd 



SOLVING LlNEARLY CONSTRAINED 
NONLINEAR PROGRAMMING PROBLEMS 

BY NEWTON'S METHOD 

by 

Fatemeh Ghotb 

Serial No. 30, 1986 

ISBN 0 85590 586 5 

This paper should not be quoted or  reproduced in whole or  in pa r t  without t h e  
consent of t h e  author, t o  whom all  comments and enquiries should be directed.  

Ghotb, F., 1986 





ABSTRACT 

In this paper matrix techniques are developed to implement 

a modified Newton method to a linearly constrained nonlinear 

optimisation problem with a twice differentiable and 

factorable objective function. 

The problem first is reduced to an unconstrained problem, 

then the generalised inverse of the positive part of the 

Hessian matrix is used to generate the direction of search. 





1. Introduction 

This paper i s  concerned with solving the following l i nea r ly  

constrained nonlinear programming problem: 

minimize f (x)  

x € !a 

. subjec t  t o  Nx = e 

' k > b  - 

wherein is an open set, N is an exn matrix of rank fl , A is an mxn 

P matrix, bEEm, e&E and f ( x )  is twice continuously d i f fe ren t iab le  

(i.e. f ~ c 2 ) .  

The point  of view taken here is tha t  a t  each i t e r a t i on ,  the above 

problem can be converted t o  an unconstrained minimization of f ( x )  i n  a 

subspace of reduced dimension which can be solved by several  methods. 

The unconstrained minimization technique used here is the following 

modified Newton method: 

The parameter ak is the s t ep  s i z e  and is chosen from optimal s t ep  

s i z e  procedure discussed i n  section 8 t o  enforce f (xk+l)  < f (xk) . 



2 

In  t h i s  paper formulas are  developed f o r  t he  matrix methods required 

t o  implement the modified Newton method i n  fac torab le  form. These a re  

two types. F i r s t ,  are  the formulas required f o r  the  computation of a 

nullspace matrix, a matrix whose columns span the  space of vectors 

orthogonal t o  the derivatives of act ive  cons t ra in t s .  Two approaches, 

elimination of variables and the projection method a r e  examined. The 

second s e t  of matrix computations a re  those required t o  est imate the  

generalized inverse of the "posit ive par t"  of the  Hessian matrix i n  

the equal i ty  constrained subspace [ 8 1. f (x )  a l so  is assumed t o  be a 

factorable function [ 11 1, fo r  which a dyadic form Hessian matrix can 

be formed and i ts  generalized inverse can be updated by rank one 

matrices a t  each i t e ra t ion .  

2. Equivalance of Linearly constrained and unconstrained problems. 
A 

Consider the  problem i n  1.1 - 1.3. A t  any f ea s ib l e  point  xs le t  fi 

be the  s e t  of indices i f o r  which ajxs = b i  (from i=l, ..., m), 

and assume t h a t  the vectors i n  the  set 
A 

S = {NT, {aT}, ~ E R }  (2.1) 

a re  l i nea r ly  independent. Since a t  any s tage  of the  algorithm only 

the  equal i ty  and act ive  constra ints  take p a r t ,  w e  can def ine  the  

following problem 

Minimize f (x) (2.2) 

Subject t o  C x = d 



where C is  a rxn matrix, rLn, i t  has f u l l  rank, and C~ES,  i=l, ...., r 
( C i  is the i t h  row of the matrix C ) .  I f  xs is a point sa t i s fy ing  

the constra ints  i n  (2.2) then a necessary and su f f i c i en t  condition 

t h a t  some point x a l s o  s a t i s f i e s  Cx = d is tha t  

x = x s + y  

where y i s  i n  the  nullspace of C.  

L e t  B be an nx(n-q) matrix such tha t  a necessary and su f f i c i en t  

condition f o r  a vector  y t o  be i n  the nu l l  space of C is, 

y = Bz (2.3) 

f o r  some z&En'q. Then it follows t h a t  the  problem (2.2) can be 

converted i n t o  the  following unconstrained problem: 

Minimize F(z)  = f(xs+Bz) (2.4) 

zcEn-9 

A sequence xk tending t o  solve (2.2) can be regarded a s  being 

generated by a sequence zk which attempts t o  solve (2.4). It is  

shown i n  [ 12 ] t h a t  a necessary and suf f ic ien t  condition fo r  a point 

xk sa t i s fy ing  the  set of constra ints  cxk=d, t o  be a Lagrangian 

s ta t ionary  point is t h a t  

VZF(z) = 0 

It is a l s o  shown t h a t  i f  

B T V ~  (xk) B 

is  a pos i t ive  semi-definite matrix, i . e .  

z T B T v ~ ~ ~ ( x ~ ) B z L  o f o r  a l l  ZEE~-9, 

then xk s a t i s f i e s  t he  second order necessary conditions as  w e l l .  



