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ABSTRACT

In this paper matrix techni qgues are devel oped to inpl enent
a nodified Newton nethod to a linearly constrai ned nonl i near
optimsation problemw th a tw ce differentiabl e and

fact orabl e obj ecti ve function.

The problemfirst is reduced to an unconstrai ned probl em
then the generalised inverse of the positive part of the

Hessian matrix is used to generate the direction of search.






1. |Introduction

This paper is concerned with solving the following linearly

constrained nonlinear programming problem:

minimize f (x) (1<1)

X e 0
subject to N = e (1.2)
‘Ax 2 b (1.3)

where£2 is an open set, N is an ¢xn matrix of rank #, A is an mxn

matrix, beER, egE! and f(x) is twice continuously differentiable

(i.e. fecz) .

The point of view taken here is that at each iteration, the above
problem can be converted to an unconstrained minimization of f£{x) in a
subspace of reduced dimension which can be solved by several methods.

The unconstrained minimization technique used here is the following

modified Newton method:
xk+1l = xk - ok [v2 £(xK)]"1 Vv £(xK)
The parameter X iS the step size and is chosen from optimal step

size procedure discussed in section 8 to enforce f (xk*1) < f (xK).
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In this paper formulas are developed for the matrix methods required
to implement the modified Newton method in factorable form. These are
two types. First, are the formulas required for the computation of a
nullspace matrix, a matrix whose columns span the space of vectors
orthogonal to the derivatives of active constraints. Two approaches,
elimination of variables and the projection method are examined. The
second set of matrix computations are those required to estimate the
generalized inverse of the "positive part” of the Hessian matrix in
the equality constrained subspace [ 8 J. f(x) also is assumed to be a
factorable function [ 11 ], for which a dyadic form Hessian matrix can
be formed and its generalized inverse can be updated by rank one

matrices at each iteration.

Equivalance of Linearly constrained and unconstrained problems.

A

Consider the problem in 1.1 - 1.3. At any feasible point x5 let &
be the set of indices i for which ajxg = by (from i=1,..., m),
and assume that the vectors in the set

s = {NT, {aT}, ieR) (2.1)
are linearly independent. Since at any stage of the algorithm only
the equality and active constraints take part, we can define the
following problem

Minimize £(x) (2.2)

Subject to Cx=d



where C is a rxn matrix, r<n, it has full rank, and CieS, i=1,....,r
(Ci is theith row of the matrix C). |If x5 is a point satisfying
the constraints in (2.2) then a necessary and sufficient condition
that some point x also satisfies & = d is that

X = Xg + Y
where y is in the nullspace of C.

Let B be an nx(n-q) matrix such that a necessary and sufficient
condition for a vector y to be in the null space of C is,

y = Bz (2.3)
for some zeE® Q. Then it follows that the problem (2.2) can be
converted into the following unconstrained problem:

Minimize F(z) = f(xg+Bz) (2.4)
zegn~d
A sequence xK tending to solve (2.2) can be regarded as being
generated by a sequence ZX  which attempts to solve (2.4). Itis
shown in [ 12 ] that a necessary and sufficient condition for a point
xK satisfying the set of constraints CxK=d, to be a Lagrangian
stationary point is that

VzF(z) = 0
It is also shown that if

BTVr (xK)B
is a positive semi-definite matrix, i.e.

zTBTvzxf‘(xk)Bz >0 for all =zEP™q,

then xK satisfies the second order necessary conditions as well.



Null Space Computation

To solve the unconstrained problem (2.4), the following iterative
formula i s used.

Zk+l = 2k -k [ve,F(2K)]* . V,F(2K) (3.1)
premultiplying by B yields
xk+l = xk - okp [BTVZ, £ (xK)B]* [BTVF(xK)] (3.2)

where (+) stands for the generalized inverse.

In order to be able to use (3.2). we need to calculate the nullspace
matrix of the matrix C, the matrix of the gradient of all binding
constraints. Two methods, Elimination of variables and projection
method are considered. The following theorem is the basis for working

with different methods of nullspace matrix computation.

Theorem

Let By and B> be two matrices generating the null space of C
(defined as in (2.2)). with nxqy and nxqy dimensions respectively
and q1, @2 > (n-r). Furthermore, suppose zT2f (x)z>0 for all

z # 0 and Cz=0. Then it is proved that [ 12 ]:

By (B]v2f (x)B1)* BY = Bp(BYv2f(x)Bp)* B} (3.3)

Nw | et's reconsider (2.2) where the matrix C is partitioned as

(Cp,C1) and Cp is an rxr matrix of full rank and C1 an rx(n-r)

matrix. The vector X is also partitioned as as(xD) » where xp
‘XI

and x1 have r and (n-r) components respectively. Then the

constraints in (2.2) can be written as:
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Cn,C = d

Xp = (CD)'ld - (CD)'J'CI . X7 , (3.4)
and the linearly constrained problem (2.2) can be converted to the

following unconstrained minimization.

