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Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex:
Evidence for a general anesthetic-induced phase transition
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We present a model for the dynamics of a cerebral cortex in which inputs to neuronal assemblies are treated
as random Gaussian fluctuations about a mean value. We incorporate the effect of general anesthetic agents on
the cortex as a modulation of the inhibitory neurotransmitter rate constant. Stochastic differential equations are
derived for the state variablehe , the average excitatory soma potential, coherent fluctuations of which are
believed to be the source of scalp-measured electroencephalogram~EEG! signals. Using this stochastic ap-
proach we derive a stationary~long-time limit! fluctuation spectrum forhe . The model predicts that there will
be three distinct stationary~equilibrium! regimes for cortical activity. In region I~‘‘coma’’ !, corresponding to
a strong inhibitory anesthetic effect,he is single valued, large, and negative, so that neuronal firing rates are
suppressed. In region II for a zero or small anesthetic effect,he can take on three values, two of which are
stable; we label the stable solutions as ‘‘active’’~enhanced firing! and ‘‘quiescent’’~suppressed firing!. For
region III, corresponding to negative anesthetic~i.e., analeptic! effect,he again becomes single valued, but is
now small and negative, resulting in strongly elevated firing rates~‘‘seizure’’!. If we identify region II as
associated with the conscious state of the cortex, then the model predicts that there will be a rapid transit
between the active-conscious and comatose unconscious states at a critical value of anesthetic concentration,
suggesting the existence of phase transitions in the cortex. The low-frequency spectral power in thehe signal
should increase strongly during the initial stage of anesthesia induction, before collapsing to much lower values
after the transition into comatose-unconsciousness. These qualitative predictions are consistent with clinical
measurements by Bu¨hrer et al. @Anaesthesiology77, 226 ~1992!#, MacIveret al. @ibid. 84, 1411~1996!#, and
Kuizengaet al. @Br. J. Anaesthesia80, 725~1998!#. This strong increase in EEG spectral power in the vicinity
of the critical point is similar to the divergences observed during thermodynamic phase transitions. We show
that the divergence in low-frequency power in our model is a natural consequence of the existence of turning
points in the trajectory of stationary states for the cortex.@S1063-651X~99!08312-9#

PACS number~s!: 87.19.La, 05.10.Gg, 05.70.Fh
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I. INTRODUCTION

A standard method for following the anesthetic inducti
of a patient into unconsciousness is to monitor the electro
cephalogram~EEG! signals detected by electrodes attach
to the scalp. We aim to develop a theory which models
dominant electrorhythmogenic processes occurring in the
rebral cortex as general anesthetic is administered. Su
theory would be useful not only for quantifying at what poi
a patient might be considered to be sufficiently anethetise
safely undergo surgery, but also to give better understan
of cortical function and dynamics in general. A reasona
test of the theory would ask the following: Does it predict t
kinds of changes in EEG spectral distribution and pow
which are observed in patients during induction of gene
anesthesia?

It is well known within the anesthesiology communi
than many commonly used general-anesthetic agents ex
what is referred to as a ‘‘biphasic’’ or activation-depressi
response: at low~sedative! anesthetic concentrations there
a significant increase above baseline values in both the
PRE 601063-651X/99/60~6!/7299~13!/$15.00
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EEG power and in the frequency at which peak power
curs; as concentration is further increased to hypnotic~sur-
gical anesthesia! levels, the total power and median fre
quency fall away to levels below baseline. This ‘‘biphasic
response has been observed on human volunteers dosed
thiopental@1# and the widely-used propofol@3#. It has also
been measured in rats dosed with thiopental@2,4#. Figure 1
shows a typical activation/depression response from on
the patients in the Kuizengaet al. @3# study.

The EEG signal originates from organized assemblies
excitatory and inhibitory neural cells~neurons! acting coop-
eratively within a small volume of the cortex@5#. Figure 2 is
a schematic representation of such an assembly which ca
thought of as occupying a cylindrical column of diamet
;0.3–1 mm and containing 40 000–100 000 neurons. T
excitatory ~pyramidal! cells make up;85% of the total
number of neurons@6#.

The EEG is generated by the longitudinal flow of curre
along the apical~superficial layer! dendrites of pyramidal
neurons which are aligned with an axial symmetry perp
dicular to the cortical surface@7#. The potential due to the
7299 © 1999 The American Physical Society
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distributed current sources and sinks induced by afferent~in-
coming! synaptic activity along these aligned pyramidal de
drites can be approximated at the cortical surface by a dip
term. The deviation from rest of the mean excitatory so
membrane potentialhe2he

rest has been demonstrated to b
proportional to the mirror~i.e., sign-reversed! image of the
extracellular local field potential~LFP! @8#. Because the EEG
is a spatially smoothed version of the LFP, it is reasonabl
assume that it will be proportional tohe .

In contrast, the inhibitory neurons, comprising 15% of t
neural population, are smaller and have their dendrites
ented at random with approximately spherical symmetry,
their equivalent dipole term will be vanishingly small. Th
resulting synaptic currents induced in the dendrites of
inhibitory cells make negligible contribution to the EEG a
ECoG ~electrocorticogram! signal.

Because cooperative neural activity is maintained
dense synaptic interconnections, one assumes that co
parameters can be expressed as values averaged ove
assembly. This approach of treating assemblies~also called
centers or macrocolumns! of correlated cells is referred to a
the mean-field or mass-action formalism, and has an ex
sive history with significant contributions by Freeman@8#,
Wilson and Cowan@9,10#, Nunez @7#, Robinson and co-
workers @11,12#, Wright and Liley @13#, Rotterdamet al.
@14#, Amit @15#, and Jirsa and Haken@16#. Robinson and
co-workers@11,12# used a mean-field approach when der
ing a set of nonlinear equations to describe the generatio
electrical waves in the cortex responsible for the EEG sig
Their two-dimensional~2D! continuum model contained ex
citatory and inhibitory neural populations, and included t
effects of axonal conduction delays.

Liley @17# extended these theories by improving the tre
ment of excitatory and inhibitory neurotransmitter kinetic
He derived a set of integrodifferential equations which g

FIG. 1. Biphasic effect of propofol anesthetic on 0–5- and 1
15-Hz EEG signals. During the 10 min of propofol infusion, t
anesthetic concentration increases steadily. At low concentrat
the EEG signal shows an initial increase in power~activation!. EEG
power then falls away~inhibition! as the concentration is furthe
increased and the patient becomes deeply unconscious. A se
EEG activation peak is observed as the anesthetic concentr
declines and the patient begins to emerge from unconscious
~Data supplied courtesy of K. Kuizenga, and reported as ‘‘pat
7’’ in Kuizenga et al. @3#.!
-
le
a

to

ri-
o

e

a
cal
the

n-

-
of
l.

e

-
.

the time variation of the mean excitatory and inhibitory som
potentials of an assembly responding to external inputs
local feedbacks. While these equations have been foun
reproduce a range of experimental results, they are m
ematically formidable, making it difficult to extract physica
insight into the underlying neural processes. To remedy t
Liley simplified the model by reducing its dimensionali
and size to represent a 1D neural assembly whose act
can be taken as approximately constant over spatial scale
the order of the intracortical~submillimetric! connectivity.
The result was a set of eight coupled partial differential eq
tions @18,19# which give the time development ofhe andhi
for a neural aggregate whose inputs are defined in term
sigmoidal nonlinear functions. A complete solution of the
equations for a specified input yields, as a function of tim
the mean soma membrane potential of excitatory neuro
interpreted as the scalp-recordable EEG signal.