3. Null Space Computation 

To solve the unconstrained problem (2 .4 ) ,  the  following i t e r a t i v e  

formula i s  used. 

zk'l = zk - & [v$,F(zk)]' . vZF(zk) 

premultiplying by B yie lds  

xk+' = xk - a k ~  [BTV:',~ ( x k ) ~ ] '  [ ~ W f ( x k )  ] 

where ( + )  stands f o r  the  generalized inverse.  

In  order t o  be able  t o  use (3 .2) .  we need t o  ca lcu la te  the  nullspace 

matrix of the  matrix C ,  the matrix of the  gradient of a l l  binding 

constra ints .  Two methods, Elimination of var iables  and project ion 

method a r e  considered. The following theorem is the  bas i s  f o r  working 

with d i f f e r en t  methods of nullspace matrix computation. 

Theorem 

Let B1 and B2 be two matrices generating the  n u l l  space of C 

(defined a s  i n  (2 .2 ) ) .  with nxql and nxq2 dimensions respectively 

and 91, 92 > (n- r) . Furthermore, suppose zTv2f (x)  Z>O f o r  a l l  - 
z * 0 and Cz=O. Then it is proved t h a t  [ 12 1: 

Now l e t ' s  reconsider (2.2) where the matrix C is  par t i t ioned  a s  

(CD,CI) and CD is an r x r  matrix of f u l l  rank and CI an rx(n-r)  

matrix. The vector x is a l so  par t i t ioned a s  a s  ( ) 9 where XD 

and XI have r and (n- r) components respectively.  Then the  

constra ints  i n  (2.2) can be writ ten as:  
* 



XD = (cD)- ld  - (cD)-lcI . XI , (3.4) 

and the l i n e a r l y  constrained problem (2.2) can be converted t o  the  

following unconstrained minimization. 

Minimize f ( x ~ ( x ~ ) ,  XI) 

X I  E En- 

Comparing (3.5) with (2.4).  XI plays the  r o l e  of z and therefore  the  

n u l l  space matrix is 

where I is an (n- r)  i d e n t i t y  matrix. The estimates of the  Lagrange 

mul t ip l ie r s  of t he  binding constra ints  a t  k th  i t e r a t i o n  would be a s  

follows : 

Similar ly ,  applying the  project ion method the  n u l l  space matrix w i l l  

be equal t o  the  project ion matrix P given as: 

P = B = I - cT(ccT)'lc 

With the  estimates of Lagrange mult ipl iers  a t  k th  i t e r a t i o n  given by: 

wk = (ccq-1 C ~ f ( x k )  (3.9) 



4 .  Null space matrix Updating 

A t  the  beginning of the  f i r s t  s t ep  of the  kth i t e r a t i o n  and a l so  the 

beginning of each s t ep ,  i t  might happen t h a t  one of the inequali ty 

cons t ra in t s  becomes ac t i ve  o r  an act ive  constra int  leaves the boundary 

and becomes inac t ive .  I n  e i t h e r  of these two cases the nu l l  space 

matrix must be updated. 

When the pro jec t ion  method i s  used f o r  n u l l  space matrix calculation 

it is i n e f f i c i e n t  t o  ca lcu la te  the  projection matrix expl ic i t ly .  

Thus, the  only thing w e  keep i s  ( c c ~ )  and we have t o  update i t  

whenever any of the  above mentioned cases occurs. The general formula 

f o r  the  inverse  of a  symmetric bordered matrix i s  

where a = ( - b ~ ' l b ~ + g ) ' l ,  and B is a  symmetric matrix. 

A s  a  new c o n s t r a i n t ' s  boundary is encountered, t h i s  amounts t o  

inver t ing 

Knowing (ccT)-l we can make the  i den t i f i ca t i on  of (ccT) with 

B ,  acT with b, ,aT with g and use the  general formula (4.1)  above. 