Minimize  f(xp(x1), XI1) (3.5)
xy ¢ ER°T
Comparing (3.5) with (2.4). x1 plays the role of z and therefore the

null space matrix is

_(CD)-I C1

o)
"

(3.6)
I

where 1 is an (n-r) identity matrix. The estimates of the Lagrange
multipliers of the binding constraints at kth iteration would be as
follows:

wg = (Cp~T) V pf(xK) (3.7)
Similarly, applying the projection method the null space matrix will
be equal to the projection matrix P given as:

P=B=1 -cT(ccT)-1c (3.8)
With the estimates of Lagrange multipliers at kth iteration given by:

wk = (ccT)-1 cyr(xk) (3.9)



Null space matrix Updating

At the beginning of the first step of the kth jteration and also the
beginning of each step, it might happen that one of the inequality
constraints becomes active or an active constraint leaves the boundary
and becomes inactive. In either of these two cases the null space

matrix must be updated.

When the projection method is used for null space matrix calculation
it isinefficient to calculate the projection matrix explicitly.

Thus, the only thing we keep is (ccT) =1 and we have to update it
whenever any of the above mentioned cases occurs. The general formula

for the inverse of a symmetric bordered matrix is

B bl\-1 B~1 + B-1pTabB-1,-B-1pT @
= (4.1)
b g -obB~1 a
wherea = (-bB~1bT+g)~1, and B is a symmetric matrix.

As a new constraint's boundary is encountered, this amounts to

inverting
¢ ccT caT
(cT,aT) = (4.2)
a acT aal

Knowing (€cT)=1 we can make the identification of (ccT) with

B, acT with b, aaT with g and use the general formula (4.1) above.



If a constraint's boundary i s relinqui shed, a reverse operation nust
be perforned, thus having the inverse of (4.2) it is required to find

(ccT)-1, supposeit is given that,

B pl \ -1 D aT

= (4.3)

Then

B™l = p - dTg 14

The general fornmula for the inverse of a bordered non-symmetric natrix
which is used to update the null space nmatrix in the case of

el imnation of variable approach is as fol |l ows:

B eT\-1 B-1 + B-lehhibB-1, -B-leTa
b t -obB~1 . o
where a = (-bB~leT + t)-1 (4.4)

Equation(4.4) is used when a constraint's boundary is encount er ed.



Computing the positive part of the Hessian

Recall the problem (2.4). If f is a twice continuously differentable
and factorable function then the natural way of writing the Hessian in

factorable form [g ] is:

{

2 = k ok (aK)T

Vef(x) j§1 aJ c‘.J (aJ) (5.1)
If we divide the set of indices j,j =1 ...,L such that

R = {jich? > 0} ,

(5.2)

S = {j{c%]‘ < 0}
then
v2f(x) = Eﬁ k (ak + I ak ck (ak) (5.3)

J€R jes

resulting the following dyadic form for V2F(z)

V2F(z) = I BTakck(BTak) + I BTake k(BTak)T

Nw | et (AK) be the estimate of the positive part of szzl-"(z). | f
vng(z) is positive semi-definite, A will be equal to it. Otherwise,

A is an overestimate in that the positive eigenvalues of the positive

part are pairwise smaller than the corresponding positive eigenvalues

of A



A so | et (AlQ+ be the generalized inverse of AX. The al gorithm

starts at j =0 Wth(Ak)+ = 0 and perturbs AK with a new dyad
J

Tk
B aj+1cj+1

(BTejk+1 )T. A first all j<R are absorbed one by
one, then the al gorithmabsorbs as nany dyads j<S as possible, still
nai ntai ni ng the positive seni-definiteness of A A this point

(a¥y* will be used to generate the Newt on search vector;
S = - BA*V,F(z) = - BA*BWf(x). (5.5)

Wbdati ng the projected Hessi an

The general i zed (Penrose-More) inverse of a matrix Ais the uni que
matrix satisfying the foll ow ng four properties(see [5], [28] for

proof s and uni queness and exi stence of the generalized inverse):

AA*A = A (6.1)

A*AA*= A* (6.2)