In this paper we transform Liley’s deterministic parti
differential equations~PDEs! into a set of stochastic differ
ential equations~SDEs!, also referred to as Langevin equ
tions. This is done by incorporating noise terms, assume
originate from random fluctuations in the subcortical inpu
into the equations of motion forhe,i . This enables us to
derive a stationary spectrum forhe . The Langevin formalism
is used in many areas of physics, e.g., in quantum op
@20#, to predict emission spectra of atoms interacting w
electromagnetic radiation. Jirsa and Haken@21# and Frank
et al. @22# also use this approach in their modeling of de
dritic currents in the cortex.

Expressed in general form, the Langevin equations
state for the excitatory and inhibitory soma potentialshe,i
can be written

d

dt Fhe

hi
G52FAe~he ,hi !

Ai~he ,hi !
G1FBe„je~ t !…

Bi„j i~ t !… G , ~1.1!

in which Ae,i aredrift terms describing the mean or avera
behavior of thehe,i , andBe,i are the correspondingdiffusion
terms which describe the response of the system to ran
fluctuations.j(t) is a Gaussian white-noise source which h
zero mean and isd-correlated:

^jh~ t !&50, ^jh~ t !jh8~ t8!&5dhh8d~ t2t8!. ~1.2!

Setting the noise terms to zero in Eq.~1.1! gives the deter-
ministic equation forhe,i :

d

dt Fhe

hi
G52FAe~he ,hi !

Ai~he ,hi !
G . ~1.3!

After a sufficiently long time, the system is assumed to se
into its equilibrium state so that the time derivatives on t
left of Eq. ~1.3! can be set to zero. Thus solving forAe,i

50 gives the equilibrium state valueshe,i
0 of the cortex.

Having found the stationary state, we linearize the syst
about this state by writinghe,i as the sum of its ‘‘dc’’~low-
frequency or equilibrium! component plus small amplitud
‘‘ac’’ fluctuations about this mean value:he,i5he,i

0 1h̃e,i .
This decomposition enables us to transform Eq.~1.1! into a
set of linear SDEs,
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FIG. 2. Schematic representation of the connective topology within a cortical macrocolumn. Only four of the;100 000 neurons are
shown. Triangles are excitatory~pyramidal! cells which receive excitatory input via apical dendrites~e.g., connection type 5! and basal
dendrites~1, 7!; and inhibitory input directly at the cell body~3!. Circles are inhibitory~stellate or basket! cells receiving input from dendritic
connections~2, 4, 6! and at the cell body~8!. The excitatory output from the macrocolumn is shown bold via trunk lines~axons!. The symbol
fe,i representse→e, e→ i input from distant macrocolumns, andpjk represents input from the subcortex~e.g., thalamus and brainstem!.
~For clarity, we have omittedpie andpii exogenous inputs corresponding to connection types 9 and 10, respectively.!
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dt F h̃e

h̃i
G52AF h̃e

h̃i
G1BF je

j i
G , ~1.4!

where h̃e,i are linearized white-noise-driven fluctuation
about the stationary solution;A andB are matrices contain
ing the linearized drift and diffusion coefficients. The pow
spectrum for fluctuations about the stationary state can
be derived by following standard methods of stochastic c
culus @20#.

Note that our stochastic approach relies on two fundam
tal assumptions:~a! that there exists~at least one! well-
defined equilibrium state of the cortex; and~b! that an EEG
spectrum can be produced by driving this equilibrium st
with white noise. We observe that the notion of a station
state for cortical activity has already been invoked by R
inson and co-workers@11,12#, who assumed that such stat
are meaningful over timescales much longer than dend
integration times~i.e., @5 –10 ms!. Other workers who have
presented white-noise-driven model EEG spectra incl
Rotterdamet al. @14#, Nunez@7#, Liley @17#, Jirsa and Haken
@21#, and Franket al. @22#. The latter pair of cited reference
take dendritic current as the state variable, permitting mo
comparisons with observed magnetoencephalogr
~MEGs!.

In Sec. II we present the Liley differential equation
~DEs! for a cortical assembly, and discuss how anesth
effect can be modelled in terms of changes to the inhibit
r
en
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e
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e

el
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neurotransmitter rate constant. We show how the Liley eq
tions can be transformed into a set of first-order stocha
DEs with the appropriate inclusion of white-noise term
This allows us to compute both the anesthetic-modulated
jectory of steady states and the corresponding EEG spec
for small fluctuations about these states.

In Sec. III we give the model predictions and compa
these with clinical measurements by other workers. O
model predicts that there will be either one or three stati
ary ~equilibrium! states forhe as a function of anestheti
amount. For the three-state case, only two are stable;
identify these two states as ‘‘activated’’ and ‘‘quiescent
The existence of an intermediate, third, state which is
stable to fluctuations allows for transition between the a
vated and quiescent states at a critical value of anesth
suggesting the possibility of an identifiable phase transit
in the cortex. The model predictions for anesthet
modulated changes to EEG spectral power show a clea
phasic ~activation followed by inhibition! anesthetic re-
sponse, with good qualitative agreement with t
experimental work of Kuizengeret al. @3#.

Jirsa and Haken@16# suggested the possibility of a phas
transition in the brain after observing MEG patterns of h
man volunteers taking part in movement coordination exp
ments. The subjects were required to press a button in
sponse to an acoustical stimulus. When the frequency
stimulus presentation exceeded a critical value, the subje
movements switched from a deliberated manual action to
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TABLE I. Symbol definitions and given values for model constants.