If a constraint's boundary is relinquished, a reverse operation must 

be performed, thus having the inverse of (4.2) it is required to find 

(ccT)'l, suppose it is given that, 

Then 

The general formula for the inverse of a bordered non-symmetric matrix 

which is used to update the null space matrix in the case of 

elimination of variable approach is as follows: 

where a = (-b~'le~ + t)-I (4.4) 

Equation (4.4) is used when a constraint's boundary is encountered. 



5. Computing t h e  pos i t i ve  p a r t  of the  Hessian 

Recall the  problem (2.4). I f  f is  a twice continuously dif ferentable  

and factorable  function then the  natural  way of writ ing the  Hessian i n  

factorable  form [$ ] is: 

If w e  d ivide the  set of indices  j ,  = 1 L such tha t  

then 

~2f(x) = $ c $  (a!) + 1 (%) 
j ER JES 

resu l t ing  t h e  following dyadic form f o r  v2F(z) 

Now l e t  ( A ~ )  be the  es t imate  of the  pos i t ive  pa r t  of V-$~F(Z). I f  

(2) is pos i t i ve  semi-definite,  A w i l l  be equal t o  it. Otherwise, 
%zF 

A is an overestimate i n  t h a t  the  posi t ive  eigenvalues of the posi t ive  

pa r t  a re  pairwise smaller  than the  corresponding posi t ive  eigenvalues 
* 

of A. 



Also let (Ak)+ be the generalized inverse of Ak. The algorithm 

starts at j = 0 with (Ak)+ = 0 and perturbs Al! with a new dyad 
J 

gTak c (EiTak ) T. At first all j ER are absorbed one by J+I J+I  J+I  

one, then the algorithm absorbs as many dyads jeS as possible, still 

maintaining the positive semi-definiteness of A. At this point 

( A ~ ) +  will be used to generate the Newton search vector; 

6. Updating the projected Hessian 

The generalized (Penrose-Moore) inverse of a matrix A is the unique 

matrix satisfying the following four properties (see 151, [28] for 

proofs and uniqueness and existence of the generalized inverse): 

when A has an inverse A+ = A'l. 

Let a be a one by n derivative vector of the constraint whose boundary 

was just encountered. Now P = I - cT(ccT)'lc is the projection 

matrix used to generate the null space of the matrix of binding 

constraints gradients. 



And l e t  

A 
denote the projected Hessian, and P be the new projection matrix which 

is 

What is wanted now is  an e f f i c i e n t  i t e r a t i v e  procedure t o  obtain 

and by e f f i c i e n t  w e  mean using previous information a s  much as 

possible. 

A 
Note t h a t  P can a l so  be wr i t ten  as: 

There a r e  two cases t o  be considered: 

Case I: 

I f  [P - A + A ] ~ ~  = [P - ( P V ~ ~ ( X ) P ) + ( P V ~ ~ ( X ) P ) ] ~ ~  = 0*  

then i t  is proved i n  [24] t h a t ,  



Case I1 

If, [ P - A A ' J ~ ~  = 0 

then (6.5) can be writ ten 

+ ~ a ~ ( - l / ~ ) a A  

where for t he  sake o f  simplicity a = (apaT) - I  ,and 

The closed form solut ion fo r  t h i s  case is very complicated [24]. 

It should be noted t ha t  the  projected gradient of the  object ive  

function should a l so  be updated; 

A 
~ V f ( x )  = ( P V ~ )  - paT(apaT)-l a(PVf) (6.9) 

7. Updating The Reduced Hessian 

Suppose the  matrix of the gradients of the  binding cons t ra in t s  takes  

the  form 

C = (CD, hT, E) 

where CD is an r by r ,  h is 1 by r and E is an r by (n-r-1) matrix. 

The matrix generating the n u l l  space f o r  the  binding cons t ra in t s  

gradients,  takes the  form 

where I has rank (n- r ) .  



Let ( c ,g , e )  be the gradient of a constra int  j u s t  encountered where c 

is  1 by r ,  g is sca l a r ,  e is  1 by (n-r-1). 

The new n u l l  space matrix w i l l  take the  form, 

N 

where I has the  rank (n-r-1). 