(aa*)T = (AA*) (6.3)
(A*A)T = A*A

when A has an i nverse A* = A™1,

Let a be a one by n derivative vector of the constraint whose boundary
was just encountered. NowP =1 = ¢T(ccT)-1c is the projection
matrix used to generate the null space of the matrix of binding

constraints gradients.
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Ad | et
A = PV2f(x)P

denote the projected Hessian, and P be the new projection matrix which

is
- -1
£ =1-(cT,al) {(§) (cT.al}  (§).
Wha is wanted mow is an efficient iterative procedure to obtain
(A)* = (Pvr(x)B)* (6.5)

and by efficient we meen using previous information as much as

possible.
Note that P can also be written as:
B - p - paT(aPal)-1 ap. (6.6)
There are two cases to be considered:
Case I:
If [P - A*AlJal = [P - (PV2f(x)P)*(PV2f(x)P)]aT = O,

then it is proved in {24] that,

(A)* = A* - A*aT(aA*al)"1 aa* (6.7)
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Case 11
If, [P-aA*]aT = O

then (6.5) can be written

K= A+ [Pal - Aa(eB)~1](a28)[aP- (@B )~1aA]
+ AaT(-1/B)aA (6.8)
wnere for the sake of sinplicity a = (apaxT)'1
8 = (aA'a)

, and

The closed form solution for this case is very complicated [24].
It should be noted that the projected gradient of the objective
function should also be updated;

BVF(x) = (PVf) - pal(aPal)-1 a(PVf) (6.9)

Updating The Reduced Hessian

Suppose the matrix of the gradients of the binding constraints takes

the form

c = (Ccp, hT, E)
where Cp isanr by r, hisl by r and Eis an r by (n-r-1) matrix.
The matrix generating the null space for the binding constraints

gradients, takes the form
/ —C'DlhT , -CplE (7.1)
|
\ 1

where 1 has rank (n-r).
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Let (c,g,e) be the gradient of a constraint just encountered where c
islbyr, gisscalar, eis1by (n-r-1).

The newv null space matrix will take the form,

\ ~c;1E - cglnTacCglE + cglhTae

/ acCt‘)lE -Ce /
i (7.2)

v a = (-eqlnT + g)=1

=

WhereT has the rank (n-r-1).

The matrix in (7.2) is equal to postmultiplying (7.1) by the following

matrix,

acC'lE - Qe

I (7.3)
The reduced Hessian before entering the new constraint is:
-hc-T -c-14T _c-1
hCD CD h+, CD E
A= , I V2f(x) (7.4)
-eTc:T I

D



When a new constraint boundary i s encountered, because of (7.3). the

updated reduced Hessian in the (n-r-1) subspace can be written as

f
(fT,1)A (7.5)
where f = acC™1E - ae.
There are two cases for Newton's method but here we will just consider

the case when the reduced Hessian iS positive definite (and therefore

has inverse).

Note that (7.5) is the upper left hand corner of
fT I f 1
10 I o0

where 0 is a1l X {(n-r-1) row vector of zeros.

A is positive definite and,

Let

g1 gl
g2 G3

be the inverse of A in (7.4). Then the inverse of (7.6) is:

(7.6)



T

0 I g1 g2 0 1 El3 » gz'bjf
i _oT T. T.T T
1 -fflgz G3/\I -f 9,-fG3, 9,9,f -fg,+fg,f (7.7)

and the desired inverse is:
& -1 T T
(B)* = 63 - (g2 - G3fT) (g1 - 2fg2 + £63€T) ™ (g,-65f ) (7.8)

Subalgorithmic Strategies and Computations

To determine the subspace in which the minimization should take place

we used the following strategy.

At the beginning of each iteration, the algorithm computes the
estimates of the Lagrange multipliers. |f those for the binding
inequality constraints are all non-negative, then the motion at
iteration k is to be made in the linear subspace defined by the
currently binding constraints, otherwise the inequality constraint
with the least multiplier estimate is dropped from the list of those
required to be binding during the iteration. A descent move in the

resulting subspace IS then attempted.

While minimizing f(x) along the search vector Sk defined by

T
sk = - B(BV2fB)* (BVf),
if before f(x) is minimized a constraint's boundary is encountered say
at some point xk*1 = xK 4+ aksk  we do not terminate the

iteration, but we use the anti-zig-zagging strategy suggested by

McCormick [23].
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I n [12], using classical Newton' s nethod, @k was found such that
£(xk+oXsk) is mninized along SK. The iterative formilato
findgXis:

ad*l = ol -[h" (@)1 ' @),  j=1,2,.-. (8.1)
wher e

h(qg) = f (xK+gSK) , and f=cC2.