Symbol Description Value Unit

e, i ~as subscripts! excitatory, inhibitory cell populations
he,i population mean soma potential mV
te,i membrane time constant 40, 40 ms
he,i

rest cell resting potential 270, 270 mV
he,i

rev cell reversal potential~Nernst potential! 45, 290 mV
I ee,ie total e→e,i→e ‘‘current’’ input to excitatory synapses mV
I ei,i i total e→ i ,i→ i ‘‘current’’ input to inhibitory synapses mV
c jk( j ,kP$e,i %) weighting factors for theI jk inputs
pee,ie exogenous~subcortical! spike input toe population 1.1, 1.6 (ms)21

pei,i i exogenous~subcortical! spike input toi population 1.6, 1.1 (ms)21

fe,i long-range~cortico-cortical! spike input toe, i
populations

(ms)21

Lee,ei characteristic cortico-cortical inverse-length scale 0.40, 0.65 (cm)21

EPSP, IPSP excitatory, inhibitory post-synaptic potential mV
ge,i neurotransmitter rate constant for EPSP, IPSP 0.30, 0.065 (ms)21

Ge,i peak amplitude of EPSP, IPSP 0.18, 0.37 mV
e base of natural logarithms 2.71828 . . .
Nee,ei

b total number of locale→e,e→ i synaptic connections 3034, 3034
Nie,i i

b total number of locali→e,i→ i synaptic connections 536, 536
Nee,ei

a total number of synaptic connections from distant
e populations 4000, 2000

v̄ mean axonal conduction speed 0.7 cm (ms)21

Se(he),Si(hi) sigmoid function mapping soma potential to firing rate (ms)21

ue,i inflection-point voltage for sigmoid function 260, 260 mV
ge,i sigmoid slope at inflection point 0.28, 0.14 (mV)21
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involuntary synchronous response. This change in movem
response was accompanied by an alteration in the reco
spatiotemporal MEG patterns. To explain these findin
Jirsa and Harken@16# developed a field-theoretical model o
the brain, subsequently extended by Franket al. @22# to in-
clude white noise. This model predicts that at a critical dr
ing frequency there will be a phase transition in the spa
temporal distribution of the dendritic currents. We note th
their model describes a transition between differentcon-
sciousstates of the brain, whereas our present work is c
cerned with the general-anesthetic-induced phase trans
between conscious and unconscious states.

In Sec. IV we discuss the implications of our finding
with respect to analogies between classical phase transi
in physics and state changes in the cortex. We define a co
cooperativity parameter, analogous to the order paramete
a thermodynamic phase transition, and offer some con
tures about how these ideas might relate to ‘‘consciousne

II. THEORY

A. Cortical equations

Our starting point is Liley’s set of eight coupled PDE
@19,23# in which we have assumed complete spatial hom
geneity over the region sampled by the EEG electrode. T
is a reasonable approximation, given that a scalp electr
has a contact area of approximately 2 cm2, and thus detects
electrical activity averaged across the underlying 5–10 c2

of cerebral cortex. Thus the one-dimensional Laplac
nt
ed
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]2/]x2 @which would have appeared on the left-hand side
the equation for the long-range potentialf(x,t); Eq. ~2.4!
below# is eliminated, and all partial derivatives with tim
become total derivatives with time. This gives the followin
set of eight coupled ordinary DEs~the symbols are defined in
Table I!:

Fte

0
0
t i

G d

dt Fhe

hi
G5Fhe

rest2he

hi
rest2hi

G1FceeI ee1c ieI ie

ceiI ei1c i i I i i
G , ~2.1!

S d

dt
1geD 2F I ee

I ei
G5H FNee

b

Nei
b GSe~he!1Ffe

f i
G1Fpee

pei
G J Gegee,

~2.2!

S d

dt
1g i D 2F I ie

I ii
G5H FNie

b

Nii
b GSi~hi !1Fpie

pii
G J Gig ie, ~2.3!

F S d

dt
1 v̄LeeD 2

fe

S d

dt
1 v̄LeiD 2

f i

G5 v̄F S d

dt
1 v̄LeeDLeeNee

a

S d

dt
1 v̄LeiDLeiNei

a G Se~he!.

~2.4!

Equation~2.1! gives the time evolution ofhe andhi , the
excitatory and inhibitory soma potentials averaged over
assembly of cooperating neurons. The neural assembl
assumed to be a single resistance-capacitance~RC! compart-
ment or summing point; in effect, we are defining an avera
neuron for the mass. The first two terms on the right cor
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spond to an exponential return to a resting potentialhe,i
rest; the

second pair describe perturbations to the membrane pote
due to synaptic inputs to the neural mass. Thec jk ~where
j ,kP$e,i %) coefficients appearing on the right are norm
ized weighting functions for these inputs. These coeffcie
represent the facts that excitation and inhibition are media
by different ionic species and that the corresponding ma
tude of the postsynaptic currents will depend on the ac
state of the neuron@24#; they are defined by

cee5
he

rev2he

uhe
rev2he

restu
, c ie5

hi
rev2he

uhi
rev2he

restu
,

~2.5!

cei5
he

rev2hi

uhe
rev2hi

restu
, c i i 5

hi
rev2hi

uhi
rev2hi

restu
.

The constant values used for the restinghe,i
restand reversalhe,i

rev

potentials are listed in Table I. Note that for typical valu
for he andhi , the weightscee andcei for input from exci-
tatory sources are positive, while weightsc ie and c i i from
inhibitory sources are negative.

The time evolution of the input termsI ee, I ie , I ei , andI i i
is governed by Eqs~2.2! and~2.3! which model the variable
coupling strength between cells in terms of sigmoid fun
tions Se(he) andSi(hi):

Se~he!5@11 exp„2ge~he2ue!…#
21,

~2.6!
Si~hi !5@11 exp„2gi~hi2u i !…#

21.

These are nonlinear S-shaped transfer functions represe
the output pulse rate~in, say, pulses per second! of a homo-
geneous neural mass in response to a mean field ofhe , hi .
ue,i andge,i are constants:ue,i is the soma potential at whic
the function has maximum gradient, andge,i determines the
‘‘gain’’ at this point of inflection. See Fig. 3, and refer t
Table I for values of the contants. For small values of so
potential, the average firing rate is low; as soma poten
increases~becomes less negative!, firing rate increases rap
idly, eventually levelling off at a maximum value of sa
1000 s21. Thus the strength of the interconnection betwe
neurons is determined by the value of the soma potentia
that instant. In addition to sigmoid-modulated spike inp
from the neural mass, there are exogenous~subcortical! spike
input contributions (pee, pie , pei , pii ), plus long-range
~cortico-cortical! contributions (fe , f i) from distant excita-
tory assemblies.

It is of interest to note that Eqs.~2.1!–~2.4! have some
similarities with those derived by Robinson and co-work
@11,12#, and Jirsa and Haken@16#. Robinson and co-worker
wrote differential equations forVe,i , the neuronal potentia
at the cell body, in terms of inputs determined by arriv
rates of pulses at dendrites, and used a sigmoid functio
relate input voltage to neuronal firing rate.

In our present work we wish to modify the Liley equ
tions in order to model the effect of variable anesthetic c
centration in the cortex. The primary mechanism of act
common to most general anesthetic agents is the prolon
of the duration of the inhibitory postsynaptic potentials~IP-
SPs! @25# @or, equivalently, the reduction in neurotransmitt
tial
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rate constantg i in Eq. ~2.3!#. At concentrations appropriat
for surgical anesthesia, the IPSPs are prolonged by a fa
of 1.5- to 4-fold@25–28#.

We model this change in inhibitory rate constant by
placing theg i appearing on the left-hand side of Eq.~2.3!
with ḡ i , where

ḡ i5
g i

l
.