The matrix i n  (7.2) is equal t o  postmultiplying (7.1) by the following 

matrix, 

The reduced Hessian before enter ing t he  new cons t ra in t  is: 



When a new constra int  boundary i s  encountered, because of (7.3). the  

updated reduced Hessian i n  the (n-r-1) subspace can be wri t ten a s  

where f = ~ C C - ~ E  - ae. 

There are two cases f o r  Newton's method but here w e  w i l l  j u s t  consider 

t he  case when the  reduced Hessian is pos i t ive  d e f i n i t e  (and therefore  

has inverse) .  

Note t h a t  (7.5) is  the upper lef t  hand corner of 

where 0 is a 1 x (n-r-1) row vector of zeros. 

A is pos i t i ve  de f in i t e  and, 

Let 

be the  inverse  of A i n  (7.4). Then the  inverse  of (7.6) is: 



and the desired inverse is: 

8. Subalgorithmic Strategies  and Computations 

To determine the subspace i n  which the minimization should take place 

w e  used the following strategy. 

A t  the beginning of each i t e r a t i o n ,  the algorithm computes the  

estimates of the  Lagrange mult ipl iers .  I f  those f o r  the binding 

inequali ty constra ints  a re  a l l  non-negative, then the motion a t  

i t e r a t i on  k is t o  be made i n  the l i nea r  subspace defined by the 

currently binding constra ints ,  otherwise the inequal i ty  constra int  

with the l e a s t  mult ipl ier  estimate is  dropped from the list of those 

required t o  be binding during the i t e r a t i on .  A descent move i n  the 

resul t ing subspace is then attempted. 

While minimizing f ( x )  along the search vector sk defined by 

T 
sk = - B(BV+B)+ (d'vf), 

i f  before f(x) is minimized a cons t ra in t ' s  boundary is  encountered say 

a t  some point xk+l = xk + ff k ~ k ,  w e  do not  terminate the 

i t e r a t i on ,  but w e  use the anti-zig-zagging s t ra tegy  suggested by 
< 

McCormick [23]. 



In [12], using classical Newton's method, ark was found such that 

f(xk+aksk) is minimized along sk. The iterative formula to 

findark is: 

aj+' = aj - [h" (a)]'lhl (aj), j=1,2,. . 

where 

h( a) = f (xk+ask) , and fk c2. 

To ensure the convergence of the sequence generated by (8.1) lower and 

upper bounds are imposed on a. 

If at jth iteration the current bounds are Lj and UJ such that 

Lj < a j < uj, then aj is accepted and the bounds are updated 

as follows: 

if h'(aj) < 0 then ~ j + l  = max (aj,~j), uj+l = uj 

andif hl(aj)> o then ~ j + l = ~ i ~  (aj,uj), ~ j + l = ~ j .  



9 .  Statement of the  Algorithms 

In  t h i s  sect ion a s t ep  by s t ep  presentation of both project ion and 

Elimination algorithms a r e  given 

Projection Algorithm 

Step 1: Find the  set of binding constra ints ,  and therefore  the  

matrix C. 

Step 2: Calculate (ccT)-l. In  higher i t e r a t i o n s ,  i .e. k > l ,  i f  a 

constra int  is t o  be added o r  deleted from t h e  set of binding 

constra ints ,  update (ccT)-l by (4 .1)  o r  (4.3) . 
Step 3 : Find the  Lagrange mult ipl iers  wk = ( c c ~ )  'Icv~. 

Step 4: I f  a l l  wk > 0 f o r  the  inequali ty cons t ra in t s ,  go t o  s t e p  
1 - 

6, otherwise go t o  s t ep  5. 

Step 5 :  Delete the  inequal i ty  constra int  with the  l e a s t  mul t ip l ie r  

from the s e t  of binding constra ints  and update (ccT)-l. 

Step 6: Calculate the  est imate of the generalized inverse  of t he  

pos i t ive  pa r t  of the projected Hessian. 

Step 7 : Calculate the  search vector sk = -A+ (PVf (x)  ) , minimize 

f (x) along ~ k .  

Step 8 : I f  i f  (xk'l) - f (xk) I < E stop. Otherwise go t o  s t e p  

1. E i s  a predefined small posi t ive  number. 



Elimination Algorithm 

Step 1: Determine the set of binding cons t ra in t s ,  therefore the 

matrix C. 

Step 2: Find the  set of dependent var iables  and the matrix CD. 