To ensure the convergence of the sequence generated by (8.1) |ower and

upper bounds are inposed on a.

If at jthiteration the current bounds are L3 and UJ such that

LJ < ad < ud, then o is accepted and the bounds are updat ed

as foll ows:
i f h'(@J) < 0 then LI*1 : max (ad,Ld), ud*l = yd
and if h'(@d) > O then udi*l = min (@d,ud), Li*1 = LI,



Statement of the Algorithms

In this section a step by step presentation of both projection and

Elimination algorithms are given

Projection Algorithm

Step 1: Find the set of binding constraints, and therefore the
matrix C.

Step 2: Calculate (ccT)=1. In higher iterations, i.e. k>1, if a
constraint is to be added or deleted from the set of binding
constraints, update (ccT)=1 by (4.1) or (4.3).

Step 3: Find the Lagrange multipliers wk = (ccT)-1cyr.

Step 4. If all wLi{ > 0 for the inequality constraints, go to step
6, otherwise go to step 5.

Step 5: Delete the inequality constraint with the least multiplier
from the set of binding constraints and update (ccT)-1.

Step 6: Calculate the estimate of the generalized inverse of the
positive part of the projected Hessian.

Step 7: Calculate the search vector SK = —A+(PVf(x)), minimize
£(x) along SK.

Step 8: I f |f’(xk"1) - f(xk)| < & stop. Otherwise go to step

1. ¢ is a predefined small positive number.
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Elimination Algorithm

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:
Step 10:

Determine the set of binding constraints, therefore the
matrix C.

Find the set of dependent variables and the matrix Cp.
Find C[')l. At the beginning of iteration k where k>1,
update Cy1 by (4.4) or (4.3) when a constraint becomes
binding or a binding constraints leaves it boundary.

Calculate the Lagrange multipliers

k - (cD-T)va(xk) .

If w>0 for all the inequality constraints, go to step 7,
otherwise go to step 6.

Delete the inequality constraint with the least multiplier
from the set of binding constraints. Update (Cﬁl).
Calculate the generalized inverse of the estimated positive
part of the reduced Hessian i.e., A" = BIV2f(x)B

Calculate Sk=-B(A") (BTgf(x))

Minimize f (x) along SK.

If | £(xk*1)-f(xK)|<e stop. Otherwise go to step 1.
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10. Comparison of the Algorithms and Conclusion

From (3.3) it can be concluded that two different search vectors
generated with two different null space matrices in the same subspace
are equal. Therefore the search vectors generated by the two
algorithms will be equal at may points. The only difference between
the two algorithms might occur from the Lagrange multiplier estimates
and that is because these estimates are not the same for the two
algorithms. | f the multiplier associated with one of the binding
constraints is negative in one algorithm and not in another, or if the
| east negative multiplier in both algorithms is not associated with
the same binding constraint, the space in which the search vector is
to be generated will become different and this difference might cause

changes in the number of iterations.

Another area of comparison is computational effort and efficiency

which are defined in [33] as the time of execution and the number of

gradient or function calls.

In [12] some test problems were solved. Although the number of
function, gradient, Hessian and first and second directional
derivative computations were the same, there was still a slight
difference in execution time which for large scale problems or for
problems with large numbers of iterations might become considerable

and meke the elimination algorithm more efficient than the projection

algorithm.
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Also an important point to note i s that the primary concern of this
work has been in the development of the numerical aspects of solving
linearly constrained nonlinear programming problems. The algorithms
presented are not "globally convergent” algorithms in that they cannot
be expected, in general, to produce sequences whose points of
accumulation are local minimizers. They are "locally convergent™
algorithms, that is, if started near an isolated local minimizer which
satisfies certain regularity conditions, they should produce points
which converge to that isolated local minimizer. The rate of
convergence will be "at |least quadratic.” The regularity assumptions
are the usual ones: second order sufficiency conditions, linear
independence of the binding constraint gradients, and the strict

positivity of the generalized Lagrange multipliers associated with the

binding inequality constraints.

The proof of this assertion for a similar algorithm associated with

the more difficult nonlinearly constrained problem is contained in

McCormick [22].

In order to obtain global convergence, some modifications have been
suggested in [12] to obtain a sequence of points in a region where the
Hessian of the objective function is positive semi-definite with
respect to vectors in the nullspace of the derivative matrix of the

active constraints.
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