Herel is a multiplicative scaling factor assumed to be pr
portional to anesthetic concentration, so thatl51 corre-
sponds to no anesthetic effect, and an increase inl corre-
sponds to an increase in anesthetic amount~decrease ing i
rate constant!. See Fig. 4. We now describe how the Lile
equations are transformed into linearized stochastic differ
tial equations.

B. Stochastic differential equations„SDEs…

1. System fluctuations

As a first step toward deriving stochastic equations
motion, we need to identify the sources of noise which dr
the system. We assume that the noise arises in the subco
~exogenous! inputs to the assembly, and ignore noise ent

FIG. 3. Sigmoidal functions relating the firing rate to the ave
age soma potential.~a! Sigmoid curves: excitatory sigmoidSe ~light
curve!; inhibitory sigmoidSi ~bold!. ~b! First derivative of sigmoid
functions: dSe /dhe ~light curve!; dSi /dhi ~bold!. The points of
inflection are set atue,i5260 mV; the midpoint ‘‘gains’’ arege,i

50.28 and 0.14 (mV)21 @see Eq.~2.6!#.
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ing via the long-range~cortico-cortical! connections from
distant assemblies. This assumption is modeled by repla
each of the fourpjk subcortical sources appearing in E
~2.2! and~2.3! by the product of its average value^pjk& with
a unit-variance white-noise term„11j jk(t)…, e.g.,

pie→^pie&„11j ie~ t !…

~We note that this is akin to the phenomenological inclus
of cortical noise as proposed by Franket al. @22#.! Thus Eqs
~2.2! and ~2.3! are rewritten as

S d

dt
1geD 2F I ee

I ei
G5H FNee

b

Nei
b GSe~he!1Ffe

f i
G1F ^pee&

^pei&
G J Gegee

1FG1~ t !
G2~ t !G , ~2.7!

S d

dt
1g i D 2F I ie

I ii
G5H FNie

b

Nii
b GSi~hi !1F ^pie&

^pii &
G J Gig ie1FG3~ t !

G4~ t !G ,
~2.8!

where

FG1~ t !
G2~ t !G5F ^pee&j1~ t !

^pei&j2~ t ! GGegee,

FG3~ t !
G4~ t !G5F ^pie&j3~ t !

^pii &j4~ t ! GGig ie, ~2.9!

and the fourj j (t) are Gaussian random terms as defined
Eqs~1.2!. @We do not include any explicit noise terms in E
~2.1! and ~2.4!, so these remain unaltered.#

2. Adiabatic elimination of fast variables

Our aim is to use Eqs~2.1!, ~2.4!, ~2.7!, and ~2.8! to
compute observable quantities such as power spectra. S
ing these equations in their full form will require numeric

FIG. 4. Impulse response for excitatory~light curve!, inhibitory
~bold!, and anesthetic-modified inhibitory~bold-dashed! post-
synaptic membranes. Curves are normalized to unit height. For
plication to our model, the heights are scaled by the respec
EPSP~excitatory post-synaptic potential! and IPSP~inhibitory post-
synaptic potential! amplitudes,Ge,i50.18 and 0.37 mV. The rate
constants, in (ms)21, for the three curves arege50.30, g i

50.065, andg i850.043.
ng

n

y

lv-

simulation using stochastic-integration techniques, and th
can be fraught with stability problems. Instead, for a fi
approach, we prefer to make some reasonable simplificat
which will both permit analytic solution and also give som
insights into predicted system behaviors.

The simplification is possible if we perform a linearize
analysis which is based on the assumption that an equ
rium state of the cortex exists, and is given by solving E
~2.1!, ~2.4!, ~2.7!, and ~2.8! in the steady-state limit~i.e.,
d/dt→0) in which all noise terms have been set to ze
This gives the stationary solution, which we denote by
vector

a05@he
0hi

0I ee
0 I ie

0 I ei
0 I i i

0fe
0f i

0#T.

Having solved for the equilibrium statea0, we can lin-
earize Eqs.~2.1!, ~2.4!, ~2.7!, and ~2.8! about a0, and, by
casting them into a set of first-order differential equatio
obtain a complete set of stationary statistics such as corr
tion functions and power spectra@20#.

However, the required calculations present a formida
task, since they involve manipulations of several multi
mensional matrices. We can reduce the dimensionality of
problem, thereby making it more tractable, by noting that
‘‘input’’ terms ( I jk , fe,i) can vary on time scales that ar
quite distinct from the time scale of the soma potentialshe
andhi . This becomes apparent when we compare the v
ous relaxation times~computed from the numerical value
listed in Table I!:

relaxation time forI ee,I ei5~ge!
21'3.3 ms,

relaxation time forI ie ,I i i 5~g i !
21'15.4 ms,

relaxation time forfe5~ v̄Lee!
21'3.6 ms,

relaxation time forf i5~ v̄Lei!
21'2.2 ms,

whereas thete,i time scales for thehe,i soma potentials can
be as large as 100 ms@29#. For our present modeling work
we sette5t i540 ms, allowing us to make the working a
sumption that the six neuronal inputs@ I eeI ieI eiI i i fef i #
equilibrate very much faster than the soma potentialshe,i
themselves, so that onhe,i equilibration time scales, all time
derivatives appearing in Eqs.~2.2!–~2.4! can be set to zero
We thus adiabatically eliminate these ‘‘fast’’ variables b
settingd/dt→0 in Eqs.~2.2!–~2.4! while retaining the noise
terms, allowing us to solve forI ee, I ie , I ei , I i i , fe , andf i
as functions ofhe andhi . The resulting expressions for thes
six fast variables may then be substituted back into the eq
tions of motion~2.1! for he andhi .

Note that in contrast to the procedure for determining
stationary solutionsa0, we do not set the noise terms to ze
in the adiabatic elimination, since we wish to allow fluctu
tions from the fast variables to be incorporated into thehe,i
equations.~We note in passing that while Gardiner@20#
warns that this method for treating noise is only valid f
small fluctuations, it has been used with success by m
workers in the field of quantum optics, e.g., by Hak
@30,31# in his treatment of the laser, and by Drummond@32#
in his work on cooperative fluorescence.!

p-
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The equations resulting from the adiabatic simplificati
follow:

F I ee
0

I ei
0 G5H FNee

b

Nei
b GSe~he!1Ffe

0

f i
0G1F ^pee&

^pei&
G J Gee/ge

1FG1~ t !
G2~ t !G Y ge

2 , ~2.10a!

F I ie
0

I i i
0 G5H FNie

b

Nii
b GSi~hi !1F ^pie&

^pii &
G J Gie/ḡ i1FG3~ t !

G4~ t !G Y ḡ i
2 ,

~2.10b!

Ffe
0

f i
0G5FNee

a

Nei
a GSe~he!. ~2.10c!

Substituting Eqs~2.10! back into Eqs~2.1!, we obtain the
stochastic equations of motion for the soma potentials in
adiabatic limit:

d

dt Fhe

hi
G5FF1~he ,hi !