Step 3: Find cil. A t  t he  beginning of i t e r a t i o n  k where k> l .  

update cc1 by ( 4  - 4 )  o r  (4.3) when a constra int  becomes 

binding o r  a binding constra ints  leaves it boundary. 

Step 4 : Calculate  the Lagrange mult ipl iers  

wk = (5-T)vDf(xk). 

Step 5: I f  wk - > 0 f o r  a l l  the  inequal i ty  cons t ra in t s ,  go t o  s t ep  7 ,  

otherwise go t o  s t e p  6. 

Step 6: Delete the  inequal i ty  constra int  with the  l e a s t  mul t ipl ier  

from the  s e t  of binding constra ints .  Update ( ~ 6 ~ ) .  

Step 7: Calculate  the  generalized inverse of the  estimated posi t ive  

p a r t  of the  reduced ~ e s s i &  i. e. , A+ = B ~ v ~ ~  ( x ) ~  

Step 8: Calculate  ~ k = - B ( A + )  (BT- f (x ) )  

Step 9 : Minimize f (x )  along sk . 
Step 10: If ( f (xk+l ) - f (xk) (<& stop.  Otherwise go t o  s t ep  1. 



10. Comparison of the  Algorithms and Conclusion 

From (3.3) i t  can be concluded tha t  two d i f fe ren t  search vectors 

generated with two d i f fe ren t  nu l l  space matrices i n  the  same subspace 

a r e  equal. Therefore the search vectors generated by the  two 

algorithms w i l l  be equal a t  many points.  The only difference between 

the two algorithms might occur from the Lagrange mul t ip l ie r  estimates 

and tha t  is because these estimates a re  not the same f o r  the  two 

algorithms. I f  the mult ipl ier  associated with one of the  binding 

constra ints  is negative i n  one algorithm and not i n  another, o r  i f  the 

l e a s t  negative mult ipl ier  i n  both algorithms is not associated with 

the same binding constra int ,  the space i n  which the search vector is 

t o  be generated w i l l  become d i f fe ren t  and t h i s  difference might cause 

changes i n  the  number of i t e ra t ions .  

Another area  of comparison is computational e f f o r t  and eff ic iency 

which a re  defined i n  [33] as  the t i m e  of execution and the number of 

gradient o r  function c a l l s .  

I n  [12] some t e s t  problems were solved. Although the number of 

function, gradient ,  Hessian and f i r s t  and second d i rec t iona l  

der ivat ive computations were the same, there was s t i l l  a s l i g h t  

difference i n  execution time which f o r  large sca le  problems o r  f o r  

problems with large numbers of i t e r a t i ons  might become considerable 

and make the elimination algorithm more e f f i c i en t  than the projection 

algorithm. 



Also an important point  t o  note i s  tha t  the primary concern of t h i s  

work has been i n  the  development of the numerical aspects of solving 

l i nea r ly  constrained nonlinear programming problems. The algorithms 

presented are not "globally convergent" algorithms i n  t h a t  they cannot 

be expected, i n  general ,  t o  produce sequences whose points  of 

accumulation a r e  l oca l  minimizers. They a re  " local ly  convergent" 

algorithms, t h a t  is, i f  s t a r t e d  near an i so la ted  l oca l  minimizer which 

s a t i s f i e s  c e r t a i n  regula r i ty  conditions, they should produce points  

which converge t o  t h a t  i so l a t ed  l oca l  minimizer. The r a t e  of 

convergence w i l l  be " a t  l e a s t  quadratic." The regula r i ty  assumptions 

a r e  the  usual ones: second order sufficiency conditions, l i n e a r  

independence of the  binding constra int  gradients,  and the  s t r i c t  

p o s i t i v i t y  of the  generalized Lagrange mult ipl iers  associated with the  

binding inequa l i ty  constra ints .  

The proof of t h i s  asse r t ion  f o r  a s imilar  algorithm associated with 

the  more d i f f i c u l t  nonlinearly constrained problem is contained i n  

McCormick [22]. 

I n  order t o  obtain  global convergence, some modifications have been 

suggested i n  [12] t o  obtain  a sequence of points i n  a region where the 

Hessian of t he  object ive  function is posi t ive  semi-definite with 

respect  t o  vectors  i n  the  nullspace of the der ivat ive  matrix of the  

ac t ive  cons t ra in t s .  
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