F2~he ,hi !
G1FGe~ t !

G i~ t ! G , ~2.11a!

where the drift terms are

F1~he ,hi !5$~he
rest2he!1cee@~Nee

a 1Nee
b !Se~he!

1^pee&#Gee/ge1lc ie@Nie
b Si~hi !

1^pie&#Gie/g i%/te , ~2.11b!

F2~he ,hi !5$~hi
rest2hi !1cei@~Nei

a 1Nei
b !Se~he!

1^pei&#Gee/ge1lc i i @Nii
bSi~hi !

1^pii &#Gie/g i%/t i , ~2.11c!

and the corresponding noise terms are

Ge~ t !5$ceê pee&j1~ t !Gee/ge1lc ie^pie&j3~ t !Gie/g i%/te ,
~2.11d!

G i~ t !5$cei^pei&j2~ t !Gee/ge1lc i i ^pii &j4~ t !Gie/g i%/t i .
~2.11e!

~Note that we have replacedḡ i by g i /l in the above equa
tions in order to make explicit their dependence on anesth
‘‘effect’’ l.!

C. Fluctuation spectrum: linearized theory

We linearize SDE’s~2.11! about an equilibrium statea0

to obtain the Ito SDE

d

dt F h̃e

h̃i
G52AF h̃e

h̃i
G1FGe~ t !

G i~ t ! G ~2.12!

where h̃e,i represent small deviations of thehe,i from the
equilibrium state. The drift matrixA is given by
e

tic

A52F ]F1

]he

]F2

]he

]F1

]hi

]F2

]hi

G
eq.

, ~2.13!

where the eq. subscript means ‘‘evaluate at the equilibri
point.’’ Since the SDE is now in Ito form, we may define a
equivalent Fokker–Planck equation@20#

]P~ h̃e ,h̃i !

]t
5H ]

]h̃e

@A11h̃e1A12h̃i #1
]

]h̃i

@A21h̃e1A22h̃i #

1
1

2 F ]2

]h̃e
2

D111
]2

]h̃i
2

D22G J P~ h̃e ,h̃i !, ~2.14!

whereP is the probability distribution function for theh̃e,i .
The D j j are the elements of the diffusion~noise! matrix de-
fined via

^Ge~ t !Ge~ t8!&5D11d~ t2t8!, ~2.15a!

^G i~ t !G i~ t8!&5D22d~ t2t8!, ~2.15b!

D125D2150. ~2.15c!

~The full form of the drift and diffusion matrices is given i
the Appendix.!

Equation ~2.14! describes a multivariate Ornstein
Uhlenbeck process, the stationary statistics of which h
been extensively studied@20#. In particular, if we define the
time autocorrelation forh̃e as

G~ t8!5 lim
T→`

1

TE0

T

h̃e~ t !h̃e~ t1t8!dt; ~2.16!

then the stationary fluctuation spectrum forh̃e can be com-
puted from the Fourier transform

S @ h̃e~v!#5
1

2pE2`

`

e2 ivt8G~ t8!dt8. ~2.17!

Using standard Ornstein–Uhlenbeck analysis@20#, we can
derive the spectrumS @ h̃e(v)# and the covariance matrixs
in terms of the drift and diffusion matricesA andD:

S @ h̃e~v!#5
1

2p
~A1 ivI !21 D ~AT2 ivI !21,

~2.18!

where the superscriptT signifies a matrix transpose. The st
tionary covariance matrix is

s 5F ^h̃e ,h̃e&

^h̃i ,h̃e&

^h̃e ,h̃i&

^h̃i ,h̃i&
G

5
det~A!D1@A2Tr~A!I # D @A2Tr~A!I #T

2 Tr~A! det~A!
, ~2.19!

in which I is the identity matrix; det and Tr are the determ
nant and trace operators respectively; and where, for
ample,
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^h̃e ,h̃e&5var~ h̃e!5Š~ h̃e2^h̃e&!2&5^h̃e
2&2^h̃e&

2.
~2.20!

Fluctuations ofhe about its stationary state are thus given

Dhe5Avar~ h̃e!. ~2.21!

III. RESULTS

A. Stationary solutions

By solving Eqs.~2.1!–~2.4! in the steady-state, zero-nois
limit, we obtain the equilibrium behavior ofhe

0 andhi
0 as a

function of anesthetic ‘‘amount’’l. See Fig. 5. These
steady-state values were obtained numerically by loca
the multiple intersections of the isocline curvesdhe /dt50
and dhi /dt50. ~See Wilson and Cowan@9#, Fig. 4, for an
illustration.! Values for our system constants follow close
those of Liley@19#, and are listed in Table I. Recall that i
our model, the inhibitory neurotransmitter rate constan
assumed to scale inversely withl, ḡ i5g i /l, thusl51 cor-

FIG. 5. ~a! Model predictions for the stationary states forhe

~circles! andhi ~crosses! as a function of scale factorl ~anesthetic
amount!. Ordinate axes carry units of mV.~b! In region II bounded
by A1A3Q3Q1, for a given value ofl, there are three possibl
values forhe , but only two of these are stable: points lying on t
upper~‘‘active’’: A1A3) branch, and points on the lower~‘‘quies-
cent’’: Q1Q3) branch. Forl*1.53 ~region I!, he becomes single
valued and neural firing is strongly suppressed~‘‘coma’’: Q3C); for
l&0.3 ~region III!, he is again single valued but now neural firin
is maximized~‘‘seizure’’: SA1).
g

s

responds to no anesthetic effect. Figure 5~b! shows that for
this value ofl, there are three distinct values forhe

0 : A2 on
the SA3 upper branch,Q2 on theQ1C lower branch, and an
intermediate value~unlabeled! on theA3Q1 middle branch.
From stability analysis, we have established that only
upper and lower branches contain stable equilibrium poi
all points along the intermediate branch are unstable w
respect to small perturbations.

Suppose the neural assembly is initially at locationA2. As
anesthetic effectl increases,he

0 will slide to the right down
the upper branch toA3, whereupon a sudden jump toQ3 on
the lower branch must occur, since the middle branch is
stable and therefore disallowed. Further increases inl will
then causehe

0 to advance along theQ3C subbranch. If in-
stead, the assembly was initially atQ2 on the lower branch,
then increases inl would lead to smoothly decreasing~more
negative! values for soma potential, with no jump discon
nuity.

The points on theSA3 upper branch correspond to ver
strong neural firing, since along this branch the soma po
tial exceeds the sigmoidal inflection-point voltage (ue5
260 mV; see Fig. 3!; thus we refer to the upper-branc
states as being ‘‘active.’’ Maximum activity will occur atS
~upper-left corner! when soma potential is least negative; w
refer to theSA1 subbranch~region III! as ‘‘seizure .’’ The
Q1C lower-branch states have large negative soma po
tials, and therefore suppressed firing rates, so we label
quiet branch ‘‘quiescent.’’ Maximum suppression occurs
C ~lower-right corner!, so theQ3C subbranch~region I! is
labeled ‘‘coma.’’

If the cortex is pictured as a superposition of neural
semblies, some active and some quiescent, then even if
a small proportion are in the activated state, we might exp
an anesthetic-driven downwards transition across theA3Q3
gap to produce a measurable change in the EEG signal i
active assemblies are acting synchronously. We make s
theoretical predictions about the nature of these spec
changes in the following subsection.

The existence of multiple stationary states in the cor
was first suggested by Wilson and Cowan@9#. In their ab-
stract model of populations of inhibitory and excitatory ne
rons containing sigmoid nonlinearities, they demonstra
that for sigmoid functions withn inflection points, there
could be up to 2n13 stationary, but not neccessarily co
current, states. Recently, Robinsonet al. @12# investigated
the nature of the steady-state solutions for a similar ma
ematical model of the cortex, but, after an extensive para
eter space search, rather than five equilibrium states,
found a maximum of either three steady states or a sin
steady state; and that for the three-state case, only two w
stable. This finding is in complete accord with our resu
reported here.

Examining the results of Robinsonet al. @12# in more
detail, they classified their solutions in terms of a ratiol i / l e ,
where l i ( l e) is the net response at the cell body per u
concentration of inhibitory~excitatory! neurotransmitter at
the synapses. They found that the three-state case occ
when l i / l e'1, i.e., when the inhibitory and excitatory re
sponses were of similar magnitude. However, if the inhi
tory response was strongly dominant over excitatory~or vice
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versa!, they found that the system collapsed to a sin
steady state.

Relating these findings to our model, theirl i ( l e) ‘‘net
response’’ concept would seem to correspond to our IP
amplitudeGi ~EPSP amplitudeGe). In our case, we main
tained these amplitudes constant~see Fig. 4!, and instead
increased the inhibitory effectiveness by prolonging the
hibitory neurotransmitter time constant~by reducing its in-
verse, the rate constantg i) by scaling it with anesthetic fac
tor, l. Thus, broadly speaking, ourl maps to thel i / l e ratio
of Robinsonet al. @12# since l@1 corresponds to stron
inhibition ~leading to ‘‘coma’’!, while at the opposite ex
treme,l!1 corresponds to excessive excitation~leading to
‘‘seizure’’!.

B. Spectrum for fluctuations about the steady state

For each of the (he
0 , hi

0) equilibrium states marked~as
circles and crosses! on the upper and lower branches of Fi
5~a!, we solved Eq.~2.18! for the fluctuation spectrum ove
the frequency range 0–40 Hz. Figure 6 shows the predic
variation in spectral power for a macrocolumn whose inhi
tory neurotransmitter time constant is multiplied by al fac-
tor which increases steadily from 0.3 to 1.8. This cor
sponds to induction of anesthesia via the traject
A1A3Q3C from the upper~‘‘active’’ ! to the lower~‘‘quies-
cent’’! branch of Fig. 5~b!.

Each spectral curve is peaked at zero frequency, w
power diminishing smoothly with frequency. There is n
suggestion of any cortical resonances~such as the 8–13 Hz
alpha rhythm! in these curves; this lack of higher-frequen
structure is not unexpected given the approximations
have made~linearization about equilibrium, adiabatic elim
nation of fast variables!.

The interesting feature is the very strong increase in lo
frequency power as the turning point atl'1.53 @A3 in Fig.
5~b!# is approached. Whenl is increased beyond this critica

FIG. 6. 3D plot showing variation of spectral power along t
anesthesia-induction trajectoryA1A3Q3C of Fig. 5. Asl increases
from 0.3 to 1.53, low-frequency spectral power increases to rea
strong maximum at the critical point markedA3 on the upper
branch of Fig. 5. A further increase inl produces an abrupt drop i
power as the soma potential transits theA3→Q3 jump to reach the
lower branch. @The power scale is dB relative to the 1.2
31028(mV)2/Hz coma minimum at 40 Hz.#
e
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-
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value, the macrocolumn suddenly collapses to its quiesc
state with much reduced spectral power.

In Fig. 7 we show the total power~area under each of th
spectral power curves! as a function of anesthetic effectl for
both the induction trajectory (A1A3Q3C) and the
emergence-from-anesthesia trajectory (Q3Q1A1). The two
cusps correspond to the two turning points (A3 and Q1) in
the stationary states trajectory of Fig. 5~b!. Figure 8 shows
the corresponding steady-state noise amplitude as a func
of anesthetic effect. The shapes of Figs 7 and 8 are ra
similar because the zero-frequency peak dominates all of
spectral power curves.

How well do these theoretical curves match up with clin
cal measurements? Kuizengaet al. @3# performed a clinical
study which examined the ‘‘biphasic’’ relationship betwe
the concentration of a general anesthetic agent~propofol! in
arterial blood and EEG effects during the transition from t
awake state to hypnosis and during subsequent emerge
The subjects were ten healthy male patients who were sc

a

FIG. 7. Total power as a function of anesthetic effect. Pow
values were obtained by integrating the induction~Fig. 6! and emer-
gence~not shown! spectral power curves over the frequency ran
0–40 Hz. The labels correspond to those used in Fig. 5.

FIG. 8. Steady-state noise amplitude as a function of anesth
effect. The ordinate is the spectral amplitude at zero frequency,
can be interpreted as a vertical ‘‘error bar’’ to be applied to thehe

0

steady-state trajectory of Fig. 5. Maximum noise occurs at theA3

andQ1 critical points.
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FIG. 9. EEG amplitude data from Fig. 1 plot
ted as a function of measured propofol blood co
centration.~a! 0–5 Hz. ~b! 11–15 Hz. Each tra-
jectory commences at the lower-left corner
zero concentration. For the 0–5-Hz band, the a
tivation peak is stronger during the inductio
phase~right-hand peak!; for the 11–15-Hz band,
the activation peak is considerably stronger f
the emergence phase~left-hand peak!. ~Data sup-
plied courtesy of K. Kuizenga, and reported
‘‘patient 7’’ in Kuizengaet al. @3#.!
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uled for lower-limb surgery. A scalp electrode pair w
placed at the mastoid~bone behind the ear! and the forehead
to monitor the differential EEG signal developed across
hemisphere. Each patient received a 10-min infusion of p
pofol. The EEG was recorded continuously from 5 min b
fore the start of propofol infusion until the patient regain
consciousness~approximately 15 min after conclusion of in
fusion!, and thereafter intermittently for 5-min periods, coi
ciding with blood sampling, until 190 min after start of in
fusion. Blood samples were drawn from a femoral artery
2-min intervals during the first 22 min, then at more wide
spaced intervals thereafter.

The EEG signal was processed, over 15-s epochs, int
six frequency bands~0–5, 6–10, 11–15, 16–20, 21–25, an
26–30 Hz! using ‘‘aperiodic analysis.’’ This technique mea
sures the vertical distance between consecutive peaks
valleys in the voltage trace and computes an effective ins
taneous frequency from~half the reciprocal of! the time in-
terval for the peak-to-trough excursion. These voltage exc
sions are then accumulated, unsigned, into one of the
frequency bins to give a total voltage deviation in each f
quency band for the 15-s epoch. Dividing each band tota
15 s then gives a measure of the average amplitude ‘‘s
rate,’’ in mV/s, which Kuizengaet al. referred to as the
‘‘EEG amplitude.’’

Figure 1 shows the time course of EEG activity for t
0–5- and 11–15-Hz bands for patient 7 of the Kuizen
et al. study, and Fig. 9 shows the same information, but n
plotted as a function of propofol concentration at the femo
artery. Both bands show a pair of pronounced activat
peaks: the first peak occurs during the induction phase as
patient becomes unconscious; the second peak occurs
time later as the patient emerges from unconsciousness
the 0–5-Hz band, the induction peak is stronger, while
the 11–15-Hz band the emergence peak is strongly do
nant.

The detection of two activation peaks, one during indu
tion of anesthesia and the second during emergence
anesthesia, provides encouraging qualitative agreemen
tween the clinical results with the steady-state model pre
tions of Figs 7 and 8. There are two important and not
expected quantitative differences between theory
experiment, however, which should not go unremark
First, the model predicts a dynamic range of about 104:1 in
total power~Fig. 7! and 200:1 in dc amplitude~Fig. 8! while
the experiment yields dynamic ranges which are mu
smaller: 5:1 for the 0–5-Hz band, and 10:1 for the 11–15-
e
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band. There is also a scale difference with model volta
being stated in mV, while EEG measurements are inmV.
These apparent discrepencies arise because the model i
dicting the soma potentials for a single coordinated mac
column in the cortex, while the EEG measurement is reco
ing the complex of signals from thousands of macrocolum
in the vicinity of the scalp electrodes, attenuated and filte
by the intervening skull and skin. The fact that the activati
peaks can be detected at all suggests that a fraction o
macrocolumns must be acting coherently in the vicinity
the critical point.

The second point of difference concerns the interpreta
of anesthetic ‘‘effect.’’ In comparing our model with th
results of Kuizengaet al., we have implicitly assumed tha
our l factor ~degree of prolongation of the inhibitory tim
constant! corresponds to propofol concentration measured
the femoral artery. Strictly speaking, what is needed is
propofol concentration at the cortex, but obtaining this info
mation is a complicated exercise in pharmacokinetics m
eling which requires several additional assumptions ab
multiple-compartment time constants.

C. Power divergence at transition

The theoretical origin of the peaking of the power spe
trum at the transition pointslcrit corresponding toA3 on the
upper branch of Fig. 5, andQ1 on the lower branch can b
seen by examining the terms making up Eq.~2.18!:

S @he~v!#5
1

2p

D11A22
2 1D22A12

2 1D11v
2

~A11A222A21A122v2!21~A111A22!
2v2

.

~3.1!

From Eq.~2.13!, the matrix elementA11 can be written

A1152
]F1

]he
52

]F1

]l

]l

]he

Similarly, the remaining elements are

A1252
]F1

]l

]l

]hi
, A2152

]F2

]l

]l

]he
, A2252

]F2

]l

]l

]hi
.

From Eqs.~2.11b! and ~2.11c!, we have

]F1

]l
5c ie@Nie

b Si~hi !1^pie&#
Gie

g ite
[a1 ,
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]F2

]l
5c i i @Nii

bSi~hi !1^pii &#
Gie

g it i
[a2 .

The diffusion matrix elementsD11 andD22 are nonzero and
finite atlcrit , as are the valuesa1 anda2. However, because
the l –he and l –hi curves of Fig. 5 have turning points a
lcrit ,

lim
l→lcrit

]l

]he
5 lim

l→lcrit

]l

]hi
50,

all four elements of matrixA will be zero, and thus at a
critical point Eq.~3.1! predicts that the spectral power wi
scale as 1/v2:

lim
l→lcrit

S @he~v!#5
D11

v2
.

That is, for nonzeroD11 at a critical point,S @he(v)# di-
verges at low frequencies. Further, examination of Eqs~2.19!
and ~2.21! shows thatDhe , the fluctuations inhe , will be-
come infinite asl→lcrit .

The peaking of the power spectrum and the divergenc
Dhe at lcrit is similar to the singular behavior observed
thermodynamic phase transitions. For example, at the fe
magnetic critical temperature, both heat capacityCV and
magnetic susceptibilityx diverge. The traditional scaling
hypothesis model for critical phenomena asserts that th
singularities arise from large-scale correlated fluctuations
magnetic spin alignment which occur at the critical point

For the case of our 1D cortex, because we have a mi
scopic model for the interactions within a cortical macroc
umn, we can see how the presence of finite-amplitude w
noise in the input terms (pee, pie , pei , pii ) can result in
infinite fluctuations in thehe soma potential output: becaus
the he covariance matrix depends on the stationary-state
jectory which has a turning point atlcrit , the variance ofhe
tends to infinity asl→lcrit . Essentially, the presence of th
turning point provides the required divergent ‘‘gain’’ as th
anesthetic effect approaches its critical value.

There is an apparent paradox here. How is it that a line
ized, first-order, equilibrium theory is able to reproduce
highly nonlinear, nonequilibrium fluctuations and dive
gences associated with a phase transition? The key w
seem to be the inclusion in the model inputs of white noi
These small random fluctuations move the system just
enough away from equilibrium to allow sampling and ca
ture of the essential characteristics of the nonequilibrium
havior: divergent low-frequency power and infinite fluctu
tions at the critical point.

IV. DISCUSSION

The significant result obtained in this study is that pow
spectral variations in a linearized stochastic model of cort
electrorhythmogenesis due to anesthetogenic variation
the inhibitory rate constantg i show qualitative agreemen
with clinical observations@33#: there is a sharp increase
low-frequency power in the vicinity of the critical points. A
a consequence of the adiabatic elimination of the ‘‘fas
of
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variables~Sec. II B 2! in Eqs ~2.10!, we can see thatg i and
Gi ~the IPSP ‘‘amplitude’’! have reciprocal effects on th
stationary points and on the corresponding spectral dens
@see Eqs~A1!–~A4!#. Thus reductions ing i are equivalent to
increases inGi and vice versa. This means that we can
terpret the effect of anesthetic agents on EEG as arising
ther from augmentation of the IPSP amplitude, or from
creases in the time course~reduction in the rate constan!
associated with IPSP kinetics.

Each of the exogenous spike-rate inputs (pee, pei , pie ,
pii ) into the neuronal assembly is assumed to take the f
of a white-noise fluctuation about an equilibrium mea
These inputs originate from neural action potentials gen
ated within such subcortical structures as the thalamus
the reticular nuclei of the brainstem. We ignore the lon
range contributions (fee, fei) from other cortical assem
blies by assuming thef terms are spatially homogeneou
and constant in time. Because of the simplifications inher
in the adiabatic elimination and subsequent linearization,
theory does not demonstrate cortical resonances such a
8–13 Hz alpha rhythm. Nevertheless, we believe the lo
zero-frequency predictions of our model give some insi
into the underlying cortical ‘‘gain’’ manifest in the EEG sig
nal.

The neurons within an assembly are coupled via a s
moid nonlinearity which defines the firing rate as a functi
of the soma potential~the spike-rate/he sigmoid curve; Fig.
3!. Below a threshold value the firing rate is low~weak cou-
pling between cells!, whereas above threshold many neuro
are firing ~strong coupling!. As a result, the stationary solu
tion of our model predicts two distinct, stable-equilibriu
states for the soma potential as shown in Fig. 5. The up
branchA3S corresponds to the top plateau of the spike-r
sigmoid; we describe this as the ‘‘active’’ state of the cort
arising from strong intracortical connectivity and a relative
high ~near zero! mean soma potential. Conversely, the low
branchQ1C, corresponding to low spike rate, is the ‘‘quie
cent’’ state brought about by weak intracortical connectiv
and a lower~more negative! mean soma potential.

If the inhibitory post-synaptic potential decay time is pr
longed~thereby moving the cortex into region I,Q3C) either
by application of drugs, or as a result of disease proces
there is a marked decrease in spike rate. This has been
served when neural preparations are exposed to therap
concentrations of general anesthetic agents@34#, and when
patients are in a state of coma. Although the degree of
perpolarization induced by general anesthetics is minim
(;4 mV! @35#, the spike-rate reduction is dramatic.

If we can assume that the essential requirement of nor
cortical function~and presumably of conscious awareness! is
the ability of the cortex to make and unmake strong b
transient connections between assemblies, then in regio
of our steady-state model we can picture individual asse
blies transiting momentarily from the quiescent to the act
branch. A collection of such active assemblies, firing colle
tively, should produce a coherent effect, much like the lig
field generated by a laser. However, unlike the laser analo
neuronal assemblies do not remain in a state of high exc
tion for extended periods. Indeed, prolonged high excitat
is a feature of the convulsive state, and may be induced
analeptic drugs such as bicuculine whichshortensthe inhibi-
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tory post-synaptic decay time-constant@36#. The convulsive
state corresponds to our region III@subbranchSA1 in Fig.
5~b!#.

The strong divergence in low-frequency power as the c
tex changes state is similar to the divergences observe
thermodynamic phase transitions. In the thermodyna
case, phase changes can be described within the Ising fr
work which introduces the concept of an order paramete
distinguish between ordered and disordered states. For
ample, in the ferromagnetic phase transition, the order
rameter is the net magnetization which is zero above a c
cal temperature, and nonzero below this temperature.
postulate that for the cortex, instead of an order parame
we can define acooperativity parameterH as the whole-
cortex mean soma potential relative to its value in the unc
scious state:

H5h̄e~consc.!2h̄e~unconsc.!

This parameter will have a large net value in the consci
state, and will be zero in the unconscious state. The ph
transition is effected by varying the anesthetic amount. T
the anesthetic provides the randomizing agent which bre
the connections between coherent subpopulations, transf
ing the cortex from a strongly-connected, cooperative c
scious system to an unconscious system characterize
weak connectivity and negligible cooperativity. Current
the phenomenologically-derived bispectral index~based on
the computation of a limited bispectrum! is the most sophis-
ticated measure used in the clinical practice of anesthes
determine loss of consciousness and thus depth of anesth
However, the use of the theoretically derived parameteH
may offer a more rational basis for the assessment of
depth of anesthesia and thus may have considerable cli
utility.

The actual neural mechanisms and dynamic routes
which the cortex may switch between quiescent and ac
states are not known, and are the subject of ongoing inve
gation. We speculate that noise-induced transitions may
important for maintaining conscious awareness@37#.

We conclude that although the EEG is the spatially a
temporally filtered summation of multiple and complex ne
ronal processes, the fact that our model correctly predic
strong increase in low-frequency power at the critical poi
of induction and emergence suggests that the model de
and assumptions provide a useful advance toward un
standing cortical function.
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APPENDIX: DRIFT AND DIFFUSION MATRICES

The four elements of the drift matrixA are obtained by
substituting Eqs.~2.11b! and~2.11c! into Eq. ~2.13! and cal-
culating the soma potential partial derivatives]/]he and
]/]hi . The results are
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A1152
]F1

]he

52$211@cee
(1)
„~Nee

a 1Nee
b !Se~he!1^pee&…1cee~Nee

a

1Nee
b !Se

(1)~he!#Gee/ge1lc ie
(1)

3@Nie
b Si~hi !1^pie&#Gie/g i%/te , ~A1!

A1252$lc ieNie
b Si

(2)~hi !Gie/g i%/te , ~A2!

A2152$cei~Nei
a 1Nei

b !Se
(1)~he!Gee/ge%/t i , ~A3!

A2252$211cei
(2)@~Nei

a 1Nei
b !Se~he!1^pei&#Gee/ge

1l„c i i
(2)@Nii

bSi~hi !1^pii &#

1c i i Nii
bSi

(2)~hi !…Gee/g i%/t i , ~A4!

where

cee,ie
(1) 5

]cee,ie

]he
U

eq.

, cei,i i
(2) 5

]cei,i i

]hi
U

eq.

,

Se
(1)~he!5

]Se~he!

]he
, Si

(2)~hi !5
]Si~hi !

]hi
.

To compute the diffusion matrixD, we first note that the
two off-diagonal elements are zero@see Eq.~2.15c!#. To cal-
culate D11, we substitute theGe(t) noise term from Eq.
~2.11d! into Eq. ~2.15a!, leading to

^Ge~ t !Ge~ t8!&5
1

te
2^@ceê pee&j1~ t !Gee/ge

1lc ie^pie&j3~ t !Gie/g i #

3@ceê pee&j1~ t8!Gee/ge

1lc ie^pie&j3~ t8!Gie/g i #&.

Recalling that thej(t) terms representd-correlated
Gaussian white noise with zero mean@see Eq.~1.2!#, the
^Ge(t)Ge(t8)& autocorrelation simplifies to

^Ge~ t !Ge~ t8!&5
1

te
2 $~ceê pee&Gee/ge!

2

1l2~c ie^pie&Gie/g i !
2%d~ t2t8!

5D11d~ t2t8!,

so that

D115
1

te
2 $~ceê pee&Gee/ge!

21l2~c ie^pie&Gie/g i !
2%eq..

~A5!

Similarly, solving Eqs.~2.11e! and ~2.15b! for D22 yields

D225
1

t i
2 $~cei^pei&Gee/ge!

21l2~c i i ^pii &Gie/g i !
2%eq..

~A6!
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